# Final Work Plan Remedial Investigation/Feasibility Study Boeing Isaacson-Thompson Site Tukwila, Washington

September 16, 2011

Prepared for

**The Boeing Company** 



# TABLE OF CONTENTS

|     |                                              |         |                                                                       | <u>Page</u>  |
|-----|----------------------------------------------|---------|-----------------------------------------------------------------------|--------------|
| 1.0 | INT                                          | RODUC   | TION                                                                  | 1-1          |
| 2.0 | SITE                                         | E DESCI | RIPTION AND BACKGROUND                                                | 2-1          |
|     | 2.1                                          | CURR    | ENT SITE FEATURES AND LAND USE                                        | 2-1          |
|     |                                              | 2.1.1   | Boeing Isaacson Property                                              | 2-1          |
|     |                                              | 2.1.2   | Boeing Thompson Property                                              | 2-2          |
|     | 2.2                                          | SITE I  | DEVELOPMENT                                                           | 2-4          |
|     | 2.3                                          | HISTC   | PRICAL SITE USE AND FEATURES                                          | 2-5          |
| 3.0 | PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS |         |                                                                       |              |
|     | 3.1                                          |         | AND GROUNDWATER                                                       | 3-1          |
|     |                                              | 3.1.1   | August 1983 Soil Investigations (Dames & Moore)                       | 3-1          |
|     |                                              | 3.1.2   | October 1983 Soil Investigations (Wicks)                              | 3-4          |
|     |                                              | 3.1.3   | 1983 Groundwater Monitoring                                           | 3-5          |
|     |                                              | 3.1.4   | 1984 Soil Remediation                                                 | 3-5          |
|     |                                              | 3.1.5   | 1984 Wicks Soil Investigation and Installation of Well I-8(s)         | 3-7          |
|     |                                              | 3.1.6   | 1985 Groundwater Monitoring                                           | 3-7          |
|     |                                              | 3.1.7   | 1986 and 1987 Groundwater Monitoring                                  | 3-8          |
|     |                                              |         | 1988 Soil Investigation                                               | 3-8          |
|     |                                              |         | 1988 Groundwater Investigation                                        | 3-9          |
|     |                                              |         | 1989 Soil Excavation                                                  | 3-10         |
|     |                                              |         | 1989/1990 Storm Drain Line Sampling<br>1991 Soil Stabilization        | 3-11<br>3-12 |
|     |                                              |         | 1991 Groundwater Monitoring                                           | 3-12         |
|     |                                              |         | 1992-1996 Post-Soil Stabilization Groundwater Monitoring              | 3-13         |
|     |                                              |         | 1996 Strataprobe Soil and Groundwater Sampling                        | 3-13         |
|     |                                              |         | 1993 – 1995 Hydraulic Test Pad Area Excavations                       | 3-14         |
|     |                                              |         | 2000 Groundwater and Seep Sampling and Hydrogeologic Characterization | 3-15         |
|     |                                              |         | 2004 - 20,000-Gallon Heating Tank Closure                             | 3-16         |
|     |                                              |         | 2004 Groundwater Confirmation Sampling                                | 3-16         |
|     |                                              |         | 2006 Sump Removal                                                     | 3-16         |
|     |                                              |         | 2007 – 2008 Groundwater and Seep Sampling                             | 3-17         |
|     |                                              |         | 2008 Removal of Stabilized Soil Mound                                 | 3-17         |
|     |                                              | 3.1.23  | 2008/2009 Phase II ESA Soil Sampling                                  | 3-19         |
|     |                                              |         | 2008/2009 Phase II ESA Groundwater Sampling                           | 3-20         |
|     |                                              | 3.1.25  | 2009 Property Boundary Soil Investigation                             | 3-21         |
|     |                                              | 3.1.26  | 2009 Property Boundary Groundwater Investigation                      | 3-22         |
|     | 3.2                                          | SEDIM   | MENT QUALITY INVESTIGATIONS                                           | 3-22         |
|     |                                              | 3.2.1   | Surface Samples                                                       | 3-22         |
|     |                                              | 3.2.2   | Core Samples                                                          | 3-23         |
|     | 3.3                                          |         | M DRAIN INVESTIGATIONS                                                | 3-24         |
|     |                                              | 3.3.1   | 2007 Catch Basin Rerouting Project                                    | 3-24         |
|     |                                              | 3.3.2   | 2008 Drain Line Investigation                                         | 3-24         |
|     |                                              | 3.3.3   | 2008 Catch Basin Solids Sampling                                      | 3-25         |
|     |                                              | 3.3.4   | 2009 Catch Basin Rerouting Project                                    | 3-25         |
|     |                                              | 3.3.5   | Ongoing Stormwater Outfall Sampling                                   | 3-25         |
| 4.0 |                                              |         | ENTAL SETTING                                                         | 4-1          |
|     | 4.1<br>4.2                                   | GEOL    | OGY<br>OGEOLOGY                                                       | 4-1<br>4-1   |
| 5.0 |                                              |         |                                                                       | 5-1          |
| J.U | PRELIMINARY CONCEPTUAL SITE MODEL 5-         |         |                                                                       |              |

|     | 5.1  | LDW EARLY ACTION AREA 6 COCS                    | 5-1  |  |  |
|-----|------|-------------------------------------------------|------|--|--|
|     | 5.2  | SITE PCOCS                                      | 5-1  |  |  |
|     | 5.3  | POTENTIAL CONTAMINANT SOURCES                   | 5-2  |  |  |
|     | 5.4  | CONTAMINANT MIGRATION PATHWAYS AND MEDIA OF     |      |  |  |
|     |      | POTENTIAL CONCERN                               | 5-3  |  |  |
|     | 5.5  | CURRENT AND FUTURE LAND USE                     | 5-3  |  |  |
|     | 5.6  | CURRENT AND FUTURE WATER USE                    | 5-3  |  |  |
|     | 5.7  | POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS       | 5-4  |  |  |
|     |      | 5.7.1 Potential Receptors                       | 5-4  |  |  |
|     |      | 5.7.2 Potential Exposure Pathways               | 5-4  |  |  |
|     |      | 5.7.2.1 Soil                                    | 5-5  |  |  |
|     |      | 5.7.2.2 Groundwater                             | 5-5  |  |  |
|     |      | 5.7.2.3 Sediment                                | 5-5  |  |  |
|     |      | 5.7.2.4 Surface Water                           | 5-6  |  |  |
| 6.0 | CITI | E PRELIMINARY SCREENING LEVELS                  | 6-1  |  |  |
| 0.0 | 6.1  | GROUNDWATER                                     | 6-1  |  |  |
|     | 6.2  | SOIL                                            | 6-2  |  |  |
|     | 6.3  | SEDIMENTS                                       | 6-3  |  |  |
|     | 0.3  | SEDIMENTS                                       | 0-3  |  |  |
| 7.0 | CUF  | CURRENT ENVIRONMENTAL SITE CONDITIONS           |      |  |  |
|     | 7.1  | GENERAL SOIL CONDITIONS                         | 7-1  |  |  |
|     | 7.2  | NORTH OF SLIP 5                                 | 7-1  |  |  |
|     | 7.3  | FORMER SLIP 5 MATERIAL                          | 7-2  |  |  |
|     | 7.4  | 4 SOUTH OF FORMER SLIP 5                        |      |  |  |
|     | 7.5  | GENERAL GROUNDWATER CONDITIONS                  | 7-3  |  |  |
|     |      | 7.5.1 Boeing Isaacson Property                  | 7-4  |  |  |
|     |      | 7.5.2 Boeing Thompson Property                  | 7-4  |  |  |
|     | 7.6  | SPECIFIC AREAS OF CONCERN                       | 7-5  |  |  |
|     |      | 7.6.1 Former Paint Storage Areas and Sumps      | 7-5  |  |  |
|     |      | 7.6.2 Former Diesel and Gasoline Tanks          | 7-5  |  |  |
|     |      | 7.6.3 Former Washdown Area and Degreaser        | 7-6  |  |  |
|     |      | 7.6.4 Former Washdown System Collection Tanks   | 7-6  |  |  |
|     |      | 7.6.5 Former Washdown System Collection Sumps   | 7-7  |  |  |
|     |      | 7.6.6 Hydraulic Test Pad Area                   | 7-8  |  |  |
|     |      | 7.6.7 Hazardous Waste/Hazardous Materials Sheds | 7-8  |  |  |
|     |      | 7.6.8 Former 500-Gallon Storage Tank            | 7-9  |  |  |
|     |      | 7.6.9 Transformers                              | 7-9  |  |  |
|     |      | 7.6.10 Substation – Building 14-22              | 7-9  |  |  |
|     | 7.7  | SITE-WIDE STORM DRAIN SYSTEM                    | 7-10 |  |  |
|     | 7.8  | SEDIMENT                                        | 7-10 |  |  |
|     | 7.9  | AIR                                             | 7-10 |  |  |
| 8.0 | DAT  | TA GAPS                                         | 8-1  |  |  |
| 0.0 | 8.1  | LDW EAA-6 SOURCE CONTROL DATA GAPS              | 8-1  |  |  |
|     | 0.1  | 8.1.1 Stormwater                                | 8-1  |  |  |
|     |      | 8.1.2 Soil and Groundwater                      | 8-2  |  |  |
|     |      | 8.1.3 Bank Erosion                              | 8-3  |  |  |
|     | 8.2  | OTHER DATA GAPS                                 | 8-3  |  |  |
|     | 0.2  | 8.2.1 Former Paint Storage Areas and Sumps      | 8-4  |  |  |
|     |      | 8.2.2 Former Diesel and Gasoline UST Areas      | 8-4  |  |  |
|     |      | 8.2.3 Former Hydraulic Test Pad Area            | 8-4  |  |  |
|     |      | 8.2.4 Observed Tar-Like Substance Area          | 8-4  |  |  |
|     |      | 8.2.5 Former Slip 5 Fill Material               | 8-4  |  |  |
|     |      | o.z.c I office only of the frametical           | 0-4  |  |  |

|      |              | 8.2.6   | Monitoring Well I-104(s) Groundwater Arsenic Source                  | 8-4  |
|------|--------------|---------|----------------------------------------------------------------------|------|
|      |              | 8.2.7   | Monitoring Wells I-205(s) And I-206(s) Groundwater Arsenic Source    | 8-5  |
|      |              | 8.2.8   | Monitoring Well Distribution                                         | 8-5  |
|      |              | 8.2.9   | Seep Monitoring                                                      | 8-5  |
|      |              | 8.2.10  | Soil and Groundwater Analyses                                        | 8-5  |
|      |              | 8.2.11  | Storm Drain System                                                   | 8-6  |
|      |              | 8.2.12  | Soil to Vapor Pathway                                                | 8-6  |
|      |              | 8.2.13  | Sediment                                                             | 8-6  |
| 9.0  | REM          | IEDIAL  | INVESTIGATION                                                        | 9-1  |
|      | 9.1          | GROU    | NDWATER INVESTIGATION                                                | 9-1  |
|      |              | 9.1.1   | Monitoring Well and Groundwater Grab Sampling Locations              | 9-2  |
|      |              |         | 9.1.1.1 Northern Site Boundary                                       | 9-2  |
|      |              |         | 9.1.1.2 Stabilized Arsenic-Contaminated Soil Area                    | 9-2  |
|      |              |         | 9.1.1.3 Former Paint Storage Areas                                   | 9-2  |
|      |              |         | 9.1.1.4 Former Slip 5 Outfall                                        | 9-2  |
|      |              |         | 9.1.1.5 Upgradient of Monitoring Well I-104(s)                       | 9-2  |
|      |              |         | 9.1.1.6 Former Slip 5                                                | 9-3  |
|      |              |         | 9.1.1.7 Former Hydraulic Test Pad Area                               | 9-3  |
|      |              |         | 9.1.1.8 Western Site Boundary                                        | 9-3  |
|      |              |         | 9.1.1.9 Boeing Thompson Property                                     | 9-3  |
|      |              | 9.1.2   | Seep Sampling                                                        | 9-4  |
|      |              | 9.1.3   | Frequency of Sampling                                                | 9-4  |
|      |              | 9.1.4   | Laboratory Analysis                                                  | 9-4  |
|      |              |         | Groundwater Flow Monitoring                                          | 9-4  |
|      |              |         | Well Abandonment                                                     | 9-5  |
|      | 9.2          |         | NVESTIGATION                                                         | 9-5  |
|      | 9.3          |         | M DRAIN SYSTEM INVESTIGATION                                         | 9-7  |
|      |              | 9.3.1   | Storm Drain System Solids                                            | 9-7  |
|      |              | 9.3.2   | Stormwater                                                           | 9-7  |
|      |              | 9.3.3   | Contingent Source Evaluation                                         | 9-8  |
|      |              | 9.3.4   | 12-Inch Metal Corrugated Pipe                                        | 9-8  |
|      | 9.4          |         | R INVESTIGATION                                                      | 9-8  |
|      | 9.5          |         | MENT INVESTIGATION                                                   | 9-8  |
| 10.0 |              |         | IENT OF THE FEASIBILITY STUDY                                        | 10-1 |
|      |              |         | CABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS                       | 10-1 |
|      |              |         | NEATION OF MEDIA REQUIRING REMEDIAL ACTION                           | 10-2 |
|      |              |         | LOPMENT OF REMEDIAL ACTION OBJECTIVES                                | 10-2 |
|      |              |         | ENING OF CLEANUP ALTERNATIVES                                        | 10-2 |
|      | 10.5         |         | UATION OF CLEANUP ALTERNATIVES                                       | 10-3 |
|      |              |         | Threshold Requirements                                               | 10-3 |
|      |              |         | Requirement for Permanent Solution to the Maximum Extent Practicable | 10-3 |
|      |              |         | Requirements for a Reasonable Restoration Timeframe                  | 10-4 |
|      |              |         | Requirement for Consideration of Public Concerns                     | 10-4 |
|      |              |         | OPORTIONATE COST ANALYSIS PROCEDURES                                 | 10-5 |
|      | 10.7         | RECO.   | MMENDATION OF REMEDIAL ACTION ALTERNATIVE                            | 10-5 |
| 11.0 | PUB          | LIC INV | VOLVEMENT                                                            | 11-1 |
| 12.0 | SCH          | EDULE   | AND REPORTING                                                        | 12-1 |
| 13.0 | REFERENCES 1 |         | 13-1                                                                 |      |

## **FIGURES**

| <u>Figure</u> | <u>Title</u>                                                                  |
|---------------|-------------------------------------------------------------------------------|
| 1             | Vicinity Map                                                                  |
| 2             | Current Site Features                                                         |
| 3             | Current Storm Drain System                                                    |
| 4             | Approximate Former and Existing UST, AST, OWS, and Sump Locations             |
| 5             | Historical Duwamish River Shoreline                                           |
| 6             | Historical Site Features                                                      |
| 7             | Slip 5 Fill History                                                           |
| 8             | 1936 Aerial Photograph                                                        |
| 9             | Historical Storm Drain Configuration                                          |
| 10            | Previous Soil Sampling Locations                                              |
| 11            | Previous Soil Sampling Locations Detail                                       |
| 12            | Previous Groundwater Monitoring Locations                                     |
| 13            | Previous Remediation Areas                                                    |
| 14A           | 1989/1990 Storm Drain Line Excavation Sample Locations and Results - West     |
| 14B           | 1989/1990 Storm Drain Line Excavation Sample Locations and Results - East     |
| 15            | 1989/1990 Test Pit Locations                                                  |
| 16A           | 1991 Soil Stabilization Excavation Sample Locations and Results- West         |
| 16B           | 1991 Soil Stabilization Excavation Sample Locations and Results - East        |
| 17            | Previous Sediment Sampling Locations                                          |
| 18            | Corrugated Pipe Location                                                      |
| 19            | Detected Concentrations of Metals in Catch Basin Solids                       |
| 20            | Detected Concentrations of BEHP and PCBs in Catch Basin Solids                |
| 21            | Geologic Cross-Section Locations                                              |
| 22            | Geologic Cross-Section A-A'                                                   |
| 23            | Geologic Cross-Section B-B'                                                   |
| 24            | Geologic Cross-Section C-C'                                                   |
| 25            | Geologic Cross-Section D-D'                                                   |
| 26            | Geologic Cross-Section E-E'                                                   |
| 27            | August 2000 Mean Groundwater Elevation Contours                               |
| 28            | Conceptual Site Model                                                         |
| 29            | Soil Sample Locations of Soil Remaining                                       |
| 30            | Boeing Thompson / 8801 Site Property Boundary TCE and PCE Soil Concentrations |
| 31            | Dissolved Arsenic Concentrations in Groundwater                               |
| 32            | Boeing Thompson / 8801 Site Boundary Groundwater VOC Analytical Results       |
| 33            | Proposed Groundwater Sample and Monitoring Locations                          |
| 34            | Proposed Soil Sample Locations                                                |
| 35            | Proposed Sediment Sample Locations                                            |

## **TABLES**

| <u>Table</u> | <u>Title</u>                                                                          |
|--------------|---------------------------------------------------------------------------------------|
| 1            | Previous Surface Sediment Sample Analytical Results                                   |
| 2            | Previous Sediment Core Sample Analytical Results – Organic Carbon Normalized          |
| 3            | Previous Sediment Core Sample Analytical Results – Dry Weight                         |
| 4            | Summary of Previous Stormwater Analytical Results                                     |
| 5            | Storage Tank and Sump Inventory                                                       |
| 6            | Site Groundwater Target Reporting Limits, Method Detection Limits, and Preliminary    |
|              | Screening Levels                                                                      |
| 7            | Site Soil Target Reporting Limits, Method Detection Limits, and Preliminary Screening |
|              | Levels                                                                                |
| 8            | Groundwater Arsenic Analytical Data                                                   |
| 9            | Historical Sediment Samples and Analysis Schedule                                     |

# **APPENDICES**

| <u>Appendix</u> | <u>Title</u>                                        |
|-----------------|-----------------------------------------------------|
| A               | Uplands Sample and Analysis Plan (SAP)              |
| В               | Sediment SAP                                        |
| C               | Uplands Quality Assurance Project Plan (QAPP)       |
| D               | Site Health and Safety Plans (HASPs)                |
| E               | Historical Summary of Chemicals Used at the Site    |
| F               | Phase I ESA 2008 Site Reconnaissance                |
| G               | Previous Investigation Results for Soil at the Site |
| Н               | Previous Groundwater Sample Results                 |
| I               | Summary of Slag Material Analytical Results         |
| J               | Surface Grab Samples and Core Samples               |
| K               | Soil and Groundwater Preliminary Screening Levels   |

#### LIST OF ACRONYMS

μg/kg
 μg/L
 Micrograms per Kilogram
 μg/L
 1,1-DCE
 1,1-Dichloroethene

APS Applied Professional Services

ARAR Applicable or Relevant and Appropriate Requirement

AST Aboveground Storage Tank

BAS Abatement Services

BEHP Bis(2-ethylhexyl)phthalate BGS Below Ground Surface BMPs Best Management Practices

CB Catch Basin

cis-1,2-DCE Cis-1,2-dichloroethene

CLARC Cleanup Levels and Risk Calculations

cm Centimeters

cm/s Centimeters per Second
COC Contaminant of Concern
CSL Cleanup Screening Level

DAHP Department of Archaeology and Historic Preservation

DCA Disproportionate Cost Analysis

EAA Early Action Area

Ecology Washington State Department of Ecology

EHS Environment, Health and Safety

EOF Emergency Overflow EP Extraction Procedure

EPA U.S. Environmental Protection Agency
ERM Environmental Resources Management

ESA Environmental Site Assessment

FS Feasibility Study

ft Feet

ft<sup>2</sup> Square Feet

HASP Health and Safety Plan

HVOCs Halogenated Volatile Organic Compounds

IH Industrial Hygiene

KCIA King County International Airport

KCSWDM King County Surface Water Design Manual

LAET Lowest Apparent Effects Threshold

LDW Lower Duwamish Waterway

m<sup>2</sup> Square Meters

MDL Method Detection Limit
mg/kg Milligrams per Kilogram
mg/L Milligrams per liter

MIC/H Manufacturing Industrial Center/Heavy Industrial

MSL Mean Sea Level

MTCA Model Toxics Control Act

#### LIST OF ACRONYMS Continued

NFA No Further Action

PAHs Polycyclic Aromatic Hydrocarbons

PCBs Polychlorinated Biphenyls

PCOC Potential Contaminant of Concern

PCE Tetrachloroethene

PID Photoionization Detector
PLP Potentially Liable Party

Port Port of Seattle
ppm Parts per Million
pptr Parts per Trillion

PQL Practical Quantitation Limit
QAPP Quality Assurance Project Plan
RAO Remedial Action Objective

RCRA Resource Conservation and Recovery Act

RHP Radiation Health Protection RI Remedial Investigation

RL Reporting Limit

SAP Sampling and Analysis Plan
Site Boeing Isaacson-Thompson Site
SMS Sediment Management Standards
SQS Sediment Quality Standards

SSL Site Screening Level

SVOCs Semivolatile Organic Compounds

TCE Trichloroethene

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalency Quotient

TOC Total Organic Carbon

TPH Total Petroleum Hydrocarbons
TSCA Toxic Substances Control Act

USGS U.S. Geologic Survey

UST Underground Storage Tank
VOCs Volatile Organic Compounds
WAC Washington Administrative Code

WISHA Washington Industrial Safety and Health Act

yd<sup>3</sup> Cubic Yard

#### 1.0 INTRODUCTION

This document presents a work plan to conduct a Remedial Investigation and Feasibility Study (RI/FS) at the Boeing Isaacson-Thompson Site (Site) located in the city of Tukwila, King County, Washington (Figure 1). The Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA) are evaluating sources of contamination to the Lower Duwamish Waterway (LDW), source control actions, and cleanup options. An RI of the LDW, including the portion offshore of the Site, has been completed and a draft final FS of the LDW has been submitted to EPA and Ecology. Ecology and EPA have determined that the Site is a potential source of contamination to the LDW. Investigations and cleanups are being, or will soon be, conducted by upland property owners under Ecology Agreed Orders at several properties along the LDW near the Site. These properties include the former Kenworth Truck Company (PACCAR)/8801 East Marginal Way South property (8801 Site) adjacent to the Thompson property, and the Jorgensen Forge property adjacent to the Isaacson property. The investigations or cleanup actions conducted at these adjacent sites may provide information regarding contaminant concentrations that is useful for planning and implementation of the RI/FS at the Site. Ecology has identified The Boeing Company (Boeing), as current owner of the Site, as a potentially liable party (PLP) for contamination at the Site.

The RI/FS at the Site will be performed under Agreed Order No. DE 7088 between Boeing and Ecology. This work plan was prepared for submittal to Ecology in accordance with the provisions of the Agreed Order, and was developed to meet the general requirements for an RI and FS as defined by the Washington Model Toxics Control Act (MTCA) Cleanup Regulation [Washington Administrative Code (WAC) 173-340-350]. This work plan describes the RI activities to be performed; the FS to be developed; and the planned schedule for data collection, evaluation, and reporting. As required by the Agreed Order, this Work Plan includes an Uplands Sampling and Analysis Plan (SAP; Appendix A); a Sediment SAP (including QAPP, Appendix B); an Uplands Quality Assurance Project Plan (QAPP; Appendix C); and the Site Health and Safety Plans (HASPs; Appendix D).

#### 2.0 SITE DESCRIPTION AND BACKGROUND

This section describes current Site features and land use, the history of development of the Site, and historical Site uses.

#### 2.1 CURRENT SITE FEATURES AND LAND USE

The Site is comprised of two parcels of land. Parcel #0001600014 is a 9.84-acre parcel of land located near the east side of the LDW, at approximately river miles 3.7 to 3.8, as measured from the southern tip of Harbor Island. This parcel is known as the Boeing Isaacson property because it was purchased by Boeing from the Isaacson Corporation in 1984. The property was apparently owned or operated at various times by Isaacson Iron Works, Isaacson Steel Company, Isaacson Steel Works, and Isaacson Corporation. For this work plan, all of these entities will be identified as Isaacson. Parcel #0007400033 is a 19.35-acre parcel of land located on the eastern bank of the LDW, directly south of the Boeing Isaacson property. This parcel is known as the Boeing Thompson property because the property was purchased from Charles Thompson in 1956. The parcels are referred to collectively as the Boeing Isaacson-Thompson Site. The total size of the Site is 29.19 acres. The Boeing Isaacson property and north part of the Boeing Thompson property do not extend all the way to the LDW; a strip of land consisting of the shoreline bulkhead (wooden) and approximately 20 to 30 feet (ft) landward of the bulkhead is under Port of Seattle (Port) ownership and control. A Site plan that shows the property boundaries is provided as Figure 2.

The Site is located in an area of industrial properties and is bordered on the north by the Jorgensen Forge Corporation property; on the east by East Marginal Way South and King County International Airport (KCIA); and on the south by the 8801 Site, currently owned by Merrill Creek Holdings and leased by Insurance Auto Auctions. As noted above, the west Site boundary along the Boeing Isaacson property and the north part of the Boeing Thompson property is bordered by a strip of land owned by the Port and then the LDW, and along the remainder of the Boeing Thompson property by the LDW.

The Site slopes slightly to the west and is at an average elevation of approximately 10 ft above mean sea level (MSL). Surface topography in the vicinity of the Site is generally level and slopes slightly to the west/southwest toward the LDW [U.S. Geologic Survey (USGS) 1983].

#### 2.1.1 BOEING ISAACSON PROPERTY

The Boeing Isaacson property is the northern portion of the Site. The current Boeing Isaacson property boundaries are shown on Figure 2; however, prior to October 2001, the southern property

boundary was about 75 ft south of its current location. This portion of the Site consists of asphalt-paved land that is surrounded by a security fence. There are no buildings on this portion of the Site. A 48-inchdiameter King County storm sewer drain line conveys stormwater from approximately 237 acres of the central portion of the KCIA along the northern Boeing Isaacson property boundary to an outfall (KCIA Outfall) located on the Boeing Thompson property (Figure 3). The KCIA Outfall also serves as an emergency overflow (EOF) for the city of Seattle. There are five storm drain manholes connected to the King County storm drain on the Boeing Isaacson property; stormwater from the Boeing Isaacson property does not enter this drain line. Nine stormwater catch basins (CBs) are present on the Boeing Isaacson property. These CBs are connected to a Boeing-owned storm drain line that conveys stormwater to the LDW via an outfall (Outfall A; also referred to as TS-2), which is located on the Boeing Thompson portion of the Site (Figure 3). The Boeing storm drain system on the Isaacson portion of the Site includes two CONTECH® Vortechs® (Vortechs) treatment vaults that treat stormwater by allowing suspended solids to settle out prior to discharge to the LDW. The vaults were installed in 2008 during excavation activities (Section 3.1.22). These excavation activities were classified by the city of Tukwila as a "redevelopment" project because the project involved altering existing site grades; therefore, upgrades to the stormwater treatment and conveyance system were required per the King County Surface Water Design Manual [KCSWDM; KCDNRP 2005a]. The Vortechs system at the Boeing Isaacson property is sized to accommodate daily storms, as well as peak storm events. The locations of the King County storm drain system and outfall, Vortechs treatment vaults, and the Boeing-owned storm drain system and outfalls are shown on Figure 3. The Boeing Isaacson property is occasionally used by Boeing for temporary trailer and container storage and vehicle parking.

#### 2.1.2 BOEING THOMPSON PROPERTY

The Boeing Thompson property is the southern portion of the Site. This portion of the Site is developed with several structures that include: a 316,000 square foot (ft²) industrial building (Building 14-01) and several support structures including a boiler house (Building 14-02); two mechanical buildings (Buildings 14-03 and 14-14); a fire pump house (Building 14-13) and water tank; an electrical substation (Building 14-22); and two guard shacks (one unnumbered structure in-use and Building 14-11 not in use). Two pedestrian tunnels are located on the north side of Building 14-01 (Figure 2); the tunnels are approximately 100 ft long and extend 11 ft below ground surface (BGS) (above the groundwater table, which is generally encountered at about 11 to 12 ft BGS).

Existing structures on the Site are shown on Figure 2. Four storage tanks are currently located on the Site: a 20,000-gallon boiler fuel underground storage tank (UST; TS-01) located on the west side of Building 14-02, which was abandoned in-place in 2003; a 500-gallon diesel aboveground storage tank

(AST; TS-57) located on the west side Building 14-02; a 200-gallon diesel AST (TS-25) located on the northwest of Building 14-13; and an inactive 5,000-gallon aqueous wastewater AST (TSA-21) located west of Building 14-01. Each AST is located within secondary containment. The approximate locations of these ASTs and UST are shown on Figure 4.

In addition to the ASTs and UST, six sumps exist at the Site. One of the sumps is located in the southeast corner of Building 14-02 (this has not been assigned a numerical designation) and two are located in Building 14-01 (TS-26 and BMA046), as shown on Figure 4. The sump located in Building 14-02 is approximately 3 ft<sup>2</sup> and is located in a 10 ft<sup>2</sup> by 6 ft deep mechanical pit that houses underground utility pipes. The sump does not appear to be connected to the existing storm drain based on the presence of a pump in the sump. The depth of the sump has not been determined. Sump TS-26 was formerly located in the western portion of Building 14-01 and was associated with the aqueous degreaser that was recently removed from the Site. Sump BMA046 is located in the northern portion of Building 14-01, in an area that has historically been used for office space. Sump BMA046 is associated with a sanitary sewer lift station. The other three existing sumps are located outside of Building 14-01, as shown on Figure 4. Two of these sumps are associated with tunnels located north of Building 14-01. These sumps are 2 ft by 2 ft and 3 ft high concrete structures located 11 ft BGS at the base of the stairs used to exit the tunnels. The sumps collect rainwater that occasionally collects at the base of the stairs. The third sump is located at the base of the stairs and the northeast corner of Building 14-01 that lead to a room that houses piping and valves associated with the main water line. This sump also collects rainwater that occasionally collects at the base of the stairs. Construction details for this sump are not known, but are likely similar to the sumps associated with the tunnels. Rainwater collected in each of these three sumps is discharged, as needed, to the Site storm drain system. Other ASTs, USTs, and sumps shown on Figure 4 have either been removed or status is unknown.

Forty-two CBs, 15 storm drain manholes, and 2 oil/water separators (TS-92 and TS-93) are also present on the Boeing Thompson property. Stormwater collected in these structures is discharged to the LDW via Boeing storm drain lines and two outfalls. The storm drain system is shown on Figure 3. One of the outfalls is located at the northwestern portion of the Boeing Thompson property boundary, as described in Section 2.1.1, and is identified as Outfall A (also referred to as TS-2) on Figure 3. The second outfall is located at the southwest corner of the Boeing Thompson property near the 8801 Site boundary and is identified as Outfall B (also referred to as TS-1) on Figure 3. There are also two KCIA storm drain manholes on the Boeing Thompson property that are connected to the KCIA storm drain that runs beneath the Isaacson and Thompson properties and discharges to the LDW. Stormwater from the Boeing Thompson property does not enter the KCIA drain line. The outfall for the KCIA storm drain is

located just north of Boeing Outfall A, near the Boeing Thompson and Boeing Isaacson property lines, as shown on Figure 3.

A steel bulkhead is located along the LDW shoreline in the northern portion of the Boeing Thompson property and a wooden bulkhead is located along the southern portion of the shoreline, as shown on Figure 2.

Boeing ceased active operations at the Thompson property in December of 2008 and the property was used only for storage for several years. Currently, Boeing's P-8 program operates at the Thompson property, and building modifications to expand operations there are being completed. Boeing is currently evaluating operations for use of the vacant portions of the Site.

#### 2.2 SITE DEVELOPMENT

Meanders of the Duwamish River were formerly present in the area of the Site including a segment of the river that flowed west to east through the approximate center of the Site (Figure 5). Between 1910 and 1917, extensive dredge and fill operations were conducted in the lower Duwamish River valley and the river was channelized and placed in its current location to the west of the Site. The river channel modifications resulted in the creation of Slip 5 through part of the Site. Slip 5 was oriented east to west near the current center of the Site and extended from the waterway across approximately two-thirds of the Site (Figure 6). In 1936, filling of the slip began to allow development of the Site. Filling occurred in phases and was completed in about 1966. Based on aerial photographs, much of the filling occurred prior to the mid-1960s. The fill history of Slip 5 is shown on Figure 7.

The first known development of the Site occurred in 1917 after the river channelization. The Bissell Lumber Company constructed a sawmill on the land south of Slip 5. Shortly thereafter, in 1920, the Duwamish Lumber Company operated a sawmill on the western portion of the Site, north of Slip 5, and a planing mill was operated by the Tyee Lumber Company at the eastern end of Slip 5. The approximate locations of these operations are shown on Figure 6. Structures related to the operations are also visible in a 1936 aerial photograph (Figure 8). In 1943, the Isaacson parcel was purchased by Isaacson and was developed between 1943 and 1966. The Isaacson building was expanded from east to west in phases to cover nearly the entire land surface north of the former Slip 5 (Figure 6). Boeing purchased the Isaacson property from Isaacson in 1984. In 1988, Boeing proposed to redevelop the Boeing Isaacson property by demolishing the Isaacson building (referred to by Boeing as Building 14-05) and constructing a new building (referred to as Building 14-09). The Isaacson building was dismantled prior to 1990, but Building 14-09 was never constructed. With the exception of various earthwork projects, which are discussed later in this document, the layout of the northern portion of the Site has remained relatively unchanged since 1990. The Boeing Thompson facility was developed in the southern

portion of the Site beginning in 1966. The layout of the Thompson facility has remained relatively unchanged since 1967. Historical aerial photographs are provided in the Phase I Environmental Site Assessment (ESA) reports (Landau Associates 2008a,b), which are further discussed in Section 3.0.

#### 2.3 HISTORICAL SITE USE AND FEATURES

This section identifies and describes the historical uses of the Site, based on information developed by previous Phase I ESAs (Landau Associates 2008a,b). These documents should be reviewed for a more thorough description of historical Site uses. Historical uses of the Boeing Isaacson property (northern portion of the Site) include:

- **Duwamish Lumber Company.** The Duwamish Lumber Company operated a sawmill in the western portion of the Isaacson property, north of Slip 5, from approximately 1920 until sometime prior to 1946. Structures associated with the Duwamish Lumber Company included a sawmill, lunch room, engine room, blacksmith, lumber storage, wood bin, block bin, sawdust bin, and waste burner.
- **Tyee Lumber Company.** The Tyee Lumber Company operated a planing mill at the eastern end of Slip 5 during the approximate same time period as the Duwamish Lumber Company. Structures associated with the Tyee Lumber Company included garages, office, a planing mill, dry kilns, and a shavings bin. A storage tank was located north of the dry kilns building.
- Mineralized Cell Wood Preserving Company. The Mineralized Cell Wood Preserving Company operated on the northern side of Slip 5 for an unknown period of time beginning prior to 1945. The operations of this company involved heating a solution of arsenic and sulfate salts of copper and zinc and applying the solution under pressure to the base of logs. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were reportedly drained directly to the ground surface.
- Isaacson/US Navy. In 1941, the United States Navy constructed steel melting, forging, and fabricating facilities north of the Site. The facilities were known as the Isaacson Iron Works Plant No. 2. Portions of the Isaacson property were used for activities associated with the plant, which included storage of scrap metal prior to it being melted down. Between 1943 and 1945, a galvanizing plant was constructed in the northeast corner of the Isaacson property; it was dismantled in 1967.
- Isaacson. The Isaacson property was purchased by Isaacson in 1943. In the 1950's, Isaacson purchased Isaacson Iron Works Plant No. 2 and expanded facilities from east to west in phases to cover nearly the entire land surface of the Isaacson property north of Slip 5. Structures associated with the facility included tractor repair, welding, tractor sheds, storage shed, tractor parts warehouse, offices, a scrap iron yard, galvanizing plant, general warehouse, paint shop, and paint storage. A transformer yard was located to the north of the galvanizing plant; however, it is not clear if the yard was located on the Isaacson property or on the adjacent property to the north. Sections of the main building were used for storage of scrap metal and fabricating shops.
- **Boeing Isaacson Property Operations**. Boeing purchased the Isaacson property from Isaacson in 1984. Boeing used the large steel fabrication building (referred to as Building 14-05) located on the Boeing Isaacson property for storage until it was demolished in 1989/1990,

including temporary storage of gasoline- and Jet A fuel-contaminated soil excavated in the mid to late 1980s from other nearby Boeing properties during UST removal.

Historical uses of the Boeing Thompson property (southern portion of the Site) include:

- **Bissell Lumber Company.** The Bissell Lumber Company operated a sawmill from approximately 1917 until 1952. The sawmill operations largely existed on the western portion of the Thompson property, adjacent to Slip 5. The structures associated with Bissell Lumber Company included a sawmill, wood bin, steam pump building, waste burner, transformer yard, blacksmith, and a building containing four storage tanks. Additionally, modifications to Slip 5, including piling installation, construction of log chutes, and dredging, were made to accommodate the sawmill operations. Title records and aerial photographs indicate that the sawmill was demolished in 1955.
- **Pre-Boeing Thompson Site Lessees.** Between approximately 1953 and 1956, the southern portion of the Site was leased to St. Johns Moto Express and Consolidated Freightways. Available information indicates that a rail spur and office building were located in this portion of the Site at the time of the leases.
- **Boeing Thompson Property Operations.** Boeing purchased the Thompson property from Charles Thompson in 1956. Boeing developed the Thompson facility in 1967. The facility was originally used to assemble one 737 aircraft, and to conduct fatigue testing of the 757 aircraft. The facility was later used for assembly of a United States' B-2 bomber fuselage section, and, most recently, by Boeing's Propulsion Systems Division for jet engine build-up. The facility currently consists of an industrial building (Building 14-01) where airplane assembly, washing, and painting was conducted, and several support structures including a boiler house (Building 14-02), two mechanical buildings (Buildings 14-03 and 14-14), a fire pump house (Building 14-13) and a water tank, an electrical substation (14-22), two guard shacks (one out of use unnumbered structure and Building 14-11). Former buildings that have been removed include a cafeteria (Building 14-15), a restroom/shower facility (Building 14-12), an office (Building 14-07), and hazardous waste/hazardous materials storage sheds The hazardous waste/hazardous materials storage sheds were used to (unnumbered). temporarily store hazardous materials and accumulated waste material from facility operations (e.g., paint sludge, spent solvents, spent copper brush plating solutions, soiled rags, etc.).

A statement of hazardous waste disposal provided in the *Report of Evaluation of Site Contamination* (Dames & Moore 1983) and included in Appendix E of this work plan indicates that petroleum distillates and solvents were stored and/or used on the property by Isaacson during Isaacson ownership. This statement also suggests that polychlorinated biphenyls (PCBs) may not have been used during Isaacson property ownership or present in the transformers at the time. A list of chemicals potentially used and/or stored by Boeing at the Boeing Thompson property is also provided in Appendix E.

Other features of significance include bulkheads constructed along the LDW. A wooden bulkhead was constructed along the LDW west of the northern portion of the Site during filling of Slip 5, on property currently owned by the Port. Construction details for this bulkhead are not known. A steel bulkhead was constructed along the central portion of the Site in the 1960s. This bulkhead consists of a

sheet pile wall that extends 60 ft BGS. The sheet pile is supported with tiebacks and timber fender piles spaced on 9-ft centers. The tieback anchor rods are located about 6 ft BGS, extend 40 ft east behind the wall, and are supported by timber pile groups connected by a continuous concrete pile cap. A timber pile-supported concrete apron extends behind the bulkhead a distance of approximately 20 ft. A wooden bulkhead is also present along the southern portion of the Site, but the date of construction is unknown. A review of historical aerial photos indicates that a wooden bulkhead may have been present along this portion of the property since at least 1936. No other information for this bulkhead was available. The locations of these bulkheads are shown on Figure 2.

Prior to the filling of Slip 5 a 48-inch-diameter storm sewer conveyance line that conveyed stormwater from the east side of East Marginal Way South discharged at the east end of Slip 5 (referred to as the former Slip 5 Outfall and shown on Figure 9). In approximately 1966, and prior to the filling of Slip 5, the King County storm drain line was extended west to the LDW.

From 1966 to 1990, stormwater from the Isaacson property collected in 17 CBs that drained to the King County storm drain line. The configuration of the storm drain systems at the Isaacson property in 1983 and at the Thompson property in 1999 are shown on Figure 9. This figure shows a 6-inch storm drain line west of Building 14-02 that may have discharged non-contact cooling water from Building 14-02 (formerly used as a boiler house) to the LDW. According to a report titled *Environmental Risk Assessment of the Boeing Field Division, Boeing Commercial Airplane Company* (Risk Science International 1985), about 4 million gallons of non-contact cooling water were discharged annually to the LDW. The report also suggests about 5.5 million gallons of washdown water may have been discharged annually to the LDW via an oil/water separator.

In 1990, the King County storm drain line was rerouted from along the northern Boeing Isaacson property boundary to its current location, shown on Figure 3. After the storm drain line was rerouted, only Site stormwater collected by CB-39, which is located in the western portion of the Boeing Isaacson property, continued to drain to the 48-inch King County storm drain line. In 2008, upgrades to the Site stormwater treatment and conveyance system were completed. As described in Section 2.1.1, these upgrades included the installation of two Vortechs treatment vaults on the Boeing Isaacson property for the collection of stormwater and the settling of suspended material from the stormwater prior to discharge via Outfall A, located near the northern Boeing Thompson property boundary. Following these upgrades, Boeing completed a project to re-route the stormwater collected by CB-39 to the south into the existing Boeing Site stormwater system to eliminate all discharges of Site stormwater to the King County stormwater system. There are currently no connections between the Site stormwater system and the King County storm drain line. The Site stormwater system investigations and improvements are discussed further in Section 3.3.

#### 3.0 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

Environmental investigations at the Site to date have been conducted to characterize and evaluate the chemical quality and physical condition of soil, groundwater, sediment, and storm drain solids. In 2002, Environmental Resources Management (ERM) summarized the investigations and remedial actions completed at the Boeing Isaacson property through 2000 in a Comprehensive Data Summary Report (ERM 2002). Investigations and remedial actions completed at the Site after 2000 have been documented in various reports, including a Data Summary Report (Landau Associates 2009a), which provides a comprehensive overview of the investigations conducted in 2008 and the first half of 2009. This section briefly describes the environmental investigations and the remedial actions previously conducted at the Site.

In addition to these investigations, Phase I ESAs were conducted for the Boeing Isaacson property and the Boeing Thompson property to evaluate the environmental liabilities associated with the properties based on reasonably available documentation (both oral and written) and to support Boeing planning for future Site use. These Phase I ESAs included a review of records from Boeing's Environment, Health and Safety (EHS); Industrial Hygiene (IH); Radiation Health Protection (RHP); and Abatement Services (BAS); a review of historical information including aerial photographs, fire insurance maps, and historical tax records; and a site reconnaissance of the properties and adjacent properties to assess land use activities and environmental conditions. The results of the Phase I ESAs are documented in reports prepared by Landau Associates (Landau Associates 2008a,b). The 2008 Phase I ESA site reconnaissance results are provided in Appendix F.

#### 3.1 SOIL AND GROUNDWATER

Available records indicate that soil and groundwater investigations and a remedial action were initiated at the Site in 1983, prior to Boeing's purchase of the Isaacson property in 1984. Since then, several investigations and additional remedial actions have occurred at the Site with the most recent soil investigation occurring in the latter half of 2009. All of the soil and groundwater investigations and remedial actions are discussed below in chronological order. Analytical data for soil and groundwater samples collected during these investigations are provided in Appendix G (soil) and Appendix H (groundwater), respectively.

#### 3.1.1 AUGUST 1983 SOIL INVESTIGATIONS (DAMES & MOORE)

This initial environmental site investigation was conducted by Dames & Moore for Boeing in 1983 to identify possible contaminants in the soil and groundwater at the Isaacson property. The

investigation was completed in two phases (Phase I and Phase II) and consisted of 22 soil borings (#1 through #22), shown on Figures 10 and 11, and installation of three monitoring wells in three of the borings. These wells and the associated boreholes are identified as B-7, B-12, and B-20 in previous reports and are discussed in Section 3.1.3. Soil samples were collected at each location and analyzed for PCBs; metals (arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, silver, zinc); total cyanide; oil and grease; and total organic carbon (TOC). The scope of the investigation and the results are presented in *The Report of the Evaluation of Site Contamination, Isaacson Steel Property* (Dames & Moore 1983). The soil characterization portion of this investigation is discussed below. The groundwater characterization portion is discussed in Section 3.1.3.

Part of the soil characterization focused on potential contaminant source areas as follows:

- Former Diesel and Gasoline Tanks. Four diesel and gasoline tanks were located in the eastern portion of the Isaacson property, as shown on Figure 4. Boring #1 was located in this area and one soil sample collected at 5.5 ft BGS was analyzed for PCBs, metals, and total cyanide. PCBs, total cyanide, mercury, and silver were not detected. Concentrations of other metals detected in the soil sample were low [e.g., arsenic and lead were detected at 3.4 milligrams per kilogram (mg/kg) and 1.3 mg/kg, respectively]. This soil sample may be representative of current soil conditions at this location since no known information is available to confirm that the tanks and soil surrounding the tanks were removed.
- **Former Paint Storage Areas.** Two paint storage areas were previously located in the eastern portion of the Isaacson property, as shown on Figure 4. Boring #2 was located in this area and one soil sample collected at 2.5 ft BGS was analyzed for metals and cyanide. Total cyanide and silver were not detected in the soil sample and the concentrations of other metals that were detected in the sample were low (e.g., arsenic and lead were detected at 8.7 mg/kg and 11 mg/kg, respectively). This soil sample may be representative of current soil conditions at this location because no known soil removal has occurred at this location.
- Former Steam Cleaning Rack and Sump. A steam cleaning rack and associated sump was formerly located in the northern portion of the Isaacson property as shown on Figure 4. The steam cleaning rack was used by Isaacson to clean equipment. Water, waste sludge, and solvents from the cleaning filtered into a 5-ft deep sand and gravel unlined sump. In about 1979 or 1980, a catch pan was placed above the sand and gravel in the sump to facilitate collection and disposal of waste sludge and solvent, but the sump was never connected to the sewer (Dames & Moore 1983). A sample of the sludge within the sump/CB contained arsenic, zinc, and oil and grease at concentrations of 39.0 mg/kg, 94,950 mg/kg, and 350,000 mg/kg, respectively. Boring #3 was located adjacent to the sump and borings #11 and #B-12 were located east and south of the sump, respectively. Three soil samples were collected at boring #3 at depths ranging between 2.5 ft BGS and 10.5 ft BGS; two soil samples were collected at boring #11 at depths of 6.5 ft BGS and 11.5 ft BGS; and three soil samples were collected at boring #B-12 at depths ranging between 6.5 ft BGS and 14 ft BGS. The soil samples were analyzed for metals, total cyanide, and oil and grease. One sample at boring #3, the deepest, was also analyzed for PCBs. Arsenic was detected in the soil at concentrations up to 2.880 mg/kg, zinc at concentrations up to 2.030 mg/kg, and oil and grease at a concentration of 1,850 mg/kg. PCBs were not detected above a reporting limit of 0.2 mg/kg. The sump and associated soil were later removed as described in Section 3.1.4. Only the soil sample collected at boring #B-12 at a depth of 14 ft BGS may represent current

soil conditions in this area because no subsequent soil removal is known to have occurred at this location.

- Former Transformer Bank. A former transformer bank was located in the northern portion of the Isaacson property, as shown on Figure 4. Boring #4 was located adjacent to the transformer bank. Three soil samples were collected (2.5 ft BGS, 6.5 ft BGS, and 10.5 ft BGS) and analyzed for metals, and one sample (6.5 ft BGS) was analyzed for PCBs. PCBs were not detected above the reporting limit of 0.2 mg/kg. These soil samples may represent current soil conditions at this location because no subsequent soil removal is known to have occurred at this location.
- Fill Material Along Southern Property Boundary. Seven soil borings (#5, #7-1, #7-5, #15, #16, #17, and #19) were completed in the fill material located along the southern Isaacson property boundary, as shown on Figure 10. This area was the location of the northern portion of Slip 5 that was filled in the 1960s. Soil samples were generally collected at shallow depths ranging between 1.5 ft and 3.5 ft BGS at these locations, except at boring #7-5, where soil samples were also collected at depths of 8.5 ft BGS, 13.5 ft BGS, and 18.5 ft BGS, and at borings #16 and #17 where soil samples were also collected at 6.5 ft BGS. All of the soil samples were analyzed for metals and some of the soil samples were analyzed for PCBs, total cyanide, and oil and grease. Total cyanide was not detected in any soil samples. Arsenic was detected at concentrations up to 36 mg/kg. Elevated concentrations of zinc (440 mg/kg to 3,640 mg/kg) were detected at borings #5, #7-1, #7-5, #15, #16, and #17, and elevated concentrations of cadmium, chromium, and lead were detected at one or more of the soil borings. The highest oil and grease concentration detected in the soil was 2,020 mg/kg at boring #15. PCB concentrations were less than 1 mg/kg or not detected in soil samples collected at each soil boring except at boring #5 where PCB Aroclor 1254 was detected at a concentration of 9.7 mg/kg. Soil samples collected at soil borings #5, #7-1, #7-5, #15, #16, #17, and #19 may represent current soil conditions in this area because no subsequent soil removal is known to have occurred at this location.

The remaining soil borings were located along the western and northern property boundaries (borings #6-3 and #10, respectively); within the former Isaacson building (borings #8, #9, #13, and #14); and at the Thompson property (borings #20, #21, #22). No samples were collected at boring #8 for laboratory analysis. Except at boring #6-3, no elevated concentrations of metals or PCBs were detected in the soil samples at these locations. At boring #6-3, elevated concentrations of cadmium (7.7 mg/kg), chromium (466 mg/kg), lead (580 mg/kg), and zinc (2,320 mg/kg) were detected in the soil and PCB Aroclor 1260 was detected at 1.2 mg/kg. Except for boring #9, these explorations are in areas where soil removal has not occurred; therefore, analytical results for these soil samples may represent soil remaining in this area because no subsequent soil removal is known to have occurred at this location.

One slag sample was collected from fill material located along the Isaacson southern property boundary. The sample was analyzed for major and trace components. Barium and chromium were detected at concentrations of 1,350 mg/kg and 4,330 mg/kg, respectively; arsenic was not detected above the reporting limit of 30 mg/kg. The results are summarized in tabular format in Appendix I.

#### 3.1.2 OCTOBER 1983 SOIL INVESTIGATIONS (WICKS)

In October 1983, soil samples were collected from boreholes associated with the installation of seven monitoring wells [I-1(s) through I-7(s)] at the locations shown on Figures 10 and 11. The soil samples were analyzed for arsenic, total chromium, copper, lead, and zinc. Only one soil sample [I-7(s)] was analyzed for barium and cadmium. Elevated concentrations of arsenic (up to 3,800 mg/kg), copper (up to 2,400 mg/kg), lead (up to 440 mg/kg), and zinc (up to 380 mg/kg) were detected at I-1(s), which was located in the area of the former steam cleaning rack, and/or at I-2(s), which was located inside the former Isaacson building just south of the former transformer bank area (Figure 10). However, subsequent remedial actions removed most of the soil associated with elevated concentrations of arsenic, copper, lead, and zinc at these locations. Elevated concentrations of chromium (up to 740 mg/kg), copper (up to 360 mg/kg), lead (up to 3,900 mg/kg), and zinc (up to 1,500 mg/kg) were also detected in soil samples collected at I-7(s), which is located in the fill material along the southern Isaacson property boundary adjacent to boring #5. Soil at this location has not been removed.

Soil samples collected at locations I-1(s), I-2(s), and I-7(s) were also tested to determine the leachability of the metals to groundwater to determine if the soil would be classified as a hazardous waste using the Extraction Procedure (EP) Toxicity test. Metals analyzed using this procedure included those metals analyzed in the soil samples (arsenic, total chromium, copper, lead, and zinc) and additional metals including barium, cadmium, hexavalent chromium, mercury, selenium, and silver. Barium, hexavalent chromium, mercury, selenium, and silver were not detected using this procedure. The concentrations of those metals that were detected using this procedure are as follows: arsenic at 7,800 micrograms per liter ( $\mu$ g/L) and 7,300  $\mu$ g/L [two depth intervals at I-1(s)]; cadmium at 20  $\mu$ g/L [I-7(s)], total chromium at 100  $\mu$ g/L [I-7(s)], and lead at 6,100  $\mu$ g/L [I-7(s)].

In addition to the above soil samples, four samples of slag were collected and analyzed for arsenic, total chromium, copper, lead, and zinc. The slag samples were collected at I-4(s), I-6(s), and I-7(s), which were all located in fill material west and south of the former Isaacson building. One sample was collected from each location and one sample was a composite of slag collected at I-4(s) and I-6(s). The composite sample was also analyzed for barium. The results of the slag samples indicate relatively low concentrations of arsenic (18 mg/kg to 20 mg/kg) and elevated concentrations of total chromium (920 mg/kg to 2,200 mg/kg); copper (160 mg/kg to 1,200 mg/kg); and lead (120 mg/kg to 1,400 mg/kg). Barium and cadmium were detected in the composite sample at concentrations of 440 mg/kg and 2.2 mg/kg, respectively. EP Toxicity tests were also performed on the slag samples, but none of the metals were detected using this procedure.

The analytical results for the soil and slag samples are presented in the *Project Description for Remedial Work* report (Wicks 1984a).

#### 3.1.3 1983 GROUNDWATER MONITORING

In August 1983, three groundwater samples were collected from monitoring wells B-7, B-12, and B-20 (Figure 12) and analyzed for metals (antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, silver, and zinc); fluoride; total cyanide; phenol; and TOC (Dames & Moore 1983). It is not documented whether the metals results are total or dissolved. Only mercury was not detected in the groundwater samples. Arsenic was detected at concentrations up to 310  $\mu$ g/L, barium was detected at concentrations up to 390  $\mu$ g/L, cadmium was detected at concentrations up to 3.6  $\mu$ g/L, chromium was detected at concentrations up to 130  $\mu$ g/L, lead was detected at concentrations up to 95  $\mu$ g/L, selenium was detected at concentrations up to 4  $\mu$ g/L, and silver was detected at concentrations up to 8.1  $\mu$ g/L. Nickel was only analyzed in one sample, from well B-7, and was detected at a concentration of 110  $\mu$ g/L. Total cyanide was also detected at well B-7 at a concentration of 13  $\mu$ g/L. Fluoride and phenol were detected at concentrations up to 500  $\mu$ g/L and 81  $\mu$ g/L, respectively.

In October 1983, six monitoring wells [I-1(s), I-2(s), I-4(s), I-5(s), I-6(s), and I-7(s)] were installed on the Isaacson property and one monitoring well [I-3(s)] was installed off-property at the locations shown on Figure 12. Groundwater samples were collected from these wells and wells B-12 and B-20 in October and December 1983 and analyzed for dissolved metals (arsenic, chromium, copper, nickel, lead, zinc). Arsenic, chromium, copper, nickel, and zinc were detected in groundwater samples from each location, including the well located off-property and hydraulically upgradient of the Site [I-3(s)]. Lead was detected in less than half the samples analyzed and the concentrations detected were generally below 5.0 μg/L, except at well B-20 where lead was detected at a concentration of 30 μg/L. Elevated concentrations of dissolved zinc (14,000 μg/L and 8,000 μg/L) were detected at well B-12 in October 1983 and December 1983, respectively. Elevated concentrations of zinc were also detected in the soil at well B-12. Arsenic concentrations ranged from 8.5 μg/L to 590 μg/L, except at well I-2(s) where dissolved arsenic was detected at 9,200 μg/L and 4,400 μg/L in October and December 1983, respectively. The maximum chromium concentration (10.9 μg/L) also occurred at well I-2(s) during the December event. As described below in Section 3.1.4, remedial activities were later conducted in the area of wells B-12 and I-2(s).

The results for the October and December 1983 groundwater samples are reported in the *Project Description for Remedial Work* report (Wicks 1984a).

#### 3.1.4 1984 SOIL REMEDIATION

In 1984, Isaacson implemented a remedial action that consisted of excavating arsenic- and zinccontaminated soil from three areas located in the northern portion of the Site. These areas, identified as A, B, and C, are shown on Figure 13. The extent of contamination identified and excavation within each area are described below. Further detail on the basis and scope of the remedial action is provided in two reports: *Project Description for Remedial Work* (Wicks 1984a) and the *Report on Remedial Project and Recommendation for Project Completion at Isaacson Corporation Property* (Wicks 1984b).

The Area A excavation was located around well I-2(s) where elevated concentrations of arsenic were present in the soil and groundwater. Based on the analytical results for soil samples collected at this location, soil was excavated from an area about 13 ft by 25 ft, centered on this well. The excavation extended vertically to a depth of 11 ft BGS. Soil samples were collected from the base and sidewalls of the excavation and analyzed for arsenic. The concentration of arsenic in the soil sample collected from the base of the excavation, PZFA, was 530 mg/kg. This result may represent soil remaining at this location; however, the results for the sidewall samples may not represent remaining soil as the soil represented by the samples was removed during subsequent remedial actions.

The excavation at Area B occurred at the location of the former steam cleaning rack and a 5-ft deep sand and gravel sump where the previous investigations had identified elevated concentrations of arsenic and zinc in the soil. The excavation removed the sump and some soil surrounding the sump to a depth of 4.7 ft BGS. Soil samples were collected from the base and sidewalls of the excavation and analyzed for zinc; however, the results for these samples may not represent soil remaining at this location, as the soil represented by these samples was removed during subsequent remedial actions.

The excavation in Area C was conducted to address arsenic-contaminated soil at I-1(s) and boring #11. The excavation was about 23 ft by 23 ft and extended to a depth of 12 ft BGS. Soil samples were collected from the base and sidewalls of the excavation and analyzed for arsenic. The concentration of arsenic in the soil sample collected from the base of the excavation, PZFC, was 290 mg/kg. This result may represent soil conditions remaining at this location; however, the results for the sidewall samples may not represent current soil conditions because the soil represented by those samples was removed during subsequent remedial actions.

During this remedial action, arsenic EP toxicity tests were performed on 11 soil samples. Arsenic concentrations ranged from less than 0.2 milligrams per liter (mg/L) to 8.9 mg/L. The dry weight concentrations for these samples ranged from 67 mg/kg to 5,000 mg/kg.

After completion of the remedial action, Ecology issued a letter indicating that no further action (NFA) would be required unless groundwater monitoring indicated that arsenic was present in groundwater at concentrations greater than the identified cleanup level (Ecology 1985). As a result, a program for monitoring arsenic in groundwater was developed and implemented in 1985 and 1986. The groundwater monitoring program is described in Section 3.1.6.

#### 3.1.5 1984 WICKS SOIL INVESTIGATION AND INSTALLATION OF WELL I-8(s)

In 1984, following excavation of soil in Areas A, B, and C, 12 soil samples were collected outside of the limits of the Area C excavation. All of the soil samples were collected from a depth of 8 ft BGS and analyzed for arsenic (Wicks 1984b). The soil samples are identified as PZTCS 7', PZTCS 14', PZTCS 20', PZTCW 5', PZTCW 10', PZTCE 7', PZTCE 14', PZTCE 20', T-1, T-2, T-3, and T-4. The locations of these soil samples are shown on Figures 10 and 11. Only the results for samples T-1 and T-4 (26 mg/kg and 10 mg/kg arsenic, respectively) and PZTCE 7', PZTCE 14', PZTCE 20' (1,800 mg/kg, 940 mg/kg, and 1,700 mg/kg) may represent current soil conditions at this location because no subsequent soil removal is known to have occurred at this location. Soil represented by the other samples was removed by subsequent excavations. The analytical results for the post-excavation soil investigation samples are reported in the *Report on Remedial Project and Recommendation for Project Completion at Isaacson Corporation Property* (Wicks 1984b).

In November 1984, monitoring well I-8(s) and observation well I-8M were installed and hydraulic conductivity testing was performed at wells I-3(s), I-4(s), I-6(s), I-7(s), I-8(s), and I-8M (Sweet Edwards 1984).

#### 3.1.6 1985 GROUNDWATER MONITORING

Following remediation of arsenic-contaminated soil at the Isaacson property, Ecology requested that groundwater monitoring at the property be continued and annual reports be submitted to Ecology for 2 years (Ecology 1985). To comply with Ecology's request, groundwater samples were collected from wells I-2(s), I-7(s), and B-12 in June 1985 and analyzed for total and dissolved arsenic (Landau Associates 1986). According to the groundwater monitoring plan prepared by Landau Associates for Boeing in 1985 (Landau Associates 1985), wells I-1(s), I-2(s), I-4(s), and I-5(s) were damaged or inaccessible and, in October 1985, Boeing installed two new monitoring wells [I-104(s) and I-105(s)] to replace damaged wells I-4(s) and I-5(s). The locations of monitoring wells I-104(s) and I-105(s) are shown on Figure 12. In December 1985, groundwater samples were collected from wells I-3(s), I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12 and analyzed for total and dissolved arsenic.

For samples collected at the wells located on the property [I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12], dissolved arsenic concentrations ranged from less than 5  $\mu$ g/L [I-104(s) and I-6(s)] to 1,200  $\mu$ g/L [I-105(s)] and total arsenic concentrations ranged from 18  $\mu$ g/L [I-104(s)] to 2,400  $\mu$ g/L [I-105(s)] during these two events. At the off-property well [I-3(s)], dissolved arsenic was not detected above the reporting limit of 5  $\mu$ g/L, and total arsenic was detected during both sampling events at concentrations of 12  $\mu$ g/L and 15  $\mu$ g/L.

The 1985 groundwater monitoring results are reported in the *First Annual Report Groundwater Monitoring Program Boeing Isaacson Property*, 8541 *East Marginal Way South, Seattle, Washington* report (Landau Associates 1986).

#### 3.1.7 1986 AND 1987 GROUNDWATER MONITORING

In 1986 and 1987, groundwater samples were collected annually from wells I-3(s), I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12(s) and analyzed for total and dissolved arsenic. In 1986, for those samples collected at the wells located on the property [I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12], dissolved arsenic concentrations ranged from less than 5  $\mu$ g/L [I-104(s)] to 510  $\mu$ g/L (B-12), and total arsenic concentrations ranged from less than 5  $\mu$ g/L [I-104(s)] to 1,500  $\mu$ g/L [I-105(s)]. In 1987, dissolved arsenic concentrations ranged from less than 5  $\mu$ g/L [I-104(s)] to 4,300  $\mu$ g/L [I-105(s)], and total arsenic concentrations ranged from 6  $\mu$ g/L [I-104(s)] to 4,300  $\mu$ g/L [I-105(s)]. At the off-property well [I-3(s)], dissolved arsenic was not detected above the reporting limit of 5  $\mu$ g/L, and total arsenic was detected during both sampling events at concentrations of 14  $\mu$ g/L and 27  $\mu$ g/L.

The 1986 and 1987 groundwater sample results are reported in Appendix D of the *Building 14-09 Thompson-Isaacson Site Investigation Data Report* (Landau Associates 1988).

#### 3.1.8 1988 SOIL INVESTIGATION

In 1988, Boeing planned to demolish the Isaacson building (also referred to by Boeing as Building 14-05) and construct a new building (referred to as Building 14-09) along the north side of Building 14-01. Prior to the planned construction, Boeing conducted a soil and groundwater investigation to further evaluate soil and groundwater quality. Initially, the investigation consisted of collecting soil samples from 46 explorations [210-244, 250, 251, 252, 260, 290, I-8(i), I-200(s), I-202(s), I-203(i), I-205(s), and I-206(s)] and installing 8 wells [I-8(i), I-200(s), I-201(s), I-202(s), I-203(i), I-205(s), and I-206(s)]. Boeing identified the wells as shallow wells (s) if the wells extended to depths of 30 ft BGS or less and as intermediate wells (i) if the wells extended to depths greater than 30 ft BGS.

All of the soil samples were analyzed for arsenic. Additionally, all of the soil samples collected from the Slip 5 fill material were analyzed for chromium, copper, lead, nickel, and zinc, and a subset of these were also analyzed for cadmium, mercury, silver, total cyanide, polycyclic aromatic hydrocarbons (PAHs), PCBs, and volatile organic compounds (VOCs). Soil samples from three explorations located in the areas of previous excavation areas A, B, and C, and one exploration located near the northern Boeing Isaacson property boundary, were also analyzed for PCBs and VOCs.

Based on the results of the soil investigation, two areas of elevated arsenic concentrations were identified: Bay 13 of the former Isaacson building and in the courtyard between Bays 11, 12, and 14 of

the former Isaacson building. Low concentrations of VOCs were also detected in the soil in this area. As recommended by Ecology, additional investigations were conducted in 1988 to better delineate the distribution of arsenic concentrations in soil in these areas. Soil samples were collected from 0 to 2.5 ft BGS, 2.5 to 6.5 ft BGS, and 6.5 to 9.5 BGS at seven borings (identified as 313, 317, 318, 328, 330, 416, and 417) and analyzed for arsenic. Four of the samples, 317, 318, 416, and 417 were located north of the courtyard and Bays 11, 12, and 14, and the others were located south of the courtyard and Bays 11, 12, and 14, as shown on Figures 10 and 11. Based on the results of the 1988 investigations, a work plan for excavating soil within the two areas was prepared by Landau Associates for Boeing (Landau Associates 1989a).

Elevated concentrations of chromium (up to 4,180 mg/kg); lead (up to 1,690 mg/kg); nickel (up to 2,460 mg/kg); and zinc (up to 5,770 mg/kg) were detected in soil samples collected from the Slip 5 fill material. EP toxicity test results for those samples containing the maximum dry weight concentrations of these metals were non-detect for chromium, 90  $\mu$ g/L for lead, 7,070  $\mu$ g/L for nickel, and 132,000  $\mu$ g/L for zinc. Other constituents detected in the Slip 5 fill included arsenic, cadmium, copper, silver, PAHs, toluene, and xylenes. Low concentrations of PCBs (0.06 mg/kg to 0.51 mg/kg) were also detected in the Slip 5 fill material.

All of the soil samples collected in 1988 may represent current soil conditions, except at explorations 210, 214, 220, 222, 226, 227, 231,238, and 242, where only the deepest soil samples (greater than 10.0 ft BGS) may represent soil remaining at the Site; soil shallower than 10 ft BGS at these locations was removed during subsequent remediation activities as described in Sections 3.1.10 and 3.1.12.

The results for the initial 46 soil samples are reported in Appendix C of the *Building 14-09 Thompson-Isaacson Site Investigation Data Report* (Landau Associates 1988). The results for the remaining soil samples are reported in Appendix B of the *Comprehensive Data Summary Report Boeing Isaacson Site*, ERM 2002)

#### 3.1.9 1988 GROUNDWATER INVESTIGATION

In 1988, eight wells [I-8(i), I-200(s), I-201(s), I-202(s), I-203(s), I-203(i), I-205(s), and I-206(s)] were installed and, in February of 1988, groundwater samples were collected from the new wells and existing wells [B-12, B-20, I-6(s), I-7(s), I-8(s), I-104(s), and I-105(s); Landau Associates 1988]. All of the groundwater samples were analyzed for the following dissolved metals: arsenic, chromium, copper, lead, nickel, and zinc. Groundwater samples from B-20, I-6(s), I-7(s), I-202(s), I-203(s), I-203(i), I-205(s), and I-206(s) were also analyzed for dissolved cadmium, mercury, dissolved silver, VOCs, semivolatile organic compounds (SVOCs), and pesticides. Groundwater samples from I-6(s) and I-105(s)

were also analyzed for dissolved barium, dissolved iron, dissolved manganese, dissolved selenium, oil and grease, dissolved oxygen, and TOC. Elevated concentrations of arsenic (100  $\mu$ g/L to 15,000  $\mu$ g/L) were detected at wells B-12, B-20, I-105(s) I-201(s), I-202(s), I-203(i), and I-106(s). Elevated concentrations of copper (500  $\mu$ g/L) and zinc (9,090  $\mu$ g/L) were also detected at well B-12. Silver and selenium were not detected in any of the samples, and mercury and copper were detected in only one sample at or slightly above the reporting limit. Barium was detected in the samples, but at low concentrations (6  $\mu$ g/L and 22  $\mu$ g/L). VOCs were detected at wells B-12, I-105(s), and I-202(s). Low concentrations of SVOCs were also detected in most of the groundwater samples analyzed for SVOCs. Pesticides were not detected in any of the samples.

The results for the 1988 groundwater samples are reported in Appendix D of the *Building 14-09 Thompson-Isaacson Site Investigation Data Report* (Landau Associates 1988).

#### **3.1.10 1989 SOIL EXCAVATION**

In 1989, prior to Boeing's planned removal of the Isaacson building and paving of the Isaacson property, Ecology requested that soil containing elevated arsenic concentrations be removed from Bay 13 and the courtyard between Bays 11, 12, and 14 of the former Isaacson building (Ecology 1988). In each area, soil was excavated to the groundwater table (approximately 10 to 12 ft BGS). The lateral extent of the excavations is shown on Figure 13. Excavations were backfilled with pea gravel, imported fill, and excavated soil. During the excavations, field screening tests and laboratory tests were performed on samples collected from the soil stockpiles to determine appropriate disposition of the excavated soil. Soil containing arsenic concentrations greater than or equal to 500 mg/kg arsenic was disposed of offsite. Soil containing less than 500 mg/kg arsenic was used as backfill for the excavations. Sidewall samples were collected from each excavation. If a sidewall sample contained arsenic at a concentration of 500 mg/kg or greater, additional excavation was conducted and additional sidewall samples were collected. For the courtyard excavation, five samples were collected from each of the north and south sidewalls, three from the east sidewall, and two from the west sidewall. Due to further remediation in this area in 1991, only the samples collected from the north and south sidewalls may represent soil remaining in this area. These samples are identified as N-01 through N-04, N-05-A1, S-01-B1, and S-02 through S-05 on Figure 11. For the Bay 13 excavation, three samples were collected from each of the north and south sidewalls and one sample was collected from each of the west and east sidewalls. For the same reason, only the samples collected from the north and south sidewalls of the Bay 13 excavation may represent remaining soil. These samples are identified as N-01 through N-03, S-01, S-02, and S-03-A1 on Figure 10 The specific location of each sample along the sidewalls of each excavation is unknown; therefore, the

locations shown on Figures 10 and 11 are approximate. The maximum arsenic concentration detected in the sidewall samples for soil remaining at the Site was 420 mg/kg.

Further details of the soil excavations are provided in the *Draft Thompson-Isaacson Site Soil Excavation Summary Report* (Landau Associates 1989b).

#### 3.1.11 1989/1990 STORM DRAIN LINE SAMPLING

In late 1989 and early 1990, the former Isaacson building (Building 14-05) was demolished and the storm drain line that transversed the Boeing Isaacson property near the southern property boundary was rerouted along the northern property boundary as part of the planned development of the site by Boeing. The new storm drain line was installed to an average depth of 13 ft BGS (Technical Dryer 1991). To evaluate proper disposition of the soil excavated along the alignment of the new storm drain, soil removed from each 10 to 12 ft length of the storm drain alignment was stockpiled separately (126 stockpiles total) and sampled. The stockpile samples were analyzed for arsenic. Soil stockpiles containing arsenic concentrations greater than or equal to 500 mg/kg arsenic were disposed of offsite. Soil stockpiles containing less than 500 mg/kg arsenic were used as backfill for the new storm drain line. The analytical results for the stockpile samples and the locations along the storm drain trench that they represent are shown on Figures 14A and 14B.

In general, soil excavated from the western half of the north portion of the trench contained arsenic at concentrations equal to or greater than 500 mg/kg. If a soil stockpile sample contained arsenic concentrations greater than or equal to 500 mg/kg arsenic, soil samples were collected from each sidewall corresponding to that portion of the trench where the soil was removed. The results of the sidewall samples are presented on Figures 14A and 14B. Based on the results of the sidewall samples, further excavation was conducted on both sides of the storm drain line in some areas. The lateral extent of these excavations is shown on Figure 13. The vertical extent of the excavations was approximately 11 ft BGS, at which depth groundwater was encountered. Sidewall samples were also collected from the additional excavations; however, achieving removal of all soil containing arsenic concentrations equal to or greater than 500 mg/kg was determined to be impracticable. Three sidewall samples collected from an excavation north of the trench contained arsenic concentrations up to 3,500 mg/kg; however, further excavation was not conducted due to the excavation's proximity to the northern property line. Additionally, following removal of additional soil on the opposite side of the storm drain line from these northern sidewall samples, elevated arsenic concentrations continued to be present in samples collected from the western sidewall of this excavation. Soil excavation ceased and 96 test pits were completed to evaluate the extent of arsenic-contaminated soil. At each test pit, soil samples were collected from the following depth intervals: 1 to 3 ft BGS, 3 to 5 ft BGS, and 5 to 9 ft BGS. The depth intervals were

designated as AA, A, and B in the sample identifications; with AA being the shallowest and B being the deepest. The test pits were identified as 1A, 1B, 1C, 1D, 2A, 2B, 2C, and so on. The locations of the test pits are shown on Figure 15.

Soil samples collected from the sidewall samples that may represent current soil conditions along the storm drain line include SW1 through SW-28, SW-33 through SW-40, SW-44 through SW-46, SW-50, and SW-54 through SW-60. Test pits where soil samples were collected that may represent current soil conditions north of former Slip 5 because no subsequent soil removal is known to have occurred at these locations include 6J, 6K, 8J, 10J, 18N, 18E, 22N, 24B, 25N, 25A through 25D, 26B, 27B, 28A, 28B, 28D, 29B, 30B, 31A, 31B, and 31D.

Details of the storm drain line sampling are provided in the *Thompson-Isaacson Site Storm Drain Line and Soil Core Sampling* report (Technical Dryer, Inc. 1991).

#### 3.1.12 1991 SOIL STABILIZATION

The results of the 1989/1990 storm drain line sampling identified an area of approximately 35 ft by 175 ft that required remediation due to elevated concentrations of arsenic in soil. The selected remediation method consisted of excavation of soil within the area to the depth of the groundwater table (approximately 12 ft BGS) and chemical treatment and stabilization of the excavated soil using soluble silicate solutions and cementatious materials. Because previous sampling results indicated arsenic concentrations in shallow soil were below the remediation cleanup level of 200 mg/kg, most of the soil removed from the upper 2 to 3 ft of the excavation was not treated or stabilized and was used as backfill. The remediation activities occurred between August and November 1991. Excavation sidewall samples were collected as shown on Figures 16A and 16B. Excavation continued until all sidewall sample arsenic concentrations were below 200 mg/kg, except along the northern boundary of the excavation. Additional excavation to the north was not feasible due to the King County storm drain line located approximately 15 ft north of the excavation. Concentrations of arsenic greater than 200 mg/kg primarily occurred along the portion of the northern sidewall between Manhole 5 and Manhole 4, shown on Figures 16A and 16B. At several locations, the arsenic concentrations were greater than 1,000 mg/kg.

Following stabilization, the material was returned to the excavated area; however, the volume of treated material was greater than the excavated area and a mound of surplus material was created. The stabilized material, including the mound, was covered with asphalt pavement.

Soil samples that may represent current soil conditions north of Slip 5 because no subsequent soil removal is known to have occurred at this location include storm drain lines sidewall samples SW-1 through SW-60.

Further detail on the basis and scope of the remedial action and analytical results is provided in the *Thompson-Isaacson Site Soil Excavation Work Plan Final Report* (Landau Associates 1989b).

#### 3.1.13 1991 GROUNDWATER MONITORING

During treatment and stabilization of arsenic-contaminated soil in 1991, groundwater samples were collected four times at five monitoring wells [I-104(s), I-200(s), I-203(i), I-205(s), and I-206(s)] and analyzed for dissolved arsenic. The results indicated that the groundwater samples collected from wells located immediately downgradient from the soil remedial action area [wells I-104(s) and I-203(s)] had dissolved arsenic concentrations ranging from 15  $\mu$ g/L to 576  $\mu$ g/L. Dissolved arsenic concentrations at the wells located on the Thompson property [I-205(s), and I-206(s)] ranged from 6  $\mu$ g/L at well I-205(s) to 1,790  $\mu$ g/L at well I-206(s).

The results for the 1991 groundwater samples are reported in the *Evaluation of Groundwater Compliance Monitoring Program, Boeing Thompson-Isaacson Site, Seattle, Washington* report (GeoEngineers 1997).

#### 3.1.14 1992-1996 POST-SOIL STABILIZATION GROUNDWATER MONITORING

Following treatment and stabilization of arsenic-contaminated soil at the Boeing Isaacson property in November 1991, voluntary compliance groundwater monitoring was conducted to establish a baseline for post-remediation groundwater conditions and to evaluate long-term effectiveness of site remedial activities (GeoEngineers 1997). The monitoring was conducted biannually at five monitoring wells [I-104(s), I-200(s), I-203(i), I-205(s), and I-206(s)] between 1992 and 1994 for a total of five post-remediation sampling events and annually at the same wells in 1995 and 1996. Each biannual event consisted of collecting groundwater samples at low tide weekly for 4 weeks and analyzing the samples for dissolved arsenic. Each annual event consisted of collecting a single sample at each location and analyzing the sample for total and dissolved arsenic. The results of the post-remediation monitoring are compiled in a report titled *Evaluation of Groundwater Compliance Monitoring Program, Boeing Thompson-Isaacson Site* (GeoEngineers 1997). The results indicated that the groundwater samples collected from wells located downgradient from the soil remedial action area [i.e., wells I-104(s), I-203(i), and I-205(s)] had concentrations of dissolved arsenic up to 640 µg/L. The samples from monitoring well I-206(s) had dissolved arsenic concentrations ranging from 1,360 µg/L to 2,000 µg/L.

#### 3.1.15 1996 STRATAPROBE SOIL AND GROUNDWATER SAMPLING

In April 1996, six strataprobe borings (HP-1 through HP-6) were installed in the vicinity of monitoring well I-206(s), as shown on Figure 10, in an effort to identify a source for the arsenic

previously detected in groundwater at well I-206(s) (GeoEngineers 1997). Sixty-three soil samples were collected from depths ranging between 1 to 20 ft BGS at each boring and analyzed for arsenic. Arsenic concentrations ranged from 0.7 to 43.0 mg/kg. One grab sample of the groundwater at each boring was also collected and analyzed for dissolved and total arsenic. Dissolved arsenic concentrations in the groundwater samples ranged from  $66 \mu g/L$  to  $660 \mu g/L$ , and total arsenic was detected at concentrations ranging from  $110 \mu g/L$  to  $570 \mu g/L$ . The investigation did not identify a source for the arsenic in groundwater at well I-206(s) (GeoEngineers 1997).

The results for the 1996 soil and groundwater samples are reported in the *Evaluation of Groundwater Compliance Monitoring Program, Boeing Thompson-Isaacson Site, Seattle, Washington* report (GeoEngineers 1997).

#### 3.1.16 1993 – 1995 HYDRAULIC TEST PAD AREA EXCAVATIONS

In late 1993, approximately 10 ft of petroleum product was observed in a monitoring well near an oil/water separator located in the hydraulic test pad area east of Building 14-03. Twelve soil borings (B-1 through B-12) were completed in the area of the well and a nearby oil/water separator. The boring locations are shown on Figure 10. Heavy sheens were observed in the borings nearest the oil/water separator (B-4, B-5, B-6, and B-7). Soil samples were collected from each boring and analyzed for diesel-range, oil-range, and/or gasoline-range petroleum hydrocarbons. Elevated concentrations of petroleum hydrocarbons were detected in borings B-4, B-6, and B-9. The analytical results for the soil borings are summarized in Appendix G. Based on the results of the soil investigation, the estimated volume of soil to be excavated was 825 cubic yards (yd³). Documentation showing the lateral and vertical extent of the excavation has not been identified; however, a figure showing planned excavation limits (GeoEngineers 1994) suggests that soil at borings B-4 through B-9 may have been removed. The results of the 1994 subsurface investigation are reported in *Report of Geotechnical Services, Subsurface Investigation Oil/Water Separator Area, Building 14-03, Thompson-Isaacson Facility* (GeoEngineers 1994).

The oil/water separator system consisted of a 5,000-gallon steel oil/water separator and an associated 4,000-gallon fiberglass holding tank (TS-04) (GeoEngineers 1994). A sample of the sludge present in the oil/water separator was collected and analyzed for VOCs; SVOCs; metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver); and PCBs. Several VOCs were detected in the sludge sample including acetone (1.4 mg/kg), 2-butanone (0.39 mg/kg), toluene (0.23 mg/kg), ethylbenzene (0.36 mg/kg), and xylenes (up to 0.16 mg/kg). PCB Aroclors 1254 and 1260 were detected in the sludge sample at concentrations of 1.3 mg/kg and 0.65 mg/kg, respectively. SVOC BEHP was detected in the sludge sample at a concentration of 16 mg/kg. All of the metals analyzed for were

detected in the sludge sample, except selenium. Arsenic was detected at a concentration of 10 mg/kg and lead was detected at a concentration of 6 mg/kg. The concentrations of the other detected metals were 1 mg/kg or less.

In August 1995, the oil/water separator system was removed. According to an undated internal Boeing memorandum, approximately 900 tons of petroleum-contaminated soil were excavated from the area surrounding the oil/water separator and holding tank. The soil was transported to a treatment facility in Oregon operated by TPS Technologies. Eleven soil samples (NW-2, NW-3, WW-2, EW-2, EW-3, EW-4, EW-5, EW-6, EW-7, EW-8, and SW-3-11.5) were collected from the excavation sidewalls and submitted to a laboratory for diesel-range and oil-range petroleum hydrocarbons analysis. However, only laboratory reports for NW-2, NW-3, WW-2, EW-2, EW-3, and SW-3-11.5 were available for review. The locations of these samples are shown on Figure 10. Except for SW-3-11.5, the depth of the samples has not been determined. Based on the results of the sidewall samples, diesel-range and hydraulic oil-range petroleum hydrocarbons remained in the soil at concentrations up to 7,400 mg/kg and 59,000 mg/kg, respectively. Subsurface soil and groundwater conditions in this area were investigated during the Phase II ESA investigation (Landau Associates 2009c).

# 3.1.17 2000 GROUNDWATER AND SEEP SAMPLING AND HYDROGEOLOGIC CHARACTERIZATION

Beginning in August 2000, eight piezometers (PZ-1 through PZ-8; shown on Figure 12) were installed at the Site. Groundwater samples were collected for laboratory analysis for dissolved arsenic, TOC, total iron, and ferrous iron from two of the piezometers (PZ-7 and PZ-8) and five existing monitoring wells [I-104(s), I-200(s), I-203(i), I-205(s), and I-206(s)]. Dissolved arsenic concentrations ranged from 2.0  $\mu$ g/L at well I-200(s) located on the eastern property boundary to 1,600  $\mu$ g/L at well I-104(s) located near the LDW. One seep sample was collected from a shoreline seep at the location shown on Figure 12. The seep emanated from rock and rubble material beneath the northern wooden bulkhead at an elevation of approximately -4 ft NGVD (29). The seep sample was analyzed for dissolved arsenic, which was detected at a concentration of 7  $\mu$ g/L.

Also in August 2000, hydrogeologic characterization was completed that included a study of tidal effects on Site groundwater conditions. The results of the hydrogeologic characterization form the basis for the current understanding of the Site hydrogeology, which is described in Section 4.2.

The analytical results for the 2000 groundwater monitoring samples and seep samples, and the results of the hydrogeologic characterization, are reported in the *Request for Groundwater NFA Determination*, *Hydrogeologic Investigation and Site-Specific Action Level For Arsenic in Groundwater*, *Boeing Isaacson Site*, report (ERM and Exponent 2000).

#### 3.1.18 2004 - 20,000-GALLON HEATING TANK CLOSURE

In 2004, a 20,000-gallon heating oil UST located on the west side of Building 14-02 was abandoned in-place. A soil sample was collected from stockpiled soil resulting from the excavation associated with the tank abandonment, and a groundwater sample was collected from a partial excavation at the north end of the tank. Both the soil and the groundwater samples were analyzed for diesel-range and motor oil-range petroleum hydrocarbons. Analytical results indicated the presence of diesel- and motor oil-range petroleum hydrocarbons in the groundwater sample at concentrations of 1.0 mg/L and 1.2 mg/L, respectively. The detected concentrations in the excavation groundwater sample were attributed to stormwater flowing into the excavation that was temporarily impacted by residual petroleum hydrocarbons on the excavation equipment.

The tank closure was documented in technical memorandum *Tank Closure Confirmation and Sampling, Former 20,000 Gallon Heating Oil Tank, Thompson Site* (Landau Associates 2004).

#### 3.1.19 2004 GROUNDWATER CONFIRMATION SAMPLING

In 2004, two wells (TH-MW-1 and TH-MW-2) were installed downgradient of the 20,000-gallon heating oil UST located west of Building 14-02. The well locations are shown on Figure 12. The wells were installed after the tank was abandoned in-place, as described in Section 3.1.18. Groundwater samples were collected from each well during two sampling events (January 19, 2004 and February 26, 2004) and were analyzed for diesel-range and motor oil-range petroleum hydrocarbons. Motor oil-range petroleum hydrocarbons were detected in the January 2004 sample collected from well TH-MW-2 at a concentration of 0.7 mg/L. Motor oil-range-petroleum hydrocarbons were not detected in the February 2004 sample collected from this well. Diesel-range petroleum hydrocarbons were not detected in the samples collected from well TH-MW-2, and motor oil-range and diesel-range petroleum hydrocarbons were not detected in the samples collected from well TH-MW-1. Subsequent attempts were made to resample these wells during the Phase II ESA investigations; however, no groundwater was present in the wells during the sampling attempts.

The results for the 2004 groundwater monitoring samples at wells TH-MW-1 and TH-MW-2 are reported in technical memorandum *Tank Closure Confirmation and Sampling, Former 20,000 Gallon Heating Oil Tank, Thompson Site* (Landau Associates 2004).

#### **3.1.20 2006** SUMP REMOVAL

In November 2006, Boeing removed a sump located in the northeastern corner of the property (Figure 4). The sump was a below-grade, open-to-the-surface 55-gallon drum that was discovered under

a steel plate. The sump reportedly had an inlet pipe and an outlet pipe (Landau Associates 2007). Prior to removal of the sump, two samples of soil in the sump were collected and analyzed for diesel-range and motor oil-range petroleum hydrocarbons; VOCs; SVOCs; and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to determine appropriate disposal of the sump and its contents. The excavation associated with the sump removal extended about 2 ft beyond the exterior of the sump and to about 5 ft in depth. One soil sample (IsaacEX-01-5) was collected from the base of the excavation (5 ft BGS) and two soil samples (IsaacEX-02-1.5 and IsaacEX-03-2) were collected from the excavation sidewalls at depths of 1.5 ft and 2 ft BGS. The sample locations are shown on Figure 10. These samples were analyzed for diesel-range and motor oil-range petroleum hydrocarbons; VOCs; SVOCs; PCBs; and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). Diesel-range and motor oil-range petroleum hydrocarbons, acetone, PAHs, and bis(2-ethylhexyl)phthalate (BEHP), and metals were detected in one or more of the samples collected from the excavation. Aroclor 1260 was detected in one sidewall sample at a concentration of 0.041 mg/kg.

Further details of the sump removal and the results for the 2006 post-excavation soil samples are reported in technical memorandum *Sump Removal and Soil Excavation Boeing Isaacson Property, Seattle, Washington* (Landau Associates 2007).

#### 3.1.21 2007 – 2008 GROUNDWATER AND SEEP SAMPLING

In September 2007 and June 2008, groundwater samples were collected from five existing monitoring wells [I-104(s), I-200(s), I-203(s), I-205(s), and I-206(s)]; two existing piezometers (PZ-7 and PZ-8); and one seep (I Seep) located at the Site and analyzed for dissolved arsenic. During the 2007 sampling event, dissolved arsenic was detected at concentrations ranging from 0.9  $\mu$ g/L at I-200(s) to 3,600  $\mu$ g/L at I-104(s). The detected concentration of dissolved arsenic in the seep sample was 5  $\mu$ g/L (Landau Associates 2009a). During the 2008 sampling event, dissolved arsenic was detected at concentrations ranging from 0.7  $\mu$ g/L at I-200(s) to 3,640  $\mu$ g/L at I-104(s). The detected concentration of dissolved arsenic in the seep sample in 2008 was 3.4  $\mu$ g/L (Landau Associates 2009a).

#### 3.1.22 2008 REMOVAL OF STABILIZED SOIL MOUND

In late 2008, an independent action was conducted to remove the mound of stabilized soil in the northern portion of the property. The project consisted of the removal and disposal of the stabilized soil mound and non-stabilized surface soil surrounding the mound to reduce the grade, as necessary, for planned development at the property. After the mound of stabilized material and the surrounding non-stabilized surface soil were removed, the area was recapped with asphalt. New stormwater treatment and conveyance system improvements (Vortechs vaults) were also installed as part of this project in

compliance with the *King County Surface Water Design Manual* (KCDNRP 2005). The basis and scope of the independent action is discussed in detail in the *Redevelopment Activities: Stabilized Soil Mound Removal and Stormwater System Upgrades, Boeing Isaacson Property, Tukwila, Washington* report (Landau Associates 2008c).

To determine the appropriate disposal options for the stabilized soil designated for removal, samples of the stabilized soil were collected from seven test pits completed within the mound (Landau Associates 2008d). The samples, identified ISS-TP-1 through ISS-TP-7, were analyzed for total Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, and zinc); Toxicity Characteristic Leachate Procedure (TCLP) RCRA metals; and gasoline-range, diesel-range, and oil-range petroleum hydrocarbons. Elevated concentrations of arsenic (up to 1,700 mg/kg) were detected in the samples, but the TCLP results were low (non-detect to 1.7 µg/L). Barium, cadmium, chromium, and lead were also detected in the samples, but only barium was detected by TCLP. Barium concentrations ranged from 0.051 µg/L to 0.56 µg/L. Low concentrations (380 mg/kg or less) of diesel-range and motor oil-range petroleum hydrocarbons were also detected.

To determine appropriate disposal options for the non-stabilized soil that was removed, 20 samples of the surface soil were collected and analyzed for total arsenic and TCLP arsenic. The samples were identified as ISC-A through ISC-T.

Following removal of the mound of stabilized soil and surrounding non-stabilized soil, 18 samples were collected at 16 locations evenly distributed throughout the removal area (IMR-2 through IMR-8, IMR-10 through IMR-16, IMR-18, and IMR-19, locations shown on Figure 10). The samples consisted of stabilized soil and non-stabilized soil and were collected to document soil conditions at the surface of the finished grade. All of the soil samples were analyzed for total RCRA metals. Arsenic was detected in 16 of the 18 samples at concentrations ranging from 8 mg/kg to 2,440 mg/kg. In addition, although no field indications of petroleum contamination were observed during removal of the stabilized soil mound, sample IMR-6 was analyzed for diesel-range and motor oil-range petroleum hydrocarbons because these petroleum hydrocarbons were detected at concentrations up to 380 mg/kg in the samples collected from the stabilized soil mound that were used to evaluate disposal options. Diesel-range and motor oil-range petroleum hydrocarbons were detected in the post-mound removal sample (IMR-6) at concentrations of 17 mg/kg and 61 mg/kg, respectively.

During the project, a vein of tar-like substance was discovered outside of the stabilized soil perimeter on the northern side of the excavation for the eastern Vortechs vault (shown on Figure 3), at a depth of approximately 1.5 ft BGS. The extent of the tar-like substance is not known, as excavation of the material was completed before the substance was identified; however, the vein appeared to be approximately 6 inches thick and approximately 3 ft wide. A sample of the tar-like substance

(IMR-1-081003) was collected and analyzed for VOCs, SVOCs, and diesel-range and motor oil-range petroleum hydrocarbons. Diesel-range and motor oil-range petroleum hydrocarbons were detected at concentrations of 7,400 mg/kg and 25,000 mg/kg, respectively. The following PAHs were detected in the sample: phenanthrene (2,400 mg/kg), pyrene (4,200 mg/kg), chrysene (8,800 mg/kg), and benzo(a)pyrene (2,400 mg/kg).

Samples IMR-2 through IMR-8, IMR-10 through IMR-16, IMR-18, and IMR-19 may represent current soil conditions in the northern portion of the Site because no subsequent soil removal is known to have occurred at this location.

#### 3.1.23 2008/2009 PHASE II ESA SOIL SAMPLING

In 2008 and 2009, focused Phase II ESA investigations were conducted at the Site. During these investigations, 60 soil samples were collected from 49 soil borings located throughout the Site (borings IDP-1 through IDP-15, IDP-1a, IDP-6a, and TDP-1 through TDP-32). The Phase II ESA soil sampling locations are shown on Figure 10. The soil samples were selectively analyzed for metals (arsenic, cadmium, chromium, copper lead, mercury, and zinc); VOCs; SVOCs; petroleum hydrocarbons; PCBs; and PAHs. The sampling locations and analyses for the Phase II ESA investigations were selected based on the findings from the Phase I ESAs conducted in 2008.

The highest concentrations of arsenic (333 mg/kg at IDP-5-8'), copper (624 mg/kg at IDP-14-11'), lead (420 at IDP-7-3'), and zinc (estimated 1,390 mg/kg at IDP-7-3') in soil were detected in samples collected from along the northern Slip 5 boundary and along the northern Site boundary. Mercury was detected at concentrations ranging from 0.05 mg/kg to an estimated 0.52 mg/kg in samples collected from across the Site.

Thirty-eight soil samples were analyzed for VOCs. TCE was detected at a concentration of 66 µg/kg in one soil sample (TDP-26-8') located along the southern property boundary, and benzene was detected at a concentration of 9.8 µg/kg in one soil sample (IDP-9-3') located on the Boeing Isaacson property. Concentrations of VOCs were not detected in the remaining 36 soil samples analyzed for VOCs. Twenty-two soil samples were analyzed for PCBs during the Phase II investigations. PCBs were not detected in any of the soil samples collected from the Site at concentrations greater than the laboratory reporting limits. Eighteen soil samples were analyzed for SVOCs. With the exception of 4-methylphenol, which was detected in soil at TDP-8-8' at a low concentration, SVOCs were not detected in soil at concentrations greater than the laboratory reporting limits. Two PAHs, chrysene and benzo(b)fluoranthene, were detected in one soil sample (TDP-18-4') at slightly elevated concentrations (91 mg/kg and 76 mg/kg, respectively).

All of the soil samples collected during the Phase II ESA are representative of current soil conditions in the areas in which the samples were collected because no subsequent soil removal is known to have occurred at these locations.

The results of the Phase II ESA soil investigations are reported in the *Phase II Environmental Site Assessment, Boeing Isaacson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009b) and the *Phase II Environmental Site Assessment, Boeing Thompson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009c).

#### 3.1.24 2008/2009 PHASE II ESA GROUNDWATER SAMPLING

In November 2008, groundwater samples were collected for laboratory analysis from 8 direct-push borings (TDP-1, TDP-7, TDP-8, TDP-11, TDP-16, TDP-18, TDP-25, TDP-26) located in the southern portion of the Site and from 3 direct-push borings (TDP-28, TDP-29, and TDP-31) located in the west-central portion of the Site (Figure 10). In February 2009, groundwater samples were collected for laboratory analysis from 10 direct-push borings (IDP-1a, IDP-2 through IDP-6, IDP-8, IDP-9, IDP-12, and IDP-14) located in the northwest corner of the Site, as shown on Figure 10. Additionally, groundwater samples were collected from 12 existing monitoring wells and piezometers. The groundwater samples were selectively analyzed for dissolved metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc); VOCs; SVOCs; petroleum hydrocarbons; PCBs; and PAHs.

Arsenic and chromium were the only metals detected in the groundwater samples collected in the southern portion of the Site. Detected arsenic concentrations ranged from 1.3 µg/L to 575 µg/L and detected chromium concentrations ranged from 6 µg/L to 14 µg/L. Arsenic, copper, and lead were detected in the groundwater samples collected from the northern portion of the Site. Arsenic concentrations ranged from 0.8 µg/L to 2,360 µg/L, except at IDP-8 and IDP-14 where arsenic concentrations were 13,600 µg/L and 16,000 µg/L, respectively. Copper concentrations ranged from 6 µg/L to 20 µg/L, and lead was detected in one sample (IDP-8) at a concentration of 1 µg/L. VOCs, SVOCs, and PAHs were also detected in groundwater from some wells. The VOC vinyl chloride was detected in five of eight groundwater samples collected from the area south of the former washdown system near the Boeing Thompson property/8801 Site boundary (TDP-7, TDP-8, TDP-16, TDP-25, and TDP-26) and in groundwater samples collected from three locations in the western portion of the Site [IDP-8, I-104(s), and I-206(s)] at concentrations up to 140 µg/L. Other VOCs [cis-1,2-dichloroethene (cis-1,2-DCE); 1,1-dichloroethene (1,1-DCE); PCE; and TCE] were detected in the groundwater samples collected from TDP-25 and TDP-26.

SVOCs, carbazole, and BEHP were detected in groundwater during the Phase II ESA investigations at elevated concentrations. Carbazole was only detected in one groundwater sample

(TDP1-GW) at a concentration of 6.9  $\mu$ g/L and BEHP was detected in seven groundwater samples (TDP-7, TDP-8, TDP-11, TDP-18, TDP-25, TDP-28, and TDP-31) at concentrations up to 3.8  $\mu$ g/L. Neither carbazole nor BEHP was detected in soil at the Site. PAHs were detected in seven groundwater samples (TDP-1, TDP-16, TDP-18, TDP-25, TDP-28, TDP-29, and TDP-31) at concentrations up to 15  $\mu$ g/L.

Diesel-range and motor oil-range petroleum hydrocarbons were detected in one direct-push groundwater sample (TDP31-GW) located in the former hydraulic test pad area. PCBs were not detected in any of the groundwater samples.

The results of the Phase II ESA groundwater monitoring are reported in the *Phase II Environmental Site Assessment, Boeing Isaacson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009b) and the *Phase II Environmental Site Assessment, Boeing Thompson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009c).

#### 3.1.25 2009 Property Boundary Soil Investigation

The property boundary investigation was conducted in late July 2009 to evaluate soil conditions at locations along the west property boundary adjacent to the Port property and at the south property boundary adjacent to the 8801 Site. Soil samples were collected at 10 locations (PBI-1 through PBI-10) along the Boeing Isaacson/Port property boundary and the Boeing Thompson/Port property boundary (Figure 10). These samples were analyzed for the constituents of concern in this portion of the site at that time. These included arsenic, cadmium, chromium, copper, lead, mercury, and zinc. Arsenic concentrations for the soil samples ranged from 0.5 mg/kg to 754 mg/kg. The highest concentrations, 329 mg/kg and 754 mg/kg, were detected in the 5-ft to 6-ft BGS interval at locations PBI-2 and PBI-3. Other metals detected included cadmium (0.6 to 11.1 mg/kg); chromium (14 to 940 mg/kg); copper (21 to 1,300 mg/kg); lead (3 to 4,200 mg/kg); mercury (0.03 to 2 mg/kg); and zinc (56 to 3,290 mg/kg).

Soil samples were also collected at five locations (PBI-11, PBI-12, PBI-13, PBI-14, and PBI-15) along the Boeing Thompson/8801 Site boundary and analyzed for the constituents of concern in this portion of the Site at that time. These included the following halogenated volatile organic compounds (HVOCs): vinyl chloride; 1,1-DCE; cis-1,2-DCE; TCE; PCE; and 1,1,2,2-tetrachloroethane). The property boundary soil sampling locations are shown on Figure 10. The results of the investigation indicate the presence of TCE and PCE in soil along the property boundary. The highest concentrations were detected at PBI-13, which is the most central of the boring locations in this investigation. The concentrations of TCE detected in the soil at PBI-13 were 20  $\mu$ g/kg at the 2- to 3-ft depth interval, 28  $\mu$ g/kg at the 5- to 6-ft depth interval, and 35  $\mu$ g/kg at the 8- to 9-ft depth interval. PCE concentrations

at this location at these intervals were 1.7  $\mu$ g/kg, 2.3  $\mu$ g/kg, and 5.3  $\mu$ g/kg, respectively, with concentrations increasing with depth. Because groundwater was encountered at depths of about 15 to 16 ft BGS, all of the soil samples were collected from the vadose zone.

The results of the Property Boundary soil investigation are reported in the *Property Boundary Investigation Thompson-Isaacson Property*, *Tukwila*, *Washington* report (Landau Associates 2009d).

#### 3.1.26 2009 Property Boundary Groundwater Investigation

Groundwater samples were collected from four locations along the Boeing Thompson/8801 Site boundary (PBI-11, PBI-12, PBI-13, and PBI-15) during the 2009 property boundary investigation. No groundwater sample was collected from location PBI-14 due to an apparent buried concrete slab that did not allow drilling deep enough to encounter groundwater. The groundwater sample locations are shown on Figure 12. The groundwater samples were analyzed for HVOCs.

Vinyl chloride was detected at three locations (PBI-11, PBI-12, and PBI-13) at concentrations of 1.3  $\mu$ g/L, 0.18  $\mu$ g/L, and 0.051  $\mu$ g/L, respectively. DCE was detected at PBI-13 and PBI-15 at concentrations of 0.58  $\mu$ g/L and 0.14  $\mu$ g/L, respectively, and cis-1,2-DCE was detected at PBI-11 and PBI-13 at concentrations of 100  $\mu$ g/L and 190  $\mu$ g/L, respectively. TCE and PCE were detected only in the groundwater sample collected at PBI-13 at concentrations of 1,000  $\mu$ g/L and 78  $\mu$ g/L, respectively.

The results of the Property Boundary groundwater investigation are reported in the *Property Boundary Investigation Thompson-Isaacson Property*, *Tukwila*, *Washington* report (Landau Associates 2009d).

# 3.2 SEDIMENT QUALITY INVESTIGATIONS

The LDW FS Baseline Dataset (AECOM 2010) was reviewed for sediment chemistry collected within the project site boundaries. Sediments in the vicinity of the Boeing Isaacson-Thompson property (including EAA-6) were sampled at 41 surface (0 to 0.33 ft) grab locations and at 9 core locations (Figure 17).

The results of the chemical analysis for surface grab samples and core samples are presented in Appendix J.

## 3.2.1 SURFACE SAMPLES

Surface sediments were analyzed for the Sediment Management Standards (SMS) list of chemicals at 23 of the surface grab locations (Table 1, Figure 17). A second grab sample was collected at sample location AN-046 as a field duplicate (Sample ID—AN-096-SS-080211). Sediments from an additional 16 locations were analyzed for PCBs and TOC (Table 1, Figure 17). There were detected

exceedances of the SMS Sediment Quality Standards (SQS) for 1 or more of the SMS metals (including arsenic, lead, mercury, and zinc) at 6 locations. Five of the locations also had 1 or more metals that exceeded the SMS Cleanup Screening Level (CSL). There were detected exceedances of the SQS for one or more of the SMS list of PAHs at 5 locations. Although undetected, the reporting limits for the chlorinated benzenes were above the SQS at multiple locations. There were detected exceedances of the SQS for butyl benzyl phthalate at 10 locations; one of the locations also exceeded the CSL. Four locations had detected exceedances of the SQS for BEHP, with 2 of the 4 locations exceeding the CSL. Dibenzofuran exceeded the SQS at a single location. Although not detected, the reporting limit for hexachlorobutadiene was above the SQS at 2 locations. Total PCBs exceeded the SQS at 21 locations, with 1 location also exceeding the CSL. Benzoic acid also exceeded the CSL at 2 locations. Although not detected, the reporting limits for benzyl alcohol and several phenols exceeded the SQS at 4 locations.

Surface samples from three locations were analyzed for dioxins/furans (Figure 17). Calculated dioxin Toxicity Equivalency Quotients (TEQs) ranged from 2.53 parts per trillion (pptr) to 11 pptr (Appendix J). Surface samples from three locations were also analyzed for selected organochlorine pesticides, but none were detected (Appendix J). Congener PCB analysis was also performed at 15 sample locations (Appendix J).

## 3.2.2 CORE SAMPLES

Samples were collected using a coring device at nine locations (Figure 17). Core sample intervals submitted for chemical analyses were 2 ft or less at eight of the locations (Appendix J). The remaining sample location (core location DU9120XX) composited sediments from the surface to 3 ft below mudline within the navigation channel (Table 2, Figure 17); that sample was used to characterize sediments for dredged material disposal. The deepest sample interval collected at any coring location in the vicinity of the Site was from 7.0 to 7.7 ft below mudline (at location SD-216, Table 2, Figure 17).

Eight of the core samples were analyzed for the complete SMS list of chemicals. The remaining samples were analyzed for a limited list of chemicals. General trends in sediment concentrations for the SMS list of chemicals showed decreasing concentrations with depth. Sediment concentrations for metals and a majority of the organic compounds that exceeded the SQS or CSL criteria in shallow sediments (generally less than 4 ft below mudline, Table 2) dropped below the SQS criteria in sample intervals collected deeper than 4 ft below mudline (Table 2 and Table 3).

Total PCB concentrations at location SD-216 (located north and downstream of the project site, Figure 17) were above the CSL criteria in the deepest sample interval collected (7 to 7.7 ft below mudline, Table 2). However, samples SD-217 and SD-315C, which were immediately upstream of SD-216 and adjacent to the project site (Figure 17), had detected total PCB concentrations that were

either below the SQS in the 4.0- to 4.5-ft sample or PCBs were undetected at 4 ft below mudline and deeper (Table 2 and Table 3).

The TOC content in some of the deeper sample intervals was less than 0.5 percent (Table 3). These lower TOC values may be an indication of older native delta deposits that have low organic content. These older deposits are expected to show low levels of contamination. In addition, comparison of the analytical results against the SMS criteria that are carbon normalized may not be appropriate if the TOC values are less than 0.5 percent. Comparison against the dry weight lowest apparent effects threshold value (LAET) is more appropriate and is consistent with Ecology guidance (Table 3). There were no exceedances of the LAET for sediment core samples with TOC values of less than 0.5 percent.

## 3.3 STORM DRAIN INVESTIGATIONS

This section describes investigations that have been conducted to date to assess the storm drain system present at the Site.

## 3.3.1 2007 CATCH BASIN REPOUTING PROJECT

Prior to 2007, two CBs (CB-81 and CB-82) located in the southwest portion of the Thompson property bypassed the oil/water separator located in that portion of the property. In 2007, the storm drain lines from these CBs were rerouted to connect the CBs to the oil/water separator.

# 3.3.2 2008 DRAIN LINE INVESTIGATION

On February 25, 2008, Landau Associates and Applied Professional Services (APS) investigated a 12-inch corrugated metal pipe located within a retaining wall along the southern boundary of the Site, approximately 35 ft south of the southwest corner of Building 14-01 (Figure 18). Based on the results of this investigation, the 12-inch corrugated metal pipe appears to extend east to west parallel to the north side of the retaining wall along the southern Property boundary. No inlets to the pipe were identified along its course. The pipe appears to serve as a drain to prevent buildup of groundwater behind the retaining wall. No connections between the pipe and the stormwater drains or sewer lines located on the Site in the vicinity of the pipe were identified during the investigation. There was no evidence of water draining from the pipe onto the property adjacent to the south of the Site. It is assumed that the pipe extends the full length of the retaining wall (approximately 460 ft); however, only 158 ft of the western portion of the pipe was investigated due to a three-prong, industrial-sized electrical plug that was present in the pipe during videotaping. This plug prohibited advancement of the camera farther eastward.

#### 3.3.3 2008 CATCH BASIN SOLIDS SAMPLING

In December 2008, an investigation was conducted of the solids present in the CBs and oil/water separators at the Site. The purpose of this investigation was to collect and analyze samples of solid material from the CBs and oil/water separators at the Site prior to planned cleaning of the storm drain system. The solid samples were analyzed for PCBs; SVOCs; total metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc); TOC; and total solids. Samples from nearby CBs were composited prior to analysis. Twenty-two solids samples were analyzed for PCBs, SVOCs, total metals, TOC, and total solids.

PCBs were detected above the laboratory reporting limits in 19 of the 22 samples analyzed. One or more SVOCs were detected in 19 of the 22 samples collected. One or more metals were detected in all 22 samples collected. The analytical results for total metals are presented on Figure 19, and the results for total PCBs and the SVOC BEHP are presented on Figure 20.

#### 3.3.4 2009 CATCH BASIN REPOUTING PROJECT

In 2009, Boeing completed a project to re-route stormwater collected by CB-39 so that no stormwater from the Site would enter the 48-inch King County storm drain line. CB-39 is located in the western portion of the Site, near the outfall of the King County storm drain line (Figure 3). Stormwater collected by CB-39 previously was conveyed to the 48-inch King County storm drain line. The King County storm drain line conveys stormwater from a portion of the KCIA to the LDW. Two pipes were previously connected to CB-39. One of the pipes was the outlet for CB-39 that connected to the King County storm drain. The purpose of the second pipe has not been determined. Both of the existing pipes were plugged with grout. The CB was inspected and found to be in good condition with a solid concrete bottom; therefore, the existing structure was retained and a new pipe was installed to route stormwater from the CB to the south into the existing Site stormwater system. There are currently no connections between the Site stormwater system and the King County storm drain line.

# 3.3.5 ONGOING STORMWATER OUTFALL SAMPLING

The Site operates under Industrial Stormwater General Permit #WAR000148. The permit requires quarterly sampling from the two stormwater outfalls (Outfalls A and B) located along the western Site boundary (Figure 3). Copper was detected in stormwater at concentrations exceeding the permit benchmark of 14  $\mu$ g/L during one sampling event at Outfall A and three sampling events at Outfall B during 2010. Zinc was detected in stormwater at concentrations exceeding the permit benchmark of 117  $\mu$ g/L during four sampling events at Outfall B during 2010. There were no exceedances of the zinc benchmark in samples from Outfall A during 2010. Boeing is implementing Best

Management Practices (BMPs) to address the copper and zinc benchmark exceedances, including sweeping, roof cleaning, and CB cleaning to remove solids. A summary of previous stormwater sampling results is provided in Table 4.

## 4.0 ENVIRONMENTAL SETTING

This section describes the geology and hydrogeology of the Site based on information developed during previous Site investigations. Further information regarding Site geology and hydrogeology will be obtained during the RI and described in the RI report.

## 4.1 GEOLOGY

Based on subsurface explorations completed at and in the area of the Site, soil conditions at the Site consist of approximately 6.5 to 17.5 ft of fill overlying native tideflat and river deposits with the thickest layers of fill occurring in the former Slip 5 area. The fill generally consists of silty sand to sandy gravel. Fill materials within the former Slip 5 area include bricks, wood debris, and slag material. The native deposits typically consist of fine sand and silty fine sand with silt lenses. The native surficial deposits are characterized by the presence of small in-place roots, wood fragments, and peat, which are indicators of the original ground surface elevation prior to filling. Underlying the silt and silty fine sand is a series of interbedded alluvial sand and silt layers that were deposited within the floodplain of the LDW River. Beneath the interbedded alluvial silt and fine sand is a layer of very dark to black, fine to medium sand. This naturally deposited sand is found throughout the LDW River Valley and was likely deposited from flood waters. Three north-south trending cross-sections across the Site and extending into the 8801 Site, and two east-west trending cross-sections across the Site at the locations shown on Figure 21, are presented on Figures 22, 23, 24, 25, and 26.

# 4.2 HYDROGEOLOGY

The near-surface groundwater regime within the LDW River Valley is generally characterized as a shallow, single-aquifer system. The Site is located at and near the east bank of the LDW, at approximately 10 ft above mean sea level (MSL) (USGS 1983). Shallow groundwater (generally less than 15 ft BGS) is present throughout the area of the Site. Based on topography and groundwater investigations conducted in the area of the Site by Landau Associates and others, the direction of groundwater flow is generally to the west toward the LDW; however, there is also localized groundwater flow toward the former Slip 5 area. Mean groundwater elevations calculated based on water levels measured in August 2000 were contoured and the contours are shown on Figure 27. Because few wells exist in the southern portion of the Site near the 8801 Site, groundwater flow direction has not been defined for this portion of the Site. The presence of a steel bulkhead, which extends 60 ft BGS, along a portion of the Boeing Thompson property shoreline likely influences groundwater flow in this portion of the Site.

Some mounding is expected to occur behind the bulkhead and, locally, groundwater is likely being forced to the north and south. The mounding is suggested by the high groundwater level observed in August 2008 at well I-205(s), which is located just east of the bulkhead. The wooden bulkheads along the shoreline to the north and south are less impervious than the steel bulkhead and, therefore, are expected to have less impact on groundwater flow direction, due to leakage through gaps in the wooden bulkheads.

There are two pedestrian tunnels located on the north side of Building 14-01 (Figure 2). These tunnels are approximately 100 ft long and extend 11 ft BGS (above the groundwater table, which is generally encountered at about 11 to 12 ft BGS) and, therefore, do not likely influence groundwater flow beneath the Site.

Single-well hydraulic conductivity tests, performed by ERM in August 2000 (ERM and Exponent 2000) at piezometers PZ-1 through PZ-8, indicate that hydraulic conductivity values for the shallow water-bearing zone range between 1.52 x 10<sup>-4</sup> centimeters per second (cm/s) to 1.89 x 10<sup>-3</sup> cm/s, with an average hydraulic conductivity of 8.84 x 10<sup>-4</sup> cm/s. Also in August 2000, ERM completed a tidal study at the Boeing Isaacson property (ERM and Exponent 2000). Tidal effects on groundwater elevations were observed at each of the wells and piezometers; however, the most significant tidal fluctuations were observed at locations within 400 ft of the LDW. Tidal efficiencies near the LDW were extremely variable, ranging from 0.93 percent at well I-205(s) to 37.84 percent at well I-203(s). The low tidal efficiency at well I-205(s) was considered an anomaly possibly due to equipment malfunction or aquifer heterogeneity, but this may also be related to the presence of the steel bulkhead. Near the shoreline where the tidal fluctuations result in surface water entering the groundwater flow system, a hydrodynamic dispersion zone is created by the intermixing of surface water with groundwater, which results in dispersion of contaminants migrating in groundwater prior to discharge to surface water.

The LDW is comprised of both marine and fresh surface water. Following the initial dredging and realignment of the LDW, saltwater from the Puget Sound extended back into the waterway and infiltrated the upland groundwater (ERM and Exponent 2000). As a result of the saltwater intrusion into the LDW, a saltwater wedge has formed in the waterway. The saltwater has also intruded from the LDW to properties along its shoreline. The presence of brackish or saline water in the aquifer can affect groundwater flow because the less dense fresh groundwater tends to move above the higher density saline water. The density difference between the freshwater aquifer system and the saltwater of the LDW tends to concentrate the outflow of the surficial aquifer into the intertidal areas.

## 5.0 PRELIMINARY CONCEPTUAL SITE MODEL

This section presents a preliminary conceptual site model that identifies potential contaminants of concern (PCOCs) within the LDW, PCOCs within the Site, areas within the Site that have the greatest potential to be sources of contaminants, and the potential contaminant migration pathways and receptors. A schematic of the conceptual Site model discussed below is provided on Figure 28.

## 5.1 LDW EARLY ACTION AREA 6 COCS

COCs (contaminants of concern) identified by Ecology's contractor, SAIC, for sediments in the LDW RM 3.7-3.9 East Early Action Area (EAA) 6, Summary of Existing Information and Identification of Data Gaps (SAIC 2008) consist of arsenic, PAHs, phthalates [BEHP and butylbenzylphthalate], benzoic acid, benzyl alcohol, dibenzofuran, and total PCBs. SAIC defined a COC for the EAA-6 sediments as a chemical that is present at concentrations above the Washington State SMS (Chapter 173-204 WAC) marine SQS or CSL values. For the Site, COCs will be identified for the RI based on comparison of all available data with screening levels for the Site.

## 5.2 SITE PCOCS

Site PCOCs are identified based on contaminants typically associated with the potential sources identified in Section 2.0 and contaminants detected during previous Site investigations. These contaminants are as follows:

- Metals Metals have been detected in soil, groundwater, and/or CB solids at the Site.
- SVOCs SVOCs have been detected in soil and CB solids at the Site.
- **VOCs** VOCs have been detected in groundwater and soil at the Site (primarily at the Boeing Thompson property, near the Boeing Thompson/8801 Site property boundary).
- **Petroleum Hydrocarbons** Petroleum hydrocarbons have been detected in soil due to hydraulic oil from a holding tank associated with an oil/water separator located in the hydraulic test pad area (eastern yard of Building 14-03). The oil/water separator and holding tank have since been removed and approximately 900 tons of petroleum-contaminated soil were excavated from the area and disposed off site.
- **PCBS** PCBs have been detected in soil and CB solids.

Until the investigations described in this work plan have been completed and all available data have been screened against screening levels, the above classes of chemicals will be considered PCOCs and included for analysis.

# 5.3 POTENTIAL CONTAMINANT SOURCES

Seven primary potential sources have been identified for the contaminants detected at the Site: 1) historical Site operations, 2) ASTs/USTs and sumps, 3) contaminated fill material, 4) stabilized soil material, 5) existing building materials, 6) former Slip 5 Outfall, and 7) offsite sources. Each of these potential contaminant sources are described below. Some of these potential contaminant sources no longer exist at the Site, either because activities have ceased or the impacted media (e.g., contaminated soil) has been removed.

- Historical Site Operations. The Site was previously occupied by several sawmills, a wood treatment operation, Isaacson, and, most recently, by Boeing. Sawmill features that may have contributed to the release of contaminants at the Site include the former boiler house and associated fuel storage, a transformer yard, and a former waste burner. Historical records indicate that the wood treatment operation used a solution of arsenic and sulfate salts of copper and zinc to preserve wood. Facility storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were drained directly to the ground surface. The Isaacson facility was used primarily for structural steel fabrication and supply. Historical records indicate that petroleum distillates and solvents were stored on the property. A transformer yard was located to the north of the building and paint storage areas to the east of the building (Figure 6). Most recently, Boeing used the southern portion of the Site for aircraft assembly, painting, plating, and system testing. Historical hazardous waste streams for the Thompson and Isaacson properties are described in Section 2.3.
- **ASTs/USTs and Sumps.** ASTs and USTs containing diesel, gasoline, heating oil, and/or wastewater were located at the Site. The approximate locations of the tanks are shown on Figure 4. A list of known existing or former ASTs, USTs, and sumps is provided in Table 5.
- **Fill Material.** Material containing elevated concentrations of metals may have been used to fill the former river meander, and, later, the former Slip 5 area. The fill has been identified as containing bricks, wood debris, and slag material. Soil samples collected from the fill material contain elevated concentrations of metals. The fill material is also a potential source of the metals detected in Site groundwater. Non-stabilized fill material located north of Slip 5 that was not stabilized, or is present at depths greater than the stabilized material, also contains elevated concentrations of metals that may be a potential source of metals detected in Site groundwater.
- Stabilized Soil Fill Material. Soil containing elevated concentrations of arsenic that was excavated, stabilized, and used as excavation backfill may be a potential contaminant source to groundwater, although TCLP results indicate little impact to groundwater by this material.
- Existing Building Materials. Building materials currently present at the Site may be a source of PCOCs. These include building siding material (e.g., Galbestos), paint from building or equipment surfaces, roofing materials, and caulking.
- Off-Site Sources: Both Jorgensen Forge, located to the north of the Site, and the 8801 Site, located to the south of the Site, are currently conducting investigations under Agreed Orders with Ecology due to COCs that have been detected in soil and/or groundwater at concentrations greater than the applicable cleanup or screening levels. Releases at either of these facilities could have impacted the Site. COCs at the Jorgensen Forge site include PCBs, total petroleum hydrocarbons (TPH), and metals in soil, and TPH and metals in groundwater.

COCs at the 8801 Site include TPH, PAHs, VOCs, SVOCs, PCBs, and metals. A property boundary investigation conducted by Boeing in 2009 identified the 8801 Site as a potential source of the VOCs detected in soil and groundwater along the southern boundary of the Site.

• Former Slip 5 Outfall. The 48-inch-diameter storm sewer conveyance line that conveyed stormwater from the east side of East Marginal Way South and formerly discharged at the east end of Slip 5 may have been a source of PCOCs.

# 5.4 CONTAMINANT MIGRATION PATHWAYS AND MEDIA OF POTENTIAL CONCERN

As described in Section 4.1, the upper 6.5 to 17.5 ft of soil below the Site is fill overlying native tideflat and river deposits with the thickest layers of fill occurring in the former Slip 5 area. Groundwater is typically encountered at depths between 10 and 15 ft BGS. Groundwater in the shallow water-bearing zone discharges to the LDW. Other discharges to the LDW include stormwater runoff from the Site that is collected in CBs and discharged via two outfalls (Outfalls A and B on Figure 3).

Based on the occurrence of groundwater discharge to the LDW, discharge of upland stormwater to the LDW, the shallow nature of groundwater below the Site, and the presence of an unsaturated soil zone, the potential pathways for contaminant migration at the Site include:

- Leaching of contaminants from soil to groundwater.
- Transport of contaminants in groundwater to adjacent surface water and sediment.
- Transport of contaminants to adjacent surface water and sediment via stormwater runoff.
- Transport of contaminants in soil to sediment via bank erosion.
- Volatilization of contaminants from soil and groundwater to indoor air.

Based on potential migration pathways, the Site media of potential concern consist of soil, groundwater, stormwater, storm drain system solids, and sediments.

## 5.5 CURRENT AND FUTURE LAND USE

The Site is currently zoned Manufacturing Industrial Center/Heavy Industrial (MIC/H). Currently, Boeing's P-8 program operates at the Thompson property, and is completing building modifications to expand operations there. Boeing is currently evaluating operations for use for the vacant portions of the Site.

## 5.6 CURRENT AND FUTURE WATER USE

Groundwater at or potentially affected by the Site is not currently used for drinking water. The groundwater in the Site area is not considered to be a reasonable future source of drinking water due to proximity to the LDW (which is not classified as a drinking water source), limited productivity, and the

likelihood of a high salinity content following extended periods of groundwater extraction that would make the groundwater unsuitable as a domestic water supply. Nonetheless, for this work plan, the highest beneficial use of shallow groundwater at the Site will be considered to include potential use as drinking water. A demonstration that the Site groundwater is not potable may be made in the RI.

## 5.7 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

The potential receptors that may be exposed to the contaminants present at the Site and the potential exposure pathways depend primarily on the current and likely future uses for the Site. This section identifies potential receptors and the potential exposure pathways for the receptors based on the current and future land uses described in Section 5.5.

#### 5.7.1 POTENTIAL RECEPTORS

Potential receptors for Site contaminants including humans; terrestrial ecological receptors (i.e., wildlife, soil biota, and plants); and benthic and aquatic organisms were evaluated based on the current and potential future land uses of the Site, as follows:

- **Humans** Because people may work at the Site (either as construction workers or for industrial operations), humans are considered to be potential receptors. Although the current Site use is industrial, for this work plan, unrestricted potential property uses are considered, which may include residential or commercial uses; however, a demonstration may be included in the RI that Site use should be limited to industrial. Although the groundwater is not considered to be a reasonable future source of drinking water, this work plan nevertheless assumes that humans may ingest groundwater. Humans may also ingest marine organisms from the adjacent LDW.
- **Terrestrial Ecological Receptors** Although the Site is entirely covered with buildings and pavement, terrestrial ecological receptors (wildlife, soil biota, and plants) are considered in this work plan to be potential receptors. The RI may include a demonstration that the Site meets the exclusion for a terrestrial ecological evaluation.
- **Benthic and Aquatic Organisms** Due to the Site's proximity to the LDW, benthic organisms in sediment and aquatic organisms in the LDW are considered to be potential receptors.

Based on the above evaluation, potential receptors for Site contaminants include humans, terrestrial ecological receptors, and benthic and aquatic organisms.

# 5.7.2 POTENTIAL EXPOSURE PATHWAYS

Potential exposure pathways for the receptors identified in Section 5.7.1 are discussed by medium below.

#### 5.7.2.1 Soil

The potential exposure pathways for Site soil are:

- Incidental ingestion or dermal contact by humans with hazardous substances that are present in Site soil
- Exposure by humans through inhalation of hazardous substances that are present in Site soil that have migrated as windblown or fugitive dust
- Exposure by humans through inhalation of hazardous substances that are present in indoor air from volatilization from Site soil
- Contact by terrestrial plants and soil biota with hazardous substances that are present in Site soil
- Contact (dermal, incidental ingestion, or inhalation) by terrestrial wildlife with hazardous substances that are present in Site soil.

#### 5.7.2.2 Groundwater

The potential exposure pathways for Site groundwater are:

- Ingestion by humans of hazardous substances that are present in Site groundwater
- Exposure by humans through inhalation of hazardous substances that are present in indoor air from volatilization from Site groundwater.
- The shallow hydrostratigraphic unit discharges to the adjacent surface water; exposure pathways associated with sediment and surface water are discussed in Sections 5.7.2.3 and 5.7.2.4, respectively.

#### **5.7.2.3** Sediment

The potential exposure pathways for sediment, if contaminants from the Site reach the sediments of the LDW (e.g., through groundwater to surface water discharge, stormwater runoff, etc.), include:

- Exposure of benthic organisms to hazardous substances present in the biologically active zone of sediment [the upper 10 centimeters (cm) below the mudline]. This may result in the uptake and bioaccumulation of contaminants in these organisms.
- Ingestion of contaminated benthic organisms as prey, as well as incidental ingestion of contaminated sediment, by higher trophic level organisms (e.g., foraging fish, aquatic birds, marine mammals, etc.).
- Human ingestion of aquatic organisms contaminated by hazardous substances in sediment.
- Incidental human dermal contact with sediments contaminated by hazardous substances.

## 5.7.2.4 Surface Water

The potential exposure pathways for surface water, if contaminants from the Site reach the surface water of the LDW (e.g., through groundwater to surface water discharge, storm runoff, etc.), include:

- Exposure of aquatic organisms to hazardous substances in surface water. This may result in the uptake and bioaccumulation of contaminants in these organisms.
- Ingestion of aquatic organisms contaminated by hazardous substances as prey by higher trophic level organisms in the food chain (e.g., foraging fish, aquatic birds, marine mammals, etc.).
- Human ingestion of aquatic organisms contaminated by hazardous substances.

Because the LDW is neither a current nor future drinking water source, human ingestion of surface water is not considered a potential pathway.

## 6.0 SITE PRELIMINARY SCREENING LEVELS

Site preliminary screening levels (preliminary SSLs) were developed for the media of potential concern identified in Section 5.4 (soil, groundwater, and sediment) to allow for evaluation of the method detection limits (MDLs) and reporting limits (RLs) for analytical data to be collected as part of this investigation. Preliminary SSLs for soil and groundwater that are adequately protective of human health and the environment were developed in accordance with MTCA requirements. MTCA provides three approaches for establishing cleanup levels: Method A, Method B, and Method C. The Method A approach is appropriate for sites that have few hazardous constituents or for contaminants such as TPH and lead for which toxicity information is not available to calculate Method B or Method C cleanup levels. The Method B approach is applicable to all sites. The Method C approach is applicable for specific site uses and conditions. The Method B and Method C approaches use applicable state and federal laws and risk equations to establish cleanup levels. However, the Method B approach establishes cleanup levels using exposure assumptions and risk levels for unrestricted land uses, whereas the Method C approach uses exposure assumptions and risk levels for restricted land uses, including industrial land uses. MTCA also requires that cleanup levels developed using the MTCA Method B and Method C approaches not be set at levels below the practical quantitation limit (PQL) or natural background.

Preliminary SSLs for groundwater, based on potential use of the groundwater as drinking water and protection of fresh surface water and marine surface water, were developed using MTCA Method B. Soil preliminary SSLs, based on direct human contact and protection of terrestrial ecological receptors, ground water, surface water, and sediment, were developed using MTCA Method B.

The Ecology draft preliminary screening level spreadsheet identifying potential pathways and possible applicable or relevant and appropriate requirements (ARARs) (Ecology 2011) was used for development of preliminary screening levels. The spreadsheet is provided in Appendix K. Tables K-1 (groundwater), K-2 (soil), and K-3 (surface water) in Appendix K identify pathways and ARARs retained for development of preliminary screening levels for the Site and, for those not retained, the rationale for not retaining them. Tables 6 and 7 provide MDLs, RLs, and preliminary screening levels for groundwater and soil, respectively.

# 6.1 GROUNDWATER

Groundwater preliminary SSLs were developed for metals, VOCs, SVOCs, PCBs, and petroleum hydrocarbons. Because the LDW consists of fresh water and marine water, and because site groundwater discharges directly to the LDW, preliminary SSLs protective of aquatic organisms and human ingestion of aquatic organisms in fresh and marine surface water were developed. To develop a single groundwater

SSL for each constituent, the lowest protective criterion identified by Ecology (Ecology 2011) for retained pathways was selected as the SSL, as shown in Table K-4. SSLs protective of human ingestion of surface water were not developed because the LDW is not a drinking water source. WAC 173-340-720(7)(c) provides for adjustments to cleanup levels, as needed, so that cleanup levels are not less than the PQL and are not less than natural background. The preliminary screening levels have not yet been adjusted for PQL or for natural background. Those adjustments will be made in the RI. Groundwater preliminary SSLs, along with MDLs and RLs, are shown in Table 6.

# 6.2 SOIL

Soil preliminary SSLs protective of human health and the environment were developed for metals, VOCs, SVOCs, PCBs, petroleum hydrocarbons, and dioxins/furans. Soil preliminary SSLs protective of human health were developed using applicable human health risk assessment procedures specified in WAC 173-340-708 and WAC 173-340-740. Development of soil preliminary screening levels is shown in Table K-5 in Appendix K. These procedures include development of preliminary SSLs based on the reasonable maximum exposure expected to occur at the Site. Under WAC 173-340-740, Method B soil cleanup levels must be as stringent as:

- Concentrations established under applicable state and federal laws
- Concentrations protective of direct human contact with soil
- Concentrations protective of terrestrial ecological receptors
- Concentrations protective of groundwater.

These criteria were considered during development of the soil SSLs.

The only ARAR for soil is the Toxic Substances Control Act (TSCA); there are no other soil concentrations established under applicable federal laws. Except for TPH and lead, standard MTCA Method B preliminary soil SSLs protective of direct human contact were determined in accordance with WAC 173-340-740(3) using Ecology's Cleanup Levels and Risk Calculations (CLARC) database. MTCA Method A soil cleanup levels for unrestricted land uses were used for TPH and lead.

Soil preliminary SSLs protective of groundwater were determined using the fixed parameter three-phase partitioning model in accordance with WAC 173-340-747(4). The three-phase model provides a conservative estimate of the concentration of a contaminant in soil that is protective of groundwater.

To develop a single soil SSL for each constituent, the lowest protective criterion identified by Ecology (Ecology 2011) for retained pathways was selected as the SSL. WAC 173-340-740(5)(c) provides for adjustments to cleanup levels, as needed, so that cleanup levels are not less than the PQL and

are not less than natural background. The preliminary screening levels have not yet been adjusted for PQL or for natural background. Those adjustments will be made in the RI. For those constituents where the lowest criterion is protection of groundwater, the criterion may not be applicable if it can be demonstrated empirically using the procedures specified in WAC 173-340-747 that soil concentrations do not cause an exceedance of the applicable groundwater preliminary SSLs. An empirical demonstration may be made in the RI.

# 6.3 SEDIMENTS

Preliminary SSLs protective of marine sediment were developed for preliminary evaluation of sediments. These preliminary SSLs were developed according to MTCA and SMS (WAC-173-204) requirements.

Two SMS criteria are promulgated by Ecology as follows:

- The marine SQS (WAC 173-204-320), the concentration below which effects to biological resources are unlikely
- The marine sediment CSL criteria (WAC 173-204-520), the concentration above which more than minor adverse biological effects may be expected.

The SQS and CSL values have been developed for a suite of analytes that includes metals, PAHs and other SVOCs, PCBs, and polar organic compounds. The SQS are the most stringent SMS numeric criteria and represent the goal for sediment cleanups. The SQS and CSL are listed in Table 1. Criteria for metals and polar organic compounds are expressed on a dry weight basis; criteria for non-polar organic compounds are expressed on an organic carbon-normalized basis.

# 7.0 CURRENT ENVIRONMENTAL SITE CONDITIONS

Previous environmental investigations have identified potential areas of contamination at the Site. The following sections identify the current environmental conditions for the media of concern identified in Section 5.4 and specific areas of concern identified based on historical Site operations.

## 7.1 GENERAL SOIL CONDITIONS

This section describes soil conditions in general terms for three areas: north of the former Slip 5, former Slip 5, and south of former Slip 5. Soil conditions are described in more specific terms for areas of concern associated with historical operations.

#### 7.2 NORTH OF SLIP 5

Several remedial actions consisting of removal or stabilization of arsenic-contaminated soil have been completed north of Slip 5. Therefore, the assessment of current soil conditions is based on the analytical results for the soil remaining at the Site outside of the areas where remedial actions have occurred or in some cases deeper than the remedial actions were conducted. However, analytical results for the stabilized soil material still present in this portion of the Site are included in this discussion.

Analytical results are available for soil samples collected from 394 locations that may be representative of soil remaining at the Boeing Isaacson property north of former Slip 5, including 130 soil borings and test pit exploration locations (Figure 29), 47 sidewall samples associated with the 1989/1990 storm drain line excavation (Figures 14A and 14B), and 217 sidewall samples associated with the 1991 soil stabilization excavation (Figures 16A and 16B). The analytical results for these samples are provided in Tables G-1(arsenic analytical results only) and G-2 (all other metals and organic analytical results) of Appendix G. The analytical results for these samples indicate the following:

- Several metals are present in soil throughout the Boeing Isaacson property at concentrations above the laboratory reporting limits that were used at the time of analysis. These metals include: arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, and zinc. Elevated concentrations of arsenic remain in soil north of the King County storm drain (up to 3,500 mg/kg at boring #239) and south of the King County storm drain (up to 4,000 mg/kg at test pit 6J located near the Isaacson/Thompson property boundary). Up to 2,440 mg/kg arsenic was detected in samples of the stabilized material.
- PCBs were analyzed for in 12 soil samples and detected in 1 sample. The detection consisted of Aroclor 1260 in one sample located in the northeast corner of the property. The concentration was low (0.041 mg/kg).
- Diesel-range and motor-oil range petroleum hydrocarbons were analyzed for in 12 soil samples and detected in 3 samples. Two of the samples with detected concentrations were located in the northeast corner of the property and one is a sample of the stabilized material. Concentrations detected in the 3 samples were less than 100 mg/kg.

- Gasoline-range petroleum hydrocarbons were analyzed for in nine soil samples, but were not detected above the laboratory reporting limit (20 mg/kg).
- SVOCs were analyzed for in 11 soil samples and VOCs were analyzed for in 12 soil samples. Only acetone and methylene chloride, which are common laboratory contaminants, were consistently detected in the soil samples. Benzene was detected in 5 samples at concentrations ranging from 0.0007 mg/kg to 0.0098 mg/kg. TCE was detected in 1 sample at a concentration of 0.0016 mg/kg. A few SVOCs were detected, but at low concentrations (less than 0.1 mg/kg, except BEHP, which was detected at 0.52 mg/kg).

## 7.3 FORMER SLIP 5 MATERIAL

Previous investigations have identified bricks, wood debris, and slag material in the Slip 5 fill material. Analytical results are available for soil samples collected from 40 locations within the former Slip 5 (Figure 29). The analytical results for these samples are provided in Tables G-3 (arsenic analytical results only) and G-4 (all other metals and organic analytical results) of Appendix G. The analytical results for these samples indicate the following:

- Several metals are present in the fill material at concentrations above the laboratory reporting limits that were used at the time of analysis. These metals include: arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc. Detected concentrations of arsenic in the fill material are less than 100 mg/kg, except at PBI-6, I-202(s), and I-205(s) where arsenic was detected at 186 mg/kg, 191 mg/kg, and 393 mg/kg, respectively. Elevated concentrations of chromium (up to 4,180 mg/kg at boring #236) and zinc (up to 5,770 mg/kg at boring #228) were detected at several locations. Lead concentrations greater than 1,000 mg/kg were detected at five locations (borings #5, #233, #236, I-7, and PBI-10). Barium, cadmium, and silver were primarily only analyzed for in 1983. The maximum concentrations detected for these metals were 650 mg/kg (barium), 16 mg/kg (cadmium), and 3.0 mg/kg (silver).
- PCBs were analyzed for in 26 soil samples; PCBs were detected in 7 of the samples. The maximum detected concentration for total PCBs was 9.7 mg/kg at boring #5. One soil sample (boring #6-3) contained total PCBs at a concentration of 1.2 mg/kg; all of the remaining detected total PCB concentrations were less than 1.0 mg/kg.
- Diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons were analyzed for in twelve soil samples from twelve locations. Diesel-range and motor oil-range petroleum hydrocarbons were detected in two samples at concentrations up to of 91 mg/kg and 400 mg/kg, respectively. Gasoline-range petroleum hydrocarbons were not detected. Oil and grease were analyzed for in two samples and were not detected.
- VOCs were analyzed for in nine soil samples collected from nine locations and SVOCs were analyzed for in four soil samples collected from four locations. Only low concentrations of each were detected.

In addition to the above soil samples, five samples of slag were collected and analyzed. One of the samples was analyzed for major and trace components and the other four samples were analyzed for arsenic, total chromium, copper, lead, and zinc. The results of the slag samples indicated relatively low concentrations of arsenic (18 mg/kg to 20 mg/kg) and elevated concentrations of total chromium

(920 mg/kg to 2,200 mg/kg), copper (160 mg/kg to 1,200 mg/kg), and lead (120 mg/kg to 1,400 mg/kg). Barium and cadmium were detected in composite samples at concentrations of 440 mg/kg and 2.2 mg/kg, respectively. EP Toxicity tests were also performed on the slag samples, but none of the metals were detected using this procedure.

## 7.4 SOUTH OF FORMER SLIP 5

Analytical results are available for soil samples collected from 33 locations south of former Slip 5 (Figure 29). The analytical results for these samples are provided in Tables G-5 (arsenic analytical results only) and G-6 (all other metals and organic analytical results) of Appendix G. The analytical results for these samples indicate the following:

- Several metals are present in the soil at the Thompson property south of former Slip 5 at concentrations above the laboratory reporting limits that were used at the time of analysis. These metals include: arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, and zinc. Barium, cadmium, selenium, and silver were analyzed for in two samples collected from boring #21. Only barium and cadmium were detected; the maximum detected concentrations were 31 mg/kg and 0.41 mg/kg, respectively. The maximum arsenic concentration was 43 mg/kg at HP-3. Elevated concentrations of chromium (1,003 mg/kg) and nickel (600 mg/kg) were detected at boring #212.
- PCBs were analyzed for in eleven soil samples at eleven locations and were not detected
- Diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons were analyzed for in soil samples collected at 22 locations. Diesel-range and oil-range petroleum hydrocarbons were detected in some samples, but at concentrations less than 1,000 mg/kg. Gasoline-range petroleum hydrocarbons were detected in samples at concentrations at the reporting limit (20 mg/kg).
- VOCs were analyzed for in soil samples collected from 22 locations. Elevated concentrations of TCE and PCE were detected in soil along the Site southern boundary. For several reasons, including the fact that sources for HVOCs have been identified on the 8801 Site, the Property Boundary Sampling Report (Landau Associates 2009d) concluded that the detected HVOCs in soil on the Boeing property are likely the result of HVOCs migrating from the 8801 Site to the Boeing Thompson property. The PCE and TCE concentrations in soil at the 8801 Site are 3 orders of magnitude greater than the highest concentrations detected at the Boeing Thompson property. PCE and TCE concentrations along the southern Site boundary and the northern 8801 Site boundary are shown on Figure 30. TCE and PCE concentrations for soil samples collected along both sides of the property line are also shown on cross-sections B-B' and C-C' (Figures 23 and 24).

# 7.5 GENERAL GROUNDWATER CONDITIONS

Current groundwater conditions at the Site are based on the most recent analytical results (2009 Phase II ESA monitoring event) for monitoring wells I-104(s), I-200(s), I-203(s), I-205(s), and I-206(s); intermediate monitoring well I-203(i); and piezometers (PZ-1 through PZ-8). The most recent dissolved

arsenic concentrations for all existing and former groundwater monitoring locations are shown on Figure 31. A summary of previous groundwater analytical results is provided in Appendix H.

## 7.5.1 BOEING ISAACSON PROPERTY

Two monitoring wells [I-200(s) and I-104(s)] and two piezometers (PZ-1 and PZ-3) are present on the Boeing Isaacson property. Piezometers PZ-6 and PZ-7 are located on the Boeing Isaacson and Boeing Thompson property boundary and are discussed in the Boeing Thompson property groundwater section. During the most recent groundwater monitoring event (the 2009 Phase II ESA), dissolved arsenic was detected in groundwater at concentrations ranging from 0.8 µg/L in the sample from well I-200(s), which is located along the eastern property boundary, to 2,270 µg/L in the sample from well I-104(s), which is located near the western property boundary. The concentrations of dissolved arsenic in groundwater samples collected from direct-push borings during the 2009 Phase II ESA ranged from less than the laboratory reporting limit at the southern-most sample location (IDP-9) to 16,600 µg/L at the northern-most sample location, IDP-14. Dissolved arsenic at a concentration of 13,600 µg/L was detected in the sample from location IDP-8, which is located south and west of IDP-14. Dissolved copper was also detected in groundwater samples collected from three of the direct-push borings (IDP-9, IDP-12, and IDP-14) and from monitoring well I-104(s) at concentrations ranging from 6 µg/L to 20 µg/L, and dissolved lead was detected in the groundwater sample collected at IDP-8 at a concentration of 1 µg/L. Vinyl chloride was also detected in the samples from IDP-8 and I-104(s) at a concentration of 0.2 μg/L. The Phase II ESA groundwater analytical results are provided in Appendix H. The dissolved arsenic results for groundwater samples collected at all Site monitoring wells and piezometers since 1988 are summarized in Table 8.

## 7.5.2 BOEING THOMPSON PROPERTY

Five monitoring wells [I-203(s), I-205(s), I-206(s), TH-MW-1, and TH-MW-2] and five piezometers (PZ-2, PZ-4, PZ-6, PZ-7, and PZ-8) are present on the Boeing Thompson property. During the 2009 Phase II ESA (the most recent groundwater sampling event that included sample collection from the existing wells and piezometers), dissolved arsenic was detected at these locations (except monitoring wells TH-MW-1 and TH-MW-2, which were not sampled). The arsenic concentrations ranged from  $5.0 \,\mu\text{g/L}$  in the sample from PZ-7, which is located near the shoreline on the north Boeing Thompson property boundary, to  $575 \,\mu\text{g/L}$  in the sample from well I-206(s), which is located in the southwest corner of the Site. Concentrations of dissolved arsenic in the groundwater samples collected from direct-push borings during the 2009 Phase II ESA investigation ranged from  $1.3 \,\mu\text{g/L}$  at TDP-26, located at the southern Site boundary, to  $35 \,\mu\text{g/L}$  at TDP-16, located just west of Building 14-01 and upgradient of well

I-206(s). The dissolved arsenic results for groundwater samples collected at all the monitoring wells and piezometers since 1988 are summarized in Table 8. Dissolved chromium was also detected at direct-push borings TDP-1, TDP-7, and TDP-11 at concentrations ranging from 6  $\mu$ g/L to 14  $\mu$ g/L. The Phase II ESA groundwater analytical results are provided in Appendix H.

During the 2009 Phase II ESA and Property Boundary investigations, vinyl chloride; 1,1-DCE; cis-1,2-DCE; TCE; PCE; and 1,1,2,2-tetrachloroethane were detected in the groundwater. Vinyl chloride was detected at six locations [TDP-7, TDP-8, TDP-16, TDP-25, PBI-11, I-206(s)] at concentrations ranging from 0.2 μg/L to 1.8 μg/L, and at one location, TDP-26, at a concentration of 140 μg/L. TCE and PCE were detected at five locations (TDP-25, TDP-26, PBI-11, PBI-12, and PBI-13). The highest concentrations of TCE and PCE (1,000 μg/L and 78 μg/L, respectively) occurred at PBI-13. The highest concentrations of vinyl chloride, TCE, and PCE were detected at locations along the southern Site boundary. VOC results for the 2009 Phase II ESA and Property Boundary investigations are presented on Figure 32 and provided in Appendix H.

# 7.6 SPECIFIC AREAS OF CONCERN

Specific areas of concern have been identified based on historical operations. These areas and the results of previous investigations within these areas are described below. Results for the previous investigations are summarized in tabular format in Appendix G (soil) and Appendix H (groundwater).

## 7.6.1 FORMER PAINT STORAGE AREAS AND SUMPS

Two paint storage areas were previously located in the eastern portion of the Boeing Isaacson property, as shown on Figures 4 and 10. Analytical results for one soil sample collected at 2.5 ft BGS indicate low concentrations of metals are present in the soil (e.g., arsenic and lead were detected at 8.7 mg/kg and 11 mg/kg, respectively).

# 7.6.2 FORMER DIESEL AND GASOLINE TANKS

USTs containing diesel and gasoline were formerly located on or near the northeastern Boeing Thompson property boundary, as shown on Figures 4 and 10. One soil sample collected at 5.5 ft BGS was analyzed for PCBs, metals, and total cyanide. PCBs, total cyanide, mercury, and silver were not detected. Concentrations of other metals detected in the soil sample were low (e.g., arsenic and lead were detected at 3.4 mg/kg and 1.3 mg/kg, respectively). Analysis for petroleum-related compounds was not performed. This soil sample may be representative of soil remaining because no known information is available to confirm that the tanks and soil surrounding the tanks were removed.

## 7.6.3 FORMER WASHDOWN AREA AND DEGREASER

A large area of the western portion of Building 14-01 was formerly used for washing and painting of airplane sections (Figure 2). Workers in this area washed various airplane sections with a solution containing methyl isobutyl ketone to prepare the sections for painting. Wastewater and overspray were washed into one of three concrete trenches, which ran north to south through the painting area. The trenches conveyed the solution to sumps located on the exterior of the south side of Building 14-01, near the southwest corner of the building. The wastewater was pumped from the sumps to two ASTs located in the west yard of Building 14-01 via underground piping. An aqueous degreaser was also located in the southwest portion of Building 14-01; it was recently removed. During the Phase II ESA, 11 soil borings were advanced in the area of the former washdown system and aqueous degreaser inside Building 14-01. Soil samples were collected from each of the direct-push borings in this area and groundwater samples were collected from three of the borings. Indications of impact were not observed during field screening. Soil and groundwater samples collected from the borings were analyzed for VOCs, TPH, and metals, and selected samples were analyzed for SVOCs, PAHs (groundwater samples only), and PCBs. The analytical results for this area are summarized as follows:

- Low concentrations of VOCs were detected in soil and only vinyl chloride was detected in groundwater at an elevated concentration.
- Elevated concentrations of arsenic, copper, lead, and mercury were detected in soil. Groundwater samples were analyzed for arsenic and chromium. Only arsenic was detected in the groundwater at an elevated concentration.
- Low concentrations of SVOCs (including PAHs) were detected in soil. Only BEHP was detected in groundwater in this area at an elevated concentration.
- Diesel-range and motor oil-range petroleum hydrocarbons were detected in soil at two locations. The detected concentrations were less than 1,000 mg/kg.

## 7.6.4 FORMER WASHDOWN SYSTEM COLLECTION TANKS

Two 10,000-gallon ASTs (TSA-14 and TSA-15) that contained wastewater from the painting operations were formerly located in the yard west of Building 14-01 (Figure 4). Three sumps (TS-67, TS-68, TS-69), located south of Building 14-01 (Figure 4), collected the wastewater, which was pumped into the ASTs via underground conveyance lines. A third 5,000-gallon AST (TSA-21), located in the western yard of Building 14-01 (Figure 4), was originally used to contain waste copper plating solution. This tank was later used for overflow containment for the aqueous degreaser. Six soil borings (TDP14, TDP15, TDP16, TDP17, TDP18, and TDP 19) were previously advanced in the area of the former ASTs. No indications of impact were observed during field screening; therefore, soil samples were collected from between 3 and 5 ft BGS. Groundwater samples were collected from two of the borings (TDP 16 and

TDP 18). Soil and groundwater samples were analyzed for VOCs; SVOCs; diesel-range and petroleum-range hydrocarbons; and metals (arsenic, cadmium, chromium, copper, lead, mercury). The analytical results for this area are summarized as follows:

- VOCs were detected in the soil and groundwater. Acetone was detected in each soil sample. Only vinyl chloride was detected in groundwater (0.3 μg/L). Vinyl chloride was not detected in soil.
- SVOCs were detected in soil in one of the two samples analyzed. Elevated concentrations of cPAHs were detected in the soil, but cPAHs were not detected in groundwater.
- Elevated concentrations of arsenic, copper, and mercury were detected in the soil. Groundwater samples were analyzed for arsenic, cadmium, chromium, copper, lead, and mercury. Only arsenic was detected in the groundwater.
- Diesel-range and oil-range petroleum hydrocarbons were detected in one soil sample at concentrations of 23 mg/kg and 110 mg/kg, respectively, but neither was detected in groundwater.

#### 7.6.5 FORMER WASHDOWN SYSTEM COLLECTION SUMPS

Three sumps (TS-67, TS-68, TS-69), located south of Building 14-01 (Figure 4), collected the wastewater from the paint system operations, which was pumped into the ASTs west of Building 14-01 via underground conveyance lines. Six soil borings (TDP1, TDP2, TDP3, TDP4, TDP25, and TDP 26) were previously advanced in the vicinity of the sumps. No indications of impact were observed during field screening; therefore, soil samples were collected from between 4 and 9 ft BGS. Groundwater samples were collected from three of the borings (TDP 1, TDP25, and TDP26). Soil and groundwater samples were analyzed for VOCs; SVOCs; diesel-range and oil-range petroleum hydrocarbons; and metals (arsenic, cadmium, chromium, copper, lead, and mercury).

The analytical results for this area are summarized as follows:

- VOCs were detected in the soil and groundwater. Acetone was detected in each soil sample.
  Only TCE was detected in soil at an elevated concentration (66 mg/kg). Several VOCs were
  detected in groundwater at elevated concentrations, including TCE, vinyl chloride, and
  cis-1.2-dichloroethene.
- SVOCs were not detected in soil, but were detected in groundwater. Carbazole and BEHP were detected in the groundwater at elevated concentrations.
- Elevated concentrations of arsenic, copper, lead, and mercury were detected in the soil. Groundwater samples were analyzed for arsenic and chromium. Only arsenic was detected in the groundwater at an elevated concentration.
- Diesel-range and oil-range petroleum hydrocarbons were detected in all of the soil samples at concentrations up to 740 mg/kg, but neither was detected in groundwater.

#### 7.6.6 HYDRAULIC TEST PAD AREA

A release of hydraulic oil from a holding tank associated with an oil/water separator located in the hydraulic test pad area (east yard of Building 14-03) was reported in 1992. The oil/water separator, holding tank and associated piping were removed in 1995. The impacted area is shown on Figure 4. Approximately 900 tons of petroleum-contaminated soil were excavated from the area surrounding the oil/water separator and holding tank. During the 2009 Phase II ESA investigation, two soil borings (TDP-31 and TDP-32) were advanced in the hydraulic test pad area on the east side of Building 14-03. Soil samples were collected from both of the direct-push borings in this area and a groundwater sample was collected from TDP-31. Soil and groundwater samples collected from borings in this area were analyzed for VOCs, TPH, and metals. In addition, the soil and groundwater samples collected from TDP-31 were analyzed for SVOCs, PAHs (groundwater sample only), and PCBs.

The analytical results for this area are summarized as follows:

- Arsenic was detected in one soil sample (TDP-31) at a concentration of 9 mg/kg.
- No other constituents were detected in soil at elevated concentrations.
- BEHP (3.0 μg/L) and motor oil-range petroleum hydrocarbons (estimated at 3.2 mg/L) were detected in the groundwater sample collected from this area.
- No other constituents were detected in groundwater at elevated concentrations.

#### 7.6.7 HAZARDOUS WASTE/HAZARDOUS MATERIALS SHEDS

Four soil borings (TDP-27 through TDP-30) were advanced in the area of the hazardous waste/hazardous materials sheds, south and southeast of Building 14-03, during the 2009 Phase II ESA investigation. Soil samples were collected from each of the direct-push borings in this area from the capillary fringe zone, approximately 6 inches above the top of the water table, and groundwater samples were collected from two locations (TDP-28 and TDP-29).

Soil and groundwater samples collected from borings in this area were analyzed for VOCs, TPH, and metals. In addition, the soil and groundwater samples collected from TDP-28 and TDP-29 were analyzed for SVOCs, PAHs (groundwater samples only), and PCBs.

The analytical results for this area are summarized as follows:

- VOCs were not detected in soil or groundwater in this area at elevated concentrations.
- Mercury was detected in two soil samples (TDP-29 and TDP-30) at concentrations of 0.1 mg/kg and 0.17 mg/kg, respectively. Arsenic was detected in one groundwater sample (TDP-28) at a concentration of  $13.0\,\mu\text{g/L}$ .
- SVOCs were not detected in soil at concentrations greater than the laboratory reporting limits. No elevated concentrations of SVOCs were detected in groundwater samples from this area.

• TPH and PCBs were not detected at concentrations greater than the laboratory reporting limits in soil or groundwater samples collected from this area.

## 7.6.8 FORMER 500-GALLON STORAGE TANK

A 500-gallon diesel UST was removed from the west side of Building 14-02 (Figure 4); however, no data representing the subsurface conditions have been located in Boeing files. Therefore, one soil boring (TDP-24) was advanced in the area of the 20,000-gallon boiler fuel UST on the western side of Building 14-02 during the 2009 Phase II ESA investigation. A soil sample was collected from the capillary fringe and analyzed for TPH. TPH was not detected in the sample at concentrations greater than the laboratory reporting limits.

## 7.6.9 Transformers

During the 2009 Phase II ESA investigation, two soil borings (TDP-22 and TDP-23) were advanced in the area of the transformers on the north side of Building 14-02. Soil samples collected in this area were collected from the upper 4 ft and analyzed for TPH, metals, and PCBs. Groundwater samples were not collected from this area.

The analytical results for this area are summarized as follows:

- TPH and PCBs were not detected in soil at concentrations greater than the laboratory reporting limits.
- Mercury was detected in the soil sample collected from TDP-23 at a concentration of 0.11 mg/kg.

#### **7.6.10** Substation – Building 14-22

During the Phase I ESA, dark staining was observed on the gravel surface along the northern wall of the electrical substation (Building 14-22) located at the southeastern corner of the Site. Two soil borings (TDP-20 and TDP-21) were advanced in the area of the electrical substation during the 2009 Phase II ESA investigation. The soil samples collected from this area were analyzed for TPH, metals, and PCBs. Groundwater samples were not collected from this area.

Analytical results for this area are summarized as follows:

- TPH and PCBs were not detected in soil at concentrations greater than the laboratory reporting limits.
- Metals (cadmium, chromium, copper, and lead) were detected at low concentrations greater than the laboratory reporting limits.

# 7.7 SITE-WIDE STORM DRAIN SYSTEM

As described in Section 3.1.4.2, an investigation of CBs and oil/water separator solids was conducted at the Site in 2008 to collect and analyze samples of solid material from CBs and oil/water separators within the Site storm drainage system prior to planned CBs cleaning. Twenty-two solids samples collected from the CBs and oil/water separators were analyzed for PCBs; SVOCs; total metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc); TOC; and total solids. PCBs were detected in 19 of the 22 samples analyzed. One or more SVOCs were also detected in 19 of the 22 samples analyzed. One or more metals were detected in all 22 samples analyzed.

Stormwater discharging to the LDW from the Site via the two outfalls is currently regulated under Industrial Stormwater General Permit #WAR000148. As described in Section 3.3.5, copper has was detected in stormwater from Outfalls A and B and zinc was detected in stormwater from Outfall B at concentrations exceeding the permit benchmarks during 2010.

## 7.8 SEDIMENT

Previous investigations of the sediments in the LDW in the vicinity of the Site indicate that metals (including arsenic, lead, mercury and zinc), PCBs, PAHs, and SVOCs are present in the surface and subsurface sediment at concentrations above the SMS SQS at several locations. Dioxins/furans and carbazole have also been detected in the sediment. In general, the detected concentrations of these chemicals decrease with depth.

# **7.9** AIR

Air monitoring at the Site has not been conducted; therefore, the current air quality is not known.

#### 8.0 DATA GAPS

This section identifies the areas and media within the Site that require further investigation to determine if cleanup at the Site is warranted, to evaluate cleanup action alternatives, and to select the appropriate cleanup action.

## 8.1 LDW EAA-6 SOURCE CONTROL DATA GAPS

Ecology has identified data gaps to be addressed to assess the potential for recontamination of LDW sediments and the need for source control (SAIC 2008). One of these data gaps is that no information had been provided regarding current Site activities. This data gap was partially addressed by the Phase I ESAs conducted in 2008 for the Boeing Isaacson and the Boeing Thompson properties. These ESAs included a Site reconnaissance to assess current land use activities and environmental conditions. The results of the Phase I Site assessments are provided in Appendix F. Additional information regarding current Site activities will be included in the RI.

The remaining data gaps are identified as stormwater, soil and groundwater, and bank erosion pathways to EAA-6 sediments. The sections below discuss the extent to which each of these data gaps has been addressed by the recent activities conducted at the Site. Additional activities planned in the RI to address these data gaps are discussed in Section 9.0.

# 8.1.1 STORMWATER

The Site stormwater data gap identified by Ecology is the lack of information regarding contaminant concentrations that are present in storm drain system solids. This data gap was partially addressed by the December 2008 CB and oil/water separator solids investigation. As described in Section 3.3.1, the investigation consisted of collecting and analyzing samples of solid material from the CBs and oil/water separators of the Site storm drainage system prior to the planned CB cleaning. Because PCBs and PAHs were detected in the CB and oil/water separator solids present in 2008, an investigation of the solids accumulated in the storm drain system since the last cleaning is needed to evaluate whether the Site storm drain system is a potential source for recontamination of the EAA-6 sediment.

Another stormwater data gap identified by Ecology is the lack of information on zinc concentrations in stormwater since 2007. Total zinc concentrations exceeded benchmark levels prior to 2007 and follow-up information was requested to determine whether zinc concentrations are now below the benchmark values. Stormwater sampling is conducted on a quarterly basis in accordance with NPDES permit requirements. As described in Section 3.3.5, copper was detected in stormwater from Outfalls A and B and zinc was detected in stormwater from Outfall B at concentrations exceeding the

permit benchmarks during 2010. Boeing is implementing BMPs to address the zinc and copper exceedances including sweeping, roof cleaning, and CB cleaning to remove solids. Further investigation of the source of PCOCs to the stormwater system may be necessary if storm drain system solids or whole water results exceed preliminary screening levels.

Other stormwater data gaps identified by Ecology are related to the King County 48-inch storm drain, several edge drains along the Port property shoreline, and the source or status of an outfall located on Port property near the Port and Jorgenson Forge property boundary. Because Boeing does not own or operate these structures and/or property, these data gaps will not be addressed in the RI.

# 8.1.2 SOIL AND GROUNDWATER

The data gaps identified by Ecology to assess groundwater discharge from the Site as a potential source for recontamination of the EAA-6 sediments include the following:

- A comprehensive soil and groundwater investigation at the Boeing Thompson property to determine the source of arsenic in groundwater at wells I-205(s) and I-206(s) and to evaluate the potential for other COCs to be present at the Site.
- An explanation for the tidal efficiency anomaly observed in well I-205(s) during the tidal study conducted in 2000.
- Soil and groundwater data for metals, other than arsenic, and other COCs (SVOCs). Ecology
  notes that lead, silver, and zinc were detected in 1983 and 1988 groundwater investigations at
  concentrations above preliminary groundwater to sediment SSLs developed in 2004 by SAIC
  for Ecology for Slip 4 of the LDW, and that metals, other than arsenic, may be present in fill
  material used at the Site.
- The extent of contaminated soil and groundwater to the north of the King County 48-inch storm drain line, which, if present, could enter the storm drain line through gaps or holes in the piping, if any, and subsequently be transported to the LDW.
- Soil quality near the former location of the Slip 5 Outfall; Ecology is concerned that contamination present in soil would have the potential to leach to groundwater.

The most recent comprehensive groundwater investigation at the Site, when all existing wells were sampled, was the 2009 Phase II ESA investigation. In addition to the groundwater samples collected at the monitoring wells, groundwater samples were also collected from 21 direct-push soil borings. Following the 2009 Phase II ESA investigation, groundwater samples were collected from 5 direct-push borings along the southern property. The primary focus of each investigation was arsenic and VOCs; however, investigation for other constituents (SVOCs and TPH) was conducted at selected locations. Neither of these investigations addressed the source of arsenic contamination in groundwater at wells I-205(s) and I-206(s); therefore, further investigations are needed in the area of these two wells. Also, a comprehensive groundwater sampling event has not been conducted with all groundwater samples

analyzed for the EAA-6 COCs [arsenic, PAHs, phthalates (BEHP and butylbenzylphthalate]), benzoic acid, benzyl alcohol, dibenzofuran, and total PCBs] and the results compared to SSLs.

Soil and groundwater samples collected during recent investigations, including the 2009 Phase II ESA investigation, have been analyzed for metals other than arsenic. Cadmium, copper, lead, mercury, and zinc have been routinely analyzed for in soil and groundwater samples collected since 1988. However, the analysis of silver has not been included in these investigations, except in some instances for disposal characterization. No known Site operations would have provided a source of silver.

Sixty-nine soil samples have been collected from 30 locations along the north side of the King County 48-inch storm drain line and analyzed for arsenic. Samples from 15 of the locations were also analyzed for other metals. At 5 locations, samples were analyzed for VOCs and at 4 locations soil samples were analyzed for PCBs. Only 1 sample was analyzed for diesel-range and motor oil-range petroleum hydrocarbons. Additionally, several soil samples were collected from the northern sidewall of the trench during installation of the King County storm drain. No further investigation of the soil is needed in this area. One monitoring well [I-104(s)] is located along the Boeing Isaacson/Port property boundary; therefore, an additional groundwater monitoring location is needed to adequately evaluate the quality of groundwater potentially migrating from the Boeing Isaacson property.

The remaining data gap identified for evaluating groundwater discharge to LDW EAA-6 sediments is a lack of information for the area in the vicinity of the former Slip 5 Outfall. This area has not been addressed during previous investigations.

#### 8.1.3 BANK EROSION

Ecology identifies the lack of available information regarding contaminant concentrations in bank soil as a data gap. The portion of the Site that is directly adjacent to the LDW is the Boeing Thompson property. The northern shoreline along the Boeing Thompson property is armored with a steel bulkhead that prevents bank erosion to the LDW. The southern portion of the Boeing Thompson property is armored with a wooden bulkhead, which significantly reduces the potential for bank erosion. The Boeing Isaacson property is separated from the LDW by the Port property.

## 8.2 OTHER DATA GAPS

Data gaps, other than those identified by Ecology, that need to be addressed to determine if cleanup at the Site is warranted and, if so, to evaluate cleanup action alternatives are discussed below.

#### 8.2.1 FORMER PAINT STORAGE AREAS AND SUMPS

Only one shallow soil sample was previously collected near the two paint storage areas formerly located on the Boeing Isaacson property and no soil samples have been collected in the area of the sumps that were used to collect paint sludge. The northern-most storage area (Figure 4) may have also been used by Boeing for hazardous waste storage. Further investigation of this area is necessary.

#### 8.2.2 FORMER DIESEL AND GASOLINE UST AREAS

Only one soil sample was previously collected in the area of the former USTs on the Boeing Thompson property that contained diesel and gasoline. The sample was analyzed for PCBs, metals, and total cyanide, but not petroleum-related compounds. Also, no documentation is available to determine if these USTs were removed from the property. Further investigation of this area is necessary.

## 8.2.3 FORMER HYDRAULIC TEST PAD AREA

Motor-oil-range petroleum hydrocarbons were detected in a groundwater sample collected from the former hydraulic test pad area at an elevated concentration. Additional investigation in this area and downgradient of this location is needed to evaluate the petroleum hydrocarbons in groundwater.

#### 8.2.4 OBSERVED TAR-LIKE SUBSTANCE AREA

The extent of a tar-like substance discovered outside of the stabilized soil perimeter at the Boeing Isaacson property during removal of the stabilized mound needs to be determined. The tar-like substance was discovered on the northern side of the excavation for the eastern Vortechs vault (shown on Figure 3), at a depth of approximately 1.5 ft BGS.

## 8.2.5 FORMER SLIP 5 FILL MATERIAL

Additional investigation is needed within the former Slip 5 fill material to characterize the different fill material placed during different periods and potentially imported from different sources.

## 8.2.6 MONITORING WELL I-104(S) GROUNDWATER ARSENIC SOURCE

Elevated concentrations of dissolved arsenic continue to be detected in the samples from monitoring well I-104(s). A potential source, other than the use of arsenic and other metals by the Mineralized Cell Wood Preserving Company (which operated circa 1945), has not been identified. Much of the soil assumed to be impacted by the former wood treatment operation has been previously removed and/or stabilized to reduce the potential for leaching of arsenic from the soil to groundwater. During the 2009 Phase II ESA investigation, elevated concentrations of dissolved arsenic were detected in

groundwater at locations upgradient of monitoring well I-104(s) (13,600  $\mu$ g/L at IDP-14 and 13,600  $\mu$ g/L at IDP-8.) Further investigation is needed to determine the source of elevated dissolved arsenic concentrations in the vicinity of monitoring well I-104(s).

# 8.2.7 Monitoring Wells I-205(s) And I-206(s) Groundwater Arsenic Source

Elevated concentrations of dissolved arsenic continue to be detected in the samples from monitoring wells I-205(s) and I-206(s). No potential source for arsenic in groundwater at these locations has been identified. Further investigation in the vicinity of these two wells is necessary to identify a potential source.

#### 8.2.8 MONITORING WELL DISTRIBUTION

Additional wells are needed along the western Thompson property boundary. Currently, four monitoring wells are located along the western Thompson property boundary: PZ-7, PZ-8, TH-MW-1, and TH-MW-2. At two of the wells, TH-MW-1 and TH-MW-2, groundwater has not been present during recent groundwater monitoring events. A monitoring well constructed with a deeper well screen is needed to evaluate groundwater quality along this portion of the western Site boundary. Additional wells are also needed along the southern portion of the western property boundary to evaluate groundwater quality downgradient and upgradient of monitoring well I-206(s), where arsenic was most recently detected at a concentration of 575  $\mu$ g/L, and to evaluate groundwater quality near the 8801 Site boundary. Groundwater quality information is also limited in the eastern portion of the Boeing Thompson property.

Groundwater level measurements using the existing well locations are adequate for determining groundwater flow along the northern half of the Site, but do not provide adequate information to determine groundwater flow direction in the southern half of the Site. Understanding the groundwater flow along the southern half of the Site is necessary to evaluate the quality of groundwater migrating to and from the Site.

#### 8.2.9 **SEEP MONITORING**

Two seep samples have been collected previously and analyzed for dissolved arsenic. Additional seep samples need to be collected and analyzed for the Site PCOCs.

#### 8.2.10 SOIL AND GROUNDWATER ANALYSES

Constituents analyzed for in soil and groundwater have not been consistent over time nor have analyses included all constituents previously detected in soil and/or groundwater. Previous groundwater

analyses have typically included dissolved metals and only occasionally total metals. A more comprehensive list of analytes is needed to fully characterize Site soil and groundwater.

#### 8.2.11 STORM DRAIN SYSTEM

As previously mentioned, stormwater sampling is conducted on a quarterly basis in accordance with NPDES permit requirements; however, these requirements do not include analysis for all of the Site PCOCs. Additional sampling is necessary to fully characterize the stormwater discharged from Outfalls A and B.

Only a portion of the 12-inch corrugated metal pipe located within a retaining wall along the southern boundary of the Site was investigated in 2008. Further investigation is needed to confirm this pipe is not connected with other pipes.

## 8.2.12 SOIL TO VAPOR PATHWAY

VOCs have been detected in soil at the Site at concentrations significantly higher than typical SSLs protective of groundwater for drinking water; therefore, in accordance with WAC 1730340-745(4)(C)(III), the soil to vapor pathway needs to be evaluated.

#### **8.2.13 SEDIMENT**

Surface sediment samples (0 to 0.33 ft) were collected and analyzed in the vicinity of the Site between September 1997 and December 2009 (Table 9). The usability of chemistry data from surface samples collected prior to 2004 is questionable. Reworking of surface sediments by organisms, additional sedimentation, and localized scour events limit the usefulness of the older data sets in evaluating the current horizontal distribution of chemicals that exceed the SQS in the surface sediments. The recent historical data do not provide sufficient coverage of the project area to determine if there are trends in concentrations across the project area related to possible upstream/downstream transport or nearshore/offshore transport mechanisms. In addition, several of the sample locations were analyzed only for PCBs and TOC. The patchy distribution of samples analyzed for the SMS list of chemicals limits the usefulness of the existing data set for determining the horizontal distribution of SMS chemicals in the surface sediments.

Seven of the nine cores collected in the vicinity of the Site were collected in 2004 or later. The cores were not evenly distributed across the project area. Core locations were clustered together or positioned near previously identified hot spots. The core sample data are of limited use for determining the vertical distribution of contaminants across a majority of the project area. In addition, deeper samples collected at a core location were frequently analyzed for a limited list of analytes. Analysis of deeper

samples collected at a hot spot focused on contaminants that exceeded the SQS in shallower samples. PCBs or metals were the primary constituents analyzed for in deeper samples collected within the project area.

Overall, the existing historical sediment data in the vicinity of the Site are limited in distribution both horizontally and vertically. The SMS list of chemicals was not analyzed at all locations or at consistent depths. Core sample intervals analyzed were not consistent among surveys or core locations. Additional sampling is needed to provide data for areas that were not previously sampled or that were sparsely sampled. The additional samples collected near previously sampled locations need to be analyzed for a consistent analytes list (i.e., SMS list). Sampling intervals also need to be consistent among sample locations (if possible) to simplify the interpretation of patterns relating to changes in concentration with depth or sediment horizons across the project area.

## 9.0 REMEDIAL INVESTIGATION

As described in Section 8.0, further investigation of Site groundwater, soil, storm drain solids, stormwater, and sediment is needed to evaluate the potential for recontamination of LDW sediments and to determine if cleanup is warranted, and, if warranted, to develop and evaluate cleanup action alternatives and select a final cleanup action. This section presents the proposed scope of the RI. More detail for each proposed RI activity is presented in the Uplands SAP provided in Appendix A.

During the RI activities, if any archaeological resources are discovered, work will be stopped immediately and Ecology, the Department of Archaeology and Historic Preservation (DAHP), the city of Tukwila, and the appropriate Tribes' Cultural Resources Department will be notified by the close of business on the day of discovery. A licensed archaeologist will inspect the Site and document the discovery, provide a professionally documented site form, and report to the above-listed parties. In the event of an inadvertent discovery of human remains, work will be immediately halted in the discovery area, the remains will be covered and secured against further disturbance, and the Tukwila Police Department and King County Medical Examiner will be immediately contacted, along with the DAHP Physical Anthropologist and authorized Tribal representatives. A treatment plan by a licensed archaeologist would then be developed in consultation with the above-listed parties consistent with RCW 27.44 and RCW 27.53 and implemented according to WAC 25-48.

# 9.1 GROUNDWATER INVESTIGATION

The groundwater investigation will consist of installing 25 additional monitoring wells, collecting groundwater samples from each of the new and existing monitoring wells and from 1 soil boring, laboratory analysis of the groundwater samples, groundwater level monitoring, abandonment of 2 existing wells, and re-evaluation of tidal influences on Site groundwater. The data gaps identified in Section 8.0 that will be filled by the planned groundwater investigation scope include: 1) determining groundwater quality north of the King County storm drain, 2) evaluating groundwater quality near the former Slip 5 Outfall, 3) evaluating the source of elevated dissolved arsenic concentrations in the vicinity of monitoring well I-104(s), 4) evaluating groundwater quality in the former hydraulic test pad area, 5) better distribution of groundwater monitoring locations in the western and southern portions of the Site, 6) extended laboratory analysis of groundwater and seep samples, and 7) evaluating the tidal efficiency anomaly observed in well I-205(s). Hollow-stem auger drilling methods will be used to install the new monitoring wells. The monitoring wells will be constructed with 2-inch-diameter PVC casing and well screen. Well construction and installation is discussed in more detail in the Uplands SAP (provided in Appendix A).

## 9.1.1 MONITORING WELL AND GROUNDWATER GRAB SAMPLING LOCATIONS

The proposed locations for the new monitoring wells and for collecting a groundwater grab sample from a temporary well are shown on Figure 33 and discussed below.

#### **9.1.1.1** Northern Site Boundary

One well will be located along the northern Site boundary to determine the groundwater quality north of the King County storm drain. The well will be located in the area where arsenic was detected in a groundwater sample collected from a direct-push boring (IDP-14) during the 2009 Phase II ESA investigation at a concentration of  $16,600 \,\mu g/L$ .

#### 9.1.1.2 Stabilized Arsenic-Contaminated Soil Area

Three wells will be located within the stabilized arsenic-contaminated soil area to evaluate groundwater quality in this area.

## 9.1.1.3 Former Paint Storage Areas

One well will be installed immediately downgradient of the paint storage areas formerly located in the eastern portion of the Isaacson property. Another well will be installed approximately 500 ft west (downgradient) of these former paint storage areas.

## 9.1.1.4 Former Slip 5 Outfall

One monitoring well will be located near the former Slip 5 Outfall. Also, one groundwater grab sample will be collected from a boring located near the former Slip 5 Outfall. The groundwater sample will be collected from a temporary well installed in the boring. Once the sample has been collected, the temporary well will be removed and the boring abandoned.

## 9.1.1.5 Upgradient of Monitoring Well I-104(s)

Two wells will be installed upgradient (east) of well I-104(s) to evaluate potential sources for the elevated arsenic concentrations detected in groundwater at well I-104(s). One well will be located between the area of stabilized soil and well I-104(s). The second monitoring well will be located adjacent to direct-push boring IDP-8. Arsenic was detected in groundwater at location IDP-8 at a concentration 13,000 µg/L.

## 9.1.1.6 Former Slip 5

Three wells will be installed within the limits of the former Slip 5 to evaluate groundwater quality.

### 9.1.1.7 Former Hydraulic Test Pad Area

One well will be installed in the former hydraulic test pad area where motor-oil-range petroleum hydrocarbons were previously detected in a groundwater sample. As described in Section 9.1.1.7, another well will be located downgradient of the hydraulic test pad area along the western Site boundary. This well will be installed between the current locations of wells TH-MW-1 and TH-MW-2.

### 9.1.1.8 Western Site Boundary

Five monitoring wells will be installed along the western Site boundary. Two of the wells will be installed along the Boeing Isaacson property boundary adjacent to the Port property. One of these wells will be installed west of existing monitoring well I-104(s) to evaluate groundwater quality downgradient of well I-104(s). The second monitoring well will be located half-way between monitoring well I-104(s) and existing piezometer PZ-7 to better characterize groundwater quality spatially along the western Site boundary.

Three of the monitoring wells, including the well west of the hydraulic test pad area, will be installed along the Boeing Thompson property boundary. In addition to the well located west of the hydraulic test pad area, one well will be installed between wells I-205(s) and I-206(s), and another well will be installed at the southwest corner of the Site.

### **9.1.1.9** Boeing Thompson Property

In addition to the five monitoring wells that are proposed to be installed along the Boeing Thompson western property boundary and in the former hydraulic test pad area, and the three wells proposed to be installed within the former Slip 5, seven monitoring wells will be installed at other locations at the property to better determine groundwater flow direction and evaluate groundwater quality over time in this portion of the Site. Three wells will be installed along the southern property boundary adjacent to the VOC plume identified on the 8801 Site, and one well will be installed east of Building 14-01. Three monitoring wells, located in the southwest corner of the existing 14-01 building, were installed in April 2011. Boeing is currently in the process of re-occupying the building, which may significantly restrict the extent of the investigation that can be conducted in the building. A work plan was prepared for the investigation inside the building and approved by Ecology on March 30, 2011 (Landau Associates 2011)

### 9.1.2 SEEP SAMPLING

Groundwater samples will be collected from seep(s) along the LDW shoreline and submitted for laboratory analysis. At least one seep has been identified and sampled during previous investigations. The approximate location of the previously sampled seep is shown on Figure 13.

# 9.1.3 Frequency of Sampling

Groundwater samples will be collected from the monitoring wells during four consecutive quarters. During each event, groundwater samples will be collected from monitoring wells located in the western half of the Site within 1 hour before and 2 hours after low tide at a time when groundwater should be flowing from the Site to the LDW. Seep samples will be collected concurrent with the groundwater samples collected from the monitoring wells.

#### 9.1.4 LABORATORY ANALYSIS

All groundwater samples, including the grab sample collected from the temporary well and seep samples, will be analyzed for the PCOCs identified in Section 5.3: VOCs; SVOCS; metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons. A specific list of analytes is provided in Table C-1 of Appendix C.

Groundwater samples collected at each new and existing monitoring well will also be analyzed for sulfate and nitrate, and ferrous iron will be measured by either using field test kits or laboratory analysis to assist in evaluating the extent to which arsenic groundwater contamination is the result of reducing groundwater conditions.

Methods for all analyses are described in the Uplands SAP.

### 9.1.5 GROUNDWATER FLOW MONITORING

To evaluate groundwater flow direction, depth to groundwater will be measured from a surveyed reference point on each well casing and the depths converted to elevations for each groundwater monitoring event. Elevations will be plotted on a map and contoured. Additionally, to evaluate the tidal anomaly observed at well I-205(s), transducers will be placed in approximately six wells, including I-205(s), and water level fluctuation will be logged on a continuous basis for 24 to 48 hours. The tidal study will be conducted during a higher high tide and a lower low tide, if possible. In addition to monitoring water levels at selected wells, a transducer will be placed in the LDW during the tidal study. Tidal fluctuation information for the LDW will be used to calculate hydraulic conductivity at the Site.

Detailed procedures for monitoring groundwater flow and evaluating tidal influence are provided in the Uplands SAP (Appendix A). .

# 9.1.6 WELL ABANDONMENT

Due to poor recovery of groundwater at wells TH-MW-1 and TH-MW-2, located on the western Site boundary (Figure 12), these wells will be abandoned during the RI. Well abandonment will be conducted in accordance with the requirements set forth in WAC 173-160-420 and WAC 173-160-460.

# 9.2 SOIL INVESTIGATION

The soil investigation will consist of collecting and analyzing soil samples from 49 explorations at the locations shown on Figure 34. The data gaps identified in Section 8.0 that will be filled by the planned soil investigation scope include: 1) characterization of soil in the paint storage areas formerly located on the Isaacson property, 2) characterization of soil in the former diesel and gasoline tank areas located east of the former Isaacson building, 3) determination of the extent of the tar-like substance previously observed in the soil north of the eastern Vortechs vault, 4) evaluation of soil quality near the former Slip 5 Outfall, 5) determination of the source of arsenic in groundwater at monitoring wells I-205(s) and I-206(s), 6) evaluation of subsurface conditions downgradient of the former hydraulic test pad area, 7) evaluation of the potential for bank erosion to impact sediments, 8) characterization of the different fill material used to fill former Slip 5, and 9) analysis for an extended list of analytes for soil samples.

The following explorations will be conducted and soil samples collected from each exploration location for laboratory analysis:

- Three soil borings will be located in the paint storage area: one in each of the paint storage areas and one located where the former paint sludge sumps were located.
- One test pit will be excavated in the former Isaacson diesel and gasoline UST area to determine if the tanks are still present and to collect soil samples for laboratory analysis.
- Two test pits will be excavated north of the eastern Vortechs vault to locate the tar-like substance previously observed in this area. Additional test pits may be excavated, as necessary, to determine the extent of the tar-like substance.
- Four soil borings will be located in the vicinity of the former Slip 5 Outfall. At one location, a monitoring well will be installed and at another location a groundwater grab sample will be collected.
- Five test pits will be excavated in the vicinity of monitoring wells I-205(s) and I-206(s). The test pit explorations will be excavated to evaluate the potential source of arsenic in wells I-205(s) and I-206(s).
- One test pit will be excavated downgradient of the former hydraulic test pad area to evaluate whether free product may have migrated prior to the remedial action in this area.

- One soil boring located inside the southwest corner of Building 14-01 was completed in April 2011 in accordance with the Building 14-01 work plan (Landau Associates 2011).
- Five soil borings will be completed within the limits of the former Slip 5. The locations were selected to characterize fill material during each different period that fill was imported to fill the Slip 5.
- Soil samples will be collected at three locations along the LDW side of the wooden bulkhead located at the southern portion of the Boeing Thompson property, if possible. The samples will be collected from cracks within the bulkhead using hand implements if soil is present and accessible between the cracks.
- All soil samples will be analyzed for the PCOCs identified in Section 5.2: VOCs; SVOCS; metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. A specific list of analytes is provided in Table C-1 of Appendix C.

Additionally, soil samples will be collected at each of the proposed new monitoring well locations. Three of the proposed monitoring wells, located in the southwest corner of Building 14-01, were installed in April 2011 and soil samples collected from the soil borings associated with the wells, in accordance with the Building 14-01 work plan (Landau Associates 2011). The proposed exploration locations are shown on Figure 34.

At each proposed exploration location, except the test pits, soil samples will be collected from soil borings. The borings will be accomplished using a truck-mounted, hollow-stem auger rig. Each boring will be advanced to 25 ft BGS to fully characterize fill material in the subsurface at the Site. At each location, soil samples will be collected from 2 to 3 ft BGS, 5 to 6 ft BGS, 8 to 9 ft BGS, and 13 to 14 ft BGS for laboratory analysis. If the 13- to 14-ft depth interval is not at least 1 ft below the groundwater table at the time of drilling, the 13- to 14-ft depth interval sample will be replaced with a sample from a depth interval starting at 1 ft below the groundwater table at the time of drilling. Also, additional samples will be collected from the depth interval where field-screening [i.e., visual presence of potential contamination and/or a photoionization detector (PID) measurement greater than 50 parts per million (ppm)] indicates the likelihood for potential contamination, if any, and from the depth interval below the zone of potential contamination to evaluate the vertical extent of potential impact. If field-screening does not indicate a potential for contamination, a sample will also be collected from 13 to 14 ft BGS and archived at the laboratory for potential future analysis, pending the results of the samples submitted for analysis.

The test pit explorations will be excavated prior to the soil borings. The test pits will be excavated at or near low tide to reduce the potential for water seepage into the excavation. Each test pit will extend to the water table. Soil samples will be collected from depth intervals where field-screening (i.e., visual presence of potential contamination and/or a PID measurement greater than 50 ppm) indicates

the likelihood for potential contamination, from the base of the excavation, and from each side wall. If no zones of potential contamination are identified, a soil sample will be collected from the capillary fringe approximately 1 ft above the groundwater table.

### 9.3 STORM DRAIN SYSTEM INVESTIGATION

The storm drain investigation will be conducted to fill the following data gaps: 1) information on the Site storm drain system solids that have accumulated since the last cleaning, 2) characterization of stormwater discharged from Outfalls A and B for Site PCOCs, 3) information on the source of PCOCs in storm drain system solids, if found, and 4) information on the full length of the 12-inch-diameter corrugated pipe located south of Building 14-01, if possible.

#### 9.3.1 STORM DRAIN SYSTEM SOLIDS

Samples of solids present in each of the CBs, oil/water separators, Vortechs vaults, and manholes connected to the Site's storm drain system at the time that the RI is implemented will be collected and analyzed for the Site PCOCs: VOCs; SVOCS; metals (antimony, arsenic, barium beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. In addition to the PCOCs, the storm drain solids will be analyzed for TOC and solids at three locations will be analyzed for dioxins/furans. If insufficient solids are present for completion of all analyses, priority will be given to PCBs, TOC, and metals. A specific list of analytes is provided in Table C-2 of Appendix C.

The results of the investigation will be compared to SMS criteria to determine the potential for impacts to LDW sediments. Although the SMS criteria are not applicable to solids contained within storm drain system structures, these criteria will provide a conservative approach for evaluation of potential sources to EAA-6. If the results of the investigation indicate exceedances of the SMS criteria, the source of the contaminants will be investigated, as described in Section 9.3.3.

#### 9.3.2 STORMWATER

Grab samples of the stormwater discharged from Outfalls A and B will be collected during two storm events. The samples will be collected when river water is absent from the storm drain pipes and, if practicable, within the first hour of a storm event. The stormwater samples will be analyzed for the Site PCOCs: VOCs; SVOCS; metals (antimony, arsenic, barium beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons.

### 9.3.3 CONTINGENT SOURCE EVALUATION

Building materials currently present at the Site include building siding material, paint from building or equipment surfaces, roofing materials, and caulking. If exceedances of the SMS criteria are found in the storm drain system solids, samples of building materials present at the Site near the locations of the exceedances will be collected and analyzed for the constituents that exceeded in the storm drain system solids. Detailed procedures for testing building and structure materials are provided in the Uplands SAP (Appendix A).

If exceedances of preliminary screening levels for PCOCs that are detected at elevated concentrations in Site soil are found in outfall stormwater samples, a video survey will be conducted of storm drain piping connected to that outfall.

### 9.3.4 12-INCH METAL CORRUGATED PIPE

A video survey of the remaining portion of the 12-inch metal corrugated pipe located south of Building 14-01 that was not surveyed in 2008 will be attempted. Due to the presence of underground utilities (including fiber optics), nearby excavation to expose the pipe is not practicable; therefore, attempts to dislodge the three-pronged electrical plug blocking the western portion of the pipe and pushing it to the eastern end of the pipe will be made using a high-pressure water hose and nozzle (jetting). If successful, this will allow for videotaping of more of the inside of the pipe, if not the full-length of the pipe.

## 9.4 VAPOR INVESTIGATION

In April 2011, five vapor samples were collected beneath the Building 14-01 floor slab in the southwest corner of the building and analyzed for VOCs. As previously mentioned, Boeing plans to reoccupy Building 14-01 in the near future; therefore, the investigation inside the building was expedited. The vapor samples were collected in accordance with the Ecology-approved work plan (Landau Associates 2011). Samples of the indoor air within Building 14-01 may also be collected, depending on the results of the sub slab sampling. The vapor samples and indoor air samples, if collected, will be analyzed for VOCs. Soil vapor sampling and indoor air sampling procedures and analytical method are described in the Uplands SAP (Appendix A).

### 9.5 SEDIMENT INVESTIGATION

The sediment investigation will consist of collecting and analyzing surface and subsurface sediment samples from fifteen sampling locations adjacent to the Site (Figure 35). The sample locations are arranged in a triangular grid between the uplands and the eastern edge of the authorized navigation

channel. Surface grab samples (0 to 10 cm) will be collected with a 0.2 meters squared (m<sup>2</sup>) powered grab sampler at each location and analyzed for the SMS standard list of analytes, carbazole, and TOC. Five grab sample locations in the vicinity of two outfalls on the project site will also be analyzed for dioxins/furans. Core samples will also be collected at each sample location using a pneumatically operated impact corer. Core samples representing 1-foot in situ segments will be collected beginning at 1 ft below the sediment surface and continuing to the deepest recovered sediment or to a maximum depth of 20 ft below the sediment surface. Sediments representing the sample interval 0.33 ft (10 cm) to 1 ft will not be collected because of limited sample volume. Core samples representing the 2- to 3-ft interval, the 4- to 5-ft interval, the 6- to 7-ft interval, and the 8- to 9-ft interval will initially be scheduled for analysis of the SMS standard list of analytes, carbazole, and TOC. The initial analysis schedule may be modified at the direction of the field geologist. The remaining core samples (1 to 2 ft, 3 to 4 ft, 5 to 6 ft, 7 to 8 ft, and all core samples collected below 9 ft will be frozen and archived. Additional archived samples may be analyzed to further define the depth of sediments exceeding the SMS criteria or to characterize older native sediments. The analytical results will be used to define the horizontal and vertical distribution of sediments that exceed the SMS SQS criteria and to investigate possible sources of contamination. The data will also be used to determine if a cleanup action is warranted and to develop and evaluate cleanup action alternatives, if needed.

Surface sediments from areas where the available data (historical and from the RI) indicates that a cleanup action is not warranted may be screened for additional compounds. The potential list of compounds may include those identified Lower Duwamish Waterway Human Health Risk Assessment Analysis. Analysis of archived samples for compounds not covered in this Work Plan will be covered in an addendum.

## 10.0 DEVELOPMENT OF THE FEASIBILITY STUDY

The purpose of the FS is to develop and evaluate cleanup action alternatives for the Site. The FS will:

- Identify ARARs for Site cleanup
- Identify media and locations where remedial action is needed
- Develop remedial action objectives (RAOs)
- Develop, screen, and evaluate cleanup alternatives
- Identify a preferred alternative.

The following sections provide additional discussion of details for each of the above bullets.

# 10.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

In accordance with MTCA, all cleanup actions must comply with applicable state and federal laws [WAC 173-340-710(1)]. MTCA defines applicable state and federal laws to include legally applicable requirements and those requirements that are relevant and appropriate. Collectively, these requirements are referred to as ARARs. The starting point for ARARs is the MTCA cleanup levels and regulations that address implementation of a cleanup under MTCA (Chapter 173.105D RCW; Chapter 173-340 WAC). Other potential ARARs may include the following:

- Washington State SMS [Chapter 173-204 WAC)
- State Water Pollution Control Act (Chapter 90.48 RCW)
- EPA National Recommended Water Quality Criteria Section 304 Clean Water Act
- EPA Water Quality Standards (National Toxics Rule) 40 CFR 131
- Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 RCW)
- Washington Pollution Control Act and the implementing regulations, Water Quality Standards for Surface Waters of the State of Washington (Chapter 173-201A WAC)
- Washington Hazardous Waste Management Act and the implementing regulations, Dangerous Waste Regulations (Chapter 173-303 WAC), to the extent that any dangerous wastes are discovered or generated during the cleanup action
- Washington's Shoreline Management Act, with respect to construction activities conducted near the shoreline during the cleanup action.
- Washington Clean Air Act (Chapter 70.94 WAC)
- Occupational Safety and Health Act (OSHA), 29 CFR Subpart 1910.120
- Washington Industrial Safety and Health Act (WISHA).

The FS will identify ARARs if a cleanup action is needed. In addition, the FS will identify likely permits required for implementation of the cleanup action.

# 10.2 DELINEATION OF MEDIA REQUIRING REMEDIAL ACTION

The RI process will determine if groundwater, soil, storm drain system solids, and soil vapor results exceed preliminary cleanup levels and, if so, identify the locations of the exceedances. Based on any exceedances and the established points of compliance, the FS will identify the areas that require remedial action.

## 10.3 DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES

The RAOs identify the goals that must be achieved by a cleanup alternative in order to achieve cleanup standards and provide adequate protection of human health and the environment. The RAOs will address all affected media and a cleanup alternative will achieve all RAOs to be considered a viable cleanup action. RAOs will be developed for portions of the Site requiring remedial action.

The RAOs will be action-specific and/or media-specific. Action-specific RAOs are based on actions required for environmental protection that are not intended to achieve a specific chemical criterion. Media-specific RAOs are based on the cleanup levels. The RAOs will specify the COCs, the potential exposure pathways and receptors, and acceptable contaminant levels or range of levels for each exposure pathway, as appropriate.

The extent to which each alternative meets the RAOs will be determined by applying the specific evaluation criteria identified in the MTCA regulations.

### 10.4 SCREENING OF CLEANUP ALTERNATIVES

Cleanup action alternatives will be developed for portions of the Site that require cleanup action. Initially, general remediation actions will be identified for the purpose of meeting RAOs. General remediation actions consist of specific remedial technologies and process options. General remediation actions will be considered and evaluated based on the properties of identified contaminant(s) and may include institutional controls, containment or other engineering controls, removal, *in situ* treatment, and monitored natural attenuation.

Specific remedial action technologies are the engineering components of a general remediation technology and process options are those specific processes within each specific technology. Specific remedial action technologies and representative process options will be selected for evaluation based on documented development of the technology or documented successful use at a site with similar conditions. Cleanup alternatives will be developed from the general and specific remedial technologies and process options consistent with Ecology's expectations identified in WAC 173-340-370 using best

professional judgment and guidance documents as appropriate [e.g., *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA* (EPA 1988)].

During the development of cleanup action alternatives, both the current and planned future land use will be considered.

#### 10.5 EVALUATION OF CLEANUP ALTERNATIVES

MTCA requires that cleanup action alternatives be compared to a number of criteria as set forth in WAC 173-340-360 to evaluate the adequacy of each alternative in achieving the intent of the regulations, and as a basis for comparing the relative merits of the developed cleanup alternatives. Consistent with MTCA, the alternatives will be evaluated with respect to compliance with threshold requirements, permanence, and restoration timeframe, and the results of the evaluation will be documented in the RI/FS reports.

### 10.5.1 THRESHOLD REQUIREMENTS

As specified in WAC 173-340-360(2)(a), all cleanup actions are required to:

- Protect human health and the environment
- Comply with cleanup standards specified under MTCA
- Comply with applicable state and federal laws
- Provide for compliance monitoring.

# 10.5.2 REQUIREMENT FOR PERMANENT SOLUTION TO THE MAXIMUM EXTENT PRACTICABLE

WAC 173-340-200 defines a permanent solution as one in which cleanup standards can be met without further action being required at the original site or any other site involved with the cleanup action, other than the approved disposal site for any residue from the treatment of hazardous substances. Ecology recognizes that permanent solutions may not be practicable for all sites. To determine whether a cleanup action is permanent to the "maximum extent practicable," MTCA requires that disproportionate cost analysis (DCA), according to WAC 173-340-360(3)(b), be used. In accordance with WAC 173-340-360(3)(f), the following criteria are used to evaluate and compare each cleanup action alternative when conducting a disproportionate cost analysis:

• *Overall protectiveness* of human health and the environment, including the degree to which Site risks are reduced, the risks during implementation, and the improvement of overall environmental quality

- Long-term effectiveness, including the degree of certainty that the alternative will be successful, the long-term reliability, the magnitude of residual risk, and the effectiveness of controls required to manage treatment residues and remaining waste
- *Management of short-term risks*, including the protection of human health and the environment during construction and implementation
- Permanent reduction in toxicity, mobility, and volume of hazardous substances, including the reduction or elimination of hazardous substance releases and sources of releases
- *Implementability*, including consideration of whether the alternative is technically possible; the availability of necessary offsite facilities, services, and materials; administrative and regulatory requirements; scheduling, size, and complexity of construction; monitoring requirements; access for construction, operations, and monitoring; and integration with existing facility operations
- *Cleanup costs*, including capital costs and operation and maintenance costs
- *Consideration of public concerns*, which will be addressed through public comment on the final RI report and the draft final FS report.

Procedures that will be used for conducting a DCA are described later in Section 10.6.

### 10.5.3 REQUIREMENTS FOR A REASONABLE RESTORATION TIMEFRAME

WAC 173-340-360(4)(b) specifies that the following factors be considered in establishing a "reasonable" timeframe:

- Potential risks to human health and the environment
- Practicability of achieving a shorter restoration timeframe
- Current use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases, if any, from the Site
- Potential future use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases, if any, from the Site
- Availability of alternate water supplies
- Likely effectiveness and reliability of institutional controls
- Ability to control and monitor migration of hazardous substances, if any, from the Site
- Toxicity of the hazardous substances at the Site
- Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar Site conditions.

## 10.5.4 REQUIREMENT FOR CONSIDERATION OF PUBLIC CONCERNS

The final RI report and the draft final FS report will be issued for public comment, which will provide the public an opportunity to express any concerns. Those concerns may be addressed in a

responsiveness summary and, if appropriate, the reports will be modified in response to the public concerns.

#### 10.6 DISPROPORTIONATE COST ANALYSIS PROCEDURES

As described above (Section 10.5.2), MTCA requires that cleanup actions be permanent to the maximum extent practicable and requires that a DCA be used to determine whether the cleanup alternatives being considered are permanent to the maximum extent practicable as defined under WAC 173-340-200. Evaluation of the practicability of a given alternative is a comparative evaluation of whether the incremental increase in cost associated with increasingly protective cleanup actions is substantial and disproportionate to the incremental increase in environmental benefit. In the DCA, cleanup alternatives are arranged from most to least permanent based on the criteria specified in WAC 173-340-360(f) and described in Section 10.5.2. Costs are disproportionate to benefits if the incremental costs of the more permanent alternative exceed the incremental benefits achieved, compared to the lower cost alternative [WAC 173-340-360(3)(e)(i)]. Alternatives that exhibit disproportionate costs are considered "impracticable." Where the benefits of two alternatives are equivalent, MTCA specifies that Ecology select the least costly alternative [WAC 173-340-360(e)(ii)(C)].

### 10.7 RECOMMENDATION OF REMEDIAL ACTION ALTERNATIVE

This section of the FS will recommend a cleanup action alternative based on the results of the comparative evaluation. The recommended alternative will meet the minimum requirements for cleanup actions: protect human health and the environment, comply with cleanup standards, comply with applicable state and federal laws, provide for compliance monitoring, use permanent solutions to the maximum extent practicable, provide for a reasonable timeframe, and consider public concerns.

# 11.0 PUBLIC INVOLVEMENT

As required by WAC 173-340-600, Ecology and Boeing will promote public involvement throughout the RI/FS and cleanup stages at the Site. Ecology has prepared a Public Participation Plan and will be responsible for public participation at the Site; however, responsibilities by Boeing may include development of mailing lists, preparation of drafts of public notices and fact sheets, and participation in public presentations.

### 12.0 SCHEDULE AND REPORTING

The Agreed Order establishes the RI/FS schedule and reporting requirements, which are summarized below.

- RI field activities will be completed within 180 days of Ecology approval of this work plan.
   The final quarter of groundwater monitoring may be conducted after submittal of the draft RI report.
- A draft RI report will be submitted to Ecology within 90 calendar days following receipt of all analytical data associated with the RI/FS.
- The final RI report will be submitted to Ecology within 30 days of Ecology's comments on the draft RI report.
- A draft FS report will be submitted to Ecology within 90 calendar days following Ecology's approval of the Final RI report.
- A draft final FS report will be submitted to Ecology within 30 days of Ecology's comments on the draft FS report.
- A second draft final FS report will be submitted to Ecology within 60 days following completion of the public comment period.
- The final FS report will be submitted to Ecology within 30 days of Ecology's comments on the second draft final FS report.
- A draft cleanup action plan will be submitted to Ecology within 60 calendar days following Ecology's approval of the final FS report.

Additionally, progress reports will be submitted to Ecology on the 15<sup>th</sup> day of the month following the reporting month. Progress reports will be submitted in electronic format and will include a description of actions taken to comply with the Agreed Order, summaries of sampling and testing reports, deviations from approved work plans, summaries of problems or anticipated problems with meeting schedules and objectives, solutions developed and implemented to address actual anticipated problems or delays, changes in key personnel, and a description of work planned for the next reporting period.

All recent and new sampling data will be submitted to Ecology in both printed and electronic formats in accordance with Ecology's Toxics Cleanup Program Policy 840. Data will be supplied to Ecology in electronic format within 30 days following the completion of the draft final RI report.

If additional field RI activities are needed to adequately delineate the extent and magnitude of contamination at the Site, the scope, schedule, and submittal requirements for this additional work will be developed and submitted to Ecology for review and concurrence.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

Kristy J. Hendrickson, P.E.

Principal

Stacy J. Lane, L.G. Senior Geologist

KJH/SJL/tam

LANDAU ASSOCIATES

#### 13.0 REFERENCES

AECOM. 2010. Lower Duwamish Waterway Group; Draft Final Feasibility Study Report. Prepared for The Lower Duwamish Waterway Group by AECOM, Seattle, Washington.

Dames & Moore. 1983. The Report of the Evaluation of Site Contamination, Isaacson Steel Property For the Boeing Aerospace Company. October 4.

Ecology. 2011. Email to Kathryn L. Moxley, The Boeing Company, re: Washington State Department of Ecology - file name = Draft Preliminary Screening Levels & ARARs v14RI.xlsx. Ronald W. Timm, Washington State Department of Ecology. August 8.

Ecology. 1994. *Natural Background Soil Metals Concentrations in Washington State*. Publication No. 94-115. Washington State Department of Ecology, Toxics Cleanup Program. October.

Ecology. 1988. Letter to Mr. J.T. Johnstone, P.E., Facilities Manager Environmental Affairs, Boeing Advanced Systems, Seattle, WA, re: *Issacson Bldg. 1405*. Richard Koch, Acting Metro District Supervisor, Northwest Regional Office, Washington State Department of Ecology. May 10.

Ecology 1985. Letter to Mr.Dan Heglund, Isaacson Corporation, re: *Cleanup of Arsenic Contaminated Soil*. From Joan K. Thomas, Regional Manager, Washington State Department of Ecology, Northwest Regional. February 13.

ERM. 2002. Report: *Comprehensive Data Summary Report, Boeing Isaacson Site, VCP ID # NW0453*. Environmental Management Resources. August.

ERM and Exponent. 2000. Request for Groundwater NFA Determination, Hydrogeologic Investigation and Site-Specific Action Level for Arsenic in Groundwater, Boeing Isaacson Site, VCP ID# NW0453. Environmental Resources Management and Exponent. November.

EPA. 1988. Guidance for Conducting remedial Investigations and Feasibility Studies Under CERCLA. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. Directive 935.3-01. October.

GeoEngineers. 1997. Evaluation of Ground Water Compliance Monitoring Program, Boeing Thompson-Isaacson Site, Seattle, Washington. Prepared for The Boeing Company. May 27.

GeoEngineers. 1994. Report: Report of Geotechnical Services, Subsurface Investigation, Oil/Water Separator Area, Building 14-03, Thompson-Isaacson Facility, Seattle, Washington. March 13.

KCDNRP. 2005. King County Surface Water Design Manual. King County Department of Natural Resources and Parks. January 24.

Landau Associates. 2011. Final Work Plan, Building 14-01 Investigation, Boding Isaacson-Thompson Site, Tukwila, Washington. Prepared for The Boeing Company. March 29.

Landau Associates. 2009a. *Data Summary Report, Thompson-Isaacson Property, Tukwila, Washington*. Prepared for The Boeing Company. September 2.

Landau Associates. 2009b. Phase II Environmental Site Assessment, Boeing Isaacson Property, 8625 East Marginal Way South, Tukwila, Washington. April 2.

Landau Associates. 2009c Phase II Environmental Site Assessment, Boeing Thompson Property, 8625 East Marginal Way South, Tukwila, Washington. April 2.

Landau Associates. 2009d. Report, Property Boundary Investigation, Thompson-Isaacson Property, Tukwila, Washington. Prepared for The Boeing Company. September 9.

Landau Associates. 2008a. Report: Environment, Health, and Safety Assessment/Phase I Environmental Site Assessment, Boeing Isaacson Property, Tukwila, Washington. September 15.

Landau Associates. 2008b. Report: Environment, Health, and Safety Assessment/Phase I Environmental Site Assessment, Boeing Thompson Property, Tukwila, Washington. August 11.

Landau Associates. 2008c. Report, Redevelopment Activities: Stabilized Soil Mound Removal and Stormwater System Upgrades, Boeing Isaacson Property, Tukwila, Washington. March 24.

Landau Associates. 2008d. Technical Memorandum: Focused Disposal Characterization Sampling, Asphalt-Capped, Treated Soil Mound, Boeing Isaacson Property, Seattle, Washington. From Tim Syverson, L.G., David M. Nelson, L.G, and Kathryn F. Hartley. March 7.

Landau Associates. 2007. Technical Memorandum: Sump Removal and Soil Excavation, Boeing Isaacson Property, Seattle, Washington. From Tim Syverson, L.G., and Ken Reid, L.G., to Paul Johansen, The Boeing Company. February

Landau Associates. 2004. Technical Memorandum: *Tank Closure Confirmation and Sampling, Former 2000 Gallon Heating Oil Tank, Thompson Site*. From William Enkeboll, P.E., and David Nelson, to Paul Johansen, P.E., and Wayne Schlappi, P.E, The Boeing Company. April 21.

Landau Associates 1989a. Thompson-Isaacson Site Soil Excavation Work Plan Final Report. March 21

Landau Associates. 1989b. Draft Thompson-Isaacson Site Soil Excavation Summary Report. October 11.

Landau Associates. 1988. Data Report, Building 14-09, Thompson-Isaacson Site Investigation. Prepared for The Boeing Company. May 4.

Landau Associates. 1986. First Annual Report, Groundwater Monitoring Program, Boeing Isaacson Property, 8541 East Marginal Way South, Seattle, Washington. June.

Landau Associates. 1985. Draft Groundwater Monitoring Plan, Boeing Isaacson Property, Seattle, Washington. Prepared for The Boeing Company. October 8.

Risk Science International. 1985. Environmental Risk Assessment of the Boeing Field Division, Boeing Commercial Airplane Company, The Boeing Company, in Seattle, Washington. Final Report. July 26.

SAIC. 2008. Lower Duwamish Waterway RM 3.7-3.9 East Early Action Area 6, Summary of Existing Information and Identification of Data Gaps. Prepared for the Washington State Department of Ecology, Toxics Cleanup Program, Lacey, WA. Science Applications International Corporation. May.

Sweet, Edwards. 1984. Letter to Pat Wicks, Redmond, WA, re: *Isaacson Steel – Monitoring Wells*. Craig E. Wells, Geologist, Sweet, Edwards & Associates, Inc., Kelso, WA. December 7.

Technical Dryer. 1991. Thompson-Isaacson Site Storm Drain Line and Soil Core Sampling Summary Report. March 6.

USGS. 1983. 7.5-Minute Topographic Map, Seattle, Washington Quadrangle. U.S. Geological Survey.

Wicks. 1984a. Project Description for Remedial Work. June.

Wicks. 1984b. Report on Remedial Project and Recommendation for Project Completion at Isaacson Corporation Property, 8541 East Marginal Way South, Seattle, Washington. October.





Storm Drain Manhole

Storm Drain

----- Abandoned Storm Drain

---- Property Line



LANDAU ASSOCIATES



Boeing Isaacson - Thompson Site Tukwila, Washington

**Current Storm Drain System** 





- Current Duwamish Waterway Shoreline
- Pre-1900 Duwamish River Shoreline



Data Source: Bing Aerial Image; King County Parcel Data

Boeing Isaacson-Thompson Site Tukwila, Washington

# **Historical Duwamish River Shoreline**

lead to incorrect interpretation.

Figure

5





























Surface Stations (by analysis group)

Dioxins

PCB Aroclors only

SMS List of COCs

**Sediment Core Samples** 

Early Action Area (EAA) 6



#### **Previous Sediment Sampling Locations**

Boeing Isaacson-Thompson Site Tukwila, Washington

| By: rhg | Date: 5/12/2011 | Project No. | LY11160060 |
|---------|-----------------|-------------|------------|
| AMEC G  | eomatrix        | Figure      | 17         |





LANDAU ASSOCIATES



Boeing Thompson - Isaacson Property Tukwila, Washington

**Detected Concentrations of Metals in Catch Basin Solids** 

19



**ASSOCIATES** 



Tukwila, Washington

in Catch Basin Solids















Fill: Brown to light gray fine to coarse sand, silty sand, sandy gravel, and debris (brick, concrete, glass, crushed rock)

Fill with Slag: Brown to light gray fine to coarse sand, silty sand, sandy gravel, and debris with slag, brick, and wood debris

Stabilized Soil Material: Soil mixed with cementitious material

Native Alluvium: Brown to dark gray silty fine to medium sand, sandy silt, with occasional gravel and organic material

#### Notes

- Soil descriptions are generalized, based on interpretation of field and laboratory data. Stratigraphic contacts are interpolated between borings and based on topographic features; actual conditions may vary.
- 2. See report text for descriptions of geologic units.
- B. For cross-section profile location, see the Site and Exploration Plan, Figure 2.
- Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation.
- 2010 ground surface elevation used as top of boring locations where elevation was missing or could not be resolved.





Boeing Isaacson-Thompson Site Tukwila, Washington

**Cross Section D-D'** 

Figure 25



#### Legend



Fill: Brown to light gray fine to coarse sand, silty sand, sandy gravel, and debris (brick, concrete, glass, crushed rock)

Fill with Slag: Brown to light gray fine to coarse sand, silty sand, sandy gravel, and debris with slag, brick, and wood debris

Stabilized Soil Material: Soil mixed with cementitious material

Native Alluvium: Brown to dark gray silty fine to medium sand, sandy silt, with occasional gravel and organic material

#### Notes

- Soil descriptions are generalized, based on interpretation of field and laboratory data. Stratigraphic contacts are interpolated between borings and based on topographic features; actual conditions may vary.
- 2. See report text for descriptions of geologic units.
- B. For cross-section profile location, see the Site and Exploration Plan, Figure 2.
- Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation.
- 2010 ground surface elevation used as top of boring locations where elevation was missing or could not be resolved.





Boeing Isaacson-Thompson Site Tukwila, Washington

**Cross Section E-E'** 

Figure 26

















**• Proposed Sampling Locations** 

**Previous Surface Locations** 

**Previous Sediment Core Locations** 



#### **Proposed Sediment Sampling Locations**

Boeing Isaacson-Thompson Site Tukwila, Washington

| By: rhg | Date: 5/11/2011 | Project No. | LY11160060 |
|---------|-----------------|-------------|------------|
| AMEC G  | eomatrix        | Figure      | 35         |

|                                           |              |                | 111.000         | 411.000         | AN 645          | 1 411.040                 | 411.040                   | 411.64=         |               |               |           |
|-------------------------------------------|--------------|----------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-----------------|---------------|---------------|-----------|
|                                           |              | Location       |                 | AN-030          | AN-045          | AN-046<br>AN046-SS-080211 | AN-046<br>AN096-SS-080211 | AN-047          | DR188         | DR220         | EIT060    |
|                                           |              | Sample ID      | AN029-SS-061025 | AN030-SS-061025 | AN045-SS-080211 | ANU46-55-080211           | AN096-55-080211           | AN047-SS-080211 | SD-DR188-0000 | SD-DR220-0000 | EIT06-01  |
|                                           |              | Sample Date    | 10/25/06        | 10/25/06        | 02/11/08        | 02/11/08                  | 02/11/08                  | 02/11/08        | 08/25/98      | 08/25/98      | 09/26/97  |
|                                           |              | Depth (ft bgs) | 0 to 0.33       | 0 to 0.33       | 0 to 0.33       | 0 to 0.33                 | 0 to 0.33                 | 0 to 0.33       | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 |
|                                           | Sediment     | Management     |                 |                 |                 |                           |                           |                 |               |               |           |
|                                           |              | ndards         |                 |                 |                 |                           |                           |                 |               |               |           |
|                                           | SQS          | CSL            |                 |                 |                 |                           |                           |                 |               |               |           |
| Conventionals (% dw)                      |              |                |                 |                 |                 |                           |                           |                 |               |               |           |
| Total Organic Carbon                      |              |                | 1.51            | 1.88            | 1.5             | 3.16                      | 2.28                      | 2.65            | 1.75          | 2.76          | 0.88      |
| Metals (mg/Kg dw)                         |              |                |                 |                 |                 |                           |                           |                 |               |               |           |
| Arsenic                                   | 57           | 93             | 11.3            | 8.9             | 8.2             | 25.5                      | 40.6                      | 15              | 12.5          | 15.3          |           |
| Cadmium                                   | 5.1          | 6.7            | 0.5             | 0.4 U           | 0.4             | 2.9                       | 3.6                       | 2.4             | 0.29          | 0.38          |           |
| Chromium                                  | 260          | 270            | 33.7            | 26              | 27.1 J          | 240 J                     | 165 J                     | 178 J           | 25            | 28            |           |
| Copper                                    | 390          | 390            | 54.8            | 42              | 35.3 J          | 228 J                     | 268 J                     | 87.6 J          | 37            | 47            |           |
| Lead                                      | 450          | 530            | 128             | 28              | 152 J           | 2930 J                    | 21700 J                   | 370 J           | 20.7          | 22.3          |           |
| Mercury                                   | 0.41         | 0.59           | 6.8             | 0.13            | 0.06 U          | 0.14                      | 0.19                      | 0.29            | 0.13          | 0.14          |           |
| Silver                                    | 6.1          | 6.1            | 0.7             | 0.4 U           | 0.3 U           | 1.2                       | 2.8                       | 2               | 0.19          | 0.3           |           |
| Zinc                                      | 410          | 960            | 154 J           | 96 J            | 75              | 950                       | 1050                      | 280             | 81            | 98            |           |
| Nonionizable Organic Compounds (mg/Kg OC) |              |                |                 |                 |                 |                           |                           |                 |               |               |           |
| Aromatic Hydrocarbons                     |              |                |                 |                 |                 |                           |                           |                 |               |               |           |
| Total LPAHs                               | 370          | 780            | 17 J            | 6.65            | 1.6 J           | 9.8 J                     | 9.6 J                     | 6.8 J           | 9.1           | 4.7           |           |
| Naphthalene                               | 99           | 170            | 1 U             | 1 U             | 1.3 UJ          | 0.63 UJ                   | 0.88 UJ                   | 3.7 UJ          | 1.1 U         | 0.72 U        |           |
| Acenaphthylene                            | 66           | 66             | 1 U             | 1 U             | 1.3 UJ          | 0.63 UJ                   | 0.88 UJ                   | 3.7 UJ          | 1.1 U         | 0.72 U        |           |
| Acenaphthene                              | 16           | 57             | 0.7 J           | 1 U             | 1.3 U           | 0.38 J                    | 0.88 UJ                   | 3.7 U           | 1.1 U         | 0.72 U        |           |
| Fluorene                                  | 23           | 79             | 0.93 J          | 1 U             | 1.3 U           | 0.51 J                    | 0.48 J                    | 3.7 U           | 1.1 U         | 0.72 U        |           |
| Phenanthrene                              | 100          | 480            | 13              | 5.3             | 1.6 J           | 7.6 J                     | 7.9 J                     | 6.8 J           | 8             | 4             |           |
| Anthracene                                | 220          | 1,200          | 3               | 1.4             | 1.3 UJ          | 1.4 J                     | 1.3 J                     | 3.7 UJ          | 1.1           | 0.72          |           |
| 2-Methylnaphthalene                       | 38           | 64             | 1 U             | 1 U             | 1.3 UJ          | 0.63 UJ                   | 0.88 UJ                   | 3.7 UJ          | 1.1 U         | 0.72 U        |           |
| Total HPAHs                               | 960          | 5,300          | 140             | 74 J            | 25.5 J          | 75.9 J                    | 89 J                      | 66 J            | 93.1          | 57.2          |           |
| Fluoranthene                              | 160          | 1,200          | 27              | 12              | 4.5             | 17                        | 20                        | 18              | 19            | 12            |           |
| Pyrene                                    | 1,000        | 1,400          | 24              | 13              | 3.1 J           | 12 J                      | 14 J                      | 16              | 17            | 9.8           |           |
| Benzo(a)anthracene                        | 110          | 270            | 9.9             | 5               | 2 J             | 5.7 J                     | 6.1 J                     | 4.2 J           | 6.9           | 4             |           |
| Chrysene                                  | 110          | 460            | 17              | 8.5             | 3 J             | 8.9 J                     | 11 J                      | 6.4 J           | 10            | 6.5           |           |
| Total Benzofluoranthenes                  | 230          | 450            | 28              | 17              | 6.8             | 18                        | 22                        | 12              | 18            | 12            |           |
| Benzo(a)pyrene                            | 99           | 210            | 10              | 6.9             | 2.9             | 7.9                       | 9.2                       | 4.2             | 8             | 4.7           |           |
| Indeno(1,2,3-cd)pyrene                    | 34           | 88             | 7.3             | 4.5             | 1.5             | 3.2                       | 3.5 J                     | 2.7 J           | 6.3           | 3.6           |           |
| Dibenzo(a,h)anthracene                    | 12           | 33             | 3.2             | 0.96 J          | 0.45            | 0.7                       | 0.79 J                    | 0.68 U          | 1.7           | 0.72          |           |
| Benzo(g,h,i)perylene                      | 31           | 78             | 7.3             | 5               | 1.3             | 2.8                       | 3.1                       | 2.8 J           | 5.7           | 3.6           |           |
| Chlorinated Benzenes                      |              |                |                 |                 |                 |                           |                           |                 |               |               |           |
| 1,2-Dichlorobenzene                       | 2.3          | 2.3            | 1 U             | 1 U             | 0.41 UJ         | 0.6 UJ                    | 0.27 UJ                   | 0.68 UJ         | 1.1 U         | 0.72 U        |           |
| 1,4-Dichlorobenzene                       | 3.1          | 9              | 1 U             | 1 U             | 0.41 U          | 0.6 U                     | 0.27 U                    | 0.68 U          | 1.1 U         | 0.72 U        |           |
| 1,2,4-Trichlorobenzene                    | 0.81         | 1.8            | 1 U             | 1 U             | 0.41 U          | 0.6 U                     | 0.27 U                    | 0.68 U          | 1.1 U         | 0.72 U        |           |
| Hexachlorobenzene                         | 0.38         | 2.3            | 1 U             | 1 U             | 0.41 U          | 0.6 U                     | 0.27 U                    | 0.68 U          | 1.1 U         | 0.72 U        |           |
| Phthalates                                | <del> </del> | F.2            |                 |                 |                 |                           |                           |                 |               | 2 = 2         |           |
| Dimethyl phthalate                        | 53           | 53             | 2.5             | 0.8 J           | 0.8 J           | 1.5 U                     | 1.7 J                     | 12 J            | 2.3           | 0.72 U        |           |
| Diethyl phthalate                         | 61           | 110            | 1 U             | 1 U             | 1.3 UJ          | 0.63 UJ                   | 0.88 UJ                   | 3.7 UJ          | 1.1 U         | 0.72 U        |           |
| Di-n-butyl phthalate                      | 220          | 1,700          | 6.4 U           | 1.7 U           | 6.7 J           | 1 J                       | 1.2 J                     | 11 J            | 1.1 U         | 0.72 U        |           |
| Butyl benzyl phthalate                    | 4.9          | 64             | 5.5             | 1.5             | 2.4             | 1.7                       | 3.1 J                     | 83              | 3.4           | 1.1           |           |
| Bis(2-ethylhexyl)phthalate                | 47           | 78             | 38              | 10              | 2.2 UJ          | 7.9 J                     | 14 J                      | 36 J            | 15            | 14            |           |
| Di-n-octyl phthalate                      | 58           | 4,500          | 1 U             | 1 U             | 1.3 UJ          | 0.63 UJ                   | 0.66 J                    | 3.7 UJ          | 1.1 U         | 0.72 U        |           |

|                                        |     | Location<br>Sample ID<br>Sample Date<br>Depth (ft bgs) | AN029-SS-061025<br>10/25/06 | AN-030<br>AN030-SS-061025<br>10/25/06<br>0 to 0.33 | AN-045<br>AN045-SS-080211<br>02/11/08<br>0 to 0.33 | AN-046<br>AN046-SS-080211<br>02/11/08<br>0 to 0.33 | AN-046<br>AN096-SS-080211<br>02/11/08<br>0 to 0.33 | AN-047<br>AN047-SS-080211<br>02/11/08<br>0 to 0.33 | DR188<br>SD-DR188-0000<br>08/25/98<br>0 to 0.33 | DR220<br>SD-DR220-0000<br>08/25/98<br>0 to 0.33 | EIT060<br>EIT06-01<br>09/26/97<br>0 to 0.33 |
|----------------------------------------|-----|--------------------------------------------------------|-----------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------|
|                                        |     | Management<br>ndards<br>CSL                            |                             |                                                    |                                                    |                                                    |                                                    |                                                    |                                                 |                                                 |                                             |
| Miscellaneous                          |     |                                                        |                             |                                                    |                                                    |                                                    |                                                    |                                                    |                                                 |                                                 |                                             |
| Dibenzofuran                           | 15  | 58                                                     | 1 U                         | 1 U                                                | 1.3 UJ                                             | 0.63 UJ                                            | 0.88 UJ                                            | 3.7 UJ                                             | 1.1 U                                           | 0.72 U                                          |                                             |
| Hexachlorobutadiene                    | 3.9 | 6.2                                                    | 1 U                         | 1 U                                                | 0.41 U                                             | 0.6 U                                              | 0.27 U                                             | 0.68 U                                             | 1.1 U                                           | 0.72 U                                          |                                             |
| n-Nitrosodiphenylamine                 | 11  | 11                                                     | 1 UJ                        | 1 UJ                                               | 0.41 UJ                                            | 0.6 UJ                                             | 0.27 UJ                                            | 0.68 UJ                                            | 2.3 U                                           | 1.4 U                                           |                                             |
| Pesticides/PCBs                        |     |                                                        |                             |                                                    |                                                    |                                                    |                                                    |                                                    |                                                 |                                                 |                                             |
| Total PCBs                             | 12  | 65                                                     | 15                          | 7.18 J                                             | 8                                                  | 4.18                                               | 3.9                                                | 110                                                | 5.94                                            | 2.8                                             | 19                                          |
| lonizable Organic Compounds (ug/Kg dw) |     |                                                        |                             |                                                    |                                                    |                                                    |                                                    |                                                    |                                                 |                                                 |                                             |
| Phenol                                 | 420 | 1,200                                                  | 20 U                        | 20 U                                               | 20 U                                               | 30                                                 | 28                                                 | 98 U                                               | 20 UJ                                           | 20 UJ                                           |                                             |
| 2-Methylphenol                         | 63  | 63                                                     | 20 U                        | 20 U                                               | 6.1 UJ                                             | 19 UJ                                              | 6.1 UJ                                             | 18 UJ                                              | 20 UJ                                           | 20 UJ                                           |                                             |
| 4-Methylphenol                         | 670 | 670                                                    | 20 U                        | 20 U                                               | 20 UJ                                              | 20 UJ                                              | 20 UJ                                              | 98 UJ                                              | 20 UJ                                           | 20 UJ                                           |                                             |
| 2,4-Dimethylphenol                     | 29  | 29                                                     | 20 U                        | 20 U                                               | 6.1 UJ                                             | 19 UJ                                              | 6.1 UJ                                             | 18 UJ                                              | 20 UJ                                           | 20 UJ                                           | ·                                           |
| Pentachlorophenol                      | 360 | 690                                                    | 98 U                        | 99 U                                               | 30 UJ                                              | 93 UJ                                              | 31 UJ                                              | 92 UJ                                              | 100 UJ                                          | 100 UJ                                          | ·                                           |
| Benzyl alcohol                         | 57  | 73                                                     | 20 U                        | 20 U                                               | 20 UJ                                              | 20 UJ                                              | 20 UJ                                              | 98 U                                               | 50 U                                            | 50 U                                            | ·                                           |
| Benzoic acid                           | 650 | 650                                                    | 200 U                       | 200 U                                              | 200 U                                              | 200 U                                              | 200 U                                              | 790 J                                              | 200 U                                           | 200 U                                           |                                             |

|                                           |       | Location       | EST141    | EST142    | EST143    | EST147    | EST148    | EST157    | EST158    | EST159    | EST160      |
|-------------------------------------------|-------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
|                                           |       | Sample ID      | EST09-01  | EST09-02  | EST09-03  | EST10-01  | EST10-02  | EST11-07  | EST11-08  | EST11-09  | EST11-10    |
|                                           |       |                |           |           |           |           |           |           |           |           |             |
|                                           |       | Samula Data    | 09/25/97  | 10/24/97  | 09/25/97  | 09/25/97  | 11/12/97  | 09/24/97  | 09/24/97  | 00/24/07  | 09/25/97    |
|                                           |       | Sample Date    |           |           |           |           |           |           |           | 09/24/97  |             |
|                                           |       | Depth (ft bgs) | 0 to 0.33   |
|                                           |       | /lanagement    |           |           |           |           |           |           |           |           |             |
|                                           |       | dards          |           |           |           |           |           |           |           |           |             |
|                                           | SQS   | CSL            |           |           |           |           |           |           |           |           |             |
| Conventionals (% dw)                      |       |                |           |           |           |           |           |           |           |           | <del></del> |
| Total Organic Carbon                      |       |                | 1.52      | 1.64      | 1.38      | 1.3       | 2.23      | 1.79      | 1.52      | 1.19      | 1.59        |
| Metals (mg/Kg dw)                         |       |                |           |           |           |           |           |           |           |           |             |
| Arsenic                                   | 57    | 93             |           |           |           |           |           |           |           |           |             |
| Cadmium                                   | 5.1   | 6.7            |           |           |           |           |           |           |           |           |             |
| Chromium                                  | 260   | 270            |           |           |           |           |           |           |           |           |             |
| Copper                                    | 390   | 390            |           |           |           |           |           |           |           |           |             |
| Lead                                      | 450   | 530            |           |           |           |           |           |           |           |           |             |
| Mercury                                   | 0.41  | 0.59           |           |           |           |           |           |           |           |           |             |
| Silver                                    | 6.1   | 6.1            |           |           |           |           |           |           |           |           |             |
| Zinc                                      | 410   | 960            |           |           |           |           |           |           |           |           |             |
| Nonionizable Organic Compounds (mg/Kg OC) |       |                |           |           |           |           |           |           |           |           |             |
| Aromatic Hydrocarbons                     |       |                |           |           |           |           |           |           |           |           |             |
| Total LPAHs                               | 370   | 780            |           |           |           |           |           |           |           |           |             |
| Naphthalene                               | 99    | 170            |           |           |           |           |           |           |           |           |             |
| Acenaphthylene                            | 66    | 66             |           |           |           |           |           |           |           |           |             |
| Acenaphthene                              | 16    | 57             |           |           |           |           |           |           |           |           |             |
| Fluorene                                  | 23    | 79             |           |           |           |           |           |           |           |           |             |
| Phenanthrene                              | 100   | 480            |           |           |           |           |           |           |           |           |             |
| Anthracene                                | 220   | 1,200          |           |           |           |           |           |           |           |           |             |
| 2-Methylnaphthalene                       | 38    | 64             |           |           |           |           |           |           |           |           |             |
| Total HPAHs                               | 960   | 5,300          |           |           |           |           |           |           |           |           |             |
| Fluoranthene                              | 160   | 1,200          |           |           |           |           |           |           |           |           |             |
| Pyrene                                    | 1,000 | 1,400          |           |           |           |           |           |           |           |           |             |
| Benzo(a)anthracene                        | 110   | 270            |           |           |           |           |           |           |           |           |             |
| Chrysene                                  | 110   | 460            |           |           |           |           |           |           |           |           |             |
| Total Benzofluoranthenes                  | 230   | 450            |           |           |           |           |           |           |           |           |             |
| Benzo(a)pyrene                            | 99    | 210            |           |           |           |           |           |           |           |           |             |
| Indeno(1,2,3-cd)pyrene                    | 34    | 88             |           |           |           |           |           |           |           |           |             |
| Dibenzo(a,h)anthracene                    | 12    | 33             |           |           |           |           |           |           |           |           |             |
| Benzo(g,h,i)perylene                      | 31    | 78             |           |           |           |           |           |           |           |           |             |
| Chlorinated Benzenes                      |       |                |           |           |           |           |           |           |           |           |             |
| 1,2-Dichlorobenzene                       | 2.3   | 2.3            |           |           |           |           |           |           |           |           |             |
| 1,4-Dichlorobenzene                       | 3.1   | 9              |           |           |           |           |           |           |           |           |             |
| 1,2,4-Trichlorobenzene                    | 0.81  | 1.8            |           |           |           |           |           |           |           |           |             |
| Hexachlorobenzene                         | 0.38  | 2.3            |           |           |           |           |           |           |           |           |             |
| Phthalates                                |       |                |           |           |           |           |           |           |           |           |             |
| Dimethyl phthalate                        | 53    | 53             |           |           |           |           |           |           |           |           |             |
| Diethyl phthalate                         | 61    | 110            |           |           |           |           |           |           |           |           |             |
| Di-n-butyl phthalate                      | 220   | 1,700          |           |           |           |           |           |           |           |           |             |
| Butyl benzyl phthalate                    | 4.9   | 64             |           |           |           |           |           |           |           |           |             |
| Bis(2-ethylhexyl)phthalate                | 47    | 78             |           |           |           |           |           |           |           |           |             |
| Di-n-octyl phthalate                      | 58    | 4,500          |           |           |           |           |           |           |           |           | 1           |

|                                        |            |                |           |           | -         | _         | -         |           |           |           |           |
|----------------------------------------|------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                        |            | Location       | EST141    | EST142    | EST143    | EST147    | EST148    | EST157    | EST158    | EST159    | EST160    |
|                                        |            | Sample ID      | EST09-01  | EST09-02  | EST09-03  | EST10-01  | EST10-02  | EST11-07  | EST11-08  | EST11-09  | EST11-10  |
|                                        |            |                |           |           |           |           |           |           |           |           |           |
|                                        |            |                |           |           |           |           |           |           |           |           |           |
|                                        |            | Sample Date    | 09/25/97  | 10/24/97  | 09/25/97  | 09/25/97  | 11/12/97  | 09/24/97  | 09/24/97  | 09/24/97  | 09/25/97  |
|                                        |            | Depth (ft bgs) | 0 to 0.33 |
|                                        | Sodimont N | Management     |           |           |           |           |           |           |           |           |           |
|                                        |            | dards          |           |           |           |           |           |           |           |           |           |
|                                        |            | CSL            |           |           |           |           |           |           |           |           |           |
|                                        | SQS        | CSL            |           |           |           |           |           |           |           |           |           |
| Miscellaneous                          |            |                |           |           |           |           |           |           |           |           |           |
| Dibenzofuran                           | 15         | 58             |           |           |           |           |           |           |           |           |           |
| Hexachlorobutadiene                    | 3.9        | 6.2            |           |           |           |           |           |           |           |           |           |
| n-Nitrosodiphenylamine                 | 11         | 11             |           |           |           |           |           |           |           |           |           |
| Pesticides/PCBs                        |            |                |           |           |           |           |           |           |           |           |           |
| Total PCBs                             | 12         | 65             | 7.2       | 5.3 J     | 28        | 53 J      | 30 J      | 2.3 J     | 4.9 J     | 6.6 J     | 2 J       |
| Ionizable Organic Compounds (ug/Kg dw) |            |                |           |           |           |           |           |           |           |           |           |
| Phenol                                 | 420        | 1,200          |           |           |           |           |           |           |           |           |           |
| 2-Methylphenol                         | 63         | 63             |           |           |           |           |           |           |           |           |           |
| 4-Methylphenol                         | 670        | 670            |           |           |           |           |           |           |           |           |           |
| 2,4-Dimethylphenol                     | 29         | 29             |           |           |           |           |           |           |           |           |           |
| Pentachlorophenol                      | 360        | 690            |           |           |           |           |           |           |           |           |           |
| Benzyl alcohol                         | 57         | 73             |           |           |           |           |           |           |           |           |           |
| Benzoic acid                           | 650        | 650            |           |           |           |           |           | _         |           |           | _         |

|                                           | <u> </u> | Location                      | EST161                | EST162                | LDW-SS112             | LDW-SS114             | LDW-SS115             | LDW-SS116             | LDW-SS118             | LDW-SS119             |
|-------------------------------------------|----------|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                           |          | Sample ID                     | EST11-11              | EST11-12              | LDW-SS112-010         | LDW-SS114-010         | LDW-SS115-010         | LDW-SS116-010         | LDW-SS118-010         | LDW-SS119-010         |
|                                           |          | Sample Date<br>Depth (ft bgs) | 11/13/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 | 01/19/05<br>0 to 0.33 | 01/20/05<br>0 to 0.33 | 01/25/05<br>0 to 0.33 | 01/20/05<br>0 to 0.33 | 01/20/05<br>0 to 0.33 | 01/19/05<br>0 to 0.33 |
|                                           |          |                               | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             |
|                                           |          | Management<br>Idards          |                       |                       |                       |                       |                       |                       |                       |                       |
|                                           | SQS      | CSL                           |                       |                       |                       |                       |                       |                       |                       |                       |
| Conventionals (% dw)                      | 343      | COL                           |                       |                       |                       |                       |                       |                       |                       |                       |
| Total Organic Carbon                      |          |                               | 0.85                  | 1.46                  | 1.82                  | 1.53                  | 1.92                  | 1.34                  | 1.84                  | 1.5                   |
| Metals (mg/Kg dw)                         |          |                               | 0.00                  | 1.40                  | 1.02                  | 1.55                  | 1.02                  | 1.04                  | 1.04                  | 1.5                   |
| Arsenic                                   | 57       | 93                            |                       |                       | 481                   | 1100                  | 44.4                  | 9.6                   | 13                    | 10.9                  |
| Cadmium                                   | 5.1      | 6.7                           |                       |                       | 0.7                   | 1.6 J                 | 1.1                   | 0.3 UJ                | 0.4                   | 0.6                   |
| Chromium                                  | 260      | 270                           |                       |                       | 62.4                  | 72.8 J                | 55                    | 26.2 J                | 29                    | 37.6                  |
| Copper                                    | 390      | 390                           |                       |                       | 77.7                  | 58.5                  | 99.7                  | 38.5                  | 47.4                  | 46.8                  |
| Lead                                      | 450      | 530                           |                       |                       | 82                    | 110                   | 98                    | 30                    | 28                    | 71                    |
| Mercury                                   | 0.41     | 0.59                          |                       |                       | 0.08 U                | 0.12                  | 0.07                  | 0.07                  | 0.12                  | 0.16                  |
| Silver                                    | 6.1      | 6.1                           |                       |                       | 0.5                   | 0.8                   | 1                     | 0.5 UJ                | 0.6                   | 0.7                   |
| Zinc                                      | 410      | 960                           |                       |                       | 206                   | 230                   | 343                   | 92.8                  | 103                   | 115                   |
| Nonionizable Organic Compounds (mg/Kg OC) |          |                               |                       |                       | 200                   |                       | 0.0                   | 02.0                  | .00                   |                       |
| Aromatic Hydrocarbons                     |          |                               |                       |                       |                       |                       |                       |                       |                       |                       |
| Total LPAHs                               | 370      | 780                           |                       |                       | 77                    | 140                   | 160 J                 | 25 J                  | 7.6                   | 11                    |
| Naphthalene                               | 99       | 170                           |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Acenaphthylene                            | 66       | 66                            |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Acenaphthene                              | 16       | 57                            |                       |                       | 5.4 U                 | 9.2                   | 7.8 J                 | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Fluorene                                  | 23       | 79                            |                       |                       | 5.4 U                 | 8.5                   | 9.4 J                 | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Phenanthrene                              | 100      | 480                           |                       |                       | 66                    | 100                   | 130                   | 21                    | 7.6                   | 11                    |
| Anthracene                                | 220      | 1,200                         |                       |                       | 11                    | 16                    | 20                    | 3.8 J                 | 5.4 U                 | 6.4 U                 |
| 2-Methylnaphthalene                       | 38       | 64                            |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Total HPAHs                               | 960      | 5,300                         |                       |                       | 681                   | 882 J                 | 990                   | 320 J                 | 100 J                 | 135                   |
| Fluoranthene                              | 160      | 1,200                         |                       |                       | 190                   | 200                   | 270                   | 75                    | 27                    | 34                    |
| Pyrene                                    | 1,000    | 1,400                         |                       |                       | 110                   | 160                   | 170                   | 58 J                  | 20                    | 25                    |
| Benzo(a)anthracene                        | 110      | 270                           |                       |                       | 51                    | 72                    | 78                    | 23                    | 7.1                   | 11                    |
| Chrysene                                  | 110      | 460                           |                       |                       | 88                    | 120                   | 130                   | 49                    | 15                    | 23                    |
| Total Benzofluoranthenes                  | 230      | 450                           |                       |                       | 140                   | 160                   | 190                   | 69                    | 18                    | 26                    |
| Benzo(a)pyrene                            | 99       | 210                           |                       |                       | 60                    | 85                    | 89                    | 29                    | 7.6                   | 12                    |
| Indeno(1,2,3-cd)pyrene                    | 34       | 88                            |                       |                       | 23                    | 37                    | 31                    | 11                    | 2.5                   | 4.2                   |
| Dibenzo(a,h)anthracene                    | 12       | 33                            |                       |                       | 5.4 U                 | 5.6 J                 | 13                    | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Benzo(g,h,i)perylene                      | 31       | 78                            |                       |                       | 20                    | 30                    | 26                    | 9                     | 3.9 J                 | 6.4 U                 |
| Chlorinated Benzenes                      |          |                               |                       |                       |                       |                       |                       |                       |                       |                       |
| 1,2-Dichlorobenzene                       | 2.3      | 2.3                           |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 0.49 U                | 0.36 U                | 0.44 U                |
| 1,4-Dichlorobenzene                       | 3.1      | 9                             |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 0.49 U                | 0.36 U                | 0.44 U                |
| 1,2,4-Trichlorobenzene                    | 0.81     | 1.8                           |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 0.49 U                | 0.36 U                | 0.44 U                |
| Hexachlorobenzene                         | 0.38     | 2.3                           |                       |                       | 5.4 U                 | 8.5 U                 | 0.051 U               | 0.073 U               | 0.36 U                | 0.44 U                |
| Phthalates                                |          |                               |                       |                       |                       |                       |                       |                       |                       |                       |
| Dimethyl phthalate                        | 53       | 53                            |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 0.64                  | 0.4                   | 2.5                   |
| Diethyl phthalate                         | 61       | 110                           |                       |                       | 6                     | 8.5 U                 | 10 U                  | 0.54 U                | 0.47                  | 7.3                   |
| Di-n-butyl phthalate                      | 220      | 1,700                         |                       |                       | 5.4 U                 | 5.4 J                 | 10 U                  | 7.4 U                 | 5.4 U                 | 6.4 U                 |
| Butyl benzyl phthalate                    | 4.9      | 64                            |                       |                       | 12                    | 8.5 U                 | 10 U                  | 4.7 J                 | 1.4                   | 9.3                   |
| Bis(2-ethylhexyl)phthalate                | 47       | 78                            |                       |                       | 18                    | 78                    | 17                    | 18                    | 13                    | 19                    |
| Di-n-octyl phthalate                      | 58       | 4,500                         |                       |                       | 5.4 U                 | 8.5 U                 | 10 U                  | 7.4 U                 | 5.4 U                 | 6.4 U                 |

|                                        |     | Location<br>Sample ID         |                       | EST162<br>EST11-12    | LDW-SS112<br>LDW-SS112-010 | LDW-SS114<br>LDW-SS114-010 | LDW-SS115<br>LDW-SS115-010 | LDW-SS116<br>LDW-SS116-010 | LDW-SS118<br>LDW-SS118-010 | LDW-SS119<br>LDW-SS119-010 |
|----------------------------------------|-----|-------------------------------|-----------------------|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|                                        |     | Sample Date<br>Depth (ft bgs) | 11/13/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 | 01/19/05<br>0 to 0.33      | 01/20/05<br>0 to 0.33      | 01/25/05<br>0 to 0.33      | 01/20/05<br>0 to 0.33      | 01/20/05<br>0 to 0.33      | 01/19/05<br>0 to 0.33      |
|                                        |     | Management<br>dards<br>CSL    |                       |                       |                            |                            |                            |                            |                            |                            |
| Miscellaneous                          |     |                               |                       |                       |                            |                            |                            |                            |                            |                            |
| Dibenzofuran                           | 15  | 58                            |                       |                       | 5.4 U                      | 8.5 U                      | 10 U                       | 7.4 U                      | 5.4 U                      | 6.4 U                      |
| Hexachlorobutadiene                    | 3.9 | 6.2                           |                       |                       | 5.4 U                      | 8.5 U                      | 0.051 U                    | 0.073 U                    | 0.36 U                     | 0.44 U                     |
| n-Nitrosodiphenylamine                 | 11  | 11                            |                       |                       | 5.4 U                      | 8.5 U                      | 10 U                       | 0.49 U                     | 0.36 U                     | 0.44 U                     |
| Pesticides/PCBs                        |     |                               |                       |                       |                            |                            |                            |                            |                            |                            |
| Total PCBs                             | 12  | 65                            | 19                    | 16                    | 26                         | 54                         | 11                         | 8.81 J                     | 1.3                        | 59 J                       |
| Ionizable Organic Compounds (ug/Kg dw) |     |                               |                       |                       |                            |                            |                            |                            |                            |                            |
| Phenol                                 | 420 | 1,200                         |                       |                       | 98 U                       | 130 U                      | 200 U                      | 99 U                       | 99 U                       | 96 U                       |
| 2-Methylphenol                         | 63  | 63                            |                       |                       | 98 U                       | 130 U                      |                            | 6.6 U                      | 6.6 U                      | 6.6 U                      |
| 4-Methylphenol                         | 670 | 670                           |                       |                       | 98 U                       | 130 U                      | 200 U                      | 99 U                       | 99 U                       | 96 U                       |
| 2,4-Dimethylphenol                     | 29  | 29                            |                       |                       | 98 U                       | 130 U                      | 200 U                      | 6.6 U                      | 6.6 U                      | 6.6 U                      |
| Pentachlorophenol                      | 360 | 690                           |                       |                       | 490 U                      | 640 U                      | 980 U                      | 33 UJ                      | 33 U                       | 33 U                       |
| Benzyl alcohol                         | 57  | 73                            |                       |                       | 98 U                       | 130 U                      | 200 U                      | 33 U                       | 33 U                       | 33 U                       |
| Benzoic acid                           | 650 | 650                           |                       |                       | 980 U                      | 1300 U                     | 2000 U                     | 66 U                       | 84                         | 130 U                      |

|                                           |            | Location<br>Sample ID         | LDW-SS157<br>LDW-SS157-010 | LDW-SS158<br>LDW-SS158-010 | LDW-SS159<br>LDW-SS159-010 | LDW-SS338<br>LDW-SS338-010 | R22SD<br>SD0001       | R23SD<br>SD0020       | R26SD<br>SD0002       | R27SD<br>SD0022       | R31SD<br>SD0003       |
|-------------------------------------------|------------|-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                           |            | Sample Date<br>Depth (ft bgs) | 03/16/05<br>0 to 0.33      | 03/16/05<br>0 to 0.33      | 03/16/05<br>0 to 0.33      | 10/03/06<br>0 to 0.33      | 10/08/97<br>0 to 0.33 | 10/11/97<br>0 to 0.33 | 10/09/97<br>0 to 0.33 | 10/11/97<br>0 to 0.33 | 10/09/97<br>0 to 0.33 |
|                                           | Sediment N | /lanagement                   |                            |                            |                            |                            |                       |                       |                       |                       |                       |
|                                           |            | dards                         |                            |                            |                            |                            |                       |                       |                       |                       |                       |
|                                           | SQS        | CSL                           |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| Conventionals (% dw)                      |            |                               |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| Total Organic Carbon                      |            |                               | 3.1                        | 1.96                       | 2.78                       | 1.99                       | 1.4                   | 1.7                   | 1.1                   | 1.5                   | 1.2                   |
| Metals (mg/Kg dw)                         |            |                               |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| Arsenic                                   | 57         | 93                            | 21.1                       | 20.5                       | 10                         | 8.7                        | 79.4                  | 36.2                  | 15.8                  | 14.1                  | 26.7                  |
| Cadmium                                   | 5.1        | 6.7                           | 1.6                        | 0.7                        | 0.4                        | 0.4 U                      | 1.4 J                 | 1.7 J                 | 0.4 UJ                | 0.4 UJ                | 0.5 J                 |
| Chromium                                  | 260        | 270                           | 69                         | 174                        | 29.3                       | 26                         | 76 J                  | 53 J                  | 28 J                  | 31 J                  | 36 J                  |
| Copper                                    | 390        | 390                           | 74.7 J                     | 52.1 J                     | 37 J                       | 43                         | 53                    | 56                    | 40                    | 40                    | 53                    |
| Lead                                      | 450        | 530                           | 148                        | 51                         | 36                         | 22                         | 78                    | 221                   | 28                    | 31                    | 94                    |
| Mercury                                   | 0.41       | 0.59                          | 0.12 J                     | 0.1 J                      | 0.1 J                      | 0.13                       | 0.11                  | 0.1                   | 0.1                   | 0.17                  | 0.1                   |
| Silver                                    | 6.1        | 6.1                           | 2                          | 0.6                        | 0.5 U                      | 0.4 U                      | 1.8                   | 2.3                   | 0.7                   | 0.4 UJ                | 0.4 U                 |
| Zinc                                      | 410        | 960                           | 248                        | 151                        | 99                         | 95                         | 293                   | 188                   | 91                    | 93                    | 128                   |
| Nonionizable Organic Compounds (mg/Kg OC) |            |                               |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| Aromatic Hydrocarbons                     |            |                               |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| Total LPAHs                               | 370        | 780                           | 61 J                       | 19                         | 25 J                       | 2.7 J                      | 290                   | 510                   | 37                    | 32                    | 50                    |
| Naphthalene                               | 99         | 170                           | 1.3 J                      | 3 U                        | 2.1 U                      | 3.1 U                      | 3.1                   | 5.9                   | 1.8 U                 | 1.3 U                 | 1.6 U                 |
| Acenaphthylene                            | 66         | 66                            | 1.1 J                      | 3 U                        | 2.1 U                      | 3.1 U                      | 1.4 U                 | 1.3                   | 1.8 U                 | 1.3 U                 | 1.6 U                 |
| Acenaphthene                              | 16         | 57                            | 2.8                        | 3 U                        | 2.1 U                      | 3.1 U                      | 15                    | 23                    | 1.8 U                 | 2                     | 1.7                   |
| Fluorene                                  | 23         | 79                            | 3.2                        | 3 U                        | 1.4 J                      | 3.1 U                      | 19                    | 29                    | 2.3                   | 2.3                   | 2.8                   |
| Phenanthrene                              | 100        | 480                           | 45                         | 16                         | 21                         | 2.7 J                      | 210                   | 390                   | 30                    | 24                    | 33                    |
| Anthracene                                | 220        | 1,200                         | 8.7                        | 3.2                        | 3.2                        | 3.1 U                      | 45                    | 59                    | 4.7                   | 3.7                   | 13                    |
| 2-Methylnaphthalene                       | 38         | 64                            | 1.9 U                      | 3 U                        | 2.1 U                      | 3.1 U                      | 2.6                   | 6.5                   | 1.8 U                 | 1.3 U                 | 1.6 U                 |
| Total HPAHs                               | 960        | 5,300                         | 458                        | 116 J                      | 250                        | 47 J                       | 1800                  | 3000                  | 300                   | 210                   | 330                   |
| Fluoranthene                              | 160        | 1,200                         | 110                        | 31                         | 76                         | 8.5                        | 400                   | 650                   | 54                    | 36                    | 48                    |
| Pyrene                                    | 1,000      | 1,400                         | 71                         | 26                         | 58                         | 8                          | 340                   | 560                   | 60                    | 43                    | 69                    |
| Benzo(a)anthracene                        | 110        | 270                           | 35                         | 2.7                        | 15                         | 4.1                        | 150                   | 230                   | 21                    | 15                    | 25                    |
| Chrysene                                  | 110        | 460                           | 48                         | 16                         | 28                         | 6                          | 200                   | 310                   | 34                    | 23                    | 40                    |
| Total Benzofluoranthenes                  | 230        | 450                           | 110                        | 19                         | 48.2                       | 10                         | 330                   | 520                   | 58                    | 38                    | 64                    |
| Benzo(a)pyrene                            | 99         | 210                           | 42                         | 3                          | 13                         | 4                          | 170                   | 260                   | 26                    | 17                    | 30                    |
| Indeno(1,2,3-cd)pyrene                    | 34         | 88                            | 22                         | 8.7                        | 6.5                        | 2.6 J                      | 110                   | 190                   | 18                    | 15                    | 21                    |
| Dibenzo(a,h)anthracene                    | 12         | 33                            | 2.5                        | 2.8 J                      | 2.1 U                      | 0.4                        | 36                    | 71                    | 7.5                   | 6.3                   | 8.3                   |
| Benzo(g,h,i)perylene                      | 31         | 78                            | 16                         | 7.1                        | 4.3                        | 2.9 J                      | 100                   | 180                   | 17                    | 14                    | 23                    |
| Chlorinated Benzenes                      |            |                               |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| 1,2-Dichlorobenzene                       | 2.3        | 2.3                           | 0.21 U                     | 0.33 U                     | 0.24 U                     | 0.31 U                     | 1.4 U                 | 1.2 U                 | 1.8 U                 | 1.3 U                 | 1.6 U                 |
| 1,4-Dichlorobenzene                       | 3.1        | 9                             | 0.21 U                     | 0.33 U                     | 0.24 U                     | 0.31 U                     | 1.4 UJ                | 1.2 UJ                | 1.8 UJ                | 1.3 UJ                | 1.6 UJ                |
| 1,2,4-Trichlorobenzene                    | 0.81       | 1.8                           | 0.21 U                     | 0.33 U                     | 0.24 U                     | 0.31 U                     | 1.4 U                 | 1.2 U                 | 1.8 U                 | 1.3 U                 | 1.6 U                 |
| Hexachlorobenzene                         | 0.38       | 2.3                           | 0.21 U                     | 0.33 U                     | 0.24 U                     | 0.31 U                     | 0.071 U               | 0.076                 | 0.11                  | 0.067 U               | 0.1                   |
| Phthalates                                |            |                               |                            |                            |                            |                            |                       |                       |                       |                       |                       |
| Dimethyl phthalate                        | 53         | 53                            | 0.21 U                     | 0.33 U                     | 1.1                        | 0.47                       | 1.9                   | 12                    | 2.3                   | 1.3 U                 | 8.1                   |
| Diethyl phthalate                         | 61         | 110                           | 0.25 U                     | 0.33 U                     | 0.24 U                     | 3.1 U                      | 1.4 U                 | 1.2 U                 | 1.8 U                 | 1.3 U                 | 1.6 U                 |
| Di-n-butyl phthalate                      | 220        | 1,700                         | 2.9                        | 3 U                        | 2.1 U                      | 1.6 J                      | 1.5                   | 2.5                   | 5.8                   | 1.3 U                 | 2.6                   |
| Butyl benzyl phthalate                    | 4.9        | 64                            | 6.5                        | 4                          | 0.86                       | 0.85                       | 10 UJ                 | 12                    | 10 J                  | 6.1 J                 | 18                    |
| Bis(2-ethylhexyl)phthalate                | 47         | 78                            | 39                         | 26                         | 6.8                        | 9                          | 49                    | 82                    | 34                    | 19                    | 60                    |
| Di-n-octyl phthalate                      | 58         | 4,500                         | 1.9 U                      | 3 U                        | 2.1 U                      | 3.1 U                      | 1.4 U                 | 1.2 U                 | 1.8 U                 | 1.3 U                 | 4.3 J                 |

|                                        |     | Location<br>Sample ID<br>Sample Date<br>Depth (ft bgs) | LDW-SS157<br>LDW-SS157-010<br>03/16/05<br>0 to 0.33 | LDW-SS158<br>LDW-SS158-010<br>03/16/05<br>0 to 0.33 | LDW-SS159<br>LDW-SS159-010<br>03/16/05<br>0 to 0.33 | LDW-SS338<br>LDW-SS338-010<br>10/03/06<br>0 to 0.33 | R22SD<br>SD0001<br>10/08/97<br>0 to 0.33 | R23SD<br>SD0020<br>10/11/97<br>0 to 0.33 | R26SD<br>SD0002<br>10/09/97<br>0 to 0.33 | R27SD<br>SD0022<br>10/11/97<br>0 to 0.33 | R31SD<br>SD0003<br>10/09/97<br>0 to 0.33 |
|----------------------------------------|-----|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                        |     | Management<br>dards<br>CSL                             |                                                     |                                                     |                                                     |                                                     |                                          |                                          |                                          |                                          |                                          |
| Miscellaneous                          |     |                                                        |                                                     |                                                     |                                                     |                                                     |                                          |                                          |                                          |                                          |                                          |
| Dibenzofuran                           | 15  | 58                                                     | 1.9                                                 | 3 U                                                 | 2.1 U                                               | 3.1 U                                               | 10                                       | 18                                       | 1.8 U                                    | 1.5                                      | 2                                        |
| Hexachlorobutadiene                    | 3.9 | 6.2                                                    | 0.21 U                                              | 0.33 U                                              | 0.24 U                                              | 0.31 U                                              | 1.4 U                                    | 1.2 U                                    | 1.8 U                                    | 1.3 U                                    | 1.6 U                                    |
| n-Nitrosodiphenylamine                 | 11  | 11                                                     | 0.23                                                | 0.33 U                                              | 0.29                                                | 0.31 U                                              | 1.4 U                                    | 1.2 U                                    | 1.8 U                                    | 1.3 U                                    | 1.6 U                                    |
| Pesticides/PCBs                        |     |                                                        |                                                     |                                                     |                                                     |                                                     |                                          |                                          |                                          |                                          |                                          |
| Total PCBs                             | 12  | 65                                                     | 8.4                                                 | 20 J                                                | 6.22                                                | 4.4                                                 | 13                                       | 51                                       | 15                                       | 23                                       | 9.9 J                                    |
| lonizable Organic Compounds (ug/Kg dw) |     |                                                        |                                                     |                                                     |                                                     |                                                     |                                          |                                          |                                          |                                          |                                          |
| Phenol                                 | 420 | 1,200                                                  | 110                                                 | 59 U                                                | 58 U                                                | 62 U                                                | 40                                       | 64                                       | 48                                       | 19 U                                     | 19 UJ                                    |
| 2-Methylphenol                         | 63  | 63                                                     | 6.4 U                                               | 6.4 U                                               | 6.6 U                                               | 6.2 U                                               | 20 UJ                                    | 20 U                                     | 20 UJ                                    | 19 U                                     | 19 UJ                                    |
| 4-Methylphenol                         | 670 | 670                                                    | 58 U                                                | 59 U                                                | 58 U                                                | 62 U                                                | 20 UJ                                    | 51                                       | 47                                       | 19 U                                     | 19 UJ                                    |
| 2,4-Dimethylphenol                     | 29  | 29                                                     | 6.4 U                                               | 6.4 U                                               | 6.6 U                                               | 6.2 U                                               | 20 UJ                                    | 20 U                                     | 20 UJ                                    | 19 U                                     | 19 UJ                                    |
| Pentachlorophenol                      | 360 | 690                                                    | 32 U                                                | 32 U                                                | 33 U                                                | 31 U                                                |                                          |                                          |                                          |                                          | _                                        |
| Benzyl alcohol                         | 57  | 73                                                     | 32 U                                                | 32 U                                                | 33 U                                                | 31 UJ                                               | 27 J                                     | 20 UJ                                    | 20 UJ                                    | 19 UJ                                    | 19 UJ                                    |
| Benzoic acid                           | 650 | 650                                                    | 770                                                 | 64 U                                                | 66 U                                                | 620 U                                               | 200 UJ                                   | 200 UJ                                   | 200 UJ                                   | 190 UJ                                   | 190 UJ                                   |

|                                           | <u> </u>   | Location                      | SD-216                | SD-217                | SD-315                | SD-336                | SD-345                |
|-------------------------------------------|------------|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                           |            | Sample ID                     | SD-216-0000           | SD-217-0000           | SD-315-0000           | SD-336-0000           | SD-345-0000           |
|                                           |            | Sample Date<br>Depth (ft bgs) | 08/26/04<br>0 to 0.33 | 08/27/04<br>0 to 0.33 | 08/17/04<br>0 to 0.33 | 08/27/04<br>0 to 0.33 | 08/26/04<br>0 to 0.33 |
|                                           | Sediment I | /lanagement                   |                       |                       |                       |                       |                       |
|                                           | Stan       | dards                         |                       |                       |                       |                       |                       |
| Conventionals (% dw)                      | SQS        | CSL                           |                       |                       |                       |                       |                       |
| Total Organic Carbon                      |            |                               | 2.02                  | 1.84                  | 1.57                  | 1.55                  | 1.24                  |
| -                                         |            |                               | 2.02                  | 1.04                  | 1.37                  | 1.00                  | 1.24                  |
| Metals (mg/Kg dw)                         | F-7        | 00                            |                       |                       | 40                    |                       |                       |
| Arsenic                                   | 57         | 93                            |                       |                       | 12                    |                       |                       |
| Cadmium                                   | 5.1        | 6.7                           |                       |                       | 0.54                  |                       |                       |
| Chromium                                  | 260        | 270                           |                       |                       | 77.7                  |                       |                       |
| Copper                                    | 390        | 390                           |                       |                       | 68.8                  |                       |                       |
| Lead                                      | 450        | 530                           |                       |                       | 67.6                  |                       |                       |
| Mercury                                   | 0.41       | 0.59                          |                       |                       | 0.09 J                |                       |                       |
| Silver                                    | 6.1        | 6.1                           |                       |                       | 0.99 U                |                       |                       |
| Zinc                                      | 410        | 960                           |                       |                       | 133                   |                       |                       |
| Nonionizable Organic Compounds (mg/Kg OC) |            |                               |                       |                       |                       |                       |                       |
| Aromatic Hydrocarbons                     |            |                               |                       |                       |                       |                       |                       |
| Total LPAHs                               | 370        | 780                           |                       |                       | 59                    |                       |                       |
| Naphthalene                               | 99         | 170                           |                       |                       | 1 U                   |                       |                       |
| Acenaphthylene                            | 66         | 66                            |                       |                       | 1.5                   |                       |                       |
| Acenaphthene                              | 16         | 57                            |                       |                       | 2.8                   |                       |                       |
| Fluorene                                  | 23         | 79                            |                       |                       | 3.2                   |                       |                       |
| Phenanthrene                              | 100        | 480                           |                       |                       | 43                    |                       |                       |
| Anthracene                                | 220        | 1,200                         |                       |                       | 8.3                   |                       |                       |
| 2-Methylnaphthalene                       | 38         | 64                            |                       |                       | 1 U                   |                       |                       |
| Total HPAHs                               | 960        | 5,300                         |                       |                       | 600                   |                       |                       |
| Fluoranthene                              | 160        | 1,200                         |                       |                       | 150                   |                       |                       |
| Pyrene                                    | 1,000      | 1,400                         |                       |                       | 110                   |                       |                       |
| Benzo(a)anthracene                        | 110        | 270                           |                       |                       | 42                    |                       |                       |
| Chrysene                                  | 110        | 460                           |                       |                       | 61                    |                       |                       |
| Total Benzofluoranthenes                  | 230        | 450                           |                       |                       | 130                   |                       |                       |
| Benzo(a)pyrene                            | 99         | 210                           |                       |                       | 50                    |                       |                       |
| Indeno(1,2,3-cd)pyrene                    | 34         | 88                            |                       |                       | 25                    |                       |                       |
| Dibenzo(a,h)anthracene                    | 12         | 33                            |                       |                       | 9.6                   |                       |                       |
| Benzo(g,h,i)perylene                      | 31         | 78                            |                       |                       | 20                    |                       |                       |
| Chlorinated Benzenes                      |            |                               |                       |                       |                       |                       |                       |
| 1,2-Dichlorobenzene                       | 2.3        | 2.3                           |                       |                       | 1 U                   |                       |                       |
| 1,4-Dichlorobenzene                       | 3.1        | 9                             |                       |                       | 1 U                   |                       |                       |
| 1,2,4-Trichlorobenzene                    | 0.81       | 1.8                           |                       |                       | 1 U                   |                       |                       |
| Hexachlorobenzene                         | 0.38       | 2.3                           |                       |                       | 1 U                   |                       |                       |
| Phthalates                                |            |                               |                       |                       |                       |                       |                       |
| Dimethyl phthalate                        | 53         | 53                            |                       |                       | 2.2                   |                       |                       |
| Diethyl phthalate                         | 61         | 110                           |                       |                       | 1 U                   |                       |                       |
| Di-n-butyl phthalate                      | 220        | 1,700                         |                       |                       | 1 U                   |                       |                       |
| Butyl benzyl phthalate                    | 4.9        | 64                            |                       |                       | 8.9                   |                       |                       |
| Bis(2-ethylhexyl)phthalate                | 47         | 78                            |                       |                       | 39                    |                       |                       |
| Di-n-octyl phthalate                      | 58         | 4,500                         |                       |                       | 1 U                   |                       |                       |

|                                        |     | Location<br>Sample ID         | SD-216<br>SD-216-0000 | SD-217<br>SD-217-0000 | SD-315<br>SD-315-0000 | SD-336<br>SD-336-0000 | SD-345<br>SD-345-0000 |
|----------------------------------------|-----|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                        |     | Sample Date<br>Depth (ft bgs) |                       | 08/27/04<br>0 to 0.33 | 08/17/04<br>0 to 0.33 | 08/27/04<br>0 to 0.33 | 08/26/04<br>0 to 0.33 |
|                                        |     | Management<br>dards<br>CSL    |                       |                       |                       |                       |                       |
| Miscellaneous                          |     |                               |                       |                       |                       |                       |                       |
| Dibenzofuran                           | 15  | 58                            |                       |                       | 2                     |                       |                       |
| Hexachlorobutadiene                    | 3.9 | 6.2                           |                       |                       | 1 U                   |                       |                       |
| n-Nitrosodiphenylamine                 | 11  | 11                            |                       |                       | 1 U                   |                       |                       |
| Pesticides/PCBs                        |     |                               |                       |                       |                       |                       |                       |
| Total PCBs                             | 12  | 65                            | 18 J                  | 15.9 J                | 17 J                  | 16 J                  | 14.7 J                |
| Ionizable Organic Compounds (ug/Kg dw) |     |                               |                       |                       |                       |                       |                       |
| Phenol                                 | 420 | 1,200                         |                       |                       | 28                    |                       |                       |
| 2-Methylphenol                         | 63  | 63                            |                       |                       | 20 U                  |                       |                       |
| 4-Methylphenol                         | 670 | 670                           |                       |                       | 20 U                  |                       |                       |
| 2,4-Dimethylphenol                     | 29  | 29                            |                       |                       | 20 U                  |                       |                       |
| Pentachlorophenol                      | 360 | 690                           | _                     | _                     | 100 U                 |                       |                       |
| Benzyl alcohol                         | 57  | 73                            | _                     | _                     | 20 U                  |                       |                       |
| Benzoic acid                           | 650 | 650                           |                       |                       | 200 U                 |                       |                       |

#### Notes:

- 1. Data qualifiers are as follows.
- J = Analyte was positively identified and detected; however, concentration is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
- U = Analyte not detected at quantitation limit indicated.
- UJ = Analyte not detected at the indicated quantitation limit, which is estimated.
- $2. \ \textit{\textbf{Cell shading}} \ \text{indicates a value that exceeds the Sediment Management Standards (SMS)}.$



Value exceeds the SMS Sediment Quality Standard Value exceeds the SMS Cleanup Screening Level

3. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%.

#### Abbreviations:

CSL = Cleanup Screening Level mg/kg = milligrams per kilogram

OC = organic carbon

PCBs = polychlorinated biphenyls

SQS = Sediment Quality Standard

TOC = total organic carbon

μg/kg = micrograms per kilogram

dw = dry weight

ft bgs = feet below ground or sediment surface

|                                  |            | Location       | AN-043            | AN-043         | AN-043           | AN-044            | AN-044        | AN-044    | AN-044          | DR220            | DR220         | DU9120XX     | LDW-SC50a    |
|----------------------------------|------------|----------------|-------------------|----------------|------------------|-------------------|---------------|-----------|-----------------|------------------|---------------|--------------|--------------|
|                                  |            |                | AN043-SC-080211-A |                |                  | AN044-SC-080211-A |               |           |                 | SD-DR220-0000A   | SD-DR220-0020 | DUWO&M91S012 | LDW-SC50-0-1 |
|                                  |            |                |                   |                | 7                |                   | 7             |           | 7001.00.00211.2 | 02 211220 000011 | 02 2220 0020  | 201100012    |              |
|                                  |            |                |                   |                |                  |                   |               |           |                 |                  |               |              | I            |
|                                  |            | Sample Date    | 2/11/2008         | 2/11/2008      | 2/11/2008        | 2/11/2008         | 2/11/2008     | 2/11/2008 | 2/12/2008       | 9/23/1998        | 9/23/1998     | 8/6/1991     | 2/24/2006    |
|                                  | ı          | Depth (ft bgs) | 0 to 1            | 1 to 2         | 2 to 3           | 0 to 1            | 1 to 2        | 2 to 3.5  | 1 to 2          | 0 to 2           | 2 to 4        | 0 to 3       | 0 to 1       |
|                                  |            |                |                   |                |                  |                   |               |           |                 |                  |               |              | i            |
|                                  | Sediment M | lanagement     |                   |                |                  |                   |               |           |                 |                  |               |              | ı            |
|                                  |            | dards          |                   |                |                  |                   |               |           |                 |                  |               |              | İ            |
|                                  | SQS        | CSL            |                   |                |                  |                   |               |           |                 |                  |               |              | <u>i</u>     |
| Conventionals (% dw)             |            |                |                   |                |                  |                   |               |           |                 |                  |               |              | ı            |
| Total Organic Carbon             |            |                | 1.06              | 2.86           | 3.03             | 2.30              | 2.79          | 1.05      | 2.17            | 2.42             | 2.37          | 1.5          | 0.63         |
| Metals (mg/Kg dw)                |            |                |                   |                |                  |                   |               |           |                 |                  |               |              |              |
| Arsenic                          | 57         | 93             | 7.2               | 10.9           | 10.2             | 14.3              | 23.2          | 4.3       | 21.6            | 10               | 10            | 9.8          | 707          |
| Cadmium                          | 5.1        | 6.7            | 0.6               | 16.9           | 0.4              | 1.6               | 1.5           | 0.3 U     | 1.6             | 0.35             | 0.48          | 0.46         | 0.3 U        |
| Chromium                         | 260        | 270            | 30 J              | 514 J          | 19 J             | 67.9              | 37.4          | 13.1      | 40.4            | 30               | 28            |              | 28.5         |
| Copper                           | 390        | 390            | 36 J              | 0.8 J          | 0.6 J            | 68.8              | 46.9          | 18.3      | 51.5            | 47               | 46            | 47           | 36.1         |
| Lead                             | 450        | 530            | 1 J               | 2530 J         | 1 J              | 161               | 52            | 7         | 63              | 25               | 33            | 23           | 47           |
| Mercury                          | 0.41       | 0.59           | 0.09              | 1.51           | 0.09             | 0.34              | 0.24          | 0.06      | 0.27            | 0.2 J            | 0.2 J         | 0.1          | 0.2          |
| Silver                           | 6.1        | 6.1            | 0.3 U             | 2.3            | 0.8              | 1.4 J             | 1.7 J         | 0.3 UJ    | 1.8 J           | 0.22             | 0.41          | 0.43         | 0.4 U        |
| Zinc                             | 410        | 960            | 112               | 1250           | 54               | 167               | 100           | 37        | 108             | 100              | 110           | 130          | 161          |
| Nonionizable Organic Compounds ( | mg/Kg OC)  |                |                   |                |                  |                   |               |           |                 |                  |               |              |              |
| Aromatic Hydrocarbons            |            |                |                   |                |                  |                   |               |           |                 |                  |               |              |              |
| Total LPAHs                      | 370        | 780            | 19 J              | 26 J           | 3.4 J            | 4.65 J            | 2 J           | 1.9 J     | 5.39 J          | 2.5              | 8.9           | 19           | 95 J         |
| Naphthalene                      | 99         | 170            | 1.9 J             | 3.5 J          | 0.66 J           | 0.43 J            | 0.43 J        |           | 1.1 J           | 0.83 U           | 0.84 U        | 1.9 U        | 9.5 U        |
| Acenaphthylene                   | 66         | 66             |                   | 3.5 UJ         | 0.66 J           |                   |               |           | 0.55 J          | 0.83 U           | 0.84 U        | 1.9 U        | 9.5 U        |
| Acenaphthene                     | 16         | 57             | 1.9 J             | 11             | 0.4 J            |                   |               |           | 0.55            | 0.83 U           | 0.84 U        | 1.9 U        | 6.5 J        |
| Fluorene                         | 23         | 79             | 1.3 J             | 4.2            | 0.46 J           | 0.43 J            | 4.0           | 4.0.1     | 0.55 J          | 0.83 U           | 0.84 U        | 1.9 U        | 6.5 J        |
| Phenanthrene                     | 100        | 480            | 11 J<br>2.6 J     | 3.5 J<br>3.5 J | 0.66 J<br>0.56 J | 2.6<br>1.2        | 1.2<br>0.36 J | 1.9 J     | 2.3<br>0.92 J   | 2.5<br>0.83 U    | 7.6           | 9.3<br>1.9 U | 67           |
| Anthracene 2-Methylnaphthalene   | 220<br>38  | 1,200<br>64    | 2.6 J<br>1 J      | 3.5 J          | 0.33 J           | 0.57 J            | 0.36 J        |           | 0.92 J<br>0.6 J | 0.83 U           | 1.3<br>0.84 U | 1.9 U        | 16<br>8.9 J  |
| Total HPAHs                      | 960        | 5,300          | 92 J              | 3.5 J<br>381 J | 0.33 J<br>11 J   | 40                | 11.1 J        | 4.3       | 19 J            | 33               | 89            | 200          | 450          |
| Fluoranthene                     | 160        | 1,200          | 29                | 160            | 4.3              | 11                | 3.2           | 2.4       | 5.5             | 5.8              | 15            | 17           | 120          |
| Pyrene                           | 1,000      | 1,400          | 1.9 J             | 98             | 2.8              | 8.3               | 2.5           | 1.9       | 4.4             | 7                | 19            | 25           | 79           |
| Benzo(a)anthracene               | 110        | 270            | 1.9 J             | 3.5 J          | 0.66 J           | 3.1               | 0.82 J        | 1.5       | 0.92 J          | 2.5              | 7.2           | 8            | 44           |
| Chrysene                         | 110        | 460            | 1.9 J             | 49 J           | 0.92 J           | 4.3               | 1.1           |           | 1.9             | 3.7              | 9.7           | 11           | 52           |
| Total Benzofluoranthenes         | 230        | 450            | 26                | 42.3           | 1.6 J            | 7.83              | 1.7           |           | 3.1             | 6.6              | 17            | 19           | 78           |
| Benzo(a)pyrene                   | 99         | 210            | 10                | 18             | 0.66 J           | 3                 | 0.72 J        |           | 1.3             | 2.9              | 8             | 8.7          | 41           |
| Indeno(1,2,3-cd)pyrene           | 34         | 88             | 3.9               | 4.2            |                  | 1.2               | 0.5 J         |           | 0.92 J          | 2.5              | 7.2           | 5.5          | 16           |
| Dibenzo(a,h)anthracene           | 12         | 33             | 1.9 J             | 1.4            |                  |                   |               |           |                 | 0.83 U           | 1.7           | 1.9 U        | 9.5 U        |
| Benzo(g,h,i)perylene             | 31         | 78             | 3.2               | 3.8            |                  | 1.2               | 0.61 J        |           | 1.2             | 2.1              | 5.5           | 4.9          | 12           |
| Chlorinated Benzenes             |            |                |                   |                |                  |                   |               |           |                 |                  |               |              |              |
| 1,2-Dichlorobenzene              | 2.3        | 2.3            |                   |                |                  |                   |               |           |                 | 0.83 U           | 0.84 U        | 0.27 U       | 0.95 U       |
| 1,4-Dichlorobenzene              | 3.1        | 9              |                   |                |                  |                   |               |           |                 | 0.83 U           | 0.84 U        | 0.27 U       | 0.95 U       |
| 1,2,4-Trichlorobenzene           | 0.81       | 1.8            |                   |                |                  |                   |               |           |                 | 0.83 U           | 0.84 U        | 0.56 U       | 0.57 J       |
| Hexachlorobenzene                | 0.38       | 2.3            |                   |                |                  |                   |               |           |                 | 0.83 U           | 0.84 U        | 1.1 U        | 0.95 U       |
| Phthalates                       |            |                |                   |                |                  |                   |               |           |                 |                  |               |              |              |
| Dimethyl phthalate               | 53         | 53             | 2.3               |                | 0.53 U           | 2.1               |               |           | 0.74 U          | 0.83 U           | 1.3           | 1.9 U        | 9.5 U        |
| Diethyl phthalate                | 61         | 110            |                   | 3.5 UJ         |                  |                   |               |           |                 | 0.83 U           | 0.84 U        | 1.9 U        | 9.5 U        |
| Di-n-butyl phthalate             | 220        | 1,700          | 1.9 J             | 3.5 J          |                  | 3.1               |               |           |                 | 0.83 U           | 0.84          | 1.9 U        | 9.5 U        |
| Butyl benzyl phthalate           | 4.9        | 64             | 5.4               |                | 0.53 U           | 10                |               |           | 0.74 U          | 0.83             | 2.1           | 1.9 U        | 3.8          |
| Bis(2-ethylhexyl)phthalate       | 47         | 78             | 31 J              | 38 J           |                  | 13                | 0.75          |           | 1.1             | 6.6              | 20            | 39           | 110          |
| Di-n-octyl phthalate             | 58         | 4,500          |                   | 3.5 UJ         |                  |                   |               |           |                 | 0.83 U           | 0.84 U        | 1.9 U        | 9.5 U        |

|                                |          | Location                      | AN-043            | AN-043              | AN-043              | AN-044              | AN-044              | AN-044                | AN-044              | DR220               | DR220               | DU9120XX           | LDW-SC50a           |
|--------------------------------|----------|-------------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|---------------------|---------------------|---------------------|--------------------|---------------------|
|                                |          | Sample ID                     | AN043-SC-080211-A | AN043-SC-080211-B   | AN043-SC-080211-C   | AN044-SC-080211-A   | AN044-SC-080211-B   | AN044-SC-080211-C     | AN094-SC-080211-B   | SD-DR220-0000A      | SD-DR220-0020       | DUWO&M91S012       | LDW-SC50-0-1        |
|                                |          | Sample Date<br>Depth (ft bgs) |                   | 2/11/2008<br>1 to 2 | 2/11/2008<br>2 to 3 | 2/11/2008<br>0 to 1 | 2/11/2008<br>1 to 2 | 2/11/2008<br>2 to 3.5 | 2/12/2008<br>1 to 2 | 9/23/1998<br>0 to 2 | 9/23/1998<br>2 to 4 | 8/6/1991<br>0 to 3 | 2/24/2006<br>0 to 1 |
|                                |          | Management<br>dards<br>CSL    |                   |                     |                     |                     |                     |                       |                     |                     |                     |                    |                     |
| Miscellaneous                  |          |                               |                   |                     |                     |                     |                     |                       |                     |                     |                     |                    |                     |
| Dibenzofuran                   | 15       | 58                            | 1.2 J             | 3.4 J               | 0.33 J              |                     |                     |                       |                     | 0.83 U              | 0.84 U              | 1.9 U              | 9.5 U               |
| Hexachlorobutadiene            | 3.9      | 6.2                           |                   |                     |                     |                     |                     |                       |                     | 0.83 U              | 0.84 U              | 1.9 U              | 0.95 UJ             |
| n-Nitrosodiphenylamine         | 11       | 11                            | 0.94 UJ           |                     |                     |                     |                     |                       |                     | 1.7 U               | 1.7 U               | 1.1 U              | 16 U                |
| Pesticides/PCBs                |          |                               |                   |                     |                     |                     |                     |                       |                     |                     |                     |                    |                     |
| Total PCBs                     | 12       | 65                            | 25                | 63                  | 1.8                 | 130                 | 17                  |                       | 17                  | 34                  | 9.7                 | 6.4                | 81                  |
| Ionizable Organic Compounds (u | g/Kg dw) |                               |                   |                     |                     |                     |                     |                       |                     |                     |                     |                    |                     |
| Phenol                         | 420      | 1,200                         |                   | 99 U                |                     | 28                  |                     | 25                    | 21                  | 20 U                | 80                  | 28 U               | 42 J                |
| 2-Methylphenol                 | 63       | 63                            |                   |                     |                     |                     |                     |                       |                     | 20 U                | 20 U                | 14 U               | 3 J                 |
| 4-Methylphenol                 | 670      | 670                           |                   | 67 J                |                     |                     |                     |                       | 17 J                | 20 U                | 20 U                | 28 U               | 60 U                |
| 2,4-Dimethylphenol             | 29       | 29                            |                   | 54 J                |                     |                     |                     |                       |                     | 20 U                | 20 U                | 14 U               | 6 UJ                |
| Pentachlorophenol              | 360      | 690                           |                   | 93 UJ               |                     |                     |                     |                       |                     | 100 UJ              | 100 UJ              | 84 U               | 30 U                |
| Benzyl alcohol                 | 57       | 73                            |                   | 99 U                |                     |                     |                     |                       |                     | 50 U                | 50 U                | 17 U               | 30 U                |
| Benzoic acid                   | 650      | 650                           |                   | 990 U               |                     | 130 J               |                     |                       |                     | 200 U               | 200 U               | 140 U              | 330 J               |

|                                |                                             | Location<br>Sample ID         | LDW-SC50a<br>LDW-SC50-1-2 | LDW-SC50a<br>LDW-SC50-2-2_8 | LDW-SC51<br>LDW-SC51-0-2 | LDW-SC51<br>LDW-SC51-0-0_5 | LDW-SC51<br>LDW-SC51-0_5-1 | LDW-SC51<br>LDW-SC51-1_5-2 | LDW-SC51<br>LDW-SC51-2-3_8 | LDW-SC51<br>LDW-SC51-3_8-5_8                     | SD-216<br>SD-216-0000 |
|--------------------------------|---------------------------------------------|-------------------------------|---------------------------|-----------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------------------|-----------------------|
|                                |                                             | Sample Date<br>Depth (ft bgs) | 2/24/2006<br>1 to 2       | 2/24/2006<br>2 to 2.8       | 2/22/2006<br>0 to 2      | 2/22/2006<br>0 to 0.5      | 2/22/2006<br>0.5 to 1      | 2/22/2006<br>1.5 to 2      | 2/22/2006<br>2 to 3.8      | 2/22/2006<br>3.8 to 5.8                          | 4/21/2004<br>0 to 1   |
|                                | Sediment Management<br>Standards<br>SQS CSL |                               |                           |                             |                          |                            |                            |                            |                            |                                                  |                       |
| Conventionals (% dw)           |                                             |                               |                           |                             |                          |                            |                            |                            |                            |                                                  |                       |
| Total Organic Carbon           |                                             |                               | 0.816                     | 1.18                        | 1.47                     | 1.61                       | 1.64                       | 0.643                      | 1.73                       | 0.615                                            | 1.61                  |
| Metals (mg/Kg dw)              |                                             |                               | 0.010                     | 1.10                        | 1.11                     | 1.01                       | 1.01                       | 0.010                      | 10                         | 0.010                                            | 1.01                  |
| Arsenic                        | 57                                          | 93                            | 281                       | 161                         | 25                       |                            |                            |                            | 55                         |                                                  |                       |
| Cadmium                        | 5.1                                         | 6.7                           | 0.3 U                     | 0.2 U                       | 0.7                      |                            |                            |                            | 1                          |                                                  | 0.6                   |
|                                | 260                                         | 270                           |                           |                             | 67.4                     |                            |                            |                            | 34.8                       |                                                  |                       |
| Coppor                         | 390                                         |                               | 24.3                      | 21.6                        |                          |                            |                            |                            |                            | <del> </del>                                     | 33.3                  |
| Copper                         |                                             | 390                           | 24.4                      | 24.9                        | 44.5                     |                            |                            |                            | 38.2                       | <del>                                     </del> | 51.8                  |
| Lead                           | 450                                         | 530                           | 22                        | 11                          | 76 J                     |                            |                            |                            | 41 J                       |                                                  | 33                    |
| Mercury                        | 0.41                                        | 0.59                          | 0.06 U                    | 0.07                        | 0.1 J                    |                            |                            |                            | 0.12 J                     | <u> </u>                                         | 0.12                  |
| Silver                         | 6.1                                         | 6.1                           | 0.4 U                     | 0.4 U                       | 1.1                      |                            |                            |                            | 0.4 U                      |                                                  | 0.6 U                 |
| Zinc                           | 410                                         | 960                           | 124                       | 108                         | 203                      |                            |                            |                            | 269                        |                                                  | 108                   |
| Nonionizable Organic Compounds | (mg/Kg OC)                                  |                               |                           |                             |                          |                            |                            |                            |                            |                                                  |                       |
| Aromatic Hydrocarbons          |                                             |                               |                           |                             |                          |                            |                            |                            |                            |                                                  |                       |
| Total LPAHs                    | 370                                         | 780                           | 17 J                      | 1.7                         | 120 J                    | 230                        | 82 J                       | 35 J                       | 37 J                       |                                                  |                       |
| Naphthalene                    | 99                                          | 170                           | 7.2 U                     | 1.7 U                       | 3.8 J                    | 14                         | 3.3 J                      | 9.6 U                      | 3.4 U                      |                                                  |                       |
| Acenaphthylene                 | 66                                          | 66                            | 7.2 U                     | 1.7 U                       | 4.1 U                    | 3.8 U                      | 3.7 U                      | 9.6 U                      | 3.4 U                      |                                                  |                       |
| Acenaphthene                   | 16                                          | 57                            | 7.2 U                     | 1.7 U                       | 26                       | 22                         | 11                         | 13                         | 3.6                        |                                                  |                       |
| Fluorene                       | 23                                          | 79                            | 7.2 U                     | 1.7 U                       | 10                       | 20                         | 6.7                        | 9.6 U                      | 3.1 J                      |                                                  |                       |
| Phenanthrene                   | 100                                         | 480                           | 12                        | 1.7                         | 62                       | 140                        | 51                         | 15                         | 25                         |                                                  |                       |
| Anthracene                     | 220                                         | 1,200                         | 5.6 J                     | 1.7 U                       | 14                       | 34                         | 9.8                        | 6.5 J                      | 4.7                        |                                                  |                       |
| 2-Methylnaphthalene            | 38                                          | 64                            | 7.2 U                     | 1.7 U                       | 4.1 U                    | 4.9                        | 3.7 U                      | 9.6 U                      | 3.4 U                      |                                                  |                       |
| Total HPAHs                    | 960                                         | 5,300                         | 120 J                     | 9.7 J                       | 430 J                    | 1000                       | 270                        | 210 J                      | 170                        |                                                  |                       |
| Fluoranthene                   | 160                                         | 1,200                         | 25                        | 3.4                         | 140                      | 250                        | 73                         | 110                        | 47                         |                                                  |                       |
| Pyrene                         | 1,000                                       | 1,400                         | 17                        | 2.4                         | 82                       | 160                        | 55                         | 56                         | 34                         |                                                  |                       |
| Benzo(a)anthracene             | 110                                         | 270                           | 17                        | 1 J                         | 37                       | 99                         | 25                         | 11                         | 16                         |                                                  |                       |
| Chrysene                       | 110                                         | 460                           | 20                        | 1.2 J                       | 40                       | 120                        | 30                         | 10                         | 18                         |                                                  |                       |
| Total Benzofluoranthenes       | 230                                         | 450                           | 25                        | 1.8 J                       | 68                       | 190                        | 47                         | 16 J                       | 28                         |                                                  |                       |
| Benzo(a)pyrene                 | 99                                          | 210                           | 11                        | 1.7 U                       | 33                       | 99                         | 24                         | 6.5 J                      | 15                         |                                                  |                       |
| Indeno(1,2,3-cd)pyrene         | 34                                          | 88                            | 4.3 J                     | 1.7 UJ                      | 15                       | 43                         | 9.8                        | 9.6 U                      | 6.4                        |                                                  |                       |
| Dibenzo(a,h)anthracene         | 12                                          | 33                            | 7.2 U                     | 1.7 U                       | 3.3 J                    | 9.9                        | 2.3                        | 0.58 J                     | 3.4 U                      |                                                  |                       |
| Benzo(g,h,i)perylene           | 31                                          | 78                            | 7.2 U                     | 1.7 U                       | 11                       | 37                         | 7.9                        | 9.6 U                      | 4.5                        |                                                  |                       |
| Chlorinated Benzenes           |                                             |                               | = 0                       | 0                           |                          | -                          | 1.12                       |                            |                            | <del>                                     </del> |                       |
| 1,2-Dichlorobenzene            | 2.3                                         | 2.3                           | 0.72 U                    | 0.51 U                      | 0.33 J                   | 0.38 U                     | 0.29 J                     | 0.96                       | 1.2                        | †                                                |                       |
| 1,4-Dichlorobenzene            | 3.1                                         | 9                             | 0.72 U                    | 0.51 U                      | 0.37 J                   | 0.38 U                     | 0.23 U                     | 1.4                        | 0.64                       | <del> </del>                                     |                       |
| 1,2,4-Trichlorobenzene         | 0.81                                        | 1.8                           | 0.5 J                     | 0.51 UJ                     | 0.41 U                   | 0.38 UJ                    | 0.37 UJ                    | 0.96 UJ                    | 0.34 U                     | <del> </del>                                     |                       |
| Hexachlorobenzene              | 0.38                                        | 2.3                           | 0.72 U                    | 0.51 U                      | 0.41 U                   | 0.38 U                     | 0.37 U                     | 0.96 U                     | 0.34 U                     | <del> </del>                                     |                       |
| Phthalates                     | 0.00                                        | 2.0                           | 0.12                      | 0.01                        | 0.71                     | 0.00                       | 0.07                       | 0.00                       | 0.07 0                     |                                                  |                       |
| Dimethyl phthalate             | 53                                          | 53                            | 7.2 U                     | 1.7 U                       | 4.1 U                    | 3.8 U                      | 3.7 U                      | 9.6 U                      | 3.4 U                      | <del> </del>                                     |                       |
| Diethyl phthalate              | 61                                          | 110                           | 7.2 U                     | 1.7 U                       | 4.1 U                    | 3.8 U                      | 3.7 U                      | 9.6 U                      | 3.4 U                      | <del> </del>                                     |                       |
| , ·                            | 220                                         | 1,700                         | 7.2 U                     | 1.7 U                       | 4.1 U                    | 2.7 J                      | 3.7 U<br>3.1 J             | 9.6 U                      | 3.4 U                      | <del> </del>                                     |                       |
| Di-n-butyl phthalate           |                                             |                               |                           |                             |                          |                            |                            |                            |                            | <del>                                     </del> |                       |
| Butyl benzyl phthalate         | 4.9                                         | 64                            | 1.7                       | 0.56                        | 2.4                      | 2.7                        | 2.1                        | 2.6                        | 1.7                        |                                                  |                       |
| Bis(2-ethylhexyl)phthalate     | 47                                          | 78                            | 7.8                       | 5.3                         | 33                       | 60                         | 110                        | 12                         | 4.4                        | <u> </u>                                         |                       |
| Di-n-octyl phthalate           | 58                                          | 4,500                         | 7.2 U                     | 1.7 U                       | 4.1 U                    | 3.8 U                      | 3.7 U                      | 9.6 U                      | 3.4 U                      |                                                  |                       |

|                                |          | Location<br>Sample ID         | LDW-SC50a<br>LDW-SC50-1-2 | LDW-SC50a<br>LDW-SC50-2-2_8 | LDW-SC51<br>LDW-SC51-0-2 | LDW-SC51<br>LDW-SC51-0-0_5 | LDW-SC51<br>LDW-SC51-0_5-1 | LDW-SC51<br>LDW-SC51-1_5-2 | LDW-SC51<br>LDW-SC51-2-3_8 | LDW-SC51<br>LDW-SC51-3_8-5_8 | SD-216<br>SD-216-0000 |
|--------------------------------|----------|-------------------------------|---------------------------|-----------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------|-----------------------|
|                                |          | Sample Date<br>Depth (ft bgs) | 2/24/2006<br>1 to 2       | 2/24/2006<br>2 to 2.8       | 2/22/2006<br>0 to 2      | 2/22/2006<br>0 to 0.5      | 2/22/2006<br>0.5 to 1      | 2/22/2006<br>1.5 to 2      | 2/22/2006<br>2 to 3.8      | 2/22/2006<br>3.8 to 5.8      | 4/21/2004<br>0 to 1   |
|                                |          | Management<br>dards<br>CSL    |                           |                             |                          |                            |                            |                            |                            |                              |                       |
| Miscellaneous                  |          |                               |                           |                             |                          |                            |                            |                            |                            |                              |                       |
| Dibenzofuran                   | 15       | 58                            | 7.2 U                     | 1.7 U                       | 16                       | 14                         | 5.4                        | 14                         | 3.4 U                      |                              |                       |
| Hexachlorobutadiene            | 3.9      | 6.2                           | 0.72 U                    | 0.51 U                      | 0.41 U                   | 0.38 U                     | 0.37 U                     | 0.96 U                     | 0.34 U                     |                              |                       |
| n-Nitrosodiphenylamine         | 11       | 11                            | 3.7 U                     | 1.8 U                       | 4.6 U                    | 0.38 U                     | 0.37 U                     | 0.96 U                     | 3.9 U                      |                              |                       |
| Pesticides/PCBs                |          |                               |                           |                             |                          |                            |                            |                            |                            |                              |                       |
| Total PCBs                     | 12       | 65                            | 96                        | 6.4 J                       | 88                       |                            |                            |                            | 40                         | 0.63 U                       | 3.9 J                 |
| Ionizable Organic Compounds (u | g/Kg dw) |                               |                           |                             |                          |                            |                            |                            |                            |                              |                       |
| Phenol                         | 420      | 1,200                         | 59 U                      | 13 J                        | 60 U                     | 96 U                       | 60 U                       | 62 U                       | 59 U                       |                              |                       |
| 2-Methylphenol                 | 63       | 63                            | 5.9 U                     | 6 U                         | 6 UJ                     | 21 J                       | 6 UJ                       | 6.2 UJ                     | 5.9 UJ                     |                              |                       |
| 4-Methylphenol                 | 670      | 670                           | 59 U                      | 20 U                        | 60 U                     | 61 U                       | 60 U                       | 62 U                       | 59 U                       |                              |                       |
| 2,4-Dimethylphenol             | 29       | 29                            | 5.9 UJ                    | 6 UJ                        | 6 UJ                     | 6.1 UJ                     | 6 UJ                       | 6.2 UJ                     | 9.5 J                      |                              |                       |
| Pentachlorophenol              | 360      | 690                           | 30 U                      | 30 U                        | 30 U                     | 30 U                       | 30 U                       | 31 U                       | 30 U                       |                              |                       |
| Benzyl alcohol                 | 57       | 73                            | 30 U                      | 30 U                        | 18 J                     | 180                        | 30 U                       | 31 U                       | 21 J                       |                              |                       |
| Benzoic acid                   | 650      | 650                           | 130 UJ                    | 100 UJ                      | 90                       | 610 U                      | 600 U                      | 620 U                      | 68                         |                              |                       |

|                                | Location                                    | SD-216              | SD-216                                         | SD-216                                         | SD-216                                         | SD-216                | SD-216                                         | SD-216                | SD-217                | SD-217                | SD-217                | SD-217                |
|--------------------------------|---------------------------------------------|---------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                | Sample ID                                   | SD-216-0010         | SD-216-0020                                    | SD-216-0030                                    | SD-216-0040                                    | SD-216-0050           | SD-216-0060                                    | SD-216-0070           | SD-217-0000           | SD-217-0010           | SD-217-0020           | SD-217-0030           |
|                                | Sample Date<br>Depth (ft bgs)               | 4/21/2004<br>1 to 2 | 4/21/2004<br>2 to 3                            | 4/21/2004<br>3 to 4                            | 4/21/2004<br>4 to 5                            | 4/21/2004<br>5 to 5.9 | 4/21/2004<br>6 to 7                            | 4/21/2004<br>7 to 7.7 | 4/22/2004<br>0 to 0.9 | 4/22/2004<br>1 to 1.9 | 4/22/2004<br>2 to 2.9 | 4/22/2004<br>3 to 3.7 |
|                                | Sediment Management<br>Standards<br>SQS CSL |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Conventionals (% dw)           | 332                                         |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Total Organic Carbon           |                                             | 1.58                | 1.43                                           | 1.33                                           | 1.13                                           | 1.02                  | 1.09                                           | 0.96                  | 1.73                  | 1.51                  | 1.15                  | 1.09                  |
| Metals (mg/Kg dw)              |                                             |                     |                                                |                                                |                                                | -                     |                                                |                       |                       | -                     | -                     |                       |
| Arsenic                        | 57 93                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Cadmium                        | 5.1 6.7                                     | 1.5                 |                                                |                                                |                                                |                       |                                                |                       | 0.7                   | 0.6                   |                       |                       |
| Chromium                       | 260 270                                     | 49.1                |                                                |                                                |                                                |                       |                                                |                       | 143 J                 | 37.4 J                |                       |                       |
| Copper                         | 390 390                                     | 80.8                | <u> </u>                                       | <u> </u>                                       | <u> </u>                                       |                       | <u> </u>                                       |                       | 69.5                  | 72.4                  |                       |                       |
| Lead                           | 450 530                                     | 119                 |                                                |                                                |                                                |                       |                                                |                       | 97                    | 106                   |                       |                       |
| Mercury                        | 0.41 0.59                                   | 0.16                | 1                                              | 1                                              | 1                                              |                       | 1                                              |                       | 0.16                  | 0.13                  |                       |                       |
| Silver                         | 6.1 6.1                                     | 1.6                 |                                                |                                                |                                                |                       |                                                |                       | 1.3                   | 1.5                   |                       |                       |
| Zinc                           | 410 960                                     | 172                 |                                                |                                                |                                                |                       |                                                |                       | 150                   | 141                   |                       |                       |
| Nonionizable Organic Compounds |                                             |                     | 1                                              | 1                                              | 1                                              |                       | 1                                              |                       |                       |                       |                       |                       |
| Aromatic Hydrocarbons          | (ilig/itg 55)                               |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Total LPAHs                    | 370 780                                     |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Naphthalene                    | 99 170                                      |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Acenaphthylene                 | 66 66                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Acenaphthene                   | 16 57                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Fluorene                       | 23 79                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Phenanthrene                   | 100 480                                     |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Anthracene                     | 220 1,200                                   |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| 2-Methylnaphthalene            | 38 64                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Total HPAHs                    | 960 5,300                                   |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Fluoranthene                   | 160 1,200                                   |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Pyrene                         | 1,000 1,400                                 |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Benzo(a)anthracene             | 110 270                                     |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Chrysene                       | 110 460                                     |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Total Benzofluoranthenes       | 230 450                                     |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Benzo(a)pyrene                 | 99 210                                      |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Indeno(1,2,3-cd)pyrene         | 34 88                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Dibenzo(a,h)anthracene         | 12 33                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Benzo(g,h,i)perylene           | 31 78                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Chlorinated Benzenes           |                                             |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| 1,2-Dichlorobenzene            | 2.3 2.3                                     |                     | 1                                              | 1                                              | 1                                              |                       | 1                                              |                       | 1                     |                       |                       |                       |
| 1,4-Dichlorobenzene            | 3.1 9                                       |                     | †                                              | †                                              | †                                              | Ì                     | †                                              |                       | <u> </u>              |                       |                       |                       |
| 1,2,4-Trichlorobenzene         | 0.81 1.8                                    |                     | 1                                              | 1                                              | 1                                              |                       | 1                                              |                       | 1                     |                       |                       |                       |
| Hexachlorobenzene              | 0.38 2.3                                    |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Phthalates                     | 1 1                                         |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Dimethyl phthalate             | 53 53                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Diethyl phthalate              | 61 110                                      |                     | <u>†                                      </u> | <u>†                                      </u> | <u>†                                      </u> |                       | <u>†                                      </u> |                       | <u> </u>              |                       |                       |                       |
| Di-n-butyl phthalate           | 220 1,700                                   |                     | †                                              | †                                              | †                                              | Ì                     | †                                              |                       | <u> </u>              |                       |                       |                       |
| Butyl benzyl phthalate         | 4.9 64                                      |                     | 1                                              | 1                                              | 1                                              |                       | 1                                              |                       | 1                     |                       |                       |                       |
| Bis(2-ethylhexyl)phthalate     | 47 78                                       |                     |                                                |                                                |                                                |                       |                                                |                       |                       |                       |                       |                       |
| Di-n-octyl phthalate           | 58 4,500                                    |                     | †                                              | †                                              | †                                              | 1                     | †                                              |                       | †                     |                       | 1                     |                       |

|                               |             | T                           |             |             |             |             |             |             |             |             |             |             |             |
|-------------------------------|-------------|-----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                               |             | Location                    | SD-216      | SD-217      | SD-217      | SD-217      | SD-217      |
|                               |             | Sample ID                   | SD-216-0010 | SD-216-0020 | SD-216-0030 | SD-216-0040 | SD-216-0050 | SD-216-0060 | SD-216-0070 | SD-217-0000 | SD-217-0010 | SD-217-0020 | SD-217-0030 |
|                               |             |                             |             |             |             |             |             |             |             |             |             |             |             |
|                               |             |                             |             |             |             |             |             |             |             |             |             |             |             |
|                               |             | Sample Date                 | 4/21/2004   | 4/21/2004   | 4/21/2004   | 4/21/2004   | 4/21/2004   | 4/21/2004   | 4/21/2004   | 4/22/2004   | 4/22/2004   | 4/22/2004   | 4/22/2004   |
|                               |             | Depth (ft bgs)              | 1 to 2      | 2 to 3      | 3 to 4      | 4 to 5      | 5 to 5.9    | 6 to 7      | 7 to 7.7    | 0 to 0.9    | 1 to 1.9    | 2 to 2.9    | 3 to 3.7    |
|                               |             | /lanagement<br>dards<br>CSL |             |             |             |             |             |             |             |             |             |             |             |
|                               | <b>ડ</b> પડ | USL                         |             |             |             |             |             |             |             |             |             |             |             |
| Miscellaneous                 |             |                             |             |             |             |             |             |             |             |             |             |             |             |
| Dibenzofuran                  | 15          | 58                          |             |             |             |             |             |             |             |             |             |             |             |
| Hexachlorobutadiene           | 3.9         | 6.2                         |             |             |             |             |             |             |             |             |             |             |             |
| n-Nitrosodiphenylamine        | 11          | 11                          |             |             |             |             |             |             |             |             |             |             |             |
| Pesticides/PCBs               |             |                             |             |             |             |             |             |             |             |             |             |             |             |
| Total PCBs                    | 12          | 65                          | 15          | 37 J        | 74          | 42          | 24          | 120         | 95          | 23          | 46          | 24          | 42          |
| onizable Organic Compounds (u | g/Kg dw)    |                             |             |             |             |             |             |             |             |             |             |             |             |
| Phenol                        | 420         | 1,200                       |             |             |             |             |             |             |             |             |             |             |             |
| 2-Methylphenol                | 63          | 63                          |             |             |             |             |             |             |             |             |             |             |             |
| 4-Methylphenol                | 670         | 670                         | _           |             |             |             |             |             |             |             |             |             |             |
| 2,4-Dimethylphenol            | 29          | 29                          |             |             |             |             |             |             |             |             |             |             |             |
| Pentachlorophenol             | 360         | 690                         |             |             |             |             |             |             |             |             |             |             | _           |
| Benzyl alcohol                | 57          | 73                          |             |             |             |             |             |             |             |             |             |             |             |
| Benzoic acid                  | 650         | 650                         |             |             |             |             |             |             |             |             |             |             |             |

#### Notes:

- 1. Data qualifiers are as follows.
  - J = Analyte was positively identified and detected; however, concentration is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
- U = Analyte not detected at quantitation limit indicated.
- UJ = Analyte not detected at the indicated quantitation limit, which is estimated.
- 2. Cell shading indicates a value that exceeds the Sediment Management Standards (SMS).
  - Value exceeds the SMS Sediment Quality Standard
    Value exceeds the SMS Cleanup Screening Level
- 3. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%.
- 4. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%. If TOC is less than 0.5% or greater than 4% then the result is compared to the dry weight equivalent values for the SQS and CSL (typically the Lowest Apparent Effects Threshold (LAET) and the 2nd Lowest Apparent Effects Threshold (2LAET), respectively).

#### Abbreviations:

dw = dry weight

CSL = Cleanup Screening Level mg/kg = milligrams per kilogram OC = organic carbon PCBs = polychlorinated biphenyls SQS = Sediment Quality Standard TOC = total organic carbon μg/kg = micrograms per kilogram

ft bgs = feet below ground or sediment surface LAET=Lowest Apparent Effects Threshold

#### TABLE 3 PREVIOUS SEDIMENT CORE SAMPLE ANALYTICAL RESULTS- DRY WEIGHT BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                     |        | Location<br>Sample ID                    | AN-043<br>AN043-SC-080211-D | AN-043<br>AN043-SC-080211-E | AN-043<br>AN043-SC-080211-F | AN-044<br>AN044-SC-080211-D | AN-044<br>AN044-SC-080211-E | AN-044<br>AN044-SC-080211-F | LDW-SC50a<br>LDW-SC50-2_8-4 | LDW-SC51<br>LDW-SC51-1-1_5 |
|-------------------------------------|--------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|
|                                     |        | Sample Date<br>Depth (ft bgs)            | 2/11/08<br>3 to 4           | 2/11/08<br>4 to 5           | 2/11/08<br>5 to 6           | 2/11/08<br>3.5 to 4.5       | 2/11/08<br>4.5 to 5.5       | 2/11/08<br>5.5 to 6.5       | 2/24/06<br>2.8 to 4         | 2/22/06<br>1 to 1.5        |
|                                     | Stan   | Management<br>dards<br>quivalent)<br>CSL |                             |                             |                             |                             |                             |                             |                             |                            |
| Conventionals (%dw)                 |        |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Total Organic Carbon                |        |                                          | 0.061                       | 0.069                       | 0.076                       | 0.291                       | 0.125                       | 0.348                       | 0.129                       | 0.473                      |
| Metals (mg/Kgdw)                    |        |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Arsenic                             | 57     | 93                                       | 1.2                         | 1.2                         | 1.3                         | 2                           | 2.1                         | 1.9                         | 21                          |                            |
| Cadmium                             | 5.1    | 6.7                                      | 0.2 U                       |                            |
| Chromium                            | 260    | 270                                      | 7.5 J                       | 10.7 J                      | 12.2 J                      | 9.2                         | 9.1                         | 11.9                        | 11.8                        |                            |
| Copper                              | 390    | 390                                      | 0.6 J                       | 0.5 J                       | 0.6 J                       | 9.9                         | 10.1                        | 9.3                         | 9.4                         |                            |
| Lead                                | 450    | 530                                      | 1 J                         | 1 J                         | 1 J                         | 1                           | 1                           | 1                           | 2 U                         |                            |
| Mercury                             | 0.41   | 0.59                                     | 0.05 U                      | 0.04 U                      | 0.05 U                      | 0.04 U                      | 0.05 U                      | 0.04 U                      | 0.06 U                      |                            |
| Silver                              | 6.1    | 6.1                                      | 0.2 U                       | 0.2 U                       | 0.2 U                       | 0.2 UJ                      | 0.2 UJ                      | 0.2 UJ                      | 0.3 U                       |                            |
| Zinc                                | 410    | 960                                      | 21                          | 23                          | 24                          | 22                          | 23                          | 24                          | 47.7                        |                            |
| Nonionizable Organic Compounds (ug/ | (Kgdw) |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Aromatic Hydrocarbons               |        |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Total LPAHs                         | 5200   | 5200                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 430 J                      |
| Naphthalene                         | 2100   | 2100                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Acenaphthylene                      | 1300   | 1300                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Acenaphthene                        | 500    | 500                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 250                        |
| Fluorene                            | 540    | 540                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Phenanthrene                        | 1500   | 1500                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 120                        |
| Anthracene                          | 960    | 960                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 59 J                       |
| 2-Methylnaphthalene                 | 670    | 670                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Total HPAHs                         | 12000  | 17000                                    |                             |                             |                             |                             |                             |                             | 25 J                        | 1570 J                     |
| Fluoranthene                        | 1700   | 2500                                     |                             |                             |                             |                             |                             |                             | 14 J                        | 720                        |
| Pyrene                              | 2600   | 3300                                     |                             |                             |                             |                             |                             |                             | 11 J                        | 400                        |
| Benzo(a)anthracene                  | 1300   | 1600                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 130                        |
| Chrysene                            | 1400   | 2800                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 120                        |
| Total Benzofluoranthenes            | 3200   | 3600                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 141 J                      |
| Benzo(a)pyrene                      | 1600   | 1600                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 50 J                       |
| Indeno(1,2,3-cd)pyrene              | 600    | 690                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Dibenzo(a,h)anthracene              | 230    | 230                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 4.3 J                      |
| Benzo(g,h,i)perylene                | 670    | 720                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |

# TABLE 3 PREVIOUS SEDIMENT CORE SAMPLE ANALYTICAL RESULTS- DRY WEIGHT BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                       |      | Location<br>Sample ID                    | AN-043<br>AN043-SC-080211-D | AN-043<br>AN043-SC-080211-E | AN-043<br>AN043-SC-080211-F | AN-044<br>AN044-SC-080211-D | AN-044<br>AN044-SC-080211-E | AN-044<br>AN044-SC-080211-F | LDW-SC50a<br>LDW-SC50-2_8-4 | LDW-SC51<br>LDW-SC51-1-1_5 |
|---------------------------------------|------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|
|                                       |      | Sample Date<br>Depth (ft bgs)            | 2/11/08<br>3 to 4           | 2/11/08<br>4 to 5           | 2/11/08<br>5 to 6           | 2/11/08<br>3.5 to 4.5       | 2/11/08<br>4.5 to 5.5       | 2/11/08<br>5.5 to 6.5       | 2/24/06<br>2.8 to 4         | 2/22/06<br>1 to 1.5        |
|                                       | Stan | Management<br>dards<br>quivalent)<br>CSL |                             |                             |                             |                             |                             |                             |                             |                            |
| Chlorinated Benzenes                  |      |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| 1,2-Dichlorobenzene                   | 35   | 50                                       |                             |                             |                             |                             |                             | 5.9 UJ                      | 6 U                         | 6.2 U                      |
| 1,4-Dichlorobenzene                   | 110  | 110                                      |                             |                             |                             |                             |                             |                             | 6 U                         | 6.2 U                      |
| 1,2,4-Trichlorobenzene                | 31   | 51                                       |                             |                             |                             |                             |                             | 5.9 UJ                      | 6 UJ                        | 6.2 UJ                     |
| Hexachlorobenzene                     | 22   | 70                                       |                             |                             |                             |                             |                             |                             | 6 U                         | 6.2 U                      |
| Phthalates                            |      |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Dimethylphthalate                     | 71   | 160                                      |                             | 16 U                        |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Diethylphthalate                      | 200  | 1200                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Di-n-butylphthalate                   | 1400 | 5100                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Butylbenzylphthalate                  | 63   | 900                                      |                             | 16 U                        |                             |                             |                             |                             | 6 U                         | 10                         |
| Bis(2-ethylhexyl)phthalate            | 1300 | 3100                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Di-n-octylphthalate                   | 6200 | 6200                                     |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| Miscellaneous                         |      |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Dibenzofuran                          | 540  | 540                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 130                        |
| Hexachlorobutadiene                   | 11   | 120                                      |                             |                             |                             |                             |                             | 5.9 UJ                      | 6 U                         | 6.2 U                      |
| n-Nitrosodiphenylamine                | 28   | 40                                       |                             |                             |                             |                             |                             | 5.9 UJ                      | 6 U                         | 6.2 U                      |
| Pesticides/PCBs                       |      |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Total PCBs                            | 130  | 1000                                     |                             |                             |                             | 10 U                        |                             |                             | 3.8 UJ                      |                            |
| Ionizable Organic Compounds (ug/Kgdw) |      |                                          |                             |                             |                             |                             |                             |                             |                             |                            |
| Phenol                                | 420  | 1200                                     |                             |                             |                             | 83                          | 20 J                        | 170                         | 13 J                        | 62 U                       |
| 2-Methylphenol                        | 63   | 63                                       |                             |                             |                             |                             |                             | 5.9 UJ                      | 6 U                         | 6.2 UJ                     |
| 4-Methylphenol                        | 670  | 670                                      |                             |                             |                             |                             |                             |                             | 20 U                        | 62 U                       |
| 2,4-Dimethylphenol                    | 29   | 29                                       |                             |                             |                             |                             |                             | 5.9 UJ                      | 6 UJ                        | 6.2 UJ                     |
| Pentachlorophenol                     | 360  | 690                                      |                             |                             |                             |                             |                             |                             | 30 U                        | 31 U                       |
| Benzyl alcohol                        | 57   | 73                                       |                             |                             |                             |                             |                             |                             | 30 U                        | 31 U                       |
| Benzoic acid                          | 650  | 650                                      |                             |                             |                             |                             |                             |                             | 64 UJ                       | 620 U                      |

# TABLE 3 PREVIOUS SEDIMENT CORE SAMPLE ANALYTICAL RESULTS- DRY WEIGHT BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                      |       | Location                                  | SD-217              | SD-217      | SD-315-C    | SD-315-C    | SD-315-C    |
|--------------------------------------|-------|-------------------------------------------|---------------------|-------------|-------------|-------------|-------------|
|                                      |       | Sample ID                                 | SD-217-0040         | SD-217-0050 | SD-315-0001 | SD-315-0002 | SD-315-0003 |
|                                      |       |                                           |                     |             |             |             |             |
|                                      |       | Sample Date                               | 4/22/04             | 4/22/04     | 8/19/04     | 8/19/04     | 8/19/04     |
|                                      |       | Depth (ft bgs)                            | 4/22/04<br>4 to 4.5 | 5 to 5.6    | 1 to 2      | 2 to 3      | 3 to 4      |
|                                      |       | Deptii (it bgs)                           | 4 10 4.3            | 3 10 3.0    | 1102        | 2103        | 3104        |
|                                      | Stan  | flanagement<br>dards<br>quivalent)<br>CSL |                     |             |             |             |             |
| Conventionals (%dw)                  |       |                                           |                     |             |             |             |             |
| Total Organic Carbon                 |       |                                           | 0.28                | 0.07        | 0.21        | 0.3         | 0.18        |
| Metals (mg/Kgdw)                     |       |                                           |                     |             |             |             |             |
| Arsenic                              | 57    | 93                                        |                     |             | 4.5 U       |             |             |
| Cadmium                              | 5.1   | 6.7                                       |                     |             | 0.5 U       |             |             |
| Chromium                             | 260   | 270                                       |                     |             | 9.96        |             |             |
| Copper                               | 390   | 390                                       |                     |             | 7.32        |             |             |
| Lead                                 | 450   | 530                                       |                     |             | 2.5 U       |             |             |
| Mercury                              | 0.41  | 0.59                                      |                     |             |             |             |             |
| Silver                               | 6.1   | 6.1                                       |                     |             | 0.99 U      |             |             |
| Zinc                                 | 410   | 960                                       |                     |             | 20.2        |             |             |
| Nonionizable Organic Compounds (ug/l | Kgdw) |                                           |                     |             |             |             |             |
| Aromatic Hydrocarbons                |       |                                           |                     |             |             |             |             |
| Total LPAHs                          | 5200  | 5200                                      |                     |             |             |             |             |
| Naphthalene                          | 2100  | 2100                                      |                     |             |             |             |             |
| Acenaphthylene                       | 1300  | 1300                                      |                     |             |             |             |             |
| Acenaphthene                         | 500   | 500                                       |                     |             |             |             |             |
| Fluorene                             | 540   | 540                                       |                     |             |             |             |             |
| Phenanthrene                         | 1500  | 1500                                      |                     |             |             |             |             |
| Anthracene                           | 960   | 960                                       |                     |             |             |             |             |
| 2-Methylnaphthalene                  | 670   | 670                                       |                     |             |             |             |             |
| Total HPAHs                          | 12000 | 17000                                     |                     |             |             |             |             |
| Fluoranthene                         | 1700  | 2500                                      |                     |             |             |             |             |
| Pyrene                               | 2600  | 3300                                      |                     |             |             |             |             |
| Benzo(a)anthracene                   | 1300  | 1600                                      |                     |             |             |             |             |
| Chrysene                             | 1400  | 2800                                      |                     |             |             |             |             |
| Total Benzofluoranthenes             | 3200  | 3600                                      |                     |             |             |             |             |
| Benzo(a)pyrene                       | 1600  | 1600                                      |                     |             |             |             |             |
| Indeno(1,2,3-cd)pyrene               | 600   | 690                                       |                     |             |             |             |             |
| Dibenzo(a,h)anthracene               | 230   | 230                                       |                     |             |             |             |             |
| Benzo(g,h,i)perylene                 | 670   | 720                                       |                     |             |             |             |             |

# TABLE 3 PREVIOUS SEDIMENT CORE SAMPLE ANALYTICAL RESULTS- DRY WEIGHT BOEING ISAACSON-THOMPSON SITE TUKWILA. WASHINGTON

|                                       |      | Location<br>Sample ID                    | SD-217<br>SD-217-0040 | SD-217<br>SD-217-0050 | SD-315-C<br>SD-315-0001 | SD-315-C<br>SD-315-0002 | SD-315-C<br>SD-315-0003 |
|---------------------------------------|------|------------------------------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|
|                                       |      | Sample Date<br>Depth (ft bgs)            | 4/22/04<br>4 to 4.5   | 4/22/04<br>5 to 5.6   | 8/19/04<br>1 to 2       | 8/19/04<br>2 to 3       | 8/19/04<br>3 to 4       |
|                                       | Stan | Management<br>dards<br>quivalent)<br>CSL |                       |                       |                         |                         |                         |
| Chlorinated Benzenes                  |      |                                          |                       |                       |                         |                         |                         |
| 1,2-Dichlorobenzene                   | 35   | 50                                       |                       |                       |                         |                         |                         |
| 1,4-Dichlorobenzene                   | 110  | 110                                      |                       |                       |                         |                         |                         |
| 1,2,4-Trichlorobenzene                | 31   | 51                                       |                       |                       |                         |                         |                         |
| Hexachlorobenzene                     | 22   | 70                                       |                       |                       |                         |                         |                         |
| Phthalates                            |      |                                          |                       |                       |                         |                         |                         |
| Dimethylphthalate                     | 71   | 160                                      |                       |                       |                         |                         |                         |
| Diethylphthalate                      | 200  | 1200                                     |                       |                       |                         |                         |                         |
| Di-n-butylphthalate                   | 1400 | 5100                                     |                       |                       |                         |                         |                         |
| Butylbenzylphthalate                  | 63   | 900                                      |                       |                       |                         |                         |                         |
| Bis(2-ethylhexyl)phthalate            | 1300 | 3100                                     |                       |                       |                         |                         |                         |
| Di-n-octylphthalate                   | 6200 | 6200                                     |                       |                       |                         |                         |                         |
| Miscellaneous                         |      |                                          |                       |                       |                         |                         |                         |
| Dibenzofuran                          | 540  | 540                                      |                       |                       |                         |                         |                         |
| Hexachlorobutadiene                   | 11   | 120                                      |                       |                       |                         |                         |                         |
| n-Nitrosodiphenylamine                | 28   | 40                                       |                       |                       |                         |                         |                         |
| Pesticides/PCBs                       |      |                                          |                       |                       |                         |                         |                         |
| Total PCBs                            | 130  | 1000                                     | 34                    | 19 U                  | 22.6 U                  | 91 U                    | 67 U                    |
| Ionizable Organic Compounds (ug/Kgdw) |      |                                          |                       |                       |                         |                         |                         |
| Phenol                                | 420  | 1200                                     |                       |                       |                         |                         |                         |
| 2-Methylphenol                        | 63   | 63                                       |                       |                       |                         |                         |                         |
| 4-Methylphenol                        | 670  | 670                                      |                       |                       |                         |                         |                         |
| 2,4-Dimethylphenol                    | 29   | 29                                       |                       |                       |                         |                         | <u> </u>                |
| Pentachlorophenol                     | 360  | 690                                      |                       |                       |                         |                         |                         |
| Benzyl alcohol                        | 57   | 73                                       |                       |                       |                         |                         |                         |
| Benzoic acid                          | 650  | 650                                      |                       |                       |                         |                         |                         |

#### Abbreviations:

CSL = Cleanup Screening Level mg/kg = milligrams per kilogram OC = organic carbon

PCBs = polychlorinated biphenyls

SQS = Sediment Quality Standard

TOC = total organic carbon

μg/kg = micrograms per kilogram

dw = dry weight

ft bgs = feet below ground or sediment surface

LAET=Lowest Apparent Effects Threshold

#### Notes:

- 1. Data qualifiers are as follows.
  - J = Analyte was positively identified and detected; however, concentration is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
  - U = Analyte not detected at quantitation limit indicated.
  - UJ = Analyte not detected at the indicated quantitation limit, which is estimated.
- 2. Cell shading indicates a value that exceeds the Sediment Management Standards (SMS).
  - Value exceeds the SMS Sediment Quality Standard
  - Value exceeds the SMS Cleanup Screening Level
- 3. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%.
- 4. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%. If TOC is less than 0.5% or greater than 4% then the result is compared to the dry weight equivalent values for the SQS and CSL (typically the Lowest Apparent Effects Threshold (LAET) and the 2nd Lowest Apparent Effects Threshold (2LAET), respectively).

# TABLE 4 SUMMARY OF STORMWATER ANALYTICAL RESULTS BOEING ISAACSON-THOMPSON TUKWILA, WASHINGTON

|                  | Previous ISGP<br>Action Level | Previous ISGP<br>Benchmark | Current ISGP<br>Benchmark<br>(01/01/2010) |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------------------|-------------------------------|----------------------------|-------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| TS-1 (Outfall B) | (μg/L)                        | (µg/L)                     | (µg/L)                                    | 2ND "03" | 3RD "03" | 4TH "03" | 1ST "04" | 2ND "04" | 3RD "04" | 4TH "04" | 1ST "05" | 2ND "05" | 3RD "05" | 4TH "05" | 1ST "06" | 2ND "06" | 3RD "06" | 4TH "06" | 1ST "07" | 2ND "07" | 3RD "07" |
| POG/Sheen        | 30                            | 15                         | No Visible Sheen                          | <1       | <1       | <1       | <1       | nqse     | <1       | <1       | <1       | <1       | nqse     | 1        | <1       | nqse     | ca       | ca       | ca       | ca       | ca       |
| hardness         |                               |                            |                                           | na       | na       | 10       | 5.7      | nqse     | 11       | 8        | 8        | 5        | nqse     | 120      | 3.9      | nqse     | 38       | 30       | 14       | 56       | 20       |
| Copper           | 149                           | 63                         | 14                                        | na       | na       | 21       | 19       | nqse     | 34       | 24       | 35       | 24       | nqse     | 34.9     | 20       | nqse     | 29.9     | ca       | ca       | ca       | ca       |
| Lead             | 159                           | 81                         | n/a                                       | na       | na       | 2.6      | 4        | nqse     | <1       | <1       | 2        | <1       | nqse     | 3.4      | <1.73    | nqse     | <1.41    | ca       | ca       | ca       | ca       |
| Zinc             | 372                           | 117                        | 117                                       | 2500     | 600      | 80       | 75       | nqse     | 79       | 67       | 108      | 66       | nqse     | 564      | 60.7     | nqse     | 436      | 265      | 251      | 502      | 330      |
| рН               | 5 - 10                        | 6 - 9                      | 5 - 9                                     | 6.5      | 7.3      | 7        | 6.7      | nqse     | 6.7      | 6.7      | 6.4      | 6.6      | nqse     | 6.6      | 7.1      | nqse     | 7.2      | ca       | ca       | ca       | ca       |
| turbidity        | 50                            | 25                         | 25                                        | 7.9      | 7.8      | 6.9      | 12       | nqse     | 3        | 7        | 6        | 3        | nqse     | 12.8     | 9.9      | nqse     | 0.77     | ca       | ca       | ca       | ca       |
|                  |                               |                            |                                           |          |          |          |          |          |          |          |          |          |          | 0        |          |          |          |          |          |          |          |
| TS-2 (Outfall A) |                               |                            |                                           | 2ND "03" | 3RD "03" | 4TH "03" | 1ST "04" | 2ND "04" | 3RD "04" | 4TH "04" | 1ST "05" | 2ND "05" | 3RD "05" | 4TH "05" | 1ST "06" | 2ND "06" | 3RD "06" | 4TH "06" | 1ST "07" | 2ND "07" | 3RD "07" |
| POG              | 30                            | 15                         | No Visible Sheen                          | <1       | <1       | <1       | <1       | nqse     | <1       | <1       | <1       | <1       | nqse     | <1       | <1       | nqse     | ca       | ca       | ca       | ca       | ca       |
| hardness         |                               |                            |                                           | na       | na       | 17       | 13       | nqse     | 25       | 13       | 13       | 13       | nqse     | 19       | 7        | nqse     | 43       | 18       | 12       | 58       | 16       |
| Copper           | 149                           | 63                         | 14                                        | na       | na       | 21       | 37       | nqse     | 15       | 22       | 23       | 23       | nqse     | 17.8     | 15.9     | nqse     | ca       | ca       | ca       | ca       | ca       |
| Lead             | 159                           | 81                         | n/a                                       | na       | na       | 3.8      | 4        | nqse     | 2        | 4        | 4        | 1        | nqse     | 2.2      | 1.73     | nqse     | ca       | ca       | ca       | ca       | ca       |
| Zinc             | 372                           | 117                        | 117                                       | 1100     | 230      | 200      | 55       | nqse     | 19       | 215      | 143      | 179      | nqse     | 33.7     | 37.1     | nqse     | 1860     | 68.4     | 214      | 53       | 221      |
| рН               | 5 - 10                        | 6 - 9                      | 5 - 10                                    | 6.5      | 7.6      | 6.9      | 6.8      | nqse     | 8.8      | 6.8      | 6.8      | 6.6      | nqse     | 7        | 7        | nqse     | ca       | ca       | ca       | ca       | ca       |
| turbidity        | 50                            | 25                         | 25                                        | 8        | 12.4     | 8.8      | 12       | nqse     | 4        | 13       | 17       | 10       | nqse     | 5.1      | 7.5      | nqse     | ca       | ca       | ca       | ca       | ca       |

# TABLE 4 SUMMARY OF STORMWATER ANALYTICAL RESULTS BOEING ISAACSON-THOMPSON TUKWILA, WASHINGTON

|                  | Previous ISGP<br>Action Level | Previous ISGP<br>Benchmark | Current ISGP<br>Benchmark<br>(01/01/2010) |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------------------|-------------------------------|----------------------------|-------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| TS-1 (Outfall B) | (µg/L)                        | (µg/L)                     | (µg/L)                                    | 4TH "07" | 1ST "08" | 2ND "08" | 3RD "08" | 4TH "08" | 1ST "09" | 2ND "09" | 3RD "09" | 4TH "09" | 1ST "10" | 2ND "10" | 3RD "10" | 4TH "10" |
| POG/Sheen        | 30                            | 15                         | No Visible Sheen                          | ca       |          |          |          |          |
| hardness         |                               |                            |                                           | 8        | 53       | 14       | ns       | 12       | 8.5      | 12       | ns       | 82       |          |          |          |          |
| Copper           | 149                           | 63                         | 14                                        | ca       | 18.1     | 15.2     | 37.4     | 9.6      |
| Lead             | 159                           | 81                         | n/a                                       | ca       |          |          |          |          |
| Zinc             | 372                           | 117                        | 117                                       | 100      | 244      | 530      | ns       | 253      | 326      | 599      | ns       | 255      | 580.5    | 252      | 710      | 231.3    |
| рН               | 5 - 10                        | 6 - 9                      | 5 - 9                                     | ca       | ns       | ca       | 6.5      | 6.4      | 7.2      | 6.9      |
| turbidity        | 50                            | 25                         | 25                                        | ca       | ns       | ca       | 1.83     | 1.14     | 14.4     | 2.9      |
|                  |                               |                            |                                           |          |          |          |          |          |          |          |          |          |          |          |          |          |
| TS-2 (Outfall A) |                               |                            |                                           | 4TH "07" | 1ST "08" | 2ND "08" | 3RD "08" | 4TH "08" | 1ST "09" | 2ND "09" | 3RD "09" | 4TH "09" | 1ST "10" | 2ND "10" | 3RD "10" | 4TH "10" |
| POG              | 30                            | 15                         | No Visible Sheen                          | ca       |          |          |          |          |
| hardness         |                               |                            |                                           | 6        | 22       | 13       | ns       | 27       | 8.4      | 15       | ns       | 16       |          |          |          |          |
| Copper           | 149                           | 63                         | 14                                        | ca       | 10.8     | 9.7      | 16.3     | 11.3     |
| Lead             | 159                           | 81                         | n/a                                       | ca       |          |          |          |          |
| Zinc             | 372                           | 117                        | 117                                       | 26       | 34       | 36       | ns       | 26.8     | 340      | 35.6     | ns       | 259      | 19.1     | 25.5     | 16.5     | 83.7     |
| рН               | 5 - 10                        | 6 - 9                      | 5 - 10                                    | ca       | ns       | ca       | 6.6      | 6.4      | 7.1      | 6        |
| turbidity        | 50                            | 25                         | 25                                        | ca       | ns       | ca       | 1.67     | 1.25     | 16.3     | 1.77     |

ca = consistent attainment nqse = non-qualifying storm event ns = no sample POG = petroleum oil and grease

#### Notes:

ivietais are total concentrations, not dissolved.

Benchmarks are not effluent limits. Exceedance of benchmarks require the Permittee to implement a Level 1, Level 2, or Level 3 corrective action, depending on the number of times a benchmark is exceeded during a calendar year.

# TABLE 5 STORAGE TANK AND SUMP INVENTORY BOEING ISAACSON-THOMPSON PROPERTY TUKWILA, WASHINGTON

| Tank Number     | Alternate ID       | Type       | Building       | Location                  | Purpose                                    | Contents                                  | Size<br>(gallons) | Status              | Release                                                                                                                                                            |
|-----------------|--------------------|------------|----------------|---------------------------|--------------------------------------------|-------------------------------------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                    | .,,,,,     |                |                           | ,                                          |                                           | ,                 | - Ciaiao            | Previously investigated and results will be evaluated against screening                                                                                            |
| TS-01           | TS 01              | UST        | 14-02          | West Yard                 | Reserve boiler fuel                        | Fuel oil #2                               | 20,000            | Closed-in-place     | levels in the RI                                                                                                                                                   |
| TS-02           |                    | UST        | 14-02          | West Yard                 | Storage for dispensing                     | Gasoline                                  | 1,000             | Removed             | Previously investigated and results will be evaluated against screening levels in the RI                                                                           |
| TS-03           |                    | UST        | 14-02          | West Yard                 | Emergency generator fuel                   | Diesel                                    | 500 (a)           | Removed             | Previously investigated and results will be evaluated against screening levels in the RI                                                                           |
| TS-04           |                    | UST        | 14-03          | East Yard                 | Hold tank for OWS TS-92                    | Stormwater/oil                            | 4000 (b)          | Removed             | Petroleum impacted soil removed in<br>1994. Post-remedial action<br>investigation conducted and results<br>will be evaluated against screening<br>levels in the RI |
| TSA-14          | BMA 014 / Tank A   | AST        | 14-01          | West Yard                 | Accumulation for disposal                  | Paint booth waste                         | 10,000            | Removed             | Previously investigated and results will be evaluated against screening levels in the RI                                                                           |
| TSA-15          | BMA 015 / Tank B   | AST        | 14-01          | West Yard                 | Accumulation for disposal                  | Paint booth waste                         | 10,000            | Removed             | Previously investigated and results will be evaluated against screening levels in the RI                                                                           |
|                 | BMA 021 / Tank C / | -          | -              |                           |                                            | Copper plating / acid / aqueous degreaser | ,                 |                     | Previously investigated and results will be evaluated against screening                                                                                            |
| TSA-21          | BP-1               | AST        | 14-01          | West Yard                 | Accumulation for disposal                  | overflow                                  | 5,000             | Inactive            | levels in the RI                                                                                                                                                   |
| TSA-25          | BMA 025            | AST        | 14-13          | North Side                | Emergency generator fuel                   | Diesel                                    | 200               | Active              | None observed                                                                                                                                                      |
| TS-26           | BMA 026 / BP-2     | Sump       | 14-01          | Column D1-6               | Temporary holding sump                     | Copper plating / aqueous degreaser        | 400               | Inactive            | Removal or abandonment of the<br>sump is planned                                                                                                                   |
| BMA046          |                    | Sump       | 14-01          | Column B-12               | Lift station sump                          | Sewage                                    |                   | Unknown             | Unknown; No investigation is<br>planned since this is a sanitary<br>sewer sump                                                                                     |
| BMA050          |                    | AST        | 14-03          | Inside Building           | Fatigue test                               | Hydraulic oil                             | 3,100             | Removed             | Unknown; No investigation is<br>planned since this tank was located<br>inside an existing building                                                                 |
|                 |                    |            |                |                           |                                            |                                           | 0.400             |                     | Unknown; No investigation is planned since this tank was located                                                                                                   |
| BMA051<br>TS-57 | BMA 057            | AST<br>AST | 14-03<br>14-02 | Inside Building West Side | Fatigue test                               | Hydraulic oil  Diesel                     | 3,100<br>500      | Removed<br>Active   | inside an existing building  None observed                                                                                                                         |
| BMA064          | DIVIA 037          | AST        | 14-02          | West Side                 | Emergency generator fuel  Fueling vehicles | Propane                                   | 500               | Removed / relocated | None observed                                                                                                                                                      |
| TS-67           | BMA 067            | Sump       | 14-01          | E7 (Outside)              | Wastewater collection                      | Paint booth waste                         | 100               | Removed             | Previously investigated and results will be evaluated against screening levels in the RI                                                                           |

# TABLE 5 STORAGE TANK AND SUMP INVENTORY BOEING ISAACSON-THOMPSON PROPERTY TUKWILA, WASHINGTON

|                   |              |      |          |                      |                            |                   | Size      |         |                                                                                                                                                |
|-------------------|--------------|------|----------|----------------------|----------------------------|-------------------|-----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Tank Number       | Alternate ID | Type | Building | Location             | Purpose                    | Contents          | (gallons) | Status  | Release                                                                                                                                        |
| TS-68             | BMA 068      | Sump | 14-01    | E8 (Outside)         | Wastewater collection      | Paint booth waste | 100       | Removed | Previously investigated and results will be evaluated against screening levels in the RI                                                       |
| TS-69             | BMA 069      | Sump | 14-01    | E9 (Outside)         | Wastewater collection      | Paint booth waste | 100       | Removed | Previously investigated and results will be evaluated against screening levels in the RI                                                       |
|                   |              | Gump |          | 20 (00:00)           | riccionato conscissi       | , and seem nade   |           |         | Petroleum impacted soil removed in 1994. Post-remedial action investigation conducted and results                                              |
| TS-92             | SEP 04       | ows  | 14-03    | East Yard            | Hydraulics and parking lot | Stormwater/oil    |           | Removed | will be evaluated against screening levels in the RI                                                                                           |
| TS-93             | SEP N        | ows  | 14-01    | Southwest Yard       | Oil trap for parking lot   | Stormwater/oil    |           | Active  | Unknown; no investigation planned                                                                                                              |
| TS-91             | SEP S        | ows  | 14-03    | North End            | Oil trap for parking lot   | Stormwater/oil    |           | Active  | Unknown; no investigation planned                                                                                                              |
|                   |              |      |          |                      |                            |                   |           |         | Petroleum impacted soil removed in<br>1994. Post-remedial action<br>investigation conducted and results<br>will be evaluated against screening |
| SMPTS1            |              | Sump | 14-03    | 737 Fatigue Test Pad | Hydraulic fluid leaks      | Hydraulic fluid   |           | Removed | levels in the RI Unknown; Investigation planned as                                                                                             |
| TS-05             |              | UST  | 14-05    | Southeast Yard       | Storage for dispensing     | Diesel            | 6,000     | Removed | part of the RI                                                                                                                                 |
| TS-06             |              | UST  | 14-05    | Southeast Yard       | Storage for dispensing     | Diesel            | 6,000     | Removed | Unknown; Investigation planned as part of the RI                                                                                               |
| TS-07             |              | UST  | 14-05    | Southeast Yard       | Storage for dispensing     | Diesel            | 6,000     | Removed | Unknown; Investigation planned as part of the RI                                                                                               |
| TS-08             |              | UST  | 14-05    | Southeast Yard       | Storage for dispensing     | Diesel            | 6,000     | Removed | Unknown; Investigation planned as part of the RI                                                                                               |
| TS-09             |              | Sump | 14-08    | North Yard           | Unknown                    | Paint Sludge      | 10,000    | Removed | Unknown; Investigation planned as part of the RI                                                                                               |
| TS-10             |              | Sump | 14-08    | North Yard           | Unknown                    | Paint Sludge      | 10,000    | Removed | Unknown; Investigation planned as part of the RI                                                                                               |
| TS-11             |              | Sump | 14-08    | North Yard           | Unknown                    | Paint Sludge      | 10,000    | Removed | Unknown; Investigation planned as part of the RI                                                                                               |
| TS-12             |              | UST  | 14-05    | North Yard           | Reserve Boiler Fuel        | Fuel Oil          | two 1,000 | Removed | Previously investigated and results will be evaluated against screening levels in the RI                                                       |
|                   |              |      |          |                      |                            |                   |           |         | Unknown; a reconnaissance of the pump will be conducted as part of                                                                             |
| 14-02 Indoor Sump |              | Sump | 14-02    | Inside at SE Corner  | Mechanical Pit             | Pipes             | 60        | Active  | the RI                                                                                                                                         |
| Tunnel Sump       |              | Sump | 14-01    | North (outside)      | Rainwater Collection       | Rainwater         | Approx 60 | Active  | None                                                                                                                                           |
| Tunnel Sump       |              | Sump | 14-01    | North (outside)      | Rainwater Collection       | Rainwater         | Approx 60 | Active  | None                                                                                                                                           |
| Stair Sump        |              | Sump | 14-01    | Northeast (outside)  | Rainwater Collection       | Rainwater         | Approx 60 | Active  | None                                                                                                                                           |

## TABLE 5 STORAGE TANK AND SUMP INVENTORY BOEING ISAACSON-THOMPSON PROPERTY TUKWILA, WASHINGTON

|                                           |              |      |          |           |                       |                      | Size      |         |                                                                                          |
|-------------------------------------------|--------------|------|----------|-----------|-----------------------|----------------------|-----------|---------|------------------------------------------------------------------------------------------|
| Tank Number                               | Alternate ID | Туре | Building | Location  | Purpose               | Contents             | (gallons) | Status  | Release                                                                                  |
|                                           |              |      |          |           |                       |                      |           |         | Previously investigated and results will be evaluated against screening                  |
| NE Former Sump                            |              | Sump | 14-05    | East Side | Unknown               | Unknown              | Approx 50 | Removed | levels in the RI                                                                         |
| Former Steam<br>Cleaning Rack and<br>Sump |              | Sump | 14-05    | Courtyard | Wastewater collection | Steam Cleaning Waste |           | Removed | Previously investigated and results will be evaluated against screening levels in the RI |

UST = Underground storage tank

AST = Aboveground storage tank

OWS = Oil/water separator

<sup>(</sup>a) Some historical records indicate that this was a 500 gallon tank and others indicate that it may have been a 2,000 gallon tank.

<sup>(</sup>b) Some historical records indicate that this was a 4,000 gallon tank and others indicate that it may have been a 5,000 gallon tank.

# TABLE 6 SITE GROUNDWATER ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                              | Analytical           | Target               | Method                   | Preliminary         |
|------------------------------|----------------------|----------------------|--------------------------|---------------------|
| Analyte                      | Method (a)           | Reporting Limits (b) | Detection Limits         | Screening Level (c) |
| SEMIVOLATILES                |                      |                      |                          |                     |
| 1,2,4-Trichlorobenzene       | EPA Method 8270D     | 1.0 µg/L             | 0.383 μg/L               | 1.13 μg/L           |
| 1,2-Dichlorobenzene          | EPA Method 8270D     | 1.0 μg/L<br>1.0 μg/L | 0.365 μg/L               | 5.2 μg/L            |
| 1,3-Dichlorobenzene          | EPA Method 8270D     | 1.0 μg/L<br>1.0 μg/L | 0.358 μg/L               | 0 μg/L              |
| 1,4-Dichlorobenzene          | EPA Method 8270D     | 1.0 μg/L<br>1.0 μg/L | 0.397 μg/L               | 7.1 μg/L            |
| 1-Methylnaphthalene          | EPA Method 8270D     | 1.0 μg/L<br>1.0 μg/L | 0.479 μg/L               | 7.1 μg/L            |
| 2,2'-Oxybis(1-Chloropropane) | EPA Method 8270D     | 1.0 μg/L             | 0.623 μg/L               |                     |
| 2,4,5-Trichlorophenol        | EPA Method 8270D     | 1.0 μg/L<br>5.0 μg/L | 0.023 μg/L<br>2.220 μg/L |                     |
| 2,4,6-Trichlorophenol        | EPA Method 8270D     | 5.0 μg/L             | 2.408 µg/L               | 4 μg/L              |
| 2,4-Dichlorophenol           | EPA Method 8270D     | 5.0 μg/L             | 2.597 μg/L               | + μg/∟              |
| 2,4-Dimethylphenol           | EPA Method 8270D     | 3.0 μg/L<br>1.0 μg/L | 0.359 μg/L               | 2.02 μg/L           |
| 2,4-Dinitrophenol            | EPA Method 8270D     | 10.0 μg/L            | 3.480 µg/L               | 2.02 μg/L           |
| 2,4-Dinitropherior           | EPA Method 8270D     | 5.0 μg/L             | 2.520 μg/L               |                     |
| 2,6-Dinitrotoluene           | EPA Method 8270D     | 5.0 μg/L             | 2.393 µg/L               |                     |
| 2-Chloronaphthalene          | EPA Method 8270D     | 1.0 μg/L             | 0.477 μg/L               |                     |
| 2-Chlorophenol               | EPA Method 8270D     | 1.0 μg/L             | 0.529 μg/L               |                     |
| 2-Methylnaphthalene          | EPA Method 8270D     | 1.0 μg/L             | 0.475 μg/L               | 18 μg/L             |
| 2-Methylphenol               | EPA Method 8270D     | 1.0 μg/L             | 0.531 μg/L               | 7.1 µg/L            |
| 2-Nitroaniline               | EPA Method 8270D     | 5.0 μg/L             | 2.627 μg/L               | μ9/=                |
| 2-Nitrophenol                | EPA Method 8270D     | 5.0 μg/L             | 1.968 µg/L               |                     |
| 3.3'-Dichlorobenzidine       | EPA Method 8270D     | 5.0 μg/L             | 1.510 µg/L               |                     |
| 3-Nitroaniline               | EPA Method 8270D     | 5.0 μg/L             | 2.314 µg/L               |                     |
| 4,6-Dinitro-2-Methylphenol   | EPA Method 8270D     | 10.0 μg/L            | 3.087 µg/L               |                     |
| 4-Bromophenyl-phenylether    | EPA Method 8270D     | 1.0 µg/L             | 0.423 μg/L               |                     |
| 4-Chloro-3-methylphenol      | EPA Method 8270D     | 5.0 μg/L             | 2.417 μg/L               |                     |
| 4-Chloroaniline              | EPA Method 8270D     | 5.0 μg/L             | 2.599 µg/L               |                     |
| 4-Chlorophenyl-phenylether   | EPA Method 8270D     | 1.0 µg/L             | 0.451 μg/L               |                     |
| 4-Methylphenol               | EPA Method 8270D     | 1.0 µg/L             | 0.523 μg/L               | 77 μg/L             |
| 4-Nitroaniline               | EPA Method 8270D     | 5.0 μg/L             | 2.249 µg/L               | F9-                 |
| 4-Nitrophenol                | EPA Method 8270D     | 5.0 μg/L             | 2.573 µg/L               |                     |
| Acenaphthene                 | EPA Method 8270D     | 1.0 µg/L             | 0.546 μg/L               | 2.61 µg/L           |
| Acenaphthylene               | EPA Method 8270D     | 1.0 μg/L             | 0.480 μg/L               | 11 µg/L             |
| Anthracene                   | EPA Method 8270D     | 1.0 µg/L             | 0.531 µg/L               | 11 µg/L             |
| Benzo(a)anthracene           | EPA Method 8270D SIM | 0.01 µg/L            | 0.00320 µg/L             | 0.12 µg/L           |
| Benzo(a)pyrene               | EPA Method 8270D SIM | 0.01 µg/L            | 0.00505 μg/L             | 0.012 µg/L          |
| Benzo(g,h,i)perylene         | EPA Method 8270D     | 1.0 µg/L             | 0.546 μg/L               | 0.012 μg/L          |
| Benzoic Acid                 | EPA Method 8270D     | 1.0 μg/L             | 5.111 µg/L               | 2243 μg/L           |
| Benzyl Alcohol               | EPA Method 8270D     | 5.0 μg/L             | 2.008 μg/L               | 182 μg/L            |
| bis(2-Chloroethoxy) Methane  | EPA Method 8270D     | 1.0 μg/L             | 0.565 μg/L               | . •                 |
| Bis-(2-Chloroethyl) Ether    | EPA Method 8270D     | 1.0 μg/L             | 0.583 µg/L               |                     |
| bis(2-Ethylhexyl)phthalate   | EPA Method 8270D     | 1.0 µg/L             | 1.877 μg/L               | 0.28 μg/L           |
| Butylbenzylphthalate         | EPA Method 8270D     | 1.0 μg/L             | 0.557 μg/L               | 0.52 μg/L           |
| Carbazole                    | EPA Method 8270D     | 1.0 μg/L             | 0.306 μg/L               | 10                  |
| Chrysene                     | EPA Method 8270D SIM | 0.01 μg/L            | 0.00374 μg/L             | 0.4661 µg/L         |
| Dibenz(a,h)anthracene        | EPA Method 8270D SIM | 0.01 μg/L            | 0.00159 μg/L             | 0.0046 μg/L         |
| Dibenzofuran                 | EPA Method 8270D     | 1.0 μg/L             | 0.479 μg/L               | 1.3 µg/L            |
| Diethylphthalate             | EPA Method 8270D     | 1.0 µg/L             | 0.582 µg/L               | 484 μg/L            |
| Dimethylphthalate            | EPA Method 8270D     | 1.0 µg/L             | 0.528 μg/L               | 143 µg/L            |
| Di-n-Butylphthalate          | EPA Method 8270D     | 1.0 µg/L             | 0.537 µg/L               | 151 μg/L            |
| Di-n-Octyl phthalate         | EPA Method 8270D     | 1.0 µg/L             | 0.508 μg/L               | 0.30 µg/L           |
| Fluoranthene                 | EPA Method 8270D     | 1.0 µg/L             | 0.515 μg/L               | 2.3 μg/L            |
| Fluorene                     | EPA Method 8270D     | 1.0 μg/L             | 0.558 μg/L               | 2.04 μg/L           |
| Hexachlorobenzene            | EPA Method 8270D     | 1.0 µg/L             | 0.470 μg/L               | 0.112426 μg/L       |
| Hexachlorobutadiene          | EPA Method 8270D     | 1.0 μg/L             | 0.306 µg/L               | 3.9 µg/L            |
| Hexachlorocyclopentadiene    | EPA Method 8270D     | 5.0 μg/L             | 1.181 µg/L               |                     |
| Hexachloroethane             | EPA Method 8270D     | 1.0 µg/L             | 0.350 μg/L               |                     |
| Indeno(1,2,3-cd)pyrene       | EPA Method 8270D SIM | 0.01 µg/L            | 0.00341 µg/L             | 0.0127 μg/L         |

# TABLE 6 SITE GROUNDWATER ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                | Analytical           | Target               | Method                   | Preliminary |      |  |
|--------------------------------|----------------------|----------------------|--------------------------|-------------|------|--|
| Analyte                        | Method (a)           | Reporting Limits (b) | Detection Limits         | Screening   | -    |  |
| SEMIVOLATILES (continued)      | inconta (a)          |                      |                          |             |      |  |
| Isophorone                     | EPA Method 8270D     | 1.0 µg/L             | 0.481 μg/L               |             |      |  |
| Naphthalene                    | EPA Method 8270D     | 1.0 μg/L<br>1.0 μg/L | 1.0                      | 54          | ua/l |  |
| Nitrobenzene                   | EPA Method 8270D     | 1.0 μg/L<br>1.0 μg/L |                          | 54          | μg/L |  |
|                                |                      | 1 0                  | 0.575 µg/L               |             |      |  |
| N-Nitroso-Di-N-Propylamine     | EPA Method 8270D     | 1.0 μg/L             | 0.560 µg/L               | 0.0         | //   |  |
| N-Nitrosodiphenylamine         | EPA Method 8270D     | 1.0 μg/L             | 0.460 µg/L               | 2.0         | μg/L |  |
| Pentachlorophenol              | EPA Method 8270D     | 5.0 μg/L             | 2.411 µg/L               | 0.22        | μg/L |  |
| Phenanthrene                   | EPA Method 8270D     | 1.0 μg/L             | 0.557 µg/L               | 70          | //   |  |
| Phenol                         | EPA Method 8270D     | 1.0 µg/L             | 0.519 µg/L               | 78          | μg/L |  |
| Pyrene                         | EPA Method 8270D SIM | 0.01 µg/L            | 0.00894 µg/L             | 14          | μg/L |  |
| Total Benzofluoranthenes       | EPA Method 8270D SIM | 0.02 μg/L            | 0.00496 μg/L             | 0.012       | μg/L |  |
| VOLATILES                      |                      |                      |                          |             |      |  |
| 1,1,1,2-Tetrachloroethane      | EPA Method 8260C     | 0.2 µg/L             | 0.068 μg/L               |             |      |  |
| 1,1,1-Trichloroethane          | EPA Method 8260C     | 0.2 μg/L             | 0.089 μg/L               | 200         | μg/L |  |
| 1,1,2,2-Tetrachloroethane      | EPA Method 8260C     | 0.2 µg/L             | 0.067 μg/L               |             |      |  |
| 1,1,2-Trichloroethane          | EPA Method 8260C     | 0.2 μg/L             | 0.035 μg/L               | 0.77        | μg/L |  |
| 1,1,2-Trichlorotrifluoroethane | EPA Method 8260C     | 0.2 μg/L             | 0.107 μg/L               |             |      |  |
| 1,1-Dichloroethane             | EPA Method 8260C     | 0.2 μg/L             | 0.053 μg/L               | 800         | μg/L |  |
| 1,1-Dichloroethene             | EPA Method 8260C     | 0.2 µg/L             | 0.091 µg/L               | 7           | μg/L |  |
| 1,1-Dichloropropene            | EPA Method 8260C     | 0.2 µg/L             | 0.092 µg/L               |             |      |  |
| 1,2,3-Trichlorobenzene         | EPA Method 8260C     | 0.5 μg/L             | 0.087 µg/L               |             |      |  |
| 1,2,3-Trichloropropane         | EPA Method 8260C     | 0.5 µg/L             | 0.226 µg/L               |             |      |  |
| 1,2,4-Trichlorobenzene         | EPA Method 8260C     | 0.5 μg/L             | 0.100 µg/L               | 1.13        | μg/L |  |
| 1,2,4-Trimethylbenzene         | EPA Method 8260C     | 0.2 μg/L             | 0.058 µg/L               |             |      |  |
| 1,2-Dibromo-3-chloropropane    | EPA Method 8260C     | 0.5 µg/L             | 0.212 µg/L               |             |      |  |
| 1,2-Dichlorobenzene            | EPA Method 8260C     | 0.2 µg/L             | 0.055 µg/L               | 5.2         | μg/L |  |
| 1,2-Dichloroethane             | EPA Method 8260C     | 0.2 μg/L             | 0.075 μg/L               | 0.48        | μg/L |  |
| 1,2-Dichloropropane            | EPA Method 8260C     | 0.2 μg/L             | 0.093 µg/L               |             |      |  |
| 1,3,5-Trimethylbenzene         | EPA Method 8260C     | 0.2 μg/L             | 0.063 µg/L               | 80          | μg/L |  |
| 1,3-Dichlorobenzene            | EPA Method 8260C     | 0.2 μg/L             | 0.040 µg/L               | 0           | μg/L |  |
| 1,3-Dichloropropane            | EPA Method 8260C     | 0.2 μg/L             | 0.020 µg/L               |             |      |  |
| 1,4-Dichlorobenzene            | EPA Method 8260C     | 0.2 μg/L             | 0.057 μg/L               | 7.1         | μg/L |  |
| 2,2-Dichloropropane            | EPA Method 8260C     | 0.2 μg/L             | 0.083 µg/L               |             |      |  |
| 2-Butanone                     | EPA Method 8260C     | 5.0 μg/L             | 0.808 µg/L               | 4800        | μg/L |  |
| 2-Chloroethylvinylether        | EPA Method 8260C     | 1.0 μg/L             | 0.086 µg/L               |             |      |  |
| 2-Chlorotoluene                | EPA Method 8260C     | 0.2 μg/L             | 0.042 µg/L               |             |      |  |
| 2-Hexanone                     | EPA Method 8260C     | 5.0 μg/L             | 0.310 µg/L               |             |      |  |
| 4-Chlorotoluene                | EPA Method 8260C     | 0.2 μg/L             | 0.073 µg/L               |             |      |  |
| 4-Isopropyltoluene             | EPA Method 8260C     | 0.2 μg/L             | 0.075 µg/L               |             |      |  |
| 4-Methyl-2-Pentanone (MIBK)    | EPA Method 8260C     | 5.0 μg/L             | 0.384 µg/L               | 640         | μg/L |  |
| Acetone                        | EPA Method 8260C     | 5.0 μg/L             | 0.720 μg/L               | 7200        | μg/L |  |
| Acrolein                       | EPA Method 8260C     | 5.0 μg/L             | 0.292 µg/L               |             | 1.5  |  |
| Acrylonitrile                  | EPA Method 8260C-SIM | 0.05 μg/L            | 0.0158 µg/L              |             |      |  |
| Benzene                        | EPA Method 8260C     | 0.2 μg/L             | 0.056 µg/L               | 0.8         | μg/L |  |
| Bromobenzene                   | EPA Method 8260C     | 0.2 μg/L             | 0.051 μg/L               |             | 13-  |  |
| Bromochloromethane             | EPA Method 8260C     | 0.2 μg/L             | 0.067 µg/L               |             |      |  |
| Bromodichloromethane           | EPA Method 8260C     | 0.2 μg/L             | 0.053 μg/L               |             |      |  |
| Bromoethane                    | EPA Method 8260C     | 0.2 μg/L             | 0.090 µg/L               |             |      |  |
| Bromoform                      | EPA Method 8260C     | 0.2 μg/L             | 0.070 μg/L               |             |      |  |
| Bromomethane                   | EPA Method 8260C     | 1.0 μg/L             | 0.043 μg/L               |             |      |  |
| Carbon Disulfide               | EPA Method 8260C     | 0.2 μg/L             | 0.043 μg/L<br>0.087 μg/L |             |      |  |
| Carbon Tetrachloride           | EPA Method 8260C     | 0.2 μg/L             | mg/=                     | 0.63        |      |  |

# TABLE 6 SITE GROUNDWATER ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Analytical           | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Preliminary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method (a)           | Reporting Limits (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detection Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     | 0.2 μα/Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.042 ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4000 ( 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1600 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.081 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.057 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1600 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.077 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.066 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.061 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C-SIM | 0.02 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00364 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.056 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.085 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     | 0.2 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     | 1.0 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.243 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 8260C     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 8260C-SIM | 0.02 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00225 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPA Method 200.8     | 0.2 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.010 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     | 0.2 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.048 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     | 0.5 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA Method 200.8     | 4.0 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.497 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EDA Mothod 2022P     | 0.01.444/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.44280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ua/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00240 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00076//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA ivietnod 8082B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | υ.υυ276 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EPA Method 8082B     | 0.01 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | EPA Method 8260C EPA Me | EPA Method 8260C EPA M | EPA Method 8260C EPA M | EPA Method 8260C O.2 μg/L EPA Method 8260C O.3 μg/L EPA Method 8260C O.4 μg/L EPA Method 8260C O.5 μg/L O.077 μg/L EPA Method 8260C O.2 μg/L O.077 μg/L EPA Method 8260C O.2 μg/L O.067 μg/L EPA Method 8260C O.2 μg/L O.066 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.066 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.066 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.066 μg/L O.066 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.066 μg/L O.066 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.066 μg/L O.068 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.066 μg/L O.068 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.068 μg/L EPA Method 8260C O.2 μg/L O.068 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.068 μg/L O.068 μg/L EPA Method 8260C O.2 μg/L O.068 μg/L O.068 μg/L EPA Method 8260C EPA Method 8260C O.2 μg/L O.068 μg/L O.068 μg/L O.068 μg/L O.069 μg/L O.06 |

#### TABLE 6

# SITE GROUNDWATER ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Analyte                                                                                                                                       | Analytical   | Target               | Method           | Preliminary         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|------------------|---------------------|--|--|
|                                                                                                                                               | Method (a)   | Reporting Limits (b) | Detection Limits | Screening Level (c) |  |  |
| Total Petroleum Hydrocarbons Gasoline-Range Petroleum Hydrocarbons Diesel-Range Petroleum Hydrocarbons Motor Oil-Range Petroleum Hydrocarbons | NWTPH-G (e)  | 250 μg/L             | 60 µg/L          | 800/1000(f) μg/L    |  |  |
|                                                                                                                                               | NWTPH-Dx (e) | 100 μg/L             | 16 µg/L          | 500 μg/L            |  |  |
|                                                                                                                                               | NWTPH-Dx (e) | 200 μg/L             | 49 µg/L          | 500 μg/L            |  |  |

#### SIM = Selected Ion Monitoring

- (a) Analytical methods are from SW-846 (EPA 1986) and updates.
- (b) Target reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Laboratory reporting will be based on the lowest standard on the calibration curve. Instances may arise where high sample concentrations, nonhomogeneity of samples, or matrix interferences preclude achieving the target reporting limits.
- (c) Based on Ecology Spreadsheet Draft Preliminary Screening Levels & ARARs v14R1 in accordance with Ecology comments.
- (d) Preliminary screening level is for xylenes.
- (e) Methods NWTPH-G and NWTPH-Dx as described in *Analytical Methods for Petroleum Hydrocarbons*, Washington State Department of Ecology, Publication ECY97-602, June 1997 (Ecology 1997)
- (f) Preliminary screening level when benzene is detected is 800 ug/L; when no benzene is detected, preliminary screening level is 1000 ug/L.

# TABLE 7 SITE SOIL ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                              | Analytical                  | Target                    | Method           | Prelimir    | nary     |
|------------------------------|-----------------------------|---------------------------|------------------|-------------|----------|
| Analyte                      | Method (a)                  | Reporting Limits (b)      | Detection Limits | Screening I | -        |
| •                            | initiation (a)              | Troporting Emitte (2)     | 70.00            |             | -010. (0 |
| SEMIVOLATILES                |                             |                           |                  |             |          |
| 1,2,4-Trichlorobenzene       | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      | 0.00054     | mg/kg    |
| 1,2-Dichlorobenzene          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      | 0.004       | mg/kg    |
| 1,3-Dichlorobenzene          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      | 0.28        | mg/kg    |
| 1,4-Dichlorobenzene          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      | 0.0051      | mg/kg    |
| 1-Methylnaphthalene          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      |             |          |
| 2,2'-Oxybis(1-Chloropropane) | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      |             |          |
| 2,4,5-Trichlorophenol        | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.021 mg/kg      |             |          |
| 2,4,6-Trichlorophenol        | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.011 mg/kg      | 0.00295     | mg/kg    |
| 2,4-Dichlorophenol           | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.018 mg/kg      |             |          |
| 2,4-Dimethylphenol           | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.008 mg/kg      | 0.00203     | mg/kg    |
| 2,4-Dinitrophenol            | EPA Method 8270 (Low Level) | 0.2 mg/kg                 | 0.05 mg/kg       | 0.00200     | 9,       |
| 2,4-Dinitrotoluene           | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.019 mg/kg      |             |          |
| 2,6-Dinitrotoluene           | EPA Method 8270 (Low Level) | 0.1 mg/kg<br>0.1 mg/kg    |                  |             |          |
|                              | ,                           |                           |                  |             |          |
| 2-Chloronaphthalene          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      |             |          |
| 2-Chlorophenol               | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      |             |          |
| 2-Methylnaphthalene          | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.04321     | mg/k     |
| 2-Methylphenol               | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      | 0.0052      | mg/k     |
| 2-Nitroaniline               | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.019 mg/kg      |             |          |
| 2-Nitrophenol                | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.009 mg/kg      |             |          |
| 3,3'-Dichlorobenzidine       | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.054 mg/kg      |             |          |
| 3-Nitroaniline               | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.025 mg/kg      |             |          |
| 4,6-Dinitro-2-Methylphenol   | EPA Method 8270 (Low Level) | 0.2 mg/kg                 | 0.041 mg/kg      |             |          |
| 4-Bromophenyl-phenylether    | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      |             |          |
| 4-Chloro-3-methylphenol      | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.015 mg/kg      |             |          |
| 4-Chloroaniline              | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.024 mg/kg      |             |          |
| 4-Chlorophenyl-phenylether   | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      |             |          |
|                              |                             | 7 7                       |                  | 0.0550      | /1-      |
| 4-Methylphenol               | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      | 0.0556      | mg/k     |
| 4-Nitroaniline               | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.023 mg/kg      |             |          |
| 1-Nitrophenol                | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.028 mg/kg      |             |          |
| Acenaphthene                 | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.017       | mg/k     |
| Acenaphthylene               | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.0691      | mg/k     |
| Anthracene                   | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.22        | mg/k     |
| Benzo(a)anthracene           | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.0051      | mg/k     |
| Benzo(a)pyrene               | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.0094      | mg/k     |
| Benzo(b)fluoranthene         | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.0096      | mg/k     |
| Benzo(g,h,i)perylene         | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.0310      | mg/k     |
| Benzo(k)fluoranthene         | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.0094      | mg/k     |
| Benzoic Acid                 | EPA Method 8270 (Low Level) | 0.2 mg/kg                 | 0.043 mg/kg      | 0.68        | mg/k     |
| Benzyl Alcohol               | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.046 mg/kg      | 0.055       | mg/k     |
| •                            | ,                           |                           |                  | 0.055       | ilig/k   |
| ois(2-Chloroethoxy) Methane  | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.002 mg/kg      |             |          |
| Bis-(2-Chloroethyl) Ether    | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      | 0.047       |          |
| ois(2-Ethylhexyl)phthalate   | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.009 mg/kg      | 0.047       | mg/k     |
| Butylbenzylphthalate         | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      | 0.0051      | mg/k     |
| Carbazole                    | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.002 mg/kg      |             |          |
| Chrysene                     | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.0028      | mg/k     |
| Dibenz(a,h)anthracene        | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.0120      | mg/k     |
| Dibenzofuran                 | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.02        | mg/k     |
| Diethylphthalate             | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      | 0.20        | mg/k     |
| Dimethylphthalate            | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      | 0.094       | mg/k     |
| Di-n-Butylphthalate          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      | 0.26        | mg/k     |
| Di-n-Octyl phthalate         | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      | 0.06        | mg/k     |
| Fluoranthene                 | EPA Method 8270 (Low Level) | 0.02 mg/kg<br>0.005 mg/kg | 0.003 mg/kg      | 0.06        | mg/k     |
|                              |                             | 0 0                       |                  |             | -        |
| Fluorene                     | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 0.024       | mg/k     |
| Hexachlorobenzene            | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      | 1.06333E-06 | mg/k     |
| Hexachlorobutadiene          | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      | 0.0050      | mg/k     |
| lexachlorocyclopentadiene    | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.012 mg/kg      |             |          |
| Hexachloroethane             | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.005 mg/kg      |             |          |
| ndeno(1,2,3-cd)pyrene        | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.032       | mg/k     |
| sophorone                    | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      |             |          |
| Naphthalene                  | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.114       | mg/k     |
| Vitrobenzene                 | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      |             | J        |
| N-Nitroso-Di-N-Propylamine   | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg      |             |          |
| N-Nitrosodiphenylamine       | EPA Method 8270 (Low Level) | 0 0                       |                  | 0.0116      | ma/l     |
| . ,                          | , ,                         | 0.1 mg/kg                 |                  |             | mg/k     |
| Pentachlorophenol            | EPA Method 8270 (Low Level) | 0.1 mg/kg                 | 0.027 mg/kg      | 0.00080     | mg/k     |
| Phenanthrene                 | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.002 mg/kg      | 0.1014      | mg/k     |
| Phenol                       | EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.004 mg/kg      | 0.043       | mg/k     |
| Pyrene                       | EPA Method 8270 SIM         | 0.005 mg/kg               | 0.001 mg/kg      | 1.00        | mg/k     |

# TABLE 7 SITE SOIL ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                              | Analytical                         | Target                     | Method                       | Prelim    | •         |
|----------------------------------------------|------------------------------------|----------------------------|------------------------------|-----------|-----------|
| Analyte                                      | Method (a)                         | Reporting Limits (b)       | Detection Limits             | Screening | Level (c) |
| VOLATILES                                    |                                    |                            |                              |           |           |
| 1,1,1,2-Tetrachloroethane                    | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
| 1,1,1-Trichloroethane                        | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 2.414     | mg/kg     |
| 1,1,2,2-Tetrachloroethane                    | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           | 0 0       |
| 1.1.2-Trichloroethane                        | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 | 0.0003    | mg/kg     |
| 1,1,2-Trichlorotrifluoroethane               | EPA Method 8260                    | 0.002 mg/kg                | 0.0003 mg/kg                 |           | 99        |
| 1,1-Dichloroethane                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.26      | mg/kg     |
| 1,1-Dichloroethene                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 | 0.0010    | mg/kg     |
| 1,1-Dichloropropene                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 | 0.0010    | 99        |
| 1,2,3-Trichlorobenzene                       | EPA Method 8260                    | 0.005 mg/kg                | 0.0003 mg/kg                 |           |           |
| 1,2,3-Trichloropropane                       | EPA Method 8260                    | 0.002 mg/kg                | 0.0005 mg/kg                 |           |           |
| 1,2,4-Trichlorobenzene                       | EPA Method 8260                    | 0.005 mg/kg                | 0.0003 mg/kg                 | 0.00054   | mg/kg     |
| 1,2,4-Trimethylbenzene                       | EPA Method 8260                    | 0.003 mg/kg<br>0.001 mg/kg | 0.0003 mg/kg                 | 0.00034   | mg/kg     |
| 1,2-Dibromo-3-chloropropane                  | EPA Method 8260                    | 0.001 mg/kg<br>0.005 mg/kg | 0.0002 mg/kg                 |           |           |
|                                              | EPA Method 8260                    | 0 0                        | 0 0                          | 0.004     | ma/ka     |
| 1,2-Dichlorobenzene                          |                                    | 0.001 mg/kg                | 0.0003 mg/kg                 | 0.004     | mg/kg     |
| 1,2-Dichloroethane                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.00016   | mg/kg     |
| 1,2-Dichloropropane                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
| 1,3,5-Trimethylbenzene                       | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 | 0.0792    | mg/kg     |
| 1,3-Dichlorobenzene                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.28      | mg/kg     |
| 1,3-Dichloropropane                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
| 1,4-Dichlorobenzene                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.0051    | mg/kg     |
| 2,2-Dichloropropane                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| 2-Butanone                                   | EPA Method 8260                    | 0.005 mg/kg                | 0.0005 mg/kg                 | 1.38      | mg/kg     |
| 2-Chloroethylvinylether                      | EPA Method 8260                    | 0.005 mg/kg                | 0.0003 mg/kg                 |           |           |
| 2-Chlorotoluene                              | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| 2-Hexanone                                   | EPA Method 8260                    | 0.005 mg/kg                | 0.0004 mg/kg                 |           |           |
| 4-Chlorotoluene                              | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| 4-Isopropyltoluene                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
| 4-Methyl-2-Pentanone (MIBK)                  | EPA Method 8260                    | 0.005 mg/kg                | 0.0004 mg/kg                 | 0.18      | mg/kg     |
| Acetone                                      | EPA Method 8260                    | 0.005 mg/kg                | 0.0005 mg/kg                 | 2.1       | mg/kg     |
| Acrolein                                     | EPA Method 8260                    | 0.05 mg/kg                 | 0.038 mg/kg                  |           |           |
| Acrylonitrile                                | EPA Method 8260                    | 0.005 mg/kg                | 0.001 mg/kg                  |           |           |
| Benzene                                      | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 | 0.00036   | mg/kg     |
| Bromobenzene                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0001 mg/kg                 |           |           |
| Bromochloromethane                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| Bromodichloromethane                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| Bromoethane                                  | EPA Method 8260                    | 0.002 mg/kg                | 0.0004 mg/kg                 |           |           |
| Bromoform                                    | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| Bromomethane                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
| Carbon Disulfide                             | EPA Method 8260                    | 0.001 mg/kg                | 0.0006 mg/kg                 |           |           |
| Carbon Tetrachloride                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.00021   | mg/kg     |
| Chlorobenzene                                | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.00021   | mg/kg     |
| Chloroethane                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.0106    | mg/kg     |
| Chloroform                                   | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.151     | mg/kg     |
| Chloromethane                                | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.131     | mg/kg     |
| cis-1,2-Dichloroethene                       | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 Hg/kg<br>0.0002 mg/kg | U         | mg/kg     |
| *                                            |                                    |                            | 0 0                          |           |           |
| cis-1,3-Dichloropropene Dibromochloromethane | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
|                                              |                                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| Dibromomethane                               | EPA Method 8260                    | 0.001 mg/kg                | 0.0001 mg/kg                 |           |           |
| Ethylbenzene                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 0.6       | mg/kg     |
| Ethylene Dibromide                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0001 mg/kg                 | 0.0050    |           |
| Hexachlorobutadiene                          | EPA Method 8260                    | 0.001 mg/kg                | 0.0004 mg/kg                 | 0.0050    | mg/kg     |
| Isopropylbenzene                             | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           | -         |
| m,p-Xylene                                   | EPA Method 8260                    | 0.001 mg/kg                | 0.0004 mg/kg                 | 1.2 (d)   | mg/kg     |
| Methyl Iodide                                | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |           |           |
| Methylene Chloride                           | EPA Method 8260                    | 0.002 mg/kg                | 0.0006 mg/kg                 | 0.0018    | mg/kg     |
| Naphthalene                                  | EPA Method 8260                    | 0.005 mg/kg                | 0.0004 mg/kg                 | 0.114     | mg/kg     |
| n-Butylbenzene                               | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| n-Propylbenzene                              | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |           |           |
| o-Xylene                                     | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | 1.2 (d)   | mg/kg     |
| sec-Butylbenzene                             | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 | , ,       |           |
| Styrene                                      | EPA Method 8260                    | 0.001 mg/kg                | 0.0001 mg/kg                 | 1.29      | mg/kg     |

# TABLE 7 SITE SOIL ANALYTICAL METHODS, TARGET REPORTING LIMITS, METHOD DETECTION LIMITS, AND PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                        | Analytical       | Target                 | Method                     | Prelimin    | arv   |
|----------------------------------------|------------------|------------------------|----------------------------|-------------|-------|
| Analyte                                | Method (a)       | Reporting Limits (b)   | Detection Limits           | Screening L | •     |
| VOLATILES (continued)                  |                  |                        |                            |             |       |
| tert-Butylbenzene                      | EPA Method 8260  | 0.001 mg/kg            | 0.0003 mg/kg               |             |       |
| Tetrachloroethene                      | EPA Method 8260  | 0.001 mg/kg            | 0.0003 mg/kg               | 0.00129844  | mg/kg |
| Toluene                                | EPA Method 8260  | 0.001 mg/kg            | 0.0000 mg/kg               | 0.89        | mg/kg |
| trans-1.2-Dichloroethene               | EPA Method 8260  | 0.001 mg/kg            | 0.0001 mg/kg               | 0.00        | mg/ng |
| trans-1,3-Dichloropropene              | EPA Method 8260  | 0.001 mg/kg            | 0.0003 mg/kg               |             |       |
| trans-1,4-Dichloro-2-butene            | EPA Method 8260  | 0.005 mg/kg            | 0.0002 mg/kg               |             |       |
| Trichloroethene                        | EPA Method 8260  | 0.000 mg/kg            | 0.0004 mg/kg               | 0.00019     | mg/kg |
| Trichlorofluoromethane                 | EPA Method 8260  | 0.001 mg/kg            | 0.0003 mg/kg               | 0.00010     | 99    |
| Vinyl Acetate                          | EPA Method 8260  | 0.005 mg/kg            | 0.0004 mg/kg               |             |       |
| Vinyl Chloride                         | EPA Method 8260  | 0.001 mg/kg            | 0.0002 mg/kg               | 8.86433E-06 | mg/kg |
| METALS                                 |                  |                        |                            |             |       |
| Antimony                               | EPA Method 6020  | 0.2 mg/kg              | 0.013 mg/kg                | 28.98       | mg/kg |
| Arsenic                                | EPA Method 6020  | 0.2 mg/kg              | 0.013 mg/kg<br>0.087 mg/kg | 0.002       | mg/kg |
| Barium                                 | EPA Method 6020  | 0.5 mg/kg              | 0.056 mg/kg                | 23          | mg/kg |
| Beryillium                             | EPA Method 6020  | 0.5 mg/kg<br>0.2 mg/kg | 0.030 mg/kg                | 25.0        | mg/kg |
| Cadmium                                | EPA Method 6020  | 0.1 mg/kg              | 0.012 mg/kg                | 0.002       | mg/kg |
| Chromium III                           | EPA Method 6020  | 0.5 mg/kg              | 0.038 mg/kg                | 42          | mg/kg |
| Chromium VI                            | EPA Method 7196  | 0.5 mg/kg<br>0.1 mg/kg | 0.003 mg/kg                | 0.19        | mg/kg |
| Copper                                 | EPA Method 6020  | 0.5 mg/kg              | 0.036 mg/kg                | 0.05        | mg/kg |
| Lead                                   | EPA Method 6020  | 0.5 mg/kg<br>0.1 mg/kg | 0.047 mg/kg                | 25          | mg/kg |
| Mercury                                | EPA Method 7471  | 0.025 mg/kg            | 0.002 mg/kg                | 0.001       | mg/kg |
| Nickel                                 | EPA Method 6020  | 0.5 mg/kg              | 0.002 mg/kg<br>0.049 mg/kg | 0.33        | mg/kg |
| Selenium                               | EPA Method 6020  | 0.5 mg/kg              | 0.099 mg/kg                | 0.026       | mg/kg |
| Silver                                 | EPA Method 6020  | 0.2 mg/kg              | 0.008 mg/kg                | 0.0163      | mg/kg |
| Thallium                               | EPA Method 6020  | 0.2 mg/kg              | 0.003 mg/kg                | 0.034       | mg/kg |
| Zinc                                   | EPA Method 6020  | 4.0 mg/kg              | 0.339 mg/kg                | 5.0         | mg/kg |
|                                        |                  |                        |                            |             |       |
| PCBs                                   |                  |                        |                            |             |       |
| Aroclor 1016                           | EPA Method 8082  | 0.033 mg/kg            | 0.009 mg/kg                | 0.000384    | mg/kg |
| Aroclor 1242                           | EPA Method 8082  | 0.033 mg/kg            |                            | 1.02881E-05 | mg/kg |
| Aroclor 1248                           | EPA Method 8082  | 0.033 mg/kg            |                            | 0.000619    | mg/kg |
| Aroclor 1254                           | EPA Method 8082  | 0.033 mg/kg            |                            | 0.001063    | mg/kg |
| Aroclor 1260                           | EPA Method 8082  | 0.033 mg/kg            | 0.007 mg/kg                | 0.002902    | mg/kg |
| Aroclor 1221                           | EPA Method 8082  | 0.033 mg/kg            |                            | 0.000149    | mg/kg |
| Aroclor 1232                           | EPA Method 8082  | 0.033 mg/kg            |                            | 0.000149    | mg/kg |
| TOTAL PETROLEUM HYDROCARBONS           |                  |                        |                            |             |       |
| Gasoline-Range Petroleum Hydrocarbons  | NWTPH-G (e)      | 5 mg/kg                | 0.002 mg/kg                | 30/100 (f)  | mg/kg |
| Diesel-Range Petroleum Hydrocarbons    | NWTPH-Dx (e,g)   | 5 mg/kg                | 0.007 mg/kg                | 460         | mg/kg |
| Motor Oil-Range Petroleum Hydrocarbons | NWTPH-Dx (e,g)   | 10 mg/kg               | 0.001 mg/kg                | 2000        | mg/kg |
| DIOXINS/FURANS                         |                  |                        |                            |             |       |
| 2,3,7,8-TCDF                           | EPA Method 1613B | 0.00000019 mg/kg       | 0.000001 mg/kg             |             |       |
| 2,3,7,8-TCDD                           | EPA Method 1613B | 0.00000034 mg/kg       | 0.000001 mg/kg             | 7.47592E-10 | mg/kg |
| 1,2,3,7,8-PeCDF                        | EPA Method 1613B | 0.00000080 mg/kg       | 0.000005 mg/kg             |             | 99    |
| 2,3,4,7,8-PeCDF                        | EPA Method 1613B | 0.00000079 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,7,8-PeCDD                        | EPA Method 1613B | 0.00000095 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,4,7,8-HxCDF                      | EPA Method 1613B | 0.00000064 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,6,7,8-HxCDF                      | EPA Method 1613B | 0.00000098 mg/kg       | 0.000005 mg/kg             |             |       |
| 2,3,4,6,7,8-HxCDF                      | EPA Method 1613B | 0.00000096 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,7,8,9-HxCDF                      | EPA Method 1613B | 0.00000090 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,4,7,8-HxCDD                      | EPA Method 1613B | 0.00000101 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,6,7,8-HxCDD                      | EPA Method 1613B | 0.00000059 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,7,8,9-HxCDD                      | EPA Method 1613B | 0.00000038 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,4,6,7,8-HpCDF                    | EPA Method 1613B | 0.00000065 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,4,7,8,9-HpCDF                    | EPA Method 1613B | 0.00000099 mg/kg       | 0.000005 mg/kg             |             |       |
| 1,2,3,4,6,7,8-HpCDD                    | EPA Method 1613B | 0.00000115 mg/kg       | 0.000005 mg/kg             |             |       |
| OCDF                                   | EPA Method 1613B | 0.00000139 mg/kg       | 0.00001 mg/kg              |             |       |
| OCDD                                   | EPA Method 1613B | 0.00000179 mg/kg       | 0.00001 mg/kg              | 1           |       |

### SIM = Selected Ion Monitoring

- (a) Analytical methods are from SW-846 (EPA 1986) and updates.
- (b) Target reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Laboratory reporting will be based on the lowest standard on the calibration curve. Instances may arise where high sample concentrations, nonhomogeneity of samples, or matrix interferences preclude achieving the target reporting limits.
- (c) Based on Ecology Spreadsheet Draft Preliminary Screening Levels & ARARs v14R1 in accordance with Ecology comments.
- (d) Preliminary screening level is for xylenes.
- (e) Methods NWTPH-G and NWTPH-Dx as described in Analytical Methods for Petroleum Hydrocarbons, Washington State Department of Ecology, Publication ECY97-602, June 1997 (Ecology 1997)
- (f) Preliminary screening level when benzene is detected is 30 ug/L; when no benzene is detected, preliminary screening level is 100 ug/L.
- (g) An acid silica gel cleanup will be performed for all NWTPH-Dx analyses.

# TABLE 8 GROUNDWATER ARSENIC ANALYTICAL DATA BOEING ISAACSON-THOMPSON SITE

|                       |                        |                | •              |
|-----------------------|------------------------|----------------|----------------|
|                       |                        | Dissolved      | Total          |
|                       |                        | Arsenic (µg/L) | Arsenic (μg/L) |
|                       |                        |                |                |
| Upgradient Well       | 10/00/1007             |                |                |
| I-200                 | 12/28/1995             | 2              | 15             |
| I-200                 | 4/19/1996              | 2              | 13             |
| I-200                 | 12/1/1999              | 2              |                |
| I-200                 | 8/24/2000              | 3              |                |
| I-200                 | 10/25/2000             | 2.7            |                |
| I-200                 | 9/4/2007               | <50/0.9 (a)    |                |
| I-200<br>I-200        | 6/17/2008<br>2/4/2009  | 0.7<br>0.8     |                |
| 1-200                 | 2/4/2009               | 0.6            |                |
| Northern Property Bou | ndary Well             |                |                |
| PZ-1                  | 2/2/2009               | 7.1            |                |
| Western Property Bour | ndary Wells            |                |                |
| I-203                 | 12/28/1995             | 160            | 140            |
| I-203                 | 4/19/1996              | 70             | 68             |
| I-203                 | 12/1/1999              | 150            |                |
| I-203                 | 8/24/2000              | 1,200          |                |
| I-203                 | 10/25/2000             | 98             |                |
| I-203                 | 9/4/2007               | 140            |                |
| I-203                 | 6/16/2008              | 182            |                |
| I-203                 | 2/4/2009               | 122            |                |
| I-104                 | 12/28/1995             | 380            | 360            |
| I-104<br>I-104        | 4/19/1996              | 330            | 330            |
| I-104                 | 12/1/1999              | 160            | 330            |
| I-104                 | 8/24/2000              | 1,600          |                |
|                       |                        | · ·            |                |
| I-104                 | 10/25/2000             | 810            |                |
| I-104<br>I-104        | 9/5/2007<br>6/16/2008  | 3600<br>3640   |                |
| I-104<br>I-104        | 2/2/2009               | 2,270          |                |
| I-205                 | Feb-1988               | 30             |                |
| I-205                 | 9/12/1991              | 129            |                |
| I-205                 | 9/19/1991              | 36             |                |
| I-205                 | 9/26/1991              | 23             |                |
| I-205                 | 10/3/1991              | 126            |                |
| I-205                 | 4/16/1992              | 2              |                |
| I-205                 | 4/23/1992              | 2              |                |
| I-205                 | 4/30/1992              | 7              |                |
| I-205                 | 5/7/1992               | <1             |                |
| I-205                 | 9/24/1992              | 57             |                |
| I-205                 | 10/1/1992              | 2              |                |
| I-205                 | 10/8/1992              | 1              |                |
| I-205                 | 10/15/1992             | 9              |                |
| I-205                 | 4/8/1993               | 24             |                |
| I-205                 | 4/15/1993              | 46             |                |
| I-205                 | 4/22/1993              | 25             |                |
| I-205<br>I-205        | 4/22/1993              | 25<br>56       |                |
| I-205                 | 10/15/1993             | 11             |                |
| I-205                 | 10/13/1993             | 11             |                |
| I-205                 | 10/22/1993             | 19             |                |
| I-205                 | 11/5/1993              | 310            |                |
| I-205<br>I-205        | 4/14/1994              | <1             |                |
| 1-205<br>1-205        | 4/14/1994<br>4/21/1994 | 1              |                |
| I-205<br>I-205        | 4/21/1994              | 7              |                |
| 1-205<br>1-205        | 4/28/1994<br>5/5/1994  | 1              |                |
| 1-200                 | 5/5/1994               | '              | 1              |

# TABLE 8 GROUNDWATER ARSENIC ANALYTICAL DATA BOEING ISAACSON-THOMPSON SITE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            | Dissolved<br>Arsenic (µg/L) | Total<br>Arsenic (µg/L) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----------------------------|-------------------------|
| 1-205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-205   Bec-99   10   27   1-205   8/24/2000   27   1-205   10/25/2000   112   1-205   3/2/2006   13   3   8/24/2006   13   45.9   1-205   9/4/2007   -50/28   (a)   45.9   1-205   9/4/2009   28.1   1-205   9/4/2009   28.1   1-206   9/12/1991   1,470   1,470   1,206   9/12/1991   1,470   1,206   9/12/1991   1,470   1,206   9/12/1991   1,580   1,206   9/12/1991   1,580   1,206   4/16/1992   1,610   1,206   4/16/1992   1,610   1,206   4/23/1992   1,770   1,206   4/23/1992   1,670   1,206   4/23/1992   1,670   1,206   4/23/1992   1,580   1,206   10/14/1992   1,580   1,206   10/14/1992   1,580   1,206   10/14/1992   1,580   1,206   10/14/1992   1,580   1,206   10/14/1992   1,580   1,206   10/14/1993   1,710   1,206   4/23/1993   1,710   1,206   4/23/1993   1,710   1,206   4/23/1993   1,510   1,206   4/23/1993   1,510   1,206   4/23/1993   1,510   1,206   4/23/1993   1,510   1,206   4/23/1993   1,510   1,206   4/23/1993   1,510   1,206   4/24/1993   1,510   1,206   4/24/1993   1,510   1,206   4/24/1993   1,510   1,206   4/24/1993   1,510   1,206   4/24/1993   1,510   1,206   4/24/1993   1,510   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/2000   1,360   2,270   1,206   8/24/2000   1,360   2,270   1,206   8/24/2000   1,360   2,270   1,206   8/24/2000   1,360   2,270   1,206   6/16/2008   690   1,206   6/16/2008   690   1,206   6/16/2008   690   1,206   6/16/2008   1,206   6/16/2008   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,206   1,20 |       |            |                             |                         |
| 1-205   80/24/2000   27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I-205 | 4/19/1996  | 320                         | 26                      |
| 1-205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-205 | Dec-99     |                             |                         |
| 1-205   3/2/2006   9.8    -205   8/8/2007   5.50/28   (a)    -205   9/4/2007   5.50/28   (a)    -205   6/16/2008   45.9    -206   Feb-88   1,700    -206   9/12/1991   1,470    -206   9/12/1991   1,580    -206   9/26/1991   1,580    -206   10/3/1991   1,610    -206   4/16/1992   1,670    -206   4/30/1992   1,670    -206   4/30/1992   1,680   J    -206   4/30/1992   1,580    -206   9/24/1992   1,580    -206   9/24/1992   1,580    -206   10/16/1992   1,700    -206   10/16/1992   1,700    -206   10/16/1992   1,700    -206   4/16/1993   1,580    -206   4/16/1993   1,580    -206   4/22/1993   1,510    -206   4/22/1993   1,510    -206   4/22/1993   1,580    -206   10/22/1993   1,580    -206   10/22/1993   1,580    -206   10/22/1993   1,580    -206   10/22/1993   1,580    -206   10/22/1993   1,580    -206   4/28/1994   1,430    -206   4/28/1994   1,430    -206   4/28/1994   1,430    -206   4/28/1994   1,430    -206   4/28/1994   1,430    -206   4/28/1995   2,000   1,600    -206   3/2/2006   2,35    -206   3/2/2006   2,35    -206   3/2/2006   2,35    -206   9/4/2007   720    -206   6/16/2008   690    -207   P2-7   8/24/2000   2,80    -208   P2-8   8/24/2000   2,80    -209   P2-8   8/24/2000   2,80    -208   P2-8   8/24/2000   2,80    -208   P2-8   6/16/2008   3,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I-205 | 8/24/2000  |                             |                         |
| 1-205   8/8/2006   9.8     1-205   9/4/2007   <50/28   (a)     1-205   6/16/2008   45.9     1-206   Feb-88   1,700     1-206   9/12/1991   1,470     1-206   9/12/1991   1,580     1-206   9/12/1991   1,580     1-206   9/12/1991   1,580     1-206   9/12/1991   1,610     1-206   4/16/1992   1,610     1-206   4/16/1992   1,670     1-206   4/23/1992   1,770     1-206   4/30/1992   1,680     1-206   4/30/1992   1,680     1-206   5/7/1992   1,680     1-206   10/1/1992   1,580     1-206   10/1/1992   1,580     1-206   10/1/1992   1,580     1-206   10/15/1992   1,700     1-206   4/15/1993   1,710     1-206   4/15/1993   1,510     1-206   4/22/1993   1,510     1-206   4/22/1993   1,510     1-206   4/22/1993   1,510     1-206   4/22/1993   1,510     1-206   10/15/1993   1,810     1-206   10/25/1993   1,510     1-206   4/21/1994   1,360     1-206   4/21/1994   1,360     1-206   4/21/1994   1,480     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   4/21/1994   1,430     1-206   5/5/1994   1,370     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     1-206   5/5/1994   1,350     | I-205 | 10/25/2000 | 112                         |                         |
| 1-205   9/4/2007   <50/28   (a)    -205   6/16/2008   45.9    -206   5/4/2009   28.1    -206   Feb-88   1,700    -206   9/12/1991   1,470    -206   9/19/1991   1,580    -206   10/3/1991   1,580    -206   10/3/1991   1,580    -206   4/16/1992   1,610    -206   4/23/1992   1,770    -206   4/30/1992   1,670    -206   4/30/1992   1,680   J    -206   4/30/1992   1,580    -206   9/24/1992   1,580    -206   10/3/1991   1,550    -206   9/24/1992   1,580    -206   10/3/1992   1,550    -206   10/3/1992   1,550    -206   10/3/1993   1,710    -206   4/18/1993   1,710    -206   4/19/1993   1,580    -206   4/22/1993   1,510    -206   4/29/1993   1,590    -206   10/22/1993   1,590    -206   10/22/1993   1,590    -206   10/22/1993   1,590    -206   4/21/1994   1,380    -206   4/21/1994   1,380    -206   4/21/1994   1,380    -206   4/21/1994   1,480    -206   4/21/1994   1,480    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   4/28/1994   1,370    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,430    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -206   5/5/1994   1,370    -207   5/5/100    | I-205 | 3/2/2006   | 13                          |                         |
| 1-205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-205 | 8/8/2006   | 9.8                         |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-205 | 9/4/2007   | <50/28 (a)                  |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-205 | 6/16/2008  | 45.9                        |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-205 | 2/4/2009   | 28.1                        |                         |
| 1-206   9/19/1991   1,790   1,580   1-206   10/3/1991   1,580   1-206   10/3/1991   1,610   1-206   4/16/1992   1,610   1-206   4/23/1992   1,770   1-206   4/30/1992   1,670   1,670   1-206   4/30/1992   1,670   1,600   1-206   9/24/1992   1,680   J   1,580   1-206   10/11/1992   1,580   1-206   10/18/1992   1,550   1-206   10/18/1992   1,550   1-206   4/15/1993   1,710   1,580   1,206   4/15/1993   1,580   1,206   4/22/1993   1,510   1,206   4/22/1993   1,510   1,206   4/22/1993   1,510   1,206   4/22/1993   1,590   1,206   10/15/1993   1,580   1,206   10/15/1993   1,580   1,206   10/22/1993   1,510   1,206   10/22/1993   1,510   1,206   10/22/1993   1,510   1,206   10/22/1993   1,510   1,206   4/14/1994   1,360   1,206   4/24/1994   1,360   1,206   4/24/1994   1,370   1,206   4/28/1994   1,370   1,206   4/28/1994   1,370   1,206   4/19/1996   1,800   2,270   1,206   4/19/1996   1,800   2,270   1,206   3/2/2006   1,350   1,206   3/2/2006   213   1,206   3/2/2006   213   1,206   3/2/2006   213   1,206   3/2/2006   213   1,206   3/2/2006   213   1,206   3/2/2006   213   1,206   3/2/2006   235   1,206   3/2/2006   235   1,206   3/2/2006   235   1,206   3/2/2006   235   1,206   3/2/2006   235   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2006   2,35   1,206   3/2/2000   3,70   9,277   3/2/2009   5,75   9,727   3/2/2009   5,75   9,727   3/2/2009   5,50   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   9,728   3/2/2000   2,80   3,60   3,60   3,60   3,60   3,60   3,60   3,60   3,60   3,60   3,60   3,60   3, | I-206 |            | 1,700                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 |            | •                           |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 9/19/1991  | 1,790                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 9/26/1991  | 1,580                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 10/3/1991  | 1,610                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 4/16/1992  | 1,610                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 4/23/1992  | 1,770                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 4/30/1992  | 1,670                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 5/7/1992   | 1,600                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 9/24/1992  | 1,680 J                     |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-206 | 10/1/1992  | 1,580                       |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 10/8/1992  |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            | •                           |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            | · ·                         |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            | · ·                         |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            | · ·                         |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            | · ·                         |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             | 1 600                   |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             | ·                       |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             | 2,270                   |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            | · ·                         |                         |
| 1-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| I-206       9/4/2007       720         I-206       6/16/2008       690         I-206       2/4/2009       575         PZ-7       8/24/2000       9         PZ-7       10/25/2000       3.70         PZ-7       9/4/2007       <50/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |                             |                         |
| I-206       6/16/2008       690         I-206       2/4/2009       575         PZ-7       8/24/2000       9         PZ-7       10/25/2000       3.70         PZ-7       9/4/2007       <50/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |                             |                         |
| I-206     2/4/2009     575       PZ-7     8/24/2000     9       PZ-7     10/25/2000     3.70       PZ-7     9/4/2007     <50/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |                             |                         |
| PZ-7 8/24/2000 9 PZ-7 10/25/2000 3.70 PZ-7 9/4/2007 <50/4 (a) PZ-7 6/16/2008 18.4 PZ-7 2/2/2009 5.0 PZ-8 8/24/2000 2 PZ-8 10/25/2000 2.80 PZ-8 9/4/2007 <50/5 (a) PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |                             |                         |
| PZ-7 10/25/2000 3.70 PZ-7 9/4/2007 <50/4 (a)  PZ-7 6/16/2008 18.4 PZ-7 2/2/2009 5.0  PZ-8 8/24/2000 2 PZ-8 10/25/2000 2.80 PZ-8 9/4/2007 <50/5 (a) PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |                             |                         |
| PZ-7 9/4/2007 <50/4 (a)  PZ-7 6/16/2008 18.4  PZ-7 2/2/2009 5.0  PZ-8 8/24/2000 2  PZ-8 10/25/2000 2.80  PZ-8 9/4/2007 <50/5 (a)  PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |                             |                         |
| PZ-7       6/16/2008       18.4         PZ-7       2/2/2009       5.0         PZ-8       8/24/2000       2         PZ-8       10/25/2000       2.80         PZ-8       9/4/2007       <50/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |                             |                         |
| PZ-7 2/2/2009 5.0  PZ-8 8/24/2000 2  PZ-8 10/25/2000 2.80  PZ-8 9/4/2007 <50/5 (a)  PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |            | ()                          |                         |
| PZ-8 8/24/2000 2 PZ-8 10/25/2000 2.80 PZ-8 9/4/2007 <50/5 (a) PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |                             |                         |
| PZ-8 10/25/2000 2.80 PZ-8 9/4/2007 <50/5 (a) PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |                             |                         |
| PZ-8 9/4/2007 <50/5 (a)<br>PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            |                             |                         |
| PZ-8 6/16/2008 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |                             |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            | ` '                         |                         |
| PZ-8 2/4/2009 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |                             |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PZ-8  | 2/4/2009   | <1.0                        |                         |

# TABLE 8 GROUNDWATER ARSENIC ANALYTICAL DATA BOEING ISAACSON-THOMPSON SITE

|                                |                                    | Dissolved<br>Arsenic (µg/L) | Total<br>Arsenic (µg/L) |
|--------------------------------|------------------------------------|-----------------------------|-------------------------|
| Boeing Thompson Prope          | rty - North Side of Buildin        | g 14-01                     |                         |
| PZ-2                           | 2/4/2009                           | 11.3                        |                         |
| PZ-4                           | 2/4/2009                           | 29.2                        |                         |
| Boeing Isaacson/Thomps         | son Property Boundary              |                             |                         |
| PZ-3<br>PZ-6                   | 2/4/2009<br>2/4/2009               | 11.7<br>505                 |                         |
| Seep                           |                                    |                             |                         |
| Seep 1<br>I-Seep (a)<br>I-SEEP | 8/24/2000<br>9/5/2007<br>6/17/2008 | 7<br><50/5<br>3.4           | (a)                     |

Bold indicates June 2008 analytical results.

(a) Sample analyzed by Methods 6010B and 200.8.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

## TABLE 9 HISTORICAL SEDIMENT SAMPLES AND ANALYSIS SCHEDULE **BOEING ISAACSON-THOMPSON SITE**

|           |                 |             | Depth Sampled | Max Sample | Usable |           |
|-----------|-----------------|-------------|---------------|------------|--------|-----------|
| Location  | Sample ID       | Sample Date | (feet bgs)    | Interval   | (Y/N)  | Analytes  |
| AN-029    | AN029-SS-061025 | 10/25/06    | 0 to 0.33     | 0.33 ft    | Υ      | Dioxin    |
| AN-029    | AN029-SS-061025 | 10/25/06    | 0 to 0.33     | 0.33 ft    | Υ      | SMS       |
| AN-030    | AN030-SS-061025 | 10/25/06    | 0 to 0.33     | 0.33 ft    | Υ      | SMS       |
| AN-045    | AN045-SS-080211 | 02/11/08    | 0 to 0.33     | 0.33 ft    | Υ      | SMS       |
| AN-046    | AN046-SS-080211 | 02/11/08    | 0 to 0.33     | 0.33 ft    | Υ      | SMS       |
| AN-047    | AN047-SS-080211 | 02/11/08    | 0 to 0.33     | 0.33 ft    | Υ      | SMS       |
| DR187     | SD-DR187-0000   | 08/27/98    | 0 to 0.33     | 0.33 ft    | N      | Dioxin    |
| DR188     | SD-DR188-0000   | 08/25/98    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| DR220     | SD-DR220-0000   | 08/25/98    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| EIT060    | EIT06-01        | 09/26/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST141    | EST09-01        | 09/25/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST142    | EST09-02        | 10/24/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST143    | EST09-03        | 09/25/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST147    | EST10-01        | 09/25/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST148    | EST10-02        | 11/12/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST157    | EST11-07        | 09/24/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST158    | EST11-08        | 09/24/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST159    | EST11-09        | 09/24/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST160    | EST11-10        | 09/25/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST161    | EST11-11        | 11/13/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| EST162    | EST11-12        | 09/25/97    | 0 to 0.33     | 0.33 ft    | N      | PCBs only |
| LDW-SS112 | LDW-SS112-010   | 01/19/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS114 | LDW-SS114-010   | 01/20/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS225 | LDW-SS115-010   | 01/25/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS226 | LDW-SS116-010   | 01/20/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS118 | LDW-SS118-010   | 01/20/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS119 | LDW-SS119-010   | 01/19/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS157 | LDW-SS157-010   | 03/16/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS158 | LDW-SS158-010   | 03/16/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS159 | LDW-SS159-010   | 03/16/05    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS338 | LDW-SS338-010   | 10/03/06    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| LDW-SS541 | LDW-SS541-010   | 12/17/09    | 0 to 0.33     | 0.33 ft    | Y      | Dioxin    |
| R22SD     | SD0001          | 10/08/97    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| R23SD     | SD0020          | 10/11/97    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| R26SD     | SD0002          | 10/09/97    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| R27SD     | SD0022          | 10/11/97    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| R31SD     | SD0003          | 10/09/97    | 0 to 0.33     | 0.33 ft    | N      | SMS       |
| SD-216    | SD-216-0000     | 08/26/04    | 0 to 0.33     | 0.33 ft    | Y      | PCBs only |
| SD-217    | SD-217-0000     | 08/27/04    | 0 to 0.33     | 0.33 ft    | Y      | PCBs only |
| SD-315    | SD-315-0000     | 08/17/04    | 0 to 0.33     | 0.33 ft    | Y      | SMS       |
| SD-336    | SD-336-0000     | 08/27/04    | 0 to 0.33     | 0.33 ft    | Y      | PCBs only |
| SD-345    | SD-345-0000     | 08/26/04    | 0 to 0.33     | 0.33 ft    | Y      | PCBs only |

Core samples

| Location | Sample ID         | Sample<br>Date | Depth Sampled<br>(feet bgs) | Max Sample<br>Interval | Usable<br>(Y/N) | Analytes      |
|----------|-------------------|----------------|-----------------------------|------------------------|-----------------|---------------|
| AN-043   |                   | 2/11/08        | 0 to 6                      | 1 ft                   | Y               |               |
| AN-043   | AN043-SC-080211-A | 2/11/08        | 0 to 1                      |                        |                 | SMS (partial) |
| AN-043   | AN043-SC-080211-B | 2/11/08        | 1 to 2                      |                        |                 | SMS (partial) |
| AN-043   | AN043-SC-080211-C | 2/11/08        | 2 to 3                      |                        |                 | SMS (partial) |
| AN-043   | AN043-SC-080211-D | 2/11/08        | 3 to 4                      |                        |                 | Metals        |
| AN-043   | AN043-SC-080211-E | 2/11/08        | 4 to 5                      |                        |                 | Metals        |
| AN-043   | AN043-SC-080211-F | 2/11/08        | 5 to 6                      |                        |                 | Metals        |
| AN-044   |                   | 2/11/08        | 0 to 6.5                    | 1.5 ft                 | Υ               |               |
| AN-044   | AN044-SC-080211-A | 2/11/08        | 0 to 1                      |                        |                 | SMS (partial) |
| AN-044   | AN044-SC-080211-B | 2/11/08        | 1 to 2                      |                        |                 | SMS (partial) |

# TABLE 9 HISTORICAL SEDIMENT SAMPLES AND ANALYSIS SCHEDULE BOEING ISAACSON-THOMPSON SITE

| Location         | Sample ID                  | Sample Date | Depth Sampled<br>(feet bgs) | Max Sample<br>Interval | Usable<br>(Y/N) | Analytes      |
|------------------|----------------------------|-------------|-----------------------------|------------------------|-----------------|---------------|
|                  | <u> </u>                   | <u> </u>    |                             | intervar               | (1/14)          |               |
| AN-044           | AN044-SC-080211-C          | 2/11/08     | 2 to 3.5                    |                        |                 | SMS (partial) |
| AN-044           | AN044-SC-080211-D          | 2/11/08     | 3.5 to 4.5                  |                        |                 | Metals        |
| AN-044           | AN044-SC-080211-E          | 2/11/08     | 4.5 to 5.5                  |                        |                 | Metals        |
| AN-044           | AN044-SC-080211-F          | 2/11/08     | 5.5 to 6.5                  |                        |                 | Metals        |
| AN-044           | AN094-SC-080211-B          | 2/12/08     | 1 to 2                      |                        |                 |               |
| DR220            |                            | 9/23/98     | 0 to 4                      | 2.0 ft                 | N               |               |
| DR220            | SD-DR220-0000A             | 9/23/98     | 0 to 2                      |                        |                 | SMS           |
| DR220            | SD-DR220-0020              | 9/23/98     | 2 to 4                      |                        |                 | SMS           |
| DU9120XX         |                            | 8/6/91      | 0 to 3                      | 3.0 ft                 | N               |               |
| DU9120XX         | DUWO&M91S012               | 8/6/91      | 0 to 3                      |                        |                 | DMMP          |
| LDW-SC50a        |                            | 2/24/06     | 0 to 4                      | 1.2 ft                 | Υ               |               |
| LDW-SC50a        | LDW-SC50-0-1               | 2/24/06     | 0 to 1                      |                        |                 | SMS           |
| LDW-SC50a        | LDW-SC50-1-2               | 2/24/06     | 1 to 2                      |                        |                 | SMS           |
| LDW-SC50a        | LDW-SC50-2-2_8             | 2/24/06     | 2 to 2.8                    |                        |                 | SMS           |
| LDW-SC50a        | LDW-SC50-2_8-4             | 2/24/06     | 2.8 to 4                    |                        |                 | SMS           |
| LDW-SC51         |                            | 2/22/06     | 0 to 5.8                    | 2.0 ft                 | Υ               |               |
| LDW-SC51         | LDW-SC51-0-0_5             | 2/22/06     | 0 to 0.5                    |                        |                 | SVOCs         |
| LDW-SC51         | LDW-SC51-0_5-1             | 2/22/06     | 0.5 to 1                    |                        |                 | SVOCs         |
| LDW-SC51         | LDW-SC51-1-1_5             | 2/22/06     | 1 to 1.5                    |                        |                 | SVOCs         |
| LDW-SC51         | LDW-SC51-1_5-2             | 2/22/06     | 1.5 to 2                    |                        |                 | SVOCs         |
| LDW-SC51         | LDW-SC51-2-3_8             | 2/22/06     | 2 to 3.8                    |                        |                 | SMS           |
| LDW-SC51         | LDW-SC51-3_8-5_8           | 2/22/06     | 3.8 to 5.8                  |                        |                 | PCBs only     |
| LDW-SC51         | LDW-SC51-0-2               | 2/22/06     | 0 to 2                      |                        |                 | SMS           |
| SD-216           |                            | 4/21/04     | 0 to 7.7                    | 1.0 ft                 | Y               |               |
| SD-216           | SD-216-0000                | 4/21/04     | 0 to 1                      |                        |                 | Metals, PCBs  |
| SD-216           | SD-216-0010                | 4/21/04     | 1 to 2                      |                        |                 | Metals, PCBs  |
| SD-216           | SD-216-0020                | 4/21/04     | 2 to 3                      |                        |                 | PCBs only     |
| SD-216           | SD-216-0030                | 4/21/04     | 3 to 4                      |                        |                 | PCBs only     |
| SD-216           | SD-216-0040                | 4/21/04     | 4 to 5                      |                        |                 | PCBs only     |
| SD-216           | SD-216-0050                | 4/21/04     | 5 to 5.9                    |                        |                 | PCBs only     |
| SD-216           | SD-216-0060                | 4/21/04     | 6 to 7                      |                        |                 | PCBs only     |
| SD-216           | SD-216-0070                | 4/21/04     | 7 to 7.7                    |                        |                 | PCBs only     |
| SD-217           |                            | 4/22/04     | 0 to 5.6                    | 1.0 ft                 | Υ               | . 020 0,      |
| SD-217           | SD-217-0000                | 4/22/04     | 0 to 0.9                    |                        | •               | Metals, PCBs  |
| SD-217           | SD-217-0010                | 4/22/04     | 1 to 1.9                    |                        |                 | Metals, PCBs  |
| SD-217           | SD-217-0020                | 4/22/04     | 2 to 2.9                    |                        |                 | PCBs only     |
| SD-217           | SD-217-0030                | 4/22/04     | 3 to 3.7                    |                        |                 | PCBs only     |
| SD-217           | SD-217-0030                | 4/22/04     | 4 to 4.5                    |                        |                 | PCBs only     |
| SD-217<br>SD-217 | SD-217-0040<br>SD-217-0050 | 4/22/04     | 5 to 5.6                    |                        |                 | PCBs only     |
| SD-315-C         | OD-217-0000                | 8/19/04     | 1 to 4                      | 1.0 ft                 | Υ               | F CDS UTILY   |
| SD-315-C         | SD-315-0001                | 8/19/04     | 1 to 2                      | 1.011                  | ı               | Metals, PCBs  |
| SD-315-C         | SD-315-0001<br>SD-315-0002 | 8/19/04     | 2 to 3                      |                        |                 | ·             |
|                  | SD-315-0002<br>SD-315-0003 |             |                             |                        |                 | PCBs only     |
| SD-315-C         | 3D-313-0003                | 8/19/04     | 3 to 4                      |                        |                 | PCBs only     |

# **Uplands SAP**

# Final Uplands SAP Remedial Investigation/Feasibility Study Boeing Isaacson-Thompson Site Tukwila, Washington

September 16, 2011

Prepared for

**The Boeing Company** 



# **TABLE OF CONTENTS**

|     |      |                                                           | <u>Page</u> |
|-----|------|-----------------------------------------------------------|-------------|
| 1.0 | INTE | RODUCTION                                                 | 1-1         |
| 2.0 | FIEL | D INVESTIGATION PROCEDURES                                | 2-1         |
|     | 2.1  | SOIL INVESTIGATION                                        | 2-1         |
|     | 2.1  | 2.1.1 Borehole Sampling                                   | 2-2         |
|     |      | 2.1.2 Test Pit Sampling                                   | 2-4         |
|     |      | 2.1.3 Wooden Bulkhead Soil Sampling                       | 2-5         |
|     |      | 2.1.4 Laboratory Analysis                                 | 2-5         |
|     | 2.2  | GROUNDWATER INVESTIGATION                                 | 2-6         |
|     | 2.2  | 2.2.1 Soil Boring Groundwater Grab Sampling               | 2-6         |
|     |      | 2.2.2 Monitoring Well Groundwater Sampling                | 2-7         |
|     |      | 2.2.2.1 Installation and Construction of Monitoring Wells | 2-7         |
|     |      | 2.2.2.2 Well Development                                  | 2-8         |
|     |      | 2.2.2.3 Groundwater Sample Collection                     | 2-9         |
|     |      | 2.2.3 Seep Sampling                                       | 2-10        |
|     |      | 2.2.4 Laboratory Analysis                                 | 2-10        |
|     |      | 2.2.5 Groundwater Field Parameters                        | 2-11        |
|     |      | 2.2.6 Groundwater Flow Monitoring                         | 2-11        |
|     |      | 2.2.6.1 Monitoring Well Surveying                         | 2-11        |
|     |      | 2.2.6.2 Water level Measurements                          | 2-11        |
|     |      | 2.2.6.3 Tidal Study                                       | 2-11        |
|     |      | 2.2.7 Well Abandonment                                    | 2-12        |
|     | 2.3  | CATCH BASINS AND OIL WATER/SEPARATOR SOLIDS SAMPLING      | 2-13        |
|     | 2.4  | STORMWATER SAMPLING                                       | 2-14        |
|     | 2.5  | SOIL VAPOR SAMPLING                                       | 2-15        |
|     | 2.6  | PIPE SURVEY                                               | 2-15        |
|     | 2.7  | BUILDING MATERIALS SAMPLING                               | 2-15        |
|     |      | 2.7.1 Paint from Building or Equipment Surfaces           | 2-16        |
|     |      | 2.7.2 Building Siding Material                            | 2-16        |
|     |      | 2.7.3 Caulk from Windows or Door Jams                     | 2-17        |
|     |      | 2.7.4 Concrete Joint Material                             | 2-17        |
|     |      | 2.7.5 Surface Debris                                      | 2-17        |
|     |      | 2.7.6 Roofing Materials                                   | 2-18        |
|     |      | 2.7.7 Wipe Samples                                        | 2-19        |
|     |      | 2.7.8 Other Materials                                     | 2-19        |
|     |      | 2.7.9 Laboratory Analysis                                 | 2-19        |
|     | 2.8  | INDOOR AIR SAMPLING                                       | 2-20        |
|     | 2.9  | QUALITY ASSURANCE AND QUALITY CONTROL                     | 2-20        |
|     | 2.10 | SAMPLE CONTAINERS, PRESERVATION, AND STORAGE              | 2-21        |
|     | 2.11 | SAMPLE TRANSPORTATION AND HANDLING                        | 2-21        |
|     | 2.12 | SAMPLE CUSTODY                                            | 2-21        |
|     | 2.13 | EQUIPMENT DECONTAMINATION                                 | 2-22        |
|     |      | 2.13.1 Water Level Indicator                              | 2-22        |
|     |      | 2.13.2 Sampling Equipment                                 | 2-22        |
|     |      | 2.13.3 Heavy Equipment                                    | 2-23        |
|     | 2.14 | RESIDUAL WASTE MANAGEMENT                                 | 2-23        |
| 3.0 | REF  | ERENCES                                                   | 3-1         |

# **FIGURES**

| Figure | <u>Title</u>                                         |
|--------|------------------------------------------------------|
| A-1    | Vicinity Map                                         |
| A-2    | Current Site Features                                |
| A-3    | Proposed Soil Sample Locations                       |
| A-4    | Proposed Groundwater Sample and Monitoring Locations |
| A-5    | Current Storm Drain System                           |
| A-6    | Soil Vapor Sample Locations                          |
|        |                                                      |

# **TABLES**

# <u>Table</u> <u>Title</u>

A-1 Sample Containers, Preservatives, and Holding Times

# 1.0 INTRODUCTION

This sampling and analysis plan (SAP) describes the procedures for conducting upland field activities during the remedial investigation (RI) and feasibility study (FS) at the Boeing Isaacson-Thompson site (Site), located at 8625-8811 Street E-Marginal Way (Figure A-1). This SAP is an appendix to the Site Ecology Review Draft Final Work Plan, Remedial Investigation/Feasibility Study, Boeing Isaacson-Thompson Site, Tukwila, Washington (Work Plan), which is one of the required deliverables under the Agreed Order (No. DE7088) dated April 23, 2010 between The Boeing Company (Boeing) and the Washington State Department of Ecology (Ecology). The primary objective of this SAP is to provide sampling and analysis procedures and methodologies consistent with accepted procedures such that the data collected will be adequate for use in characterizing upland environmental conditions. This SAP was prepared consistent with the requirements of Washington Administrative Code (WAC) 173-340-820. It provides field, sampling, and analytical procedures to be used during the RI/FS.

## 2.0 FIELD INVESTIGATION PROCEDURES

Planned field investigation activities associated with the RI/FS include the following:

- Excavation of 9 test pits and collection of soil samples from the sidewalls of each test pit for chemical analysis
- Drilling of soil borings and collection of soil samples for chemical analysis at 37 locations
- Installation of permanent shallow monitoring wells at 25 of the 37 soil borings
- Collection of a groundwater grab sample at 1 of the 37 soil borings for chemical analysis
- Collection of soil samples from 3 locations, if possible, along the outside of the wooden bulkhead located at the southern portion of the Site for chemical analysis
- Collection of groundwater samples from 25 new and 5 of the existing groundwater monitoring wells and 7 existing piezometers for chemical analysis
- Collection of groundwater samples from seeps located at the Site, if any are present during field sampling activities for chemical analysis
- Measurement of groundwater levels at 25 new and 5 of the existing groundwater monitoring wells and 7 existing piezometers
- Continuous groundwater level monitoring at 6 monitoring well locations
- Collection of solids at existing storm drain system catch basins, oil/water separators, Vortechs® (Vortechs) vaults, and manholes for chemical analysis
- Collection of stormwater samples from each Boeing-owned outfall during 2 separate events for chemical analysis
- Collection of soil vapor samples from 5 subfloor sample locations inside Building 14-01 for chemical analysis
- Abandonment of 2 existing wells, TH-MW-1 and TH-MW-2
- Video survey of the 12-inch metal corrugated pipe located adjacent to the Site's southern property boundary.

Additional field investigation activities that may be conducted based on investigation results include:

- Collection of samples of building materials (e.g., paint from building or equipment surfaces, building siding material, roofing materials, and caulking) for chemical analysis
- Collection of indoor air samples from Building 14-01 for chemical analysis.

This section describes the field procedures to be employed for each of these activities.

# 2.1 SOIL INVESTIGATION

The soil investigation will consist of collecting and analyzing soil samples from 25 soil borings where new wells will be installed (including 3 wells inside Building 14-01), from 3 soil borings located in

the area of the former paint storage areas and paint sludge areas on the Isaacson property, from 3 borings located in the vicinity of the former Slip 5 outfall, from 5 soil borings located within the former Slip 5 limits, from 1 soil boring located inside the southwestern portion of Building 14-01, from 1 test pit located in the area of the former diesel and gasoline underground storage tanks (USTs) on the Isaacson property, from 5 test pits excavated in the vicinity of existing monitoring wells I-205 and I-206, from 1 test pit downgradient of the former hydraulic test pad area, and from 2 test pits north of the eastern Vortechs vault where a vein of tar-like substance was previously observed. Soil samples will also be collected from 3 locations along the outside of the wooden bulkhead located at the southern portion of the Boeing Thompson property. The wooden bulkhead and current Site features are shown on Figure A-2. The proposed sampling locations are shown on Figure A-3. The actual location of each soil exploration will be surveyed using differential global positioning system (DGPS) equipment or by a professional land surveyor to facilitate accurate placement of these features on project figures and drawings, as well as for submittal to Ecology. The ground surface elevation at each soil exploration will also be surveyed by a professional land surveyor. The test pit explorations will be conducted prior to conducting the soil borings.

In March 2011, Boeing prepared a work plan for conducting the RI activities inside Building 14-01 (Landau Associates 2011). The work plan was prepared in advance of the RI/FS work plan to expedite the investigation in Building 14-01 due to Boeing's planned re-occupation of the building, which may significantly restrict the extent of the investigation that can be conducted in the building. Ecology approved the work plan on March 30, 2011 (Landau Associates 2011). In April 2011, the soil boring planned to be completed inside Building 14-01 and the soil borings for three monitoring wells planned to be installed inside Building 14-01 were completed and soil samples were collected and analyzed in accordance with the work plan.

## 2.1.1 BOREHOLE SAMPLING

Boreholes for collecting soil samples, a groundwater grab sample, and for well installation will be drilled using a truck-mounted hollow-stem auger rig and/or a direct-push probe rig. Borings will be extended to a depth of 25 ft below ground surface (BGS) unless an aquitard (silt or clay) of 1-ft thickness is encountered at depths less than 25 ft BGS. Soil borings will not extend more than 1 foot (ft) into an aquitard. Borings will be completed by a driller licensed in the state of Washington and will be monitored by a Landau Associates' field representative. Soil will be described and classified in accordance with the Unified Soil Classification System (USCS). Prior to initiation of drilling or any other invasive subsurface activity, the locations of each proposed exploration will be checked in the field to locate aboveground utilities or physical limitations that would prevent drilling at the proposed location.

In addition, a public utility locate service will be contacted to locate underground utilities at the perimeter of the Site and a private utility locate service will be retained to clear explorations for underground utilities. The final location for each borehole will be based on the findings of the field check. Before and between drilling of each boring and at completion of the project, downhole drilling equipment will be cleaned using a high-pressure hot water or steam washer as described in Section 2.13.

During drilling, continuous soil samples will be collected at each soil boring location to classify soil lithology in accordance with the USCS. For soil borings drilled using a hollow-stem auger rig, the soil samples will be obtained using a 3-inch diameter, 1.5-ft long, split-spoon sampler. For soil borings drilled using a direct-push probe rig, soil samples will be collected using a closed-piston sampling device with a 48-inch long, 1.5-inch diameter core sampler. A record of the soil and groundwater conditions observed during drilling will be recorded on a Log of Exploration Form. The boring log will also show soil types; evidence of contamination, based on field screening; and other pertinent information. Soil retained in the sampler will be field-screened for evidence of environmental impact. Field-screening will be conducted by visually inspecting the soil for staining and other evidence of environmental impact, and monitoring soil vapors for volatile organic compounds (VOCs) using a portable photoionization detector (PID).

At each boring location, samples will be collected from 2 to 3 ft BGS, 5 to 6 ft BGS, 8 to 9 ft BGS, and 13 to 14 ft BGS and submitted for laboratory analysis. If the 13- to 14-ft depth interval is not at least 1 ft below the groundwater table at the time of drilling, the 13- to 14-ft depth interval sample will be replaced with a sample from a depth interval starting at 1 ft below the groundwater table at the time of drilling. Also, additional samples will be collected from the depth interval where field-screening indicates the likelihood for potential contamination, if any, and from the depth interval below the zone of potential contamination to evaluate the vertical extent of potential impact. If field-screening does not indicate a potential for contamination, a sample will also be collected from 13 to 14 ft BGS and archived at the laboratory for potential future analysis, pending the results of the samples submitted for analysis. Soil samples collected for analysis of VOCs will be collected in accordance with U.S. Environmental Protection Agency (EPA) Method 5035A. The EPA 5035A soil sampling method is intended to reduce volatilization and biodegradation of samples. The EPA 5035A procedure for soil sample collection is as follows:

• Collect soil "cores" from the split-spoon sampler using coring devices (i.e., EnCore® sampler, EasyDraw Syringe®, or a Terra Core<sup>TM</sup> sampling device). Each "core" will consist of approximately 5 grams of soil. Collect three discrete "cores" from each sampling location. One EasyDraw Syringe® or Terra Core<sup>TM</sup> device will be used to collect the three discrete "cores"; however, if the EnCore® samplers are used, then three sampling devices are required.

- Remove excess soil from the coring device. If EasyDraw Syringe® or Terra Core<sup>TM</sup> sampling device are used for sample collection, then place the "cored" soil directly into three preserved 40 milliliter (ml) vials with a stirbar. Vials will be preserved as indicated in Table A-1. If the EnCore® sampler is used, then close the sampler for transport to the laboratory.
- Collect one 2-ounce (oz) soil jar of representative soil for moisture content and laboratory screening purposes. Fill the jar to minimize headspace.

Soil samples to be tested for non-volatile parameters [e.g., metals, semivolatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs)] will be collected from the identified soil sampling interval using the following methods:

- Scrape the outside of the soil core to expose a fresh sampling surface using a clean decontaminated stainless-steel spoon.
- Homogenize the soil in a decontaminated stainless-steel bowl using the stainless-steel spoon.
- Transfer the homogenized soil into the appropriate laboratory-supplied sample container.

Soil samples collected from monitoring well boreholes for laboratory analysis will be labeled using the following format:

"IT-location(-depth interval)-yymmdd"

where location will be MW-1, MW-2, MW-3, etc.

Soil samples collected from soil boreholes with no monitoring wells will be labeled using the following format:

"IT-location(-depth interval)-yymmdd"

where location will be SB-1, SB-2, SB-3, etc.

### 2.1.2 TEST PIT SAMPLING

Test pits will be excavated using a backhoe or excavator. Each test pit will extend to the groundwater table. Soil at each test pit location will be removed in 1-ft lifts and each lift stockpiled separately along the side of the test pit. If evidence of potential contamination is observed [i.e., visual presence of potential contamination and/or a PID measurement greater than 50 parts per million (ppm)], the potentially contaminated soil will be stockpiled separately. At each test pit, a record of the soil and groundwater conditions observed in the excavation will be recorded on a Log of Exploration Form. The soil lithology will be classified at each test pit in accordance with the USCS.

Soil samples will be collected from depth intervals where field-screening (i.e., visual presence of potential contamination and/or a PID measurement greater than 50 ppm) indicates the likelihood for potential contamination, from the base of the excavation, and from each side wall. If no zones of potential contamination are identified, a soil sample will be collected from the capillary fringe

approximately 1 ft above the groundwater table. Soil samples will be collected from the test pit sidewalls using the backhoe bucket. Soil will be collected in the bucket by scraping the sidewall at the desired depth interval. A sample of the soil from the backhoe bucket will be collected using a decontaminated stainless-steel spoon. Care will be taken to avoid collecting soil that is in direct contact with the bucket. Soil samples collected for analysis of VOCs will be collected in accordance with EPA Method 5035A using the procedures described in Section 2.1.1. Soil samples to be tested for non-volatile parameters (e.g., metals, SVOCs, and PCBs) will be placed into a decontaminated stainless-steel bowl, homogenized using the stainless-steel spoon, and transferred into the appropriate laboratory-supplied sample container. Soil will be placed back in the test pit in approximately the same layer in which it was removed.

Soil samples collected from test pits for laboratory analysis will be labeled using the following format:

"IT-location(-depth interval)-yymmdd"

where location will be TP-101, TP-102, TP-103, etc.

### 2.1.3 WOODEN BULKHEAD SOIL SAMPLING

Soil samples will be collected at three locations along the LDW side of the wooden bulkhead located at the southern portion of the Boeing Thompson property, if possible. The samples will be collected from cracks in the bulkhead if soil is present and accessible between the cracks. The soil samples will be collected using hand implements such as stainless-steel spoons or trowels. Soil samples collected for analysis of VOCs will be collected in accordance with EPA Method 5035A using the procedures described in Section 2.1.1, if possible. Soil samples to be tested for non-volatile parameters (e.g., metals, SVOCs, and PCBs) will be placed into a decontaminated stainless-steel bowl, homogenized using the stainless-steel spoon, and transferred into the appropriate laboratory-supplied sample container.

Soil samples collected from the wooden bulkhead area for laboratory analysis will be labeled using the following format:

"IT-location-yymmdd"

where location will be WB-1, WB-2, WB-3, etc.

# 2.1.4 LABORATORY ANALYSIS

All soil samples will be analyzed for the classes of chemicals identified as the Site PCOCs (Section 5.2 of the work plan). The classes of chemicals includes metals, SVOCs [including polycyclic aromatic hydrocarbons (PAHs)], VOCs, petroleum hydrocarbons, and PCBs. The list of specific metals to be analyzed for include antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc. A list of specific chemicals

for the other classes of chemicals is provided in Table C-1 of the Quality Assurance Project Plan (QAPP; Appendix C of this work plan). The methods for analysis of the above compounds are also summarized in Table C-1 of the QAPP (Appendix C of this work plan).

## 2.2 GROUNDWATER INVESTIGATION

The groundwater investigation will consist of installing 25 additional monitoring wells; collecting groundwater samples from each of the new monitoring wells, from 5 of the existing monitoring wells, from each of the seven existing piezometers, and from 1 proposed soil boring; laboratory analysis of the groundwater samples; groundwater level monitoring; collecting seep samples at the western property boundary, if any are present during field sampling activities; abandonment of 2 existing wells (TH-MW-1 and TH-MW-2); and re-evaluation of tidal influences on Site groundwater. The tidal study will also be used to evaluate hydraulic conductivity at the Site. Proposed locations for installation of new permanent monitoring wells and for collection of a groundwater grab sample from 1 soil boring are shown on Figure A-4.

### 2.2.1 SOIL BORING GROUNDWATER GRAB SAMPLING

A groundwater sample will be collected from one soil boring located near the former Slip 5 Outfall (Figure A-4). The groundwater sample will be collected using a groundwater sampler consisting of a 4-ft long, wire-wrapped, stainless-steel screen (0.010-inch slot size) with a retractable protective steel sheath. The groundwater sampler will be advanced to the sample depth and the protective sheath will be retracted to expose the stainless-steel screen to the formation. Low-flow purging will be performed for 10 minutes or until the purge water is clear using a peristaltic pump. During purging, pH, conductivity, and temperature will be measured using a flow-through cell and recorded on a field sample collection form. Groundwater samples will be collected directly into the appropriate sample containers using disposable polyethylene tubing and a peristaltic pump. Samples will be chilled to 4° Centigrade (C) immediately after collecting the sample. Groundwater for dissolved metals analyses will be collected last and field-filtered through a 0.45 micron, in-line disposable filter. Dissolved metals samples will be preserved, as specified in Table A-1. A note will be made on the sample label, sample collection form, and chain-of-custody form to indicate the sample has been field-filtered and preserved, including the type of preservative used.

The groundwater grab sample collected from a soil boring will be labeled using the following format:

"IT-location-GW-yymmdd"

where location will correspond to the location identification used for the soil boring (e.g., SB-1, SB-2, SB-3, etc.).

### 2.2.2 Monitoring Well Groundwater Sampling

Groundwater samples will be collected from all new monitoring wells, five of the existing monitoring wells, and all existing piezometers during four consecutive quarterly monitoring events.

The proposed locations for the new monitoring wells are as follows:

- One well will be installed along the northern Site property boundary.
- Three wells will be installed in the area containing stabilized arsenic-contaminated soil.
- One well will be installed immediately downgradient of the former paint storage areas on the Isaacson property, and another well will be installed farther downgradient of these former paint storage areas by approximately 500 ft.
- One monitoring well will be located near the former Slip 5 Outfall.
- Two monitoring wells will be installed upgradient (east) of well I-104(s) to evaluate potential sources for the elevated arsenic concentrations detected in groundwater at well I-104(s).
- Three wells will be installed within the limits of the former Slip 5.
- One well will be installed in the former hydraulic test pad area.
- Five monitoring wells will be installed along the western Site boundary. One of these wells will be located downgradient of the former hydraulic test pad area.
- Seven monitoring wells will be installed in the southern portion of the Site to better determine groundwater flow direction and evaluate groundwater quality.

In April 2011, three of seven monitoring wells planned for the southern portion of the Site were installed and developed. The three wells were installed inside Building 14-01 and developed in accordance with the Building 14-01 Work Plan (Landau Associates 2011). A fourth well was planned to be installed inside Building 14-01, but drilling was obstructed by the thickness of the concrete floor slab at the planned location. The location of the well was moved outside of the building near the southern property boundary and is included in the above list of monitoring wells. The revised location is shown on Figure A-4.

Procedures for installing and developing the new wells and collecting groundwater samples from new and existing monitoring wells and the planned laboratory analyses are described below.

## 2.2.2.1 Installation and Construction of Monitoring Wells

Boreholes for groundwater monitoring wells will be drilled using hollow-stem auger drilling equipment. Depending on the depth-to-water at each monitoring well location, the borings will be advanced to approximately 25 ft BGS. Monitoring wells will be constructed by a licensed drilling

contractor in the state of Washington, in accordance with the *Minimum Standards for Construction and Maintenance of Wells* (Chapter 173-160 WAC; Ecology 2008). Oversight of drilling and well installation activities will be performed by an environmental professional familiar with environmental sampling and construction of resource protection wells.

The monitoring wells will be constructed with 2-inch diameter, flush-threaded, Schedule 40 PVC pipe. Based on the variation of water levels previously observed at the Site due to tidal and/or seasonal fluctuations, each well will be constructed with 10-ft screens and screened over a depth of 8 to 18 ft BGS. If necessary, the well screen depth interval will be modified at the time of construction so that the well is screened across the groundwater table. The well screen will be constructed of a 0.010-inch machine-slotted casing. A filter pack material consisting of pre-washed, pre-sized number 20/40 silica sand will be placed from the bottom of the well to approximately 2 ft above the top of the screen. Filter pack material will be placed slowly and carefully to avoid bridging of material. A bentonite seal will be placed above the filter sand pack material to within about 3 ft of ground surface. Grout will be used to backfill the boring to the subgrade for placement of the protective cover. The wells will be completed with flush-mounted protective casings.

The well names and the identification numbers assigned by Ecology will be marked on the well identification tags supplied by Ecology and will be attached to each well casing following well installation.

### 2.2.2.2 Well Development

The monitoring wells will be developed after construction to remove formation material from the well borehole and the filter pack prior to groundwater level measurement and sampling. Development will be achieved by repeatedly surging the well with a surge block and purging the well until the water runs clear, at least 5 well casing volumes will be removed. During development, the purged groundwater will be monitored for the following field parameters:

- pH
- Specific conductance
- Temperature
- Dissolved oxygen
- Turbidity.

The wells will be developed until the turbidity of the purged groundwater decreases to 5 Nephelometric turbidity units (NTUs), if practicable. If the well dewaters during the initial surging and purging effort, one final well casing volume will be removed after the well has fully recharged, if practicable. Well development activities will be recorded on a Well Development form.

## 2.2.2.3 Groundwater Sample Collection

The groundwater samples will be collected at least 2 days after well development. During each event, groundwater samples will be collected from monitoring wells and piezometers located in the western half of the Site within 1 hour before and 1 hour after low tide, at a time when groundwater should be flowing from the Site to the Lower Duwamish Waterway (LDW). Water levels will be measured prior to sample collection as described in Section 2.2.6. Collection of groundwater samples at each new monitoring well, five existing monitoring wells, and each piezometer will be completed using low-flow sampling techniques and the following procedures:

- Immediately following removal of each well monument cover, the well head will be observed for damage, leakage, and staining. Additionally, immediately following removal of the well head cap, any odors will be recorded and the condition of the well opening will be observed. Any damage, leakage, or staining to the well head or well opening will be recorded.
- Depth to groundwater will be measured from the top of casing prior to extraction of water from the well or piezometer, using the procedures described in Section 2.2.6.
- Prior to sampling, each well will be purged using a pump that is attached to dedicated purge and sample collection tubing (types of pumps used may vary depending on purge volume and depth and include a centrifugal pump, a peristaltic pump, and an electric submersible pump). Purging will begin with a low pumping rate. The pumping rate will be maintained at less than 1 liter per minute and with drawdown of less than 1 ft during purging. Purging will continue until specific conductance, pH, temperature, oxidation reduction potential (ORP), and dissolved oxygen (field parameters) have stabilized.
- Field parameters, including pH, temperature, specific conductance, dissolved oxygen, and turbidity, will be continuously monitored during purging using a flow cell. Purging of the well will be considered to be complete when all field parameters become stable for three successive readings. The successive readings should be within +/- 0.1 pH units for pH, +/- 3 percent for conductivity, and +/- 10 percent for dissolved oxygen and turbidity.
- Purge data will be recorded on a Groundwater Sample Collection form including purge volume; time of commencement and termination of purging; any observations regarding color, turbidity, or other factors that may have been important in evaluation of sample quality; and field measurements of pH, specific conductance, temperature, dissolved oxygen, and turbidity.
- Following the stabilization of field parameters, the flow cell will be disconnected and groundwater samples will be collected. Sample data will be recorded on a Groundwater Sample Collection form, including sample number and time collected; the observed physical characteristics of the sample (e.g., color, turbidity, etc.); and field parameters (pH, specific conductance, temperature, dissolved oxygen, and turbidity).
- Any problems or significant observations will be noted in the "comments" section of the Groundwater Sample Collection form.
- Groundwater samples will be collected directly into the appropriate sample containers using a
  peristaltic pump. To prevent degassing during sampling for VOCs, a pumping rate will be
  maintained below about 100 milliliters per minute (ml/min). The VOC containers will be

- filled completely so that no head space remains. Samples will be chilled to 4°C immediately after collection. Clean gloves will be worn when collecting each sample.
- Groundwater for dissolved metals analyses will be collected last and field-filtered through a
  0.45 micron, in-line disposable filter. Dissolved metals samples will be preserved, as
  specified in Table A-1. A note will be made on the sample label, sample collection form, and
  chain-of-custody to indicate the sample has been field filtered and preserved, including the
  type of preservative used.

Groundwater samples collected from monitoring wells and piezometers for laboratory analysis will be labeled using the following format:

"IT-location-yymmdd" where location will be MW-1, MW-2, PZ-1, etc.

#### 2.2.3 SEEP SAMPLING

Groundwater samples will be collected from any seep(s) along the LDW shoreline on Boeing property and submitted for laboratory analysis. At least one seep has been identified and sampled during previous investigations. The approximate location of the previously sampled seep is shown on Figure A-4. Seep samples will be collected directly into the appropriate sample containers. Seep samples for total and dissolved metals analyses will first be collected in a non-preserved sample container and field-filtered through a 0.45 micron in-line disposable filter using a hand pump. Filtered water will be collected in a preserved container, as specified in Table A-1. A note will be made on the sample label, sample collection form, and chain-of-custody to indicate the sample has been field-filtered and preserved.

Seep samples collected for laboratory analysis will be labeled using the following format:

"IT-location-yymmdd" where location will be Seep-1, Seep-2, etc.

# 2.2.4 LABORATORY ANALYSIS

All groundwater and seep samples will be analyzed for the classes of chemicals identified as the Site's PCOCs (Section 5.2 of the work plan). The classes of chemicals include metals, SVOCs (including PAHs), VOCs, petroleum hydrocarbons, and PCBs. Groundwater and seep samples will be analyzed for total and dissolved metals. The list of specific metals to be analyzed for includes antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc. A list of specific chemicals for the other classes of chemicals is provided in Table C-1 of the QAPP (Appendix C of this work plan). Groundwater samples will also be analyzed for total dissolved solids (TDS), nitrate, and sulfate. The methods for analysis of the above compounds are summarized in Table C-1 of the QAPP (Appendix C of this work plan).

### 2.2.5 GROUNDWATER FIELD PARAMETERS

Field parameters including pH, temperature, conductivity, dissolved oxygen, turbidity, and ORP will be measured at each groundwater monitoring location using a flow-through cell. Ferrous iron will also be measured at each sampling location using a field test kit. Field parameters will be measured during all groundwater monitoring events.

### 2.2.6 GROUNDWATER FLOW MONITORING

To evaluate groundwater flow direction, depth to groundwater will be measured at each new well, five existing wells, and each piezometer during each sampling event. Also, a tidal study will be conducted to evaluate tidal influence on groundwater flow and to calculate hydraulic conductivity. Procedures for monitoring groundwater flow and evaluating tidal influence are discussed below.

## 2.2.6.1 Monitoring Well Surveying

The location of each new and existing well and each piezometer will be surveyed using DGPS equipment and by a professional land surveyor to facilitate accurate placement of these features on project figures and drawings, as well as for submittal to Ecology. Surveying will be accomplished after completion of the new well installations.

Monitoring well reference elevations at both new and existing monitoring wells will be surveyed by a professional licensed surveyor to the nearest 0.01 ft for use in evaluating groundwater and lithologic unit elevations. Both the top of monitoring well casing elevation and ground surface elevation adjacent to the monitoring well will be obtained. This information will be used to develop groundwater elevation contour maps.

### 2.2.6.2 Water level Measurements

Water level measurements will be obtained at each monitoring well and piezometer prior to purging and sample collection. Water levels will also be measured in the LDW during each sampling event. All water levels will be measured using an electronic water level indicator and will be recorded to the nearest 0.01 ft. Measurements will be taken from the top of the well casing. Water levels in the LDW will be measured from a surveyed point at the edge of a stationary dock or piling.

## 2.2.6.3 Tidal Study

To evaluate the tidal influence on groundwater at the Site, water level fluctuation will be logged on a continuous basis for 24 to 48 hours at six wells. The proposed well locations include new wells to be installed in the northwest and southwest corners of the Site, one new well installed along the western Site

boundary between existing wells TH-MW-1 and TH-MW-2, and at existing wells I-205(s), PZ-4, and PZ 6. The tidal study will be conducted during a higher high tide and a lower low tide, if possible. In addition to monitoring water levels at selected wells, a transducer will be placed in the LDW during the tidal study. Tidal fluctuation information for the LDW will be used to calculate hydraulic conductivity at the Site.

Water levels in monitoring wells will be recorded using a combination of pressure transducers with internal dataloggers and an electronic water level indicator. The data collection will include continuous (every 15 minutes) transducer-based water level measurements in wells and in the LDW. The datalogger will be programmed to automatically convert pressure changes to water levels. If possible, a vented transducer will be used that internally corrects for fluctuations in atmospheric pressure.

Procedures for conducting the tidal study are summarized below:

- 1. At each monitoring well, a pressure transducer will be lowered into the well and securely fastened to the top of the well casing for the duration of the monitoring period. A transducer will also be lowered into the LDW from a secured location.
- 2. The transducers will be set to record the height of the water column above the transducer at 15-minute intervals.
- 3. Pressure transducers will be rated to a minimum 15 pounds per square inch range capable of measuring a water level change of 23 ft with a resolution of 0.01 ft.
- 4. Depth to water will also be measured from the top of the well casing to the nearest 0.01 ft with a manual electronic water level indicator. Depth-to-water level will be manually measured a minimum of four times during the monitoring period.
- 5. At the end of the monitoring period, the pressure transducers will be removed and the water level data will be uploaded to a computer.

Similar procedures will be used to monitor surface water levels in the LDW.

#### 2.2.7 WELL ABANDONMENT

Two wells, TH-MW-1 and TH-MW-2, located on the western Site boundary as shown on Figure A-4, will be abandoned. Well abandonment will be conducted in accordance with the requirements set forth in WAC 173-160-420 and WAC 173-160-460. Prior to the start of decommissioning activities, a Notice of Intent to Decommission Wells and as-built well logs for each well will be submitted to Ecology within a minimum of 72 hours prior to the start of abandonment activities. The wells will be abandoned by backfilling the well screens and casings with bentonite chips. Well monuments at each well will be removed and the ground surface compacted and existing asphalt pavement patched. Upon completion of the well abandonment, a Water Well Report accompanied by asbuilt well decommissioning logs and a copy of the original Resource Protection Well Report forms will be submitted to Ecology.

# 2.3 STORM DRAIN SYSTEM SOLIDS SAMPLING

Catch basins, oil/water separators, Vortechs vaults, and manholes connected to the storm drain system at the Boeing Thompson and Isaacson properties will be sampled during the RI. The locations of the catch basins, oil/water separators, Vortechs vaults, and manholes are shown on Figure A-5. Samples will not be collected from catch basins located outside the Site boundaries (CB-1 through CB-4).

Samples from each location will be collected with a telescoping sampling pole with a clean sampling jar or stainless-steel scoop attached to the end. Solids will be collected from the bottom of each catch basin and then transferred directly into a laboratory-provided sample container. If there is sufficient solids material in the catch basin, solids will be collected from several areas of the catch basin and placed into the sample container. If necessary, water collected with the solids material will be decanted back into the catch basin prior to placing the solids material into the sample container. The sampler will remove material greater than approximately ½-inch diameter prior to placing the solids material in the sample container. An 8-oz jar of solids is needed to provide adequate material for the planned analyses. If less than 6 oz of solids material can be collected from a specific catch basin or catch basins, not all planned analyses may be conducted or solids material from nearby catch basins that flow to the same storm drain line may be combined by the laboratory prior to analysis. Samples collected from the oil/water separators will not be combined.

The solids samples will be analyzed for the classes of chemicals identified as the Site's PCOCs (Section 5.2 of the work plan). The classes of chemicals include metals, SVOCs (including PAHs), VOCs, petroleum hydrocarbons, and PCBs. The list of specific metals to be analyzed for include antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc. A list of specific chemicals for the other classes of chemicals is provided in Table C-1 of the QAPP (Appendix C of this work plan). Solids samples will also be analyzed for total organic carbon (TOC). If insufficient solids are present for all analyses, priority will be given to PCBs, TOC, and metals. If sufficient volumes of solids are not present to conduct the shorter list of analyses, then solids from a nearby catch basin will be composited. At three catch basins, solids samples will also be analyzed for dioxins/furans. The catch basins where solids will be analyzed for dioxins/furans will consist of the following:

Outfall A. If sufficient solids are not present at this location for the analysis of PCOCs and dioxins/furans, solids at the next upstream catch basin (e.g., CB34, CB35, or CB51) where a sufficient volume of solids is present will be collected and submitted for analysis. A composite sample consisting of solids from two or more of these locations will only be collected if sufficient volume is not present at a single location.

- The catch basin located at the northeast corner of the 14-03 building that has not been given a numerical designation by Boeing for the catch basin location). This catch basin is connected to the storm drain line that discharges to Outfall A. If sufficient solids are not present at this location for the analysis of PCOCs and dioxins/furans, solids from one of the catch basins located north of Buildings 14-02 and 14-03 (CB29 or CB 30) where a sufficient volume of solids is present will be collected and submitted for analysis. A composite sample consisting of solids from two or more of these locations will only be collected if sufficient volume is not present at a single location.
- The catch basin identified as CG76 that is connected to the storm drain line that discharges to Outfall B. If sufficient solids are not present at this location for the analysis of PCOCs and dioxins/furans, a sample will be collected from catch basin CG74 or from catch basin CB77 if a sufficient volume of solids is not present at CG74. A composite sample consisting of solids from two or more of these locations will only be collected if sufficient volume is not present at a single location.

The methods for analysis of the above compounds are summarized in Table C-2 of the QAPP (Appendix C of this work plan). Storm drain system solids samples collected for laboratory analysis will be labeled using the following format:

"IT-location-yymmdd"

where location will correspond to the catch basin number (e.g., CB-39, etc.).

#### 2.4 STORMWATER SAMPLING

Grab samples representative of the stormwater discharged from Outfalls A and B will be collected during two separate events when discharge is present. Due to access limitations, the samples will be collected from manholes located along each storm drain and as close to the point of discharge as possible. To collect samples of stormwater representative of discharge at Outfall A, grab samples will be collected at two locations, MH 40 and MH 86, shown on Figure A-5. To collect samples of stormwater representative of discharge at Outfall B, a grab sample will be collected at MH 80, shown on Figure A-5. The samples will be collected when river water is absent from the storm drain pipes and, if practicable, within the first hour of a storm event. The samples will be collected using a telescoping sampling pole with a clean sampling jar attached to the end. Following filling of the jar, the stormwater will be transferred directly into a laboratory-provided sample container. Additional stormwater samples will be collected, as necessary, to fill all the necessary sample containers. A new, clean jar will be attached to the telescoping pole between sample locations. The stormwater samples will be analyzed for the classes of chemicals identified as the Site's PCOCs (Section 5.2 of the work plan). The classes of chemicals includes metals, SVOCs (including PAHs), VOCs, petroleum hydrocarbons, and PCBs. Stormwater samples will be analyzed for total metals. The list of specific metals to be analyzed for include antimony,

arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc. A list of specific chemicals for the other classes of chemicals is provided in Table C-1 of the QAPP (Appendix C of this work plan). The methods for analysis of the above compounds are summarized in Table C-1 of the QAPP (Appendix C of this work plan).

Stormwater samples collected for laboratory analysis will be labeled using the following format: "IT-location-vymmdd"

where location will correspond to the manhole number (e.g., MH-40, etc.).

# 2.5 SOIL VAPOR SAMPLING

In April 2011, the five sub-slab soil vapor samples planned for inside Building 14-01 were collected and analyzed for VOCs, in accordance with the Building 14-01 Work Plan (Landau Associates 2011). All of the samples were collected from the southwest portion of the building at the locations shown on Figure A-6.

# 2.6 PIPE SURVEY

A video survey of the remaining portion of the 12-inch metal corrugated pipe located south of Building 14-01 that was not surveyed in 2008 will be attempted. Due to the presence of underground utilities (including fiber optics), excavation to expose the pipe is not practicable; therefore, attempts to dislodge the three-pronged electrical plug blocking the western portion of the pipe and pushing it to the eastern end of the pipe will be made using a high-pressure water hose and nozzle (jetting). Jetting will be attempted from the open end of the pipe that is located on the western end of the retaining wall. If successful, this will allow videotaping more of the inside of the pipe, if not the full-length of the pipe.

If exceedances of preliminary screening levels for PCOCs that are detected at elevated concentrations in Site soil are found in outfall stormwater samples, a video survey will be conducted of storm drain piping connected to that outfall.

# 2.7 BUILDING MATERIALS SAMPLING

Buildingl materials currently present at the Site may be a source of PCOCs in the storm drain system. If exceedances of the Sediment Management Standards (SMS) criteria are found in the catch basin or oil/water separator solids, samples of building materials that are located near the locations where the exceedances occurred will be collected for laboratory analysis. Materials that may be sampled include paint from building or equipment surfaces, building siding material, caulk from windows or door jams, concrete expansion joint material (CJM), surface debris, and roofing materials. Solids samples will be at least 25 grams to provide adequate material for analysis.

Wipe samples may be collected from site features including building siding and equipment surfaces, and roof runoff water may be collected if samples of roofing material cannot be obtained. Sample collection procedures for each potential sample media and laboratory analysis of each media are discussed in the sections below.

#### 2.7.1 PAINT FROM BUILDING OR EQUIPMENT SURFACES

Paint from building or equipment surfaces may be sampled upon inspection by field personnel. Field personnel will specifically look for areas where exterior building paint is peeling off from the building siding because loose paint fragments have the potential to enter the storm drain system. Chipping or peeling paint from equipment surfaces may also be sampled. Pieces of paint will be removed from surfaces using a knife with removable blade. A 2- to 4-inch square will be cut from the paint with a sharp blade, and all layers of paint down to the building siding will be peeled back and removed for sampling. Caution will be taken to not damage building siding or equipment surfaces. The pieces of paint will be placed into an 8-oz. glass sample jar, labeled, and stored on ice. Blades used for removing paint will either be disposed of between each sample location and replaced with a clean blade, or decontaminated between each sample location.

Paint chip samples collected for laboratory analysis will be labeled using the following format:

"IT-Paint-numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.2 BUILDING SIDING MATERIAL

Building siding material samples may be sampled upon inspection by field personnel. Field personnel will specifically look for areas where siding material is in poor condition because loose siding fragments have the potential to enter the storm drain system. Siding material may be evaluated through the collection and analysis of pieces of the siding or through collection and analysis of wipe samples. A 1- to 4-inch square will be collected from the siding using a knife with a removable blade or other handheld tool. The collected material will be placed into an 8-oz glass sample jar, labeled, and stored on ice. Blades or other hand-held tools used for removing siding will either be disposed of between each sample location and replaced with a clean blade, or decontaminated between each sample location. Wipe samples will be collected to evaluate areas of siding that are in good condition, unless pieces of siding material may be collected without impacting the siding integrity.

Siding samples collected for laboratory analysis will be labeled using the following format:

"IT-Siding-numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.3 CAULK FROM WINDOWS OR DOOR JAMS

Caulk from window frames, door frames, and around the exterior piping and vents on buildings, if present, may be sampled upon inspection by field personnel. Field personnel will inspect caulking around window frames, door frames, and around the exterior piping and vents, and will collect samples based on the availability of material at each building location. Caulk material will be removed using a knife with removable blade. The sharp end of the blade will be used to cut out the caulk, and the caulk sample will then be placed into an 8-oz. glass sample jar, labeled, and stored on ice. Field personnel will replace removed caulking with similar material to avoid compromising the integrity of the seals around the windows and doors of a building. Blades used for removing caulk material will either be disposed of between each sample location and replaced with a clean blade, or decontaminated between each sample location.

Caulk samples collect from window frames, door frames, and around the exterior piping and vents on buildings will be labeled using the following format:

"IT-Caulk-numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.4 CONCRETE JOINT MATERIAL

Samples of CJM will be collected using a knife with disposable blades. A new blade will be used at each location. At each sample location, a section of CJM sufficient to fill an 8-oz jar will be cut and removed (approximately 2 inches of CJM will be collected from each location). Any backing rod material that may be present in a joint will be separated from the CJM and will not be included in the sample. Each sample will be assigned a unique alphanumeric identifier according to the order in which it was collected in relation to other samples and the date. Each sample will be placed in an individual sample container and labeled with the sample identification number.

CJM samples collected for laboratory analysis will be labeled using the following format:

"IT-CJM-numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.5 SURFACE DEBRIS

Surface debris (e.g., soil, fine particulate and organic debris) from selected areas may be sampled if identified by field personnel as potentially impacting or contributing to PCBs in the storm drain system.

Surface debris will be swept together using a new clean broom and/or a clean stainless-steel spoon. Surface samples that are collected in unpaved areas comprised of mostly gravel or soil will be collected from multiple points within the identified sampling area using a clean stainless-steel spoon. Surface debris will be homogenized in a clean stainless-steel bowl using a clean stainless-steel spoon, placed into an 8-oz. glass sample jar, labeled, and stored on ice. Disposable sampling equipment (brooms, etc.) will be discarded after each use. Other sampling equipment such as stainless-steel spoons will be decontaminated between each sample location.

Surface debris samples collected for laboratory analysis will be labeled using the following format:

"IT-Surf Debris -numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.6 ROOFING MATERIALS

Roofing materials or roofing runoff may be sampled if identified by field personnel as potentially impacting or contributing to PCBs in the storm drain system. Field personnel will visually inspect the rooftop to determine if the material can be ruled out as a source of PCBs or metals. Field personnel will also visually trace rooftop runoff to the storm drain lines.

The rooftop runoff samples will be collected into 500-milliliter (mL) laboratory-supplied sample bottles and labeled. Where sufficient volume is available, two 500-mL sample bottles will be collected and submitted for laboratory analysis. Roofing material samples may be collected using a knife or other hand-held tool. The collected material will be placed into an 8-oz glass sample jar, labeled, and stored on ice. Any sample tools used to collect the rooftop runoff or roofing material samples will be decontaminated between each sample location.

Samples of roof material collected for laboratory analysis will be labeled using the following format:

IT-Roof Mat -numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

Samples of roof runoff collected for laboratory analysis will be labeled using the following format:

IT-Roof Water -numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.7 WIPE SAMPLES

Wipe samples may be collected from building siding or equipment surfaces. When the sampling location has been identified in the field, an area 10 centimeters (cm) by 10 cm will be isolated using a cardboard template. The sampler, wearing a clean pair of disposable sterile gloves, will remove the laboratory-prepared wipe (i.e., sterile gauze pad soaked with hexane) from its packaging container and firmly wipe the marked surface area to collect a sample. The sample wipe will be collected by wiping first in one direction and then again 90 degrees offset from the original wiping direction to optimize sample collection coverage. After the sample has been collected, the gauze will be placed in an 8-oz. glass sample jar, labeled, and stored on ice.

Wipe samples collected for laboratory analysis will be labeled using the following format:

IT-Wipe -numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples.

#### 2.7.8 OTHER MATERIALS

Samples of materials not otherwise specified in Sections 2.2.1 through 2.2.6 may be sampled using appropriate sampling techniques to be identified in the field depending upon the type of material requiring sampling. Appropriate sample collection and preservation procedures will be followed consistent with the preceding sections and other applicable laboratory requirements.

#### 2.7.9 LABORATORY ANALYSIS

Analysis of the building material solids will be as follows:

- All building material solids samples, including surface debris, will be analyzed for those
  metals detected in nearby catch basin or oil/water separator solids samples at concentrations
  exceeding the SMS criteria.
- All building material solids samples, including surface debris, will be analyzed for PCBs, if PCBs are detected in nearby catch basin or oil/water separator solids samples at concentrations exceeding the SMS criteria.
- Only surface debris will be analyzed for SVOCs, if SVOCs are detected in the catch basin or oil/water separator solids samples at concentrations exceeding the SMS criteria.

The methods for analysis of the building material solids samples are provided in Table C-5 of the QAPP (Appendix C of this work plan).

Analysis of wipe samples, if wipe samples are collected, will include metals and PCBs, if these constituents are detected in nearby catch basin or oil/water separator solids samples at concentrations exceeding the SMS criteria. The methods for analysis of the wipe samples are provided in Table C-5 of the QAPP (Appendix C of this work plan).

Analysis of rooftop runoff water, if roof runoff water samples are collected, will include metals, PCBs, and SVOCs, if these constituents are detected in nearby catch basin or oil/water separator solids samples at concentrations exceeding the SMS criteria. The methods for analysis of the rooftop runoff water samples are provided in Table C-2 of the QAPP (Appendix C of this work plan).

# 2.8 INDOOR AIR SAMPLING

Based on the results of soil vapor samples, indoor air samples may be collected from within Building 14-01 to characterize potential vapor intrusion that may result from the VOCs in groundwater along the southern Site boundary. Indoor air samples may be collected in the western portion of Building 14-01, which is within the area where the highest concentrations of VOCs in groundwater have been detected.

Eight-hour, time-weighted average (TWA) samples will be collected at the two indoor air sample locations. Samples will be collected using integrated, passive air samplers consisting of a laboratory-certified, evacuated SUMMA canister. Each SUMMA canister will be equipped with a pressure gauge and a calibrated critical orifice air flow controller for collection of the TWA samples. The sampler will record the initial and final pressures of the summa canister. Initial SUMMA canister pressure should be around 30 inches of Hg (+/- 5) and final pressures should be >5 inches of mercury. If initial pressure is low (<20 inches Hg), the SUMMA canister will be replaced. If the SUMMA canister reaches 5 inches of Hg before the 8-hour sample is completed, the SUMMA canister will be closed and the time recorded.

Canister inlet valves will be placed approximately 5 ft above ground surface in order to sample breathing space air. Canisters will be clearly labeled with signs indicating the purpose of the canisters and that the canisters are not to be interfered with or moved.

Indoor air samples collected for laboratory analysis will be labeled using the following format:

IT-Air -numeric number-yymmdd"

where the numeric number will correspond to the order in which it was collected in relation to other similar type samples

Sample containers will be shipped under chain-of-custody procedures to a laboratory for analysis of VOCs by EPA Method TO-15 SIM modified.

# 2.9 QUALITY ASSURANCE AND QUALITY CONTROL

Analytical samples collected during the RI will follow Quality Assurance/Quality Control (QA/QC) procedures and standards outlined in the QAPP (Appendix C of this work plan). Field QA/QC includes the collection of quality control samples including blind field duplicate samples, matrix spike

and matrix spike duplicate samples, and trip blanks. The procedures for collection of the quality control samples are provided in the QAPP (Appendix C of this work plan).

#### 2.10 SAMPLE CONTAINERS, PRESERVATION, AND STORAGE

Soil, solids, groundwater, stormwater, wipes, rooftop runoff water, soil vapor, and indoor air samples submitted to the analytical laboratory for analysis will be collected in the appropriate sample container provided by the analytical laboratory. Except for soil vapor and indoor air samples, the samples will be preserved by cooling to a temperature of 6°C, and as required by the analytical method. Maximum holding and extraction times until analysis is performed will be strictly adhered to by field personnel and the analytical laboratory. Excess sample may be frozen. Sample containers, preservatives, and holding times for each chemical analysis are presented in Table A-1.

#### 2.11 SAMPLE TRANSPORTATION AND HANDLING

The transportation and handling of groundwater samples will be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to release of samples. Samples will be logged on a chain-of-custody form and will be kept on ice in secured coolers under the custody of field personnel or an authorized courier until delivery to the analytical laboratory. The chain-of-custody will accompany each shipment of samples to the laboratory.

#### 2.12 SAMPLE CUSTODY

The primary objective of sample custody is to create an accurate, written record that can be used to trace the possession and handling of samples so that their quality and integrity can be maintained from collection until completion of all required analyses. Adequate sample custody will be achieved by means of approved field and analytical documentation. Such documentation includes the chain-of-custody record that is initially completed by the sampler and is, thereafter, signed by those individuals who accept custody of the sample. A sample is in custody if at least one of the following is true:

- It is in someone's physical possession.
- It is in someone's view.
- It is secured in a locked container or otherwise sealed so that tampering will be evident.
- It is kept in a secured area, restricted to authorized personnel only.

Sample control and chain-of-custody in the field and during transportation to the laboratory will be conducted in general conformance with the procedures described below:

• As few people as possible will handle samples.

- Sample containers will be obtained new or pre-cleaned from the laboratory performing the analyses.
- The sample collector will be personally responsible for the completion of the chain-of-custody record and the care and custody of samples collected until they are transferred to another person or dispatched properly under chain-of-custody rules.
- The cooler in which the samples are shipped will be accompanied by the chain-of-custody record identifying its contents. The original record and laboratory copy will accompany the shipment (sealed inside the shipping container). The other copy will be forwarded to Landau Associates along with sample collection forms.
- Coolers will be sealed with strapping tape and custody seals for shipment to the laboratory. The method of shipment, name of courier, and other pertinent information will be entered in the "remarks" section of the chain-of-custody record and traffic report.

When samples are transferred, the individuals relinquishing and receiving the samples will sign the chain-of-custody form and record the date and time of transfer. The sample collector will sign the form in the first signature space. Each person taking custody will observe whether the shipping container is correctly sealed and in the same condition as noted by the previous custodian (if applicable); deviations will be noted on the appropriate section of the chain-of-custody record.

A designated sample custodian at the laboratory will accept custody of the shipped samples, verify the integrity of the custody seals, and certify that the sample identification numbers match those on the chain-of-custody record. The custodian will then enter sample identification number data into a bound logbook, which is arranged by a project code and station number. If containers arrive with broken custody seals, the laboratory will note this on the chain-of-custody record and will immediately notify the sampler and Landau Associates.

# 2.13 EQUIPMENT DECONTAMINATION

The decontamination procedures described below are to be used by field personnel to clean drilling, sampling, and related field equipment. Deviation from these procedures must be documented in field records.

#### 2.13.1 WATER LEVEL INDICATOR

The tape from the water level indicator will be rinsed with potable water between each well measurement, and washed with Alconox soap if petroleum product or sheen is encountered.

#### 2.13.2 SAMPLING EQUIPMENT

All sampling equipment used (e.g., stainless-steel bowls, stainless-steel spoons, soil split-spoon samplers, etc.) will be cleaned using a three-step process, as follows:

1. Scrub surfaces of equipment that would be in contact with the sample with brushes using an Alconox solution

2. Rinse and scrub equipment with clean tap water.

3. Rinse equipment a final time with deionized water to remove tap water impurities.

Decontamination of the reusable sampling devices will occur between collection of each sample.

2.13.3 HEAVY EQUIPMENT

Heavy equipment (e.g., the drilling rigs and drilling equipment that is used downhole, or that contacts material and equipment going downhole) will be cleansed by a hot water, high pressure wash before each use and at completion of the project. Potable tap water will be used as the cleansing agent.

2.14 RESIDUAL WASTE MANAGEMENT

Soil cuttings generated during boring advancement will be temporarily stored onsite in 55-gallon drums. Disposal methods for soil stored in 55-gallon drums will be determined based on the analytical results for the soil. Soil removed from test pits will be placed back in the test pits in the reverse order it was removed. If evidence of potential contamination, such as a sheen, is present, the soil will not be placed back in the test pit and will instead be placed in a 55-gallon drum.

Water generated during well development, purging, and decontamination will be temporarily stored onsite in 55-gallon drums. Disposal methods for groundwater stored in drums will be determined based on the analytical results for the groundwater samples.

\* \* \* \* \* \* \* \* \* \*

This document has been prepared under the supervision and direction of the following key staff:

LANDAU ASSOCIATES, INC.

Kristy J. Hendrickson, P.E.

Principal

Stacy J. Lane, L.G. Senior Geologist

KJH/SJL/tam

# 3.0 REFERENCES

Ecology. 2008. *Minimum Standards for Construction and Maintenance of Wells* (Chapter 173-160 WC). Washington State Department of Ecology. Updated December.

Landau Associates. 2011. Final Work Plan, Building 14-01 Investigation, Boding Isaacson-Thompson Site, Tukwila, Washington. Prepared for The Boeing Company. March 29.













KENWORTH TRUCKING

Soil Sample Location

Piezometer Location

Soil and Groundwater Sample Location

Soil Vapor Sampling Location



Note

 Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation.



Boeing Isaacson-Thompson Site Tukwila, Washington

**Soil Vapor Sampling Locations** 

Figure A-6



# TABLE A-1 SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Matrix / Analysis                                | Container                                    | Preservation                                                                                                                     | Maximum Holding Time<br>(Days) |
|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Soil:                                            |                                              |                                                                                                                                  | ( 3, 3,                        |
| NWTPH-Dx                                         | 8-oz. jar - glass                            | Store cool at 6°C                                                                                                                | 14                             |
| NWTPH-Gx                                         | 2 x 40-ml vial - glass<br>1 2-oz jar - glass | Add MeOH<br>Store cool at 6°C<br>2-oz jar - no headspace                                                                         | 14                             |
| VOCs                                             | 3 x 40-ml vial - glass<br>1 2-oz jar - glass | 2 vials - Add MeOH<br>1-vial - Add NA <sub>2</sub> S <sub>2</sub> O <sub>4</sub><br>2-oz jar - no headspace<br>Store cool at 6°C | 14                             |
| Metals (including mercury)                       | 8-oz. jar - glass                            | Store cool at 6°C                                                                                                                | 180<br>(mercury 28 days)       |
| SVOCs / PAHs                                     | 8-oz. jar - glass                            | Store cool at 6°C                                                                                                                | 14                             |
| PCBs                                             | 8-oz. jar - glass                            | Store cool at 6°C                                                                                                                | 14                             |
| Water:<br>NWTPH-Gx                               | 2 x 40-ml vials - glass                      | Add HCl to pH<2;<br>Store cool at 6°C                                                                                            | 14                             |
| NWTPH-Dx                                         | 2 x 500-mL amber glass                       | Store cool at 6°C                                                                                                                | 7                              |
| VOCs                                             | 3 x 40-ml vials - glass                      | Add HCl to pH<2;<br>Store cool at 6°C                                                                                            | 14                             |
| Dissolved Metals (including mercury)             | 500-mL polyethylene                          | Add HN0 <sub>3</sub> ;<br>Store cool at 6°C                                                                                      | 180<br>(mercury 28 days)       |
| SVOCs                                            | 2 x 500-mL amber glass                       | Store cool at 6°C                                                                                                                | 7                              |
| PAHs                                             | 2 x 500-mL amber glass                       | Store cool at 6°C                                                                                                                | 7                              |
| PCBs                                             | 2 x 500-mL amber glass                       | Store cool at 6°C                                                                                                                | 7                              |
| TDS                                              | 1-L polyethylene                             | Store cool at 6°C                                                                                                                | 7                              |
| Nitrate                                          | 500-mL polyethylene                          | Store cool at 6°C                                                                                                                | 48 hours                       |
| Sulfate                                          | Combine with Nitrate                         | Store cool at 6°C                                                                                                                | 28                             |
| Catch Basin Solids (a):                          |                                              |                                                                                                                                  |                                |
| Metals                                           |                                              | Store cool at 6°C                                                                                                                | 180<br>(mercury 28 days)       |
| PCBs                                             | 2 x 8-oz. jar - glass                        | Store cool at 6°C                                                                                                                | 14                             |
| SVOCs / PAHs                                     |                                              | Store cool at 6°C                                                                                                                | 14                             |
| TOC                                              | 2-oz. jar - glass                            | Store cool at 6°C or freeze                                                                                                      | 14/ 6months if frozen          |
| Dioxins                                          | 16-oz. jar - glass                           | Store cool/dark at 4°C                                                                                                           | 1 year                         |
| Soil Vapor and Indoor Air:                       |                                              |                                                                                                                                  |                                |
| VOCs                                             | SUMMA Canister                               | -                                                                                                                                | 30 days                        |
| Other Materials:                                 |                                              |                                                                                                                                  |                                |
| Metals and PCBs<br>(paint/caulk/building siding) | 8-oz. jar - glass                            | Store cool at 6°C                                                                                                                | 14                             |
| Metals and PCBs (wipe)                           | 8-oz. jar - glass                            | Store cool at 6°C                                                                                                                | 14                             |

SVOCs = Semivolatile Organic Compounds VOCs = Volatile Organic Compounds PCBs = Polychlorinated Biphenyls TPH = Total Petroleum Hydrocarbons PAHs = Polycyclic Aromatic Hydrocarbons

TDS = Total Dissolved Solids TOC = Total Organic Carbon

# **Sediment SAP**



# BOEING ISAACSON-THOMPSON SITE SEDIMENT INVESTIGATION SAMPLE AND ANALYSIS PLAN

Remedial Investigation and Feasibility Study Work Plan Tukwila, Washington

Submitted to:
The Boeing Company

Submitted by: AMEC Geomatrix, Inc., Lynnwood, WA

September 2011

Project LY11160060

**AMEC Geomatrix** 



# **TABLE OF CONTENTS**

|      |                                                                                                                                                                                                                                                                                                                                                                        | Page         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.0  | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                           | 1            |
| 2.0  | PROJECT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                    | 1            |
| 3.0  | SAMPLE COLLECTION                                                                                                                                                                                                                                                                                                                                                      | 2<br>3       |
| 4.0  | SAMPLE PROCESSING                                                                                                                                                                                                                                                                                                                                                      | 5            |
| 5.0  | SAMPLE HANDLING PROCEDURES                                                                                                                                                                                                                                                                                                                                             | 6            |
| 6.0  | ANALYSIS SCHEDULE                                                                                                                                                                                                                                                                                                                                                      | 7            |
| 7.0  | LABORATORY ANALYTICAL METHODS AND TARGET DETECTION LIMITS.                                                                                                                                                                                                                                                                                                             | 7            |
| 8.0  | QUALITY OBJECTIVES AND CRITERIA  8.1 QUALITY OBJECTIVES  8.1.1 Precision  8.1.2 Accuracy  8.1.3 Representativeness  8.1.4 Comparability  8.1.5 Completeness  8.2 FIELD QUALITY ASSURANCE  8.3 DOCUMENTATION AND RECORDS  8.3.1 Field  8.3.2 Analytical Laboratory  8.4 INSTRUMENT/EQUIPMENT TESTING, INSPECTION, MAINTENANCE  8.4.1 Field  8.4.2 Analytical Laboratory | 891010101111 |
| 9.0  | DATA VALIDITY AND USABILITY  9.1 DATA REVIEW, VERIFICATION, AND VALIDATION  9.2 VERIFICATION AND VALIDATION METHODS  9.3 RECONCILIATION WITH USER REQUIREMENTS                                                                                                                                                                                                         | 12<br>12     |
| 10.0 | REPORTING                                                                                                                                                                                                                                                                                                                                                              | 13           |
| 11.0 | SCHEDULE                                                                                                                                                                                                                                                                                                                                                               |              |
| 12.0 | HEALTH AND SAFETY                                                                                                                                                                                                                                                                                                                                                      |              |
| 13.0 | WASTE MANAGEMENT                                                                                                                                                                                                                                                                                                                                                       | 14           |
| 14.0 | REFERENCES                                                                                                                                                                                                                                                                                                                                                             | 14           |



# **TABLE OF CONTENTS**

(Continued)

# **TABLES**

| Table 1  | Sediment Sampling Locations and Initial Analysis Schedule          |
|----------|--------------------------------------------------------------------|
| Table 2  | Analyte Holding Times                                              |
| Table 3  | Data Quality Objectives for the Constituents of Concern, Practical |
|          | Quantitation Requirements                                          |
| Table 4  | Analytical Methodologies and Reporting Limits                      |
| Table 5  | Summary of Quality Objectives for Method 8082—PCBs                 |
| Table 6  | Summary of Quality Objectives for Method 8270D—SVOCs               |
| Table 7  | Summary of Quality Objectives for Method 8081A—Pesticides          |
| Table 8  | Summary of Quality Objectives for Method 6010/200.8—ICP and        |
|          | ICPMS Metals                                                       |
| Table 9  | Summary of Quality Objectives for Method 7000 Series—CVAA Metals   |
| Table 10 | Summary of Quality Objectives for Method 1613B—Dioxins/Furans      |
| Table 11 | Data Qualifiers                                                    |
|          | FIGURES                                                            |
|          | FIGURES                                                            |
| Figure 1 | Boeing Isaacson Thompson Site                                      |
| Figure 2 | Historic Sampling Locations                                        |

| Figure 1 | Boeing Isaacson Thompson Site           |
|----------|-----------------------------------------|
| Figure 2 | Historic Sampling Locations             |
| Figure 3 | Proposed Sampling Locations             |
| Figure 4 | Core Summary Log                        |
| Figure 5 | Qualitative Sample Characteristics Form |
| Figure 6 | Chain-of Custody Form                   |



# BOEING ISAACSON-THOMPSON SITE SEDIMENT INVESTIGATION SAMPLE AND ANALYSIS PLAN

Remedial Investigation and Feasibility Study Work Plan Tukwila, Washington

#### 1.0 INTRODUCTION

This Sample and Analysis Plan (SAP) describes work to be conducted for characterization of sediments adjacent to the Boeing Isaacson-Thompson Site and will be part of a Remedial Investigation and Feasibility Study (Figure 1). This plan conforms to the substantive requirements of the Washington State Department of Ecology's (Ecology) Sediment Sampling and Analysis Plan Appendix (SAPA; Ecology 2008).

#### 2.0 PROJECT DESCRIPTION

The purpose of this sediment investigation will be to identify surface sediments adjacent to the Boeing Isaacson-Thompson Project site that exceed the Sediment Management Standards (SMS) and to determine the horizontal and vertical extent of sediments with elevated concentrations of the SMS list of chemicals and the distribution of additional chemicals requested by Ecology. The investigation will also look for patterns relating to possible sources of contamination, chemical concentration gradients, and vertical distribution relating to sediment horizons.

Surface sediment samples (0 to 0.33 foot) were collected and analyzed at 39 locations in the vicinity of the project site between September 1997 and December 2009 (Figure 2). The usability of chemistry data from surface samples collected prior to 2004 is questionable. Reworking of surface sediments by organisms, additional sedimentation, and localized scour events limits the usefulness of the older data sets in predicting the current horizontal distribution of compounds that exceed the sediment quality standards (SQS) in the surface sediments. The recent historical data (2004 and later) does not provide sufficient coverage of the project area to determine if there are trends in concentration gradients across the site that are related to possible upstream/downstream transport or nearshore/offshore transport mechanisms. In addition, 16 of the sample locations were analyzed only for polychlorinated biphenyl (PCB) Aroclors and total organic carbons (TOC). The patchy distribution of samples analyzed for the SMS list of chemicals limits the usefulness of the existing data set in determining the horizontal distribution of SMS compounds in the surface sediments.



The core sample locations collected in 2004 and later were clustered together or positioned near previously identified surface sediment hot spots (Figure 2). The existing core sample data provides data on the vertical distribution of contaminants in a limited area. In addition, deeper samples collected at a core location were frequently analyzed for a limited list of analytes. Chemical analysis of the deeper samples was limited to compounds that exceeded the SQS in shallower samples (e.g., PCBs or metals).

Overall, the existing historical sediment data in the vicinity of the project site is limited in distribution both horizontally and vertically across the site. The SMS list of chemicals was not analyzed at all locations or to a consistent depth. Sample intervals were not consistent between surveys or core locations. Sampling at additional locations is needed to provide an adequate distribution of sample locations in areas that were not previously sampled or that were sparsely sampled.

The proposed sampling design consists of a triangular grid design of 15 sampling locations adjacent to the project site and inshore of the navigational channel (Figure 3). The inshore samples are located near the mean lower low water (MLLW) contour line. Samples collected near previously sampled locations will be analyzed for a consistent analyte list (i.e., SMS list and carbazole). Analysis of samples from similar sample intervals will also simplify the interpretation of patterns relating to changes in concentration with depth or with sediment horizons (i.e., older native sediments).

#### 3.0 SAMPLE COLLECTION

This SAP provides sediment sample collection and processing procedures. The location of samples to be collected during this investigation are shown on Figure 3 and presented in Table 1. A differential Global Positioning System with submeter accuracy will be used to navigate to the proposed sampling locations and to record the position of each sample attempt.

A sediment core (up to 20 feet) will be collected at each location. A paired surface grab sample will also be collected within 3 meters (m) of each acceptable core location.

#### 3.1 EQUIPMENT DECONTAMINATION

Sample containers, instruments, working surfaces, technician protective gear, and other items that may come into contact with sediment sample material must meet high standards of cleanliness. Sample containers will be provided by Analytical Resources, Inc., and are pre-cleaned, certified, and individually labeled with a lot number traceable to a Certificate of Analysis.



All core tubes and sediment-handling equipment will be cleaned and decontaminated prior to arrival at the site. Aluminum core tubes will be discarded after use. The grab sampler will be pre-cleaned prior to arrival at the site and cleaned between each location using the procedure described below. All equipment and instruments used to remove sediment from the sampler or to homogenize samples will be stainless steel and will be decontaminated before and in between each use. The AMEC Geomatrix standard decontamination procedure for the grab sampler, core tubes, and other sample handling equipment is modeled after Puget Sound Estuary Program (PSEP) protocols (PSEP 1997); however, the decontamination procedure will not use any acid or solvent rinses (the final rinse will use distilled water). The decontamination procedure is as follows:

- 1. Prewash rinse with tap water.
- 2. First wash with solution of tap water and Alconox soap (brush).
- 3. Second rinse with tap water.
- 4. Second wash with solution of tap water and Alconox soap (brush).
- 5. Final rinse with tap water.
- 6. Final rinse with distilled water.
- 7. Coverage (no contact) of all decontaminated items with aluminum foil.
- 8. Storage in clean, closed container prior to use.

#### 3.2 SAMPLE IDENTIFICATIONS

All samples will be assigned a unique identification code. This hyphenated alphanumeric code consists of a media code and a location code and either a sample type code (e.g., G for grab sample), or a sample-depth identifier (e.g., SD 501-0080) for a core sample. The 4-digit sample-depth identifier appended to the media and location code will be used to identify the core segment the sample represents. The 0080 suffix in the example SD 501-0080 identifies the sample as representing the sediment at 8.0 feet below mudline (and extending deeper).

Media type will be SD for all sediment samples. Location will be "sss", a sequential number series for each proposed sample locations. Location numbers during this investigation will start with 501 and continue through 517. Stations SD-505 and SD-512 will have field-duplicate samples (grab and core) collected within 1 m (approximately 3 feet) of the original location. The duplicate stations will be identified as SD-516 and SD-517 and will represent duplicate grab and core stations collected at stations SD-505 and SD-512, respectively.



#### 3.3 CORE SAMPLE COLLECTION

Core samples will be collected using an impact corer. The impact corer uses the impact from a linear pneumatic hammer, delivering approximately 300 blows per minute to drive a 4-inch-square aluminum core into the sediment. This allows for a continuous core sample to be collected over the depth that the tube is driven. The bottom of each core tube will be fitted with a hinged core catcher to prevent loss of the sediment during extraction. Penetration and recovery information will be recorded during the drilling operation to prepare an *in situ* recovery curve for each core. The recovery curves will be used to estimate the in situ depth below mudline of the sample intervals and sediment horizons or structures within the core.

If penetration or the depth of recovered sediment in a core is less than 75 percent of the proposed drive depth, the corer will be relocated a minimum of 2 m (6.5 feet) and a second core will be attempted. If refusal or insufficient recovery is again encountered, then no further sampling will be attempted at that location.

At all core sampling locations, discrete samples will be collected from each core at 1-foot *in situ* depth intervals starting at 1 foot below mudline (see Table 1) to the proposed core depth of 15 feet below mudline or to the depth of maximum recovered sediment if full penetration is not achieved. If the volume of recovered sediment available within a depth interval is insufficient to perform all the required analyses, additional sediment volume from the next deeper interval will be added to provide sufficient sample volume. The next subsequent sample will be collected from the next full 1-foot *in situ* depth interval. Samples representing sediments from 1 foot below the sediment surface to the maximum depth of the recovered sediment will be collected from each core. Samples will be either analyzed during the initial analysis round or will be archived at the laboratory. Surplus sample volume from core segments analyzed for the SMS list will be archived. This sampling routine may be modified in the field based on site conditions at the direction of the field geologist.

Sample handling and processing will follow procedures described in Section 5.0. The handling and processing of sediment cores will occur within a secured exclusion zone using Level D protection following the requirements specified in the Site-Specific Health and Safety Plan. One core tube will be handled and processed at a time. Cores will be held for a maximum of 24 hours before processing. Unprocessed cores held more than 8 hours will be chilled with ice.

#### 3.4 GRAB SAMPLE COLLECTION

Grab samples will be collected using a stainless-steel, 0.2-square meter (m²) pneumatically-operated grab sampler. Surface sediments to a depth of 10 centimeters (cm) will be collected to meet sample volume requirements. Sediments touching the sides of the grab sampler will



not be collected or included in the homogenized samples. The sampler will be decontaminated prior to arrival at the site and between sample locations in accordance with the procedures in Section 3.1.

The following acceptability criteria for the grab samples should be satisfied:

- The sampler is not overfilled with the sample such that the sediment surface is pressed against the top of the sampler.
- Overlying water is present (indicates minimal leakage).
- The overlying water is not excessively turbid (clear water indicates minimal sample disturbance).
- The sediment surface is relatively flat (indicates minimal disturbance or winnowing).
- The sediment surface does not show evidence of previous coring attempts.
- The penetration depth is at least 15 cm for a 10-cm-deep surficial sample.

If a sample does not meet any one of these criteria, it will be rejected.

Overlying water is slowly siphoned off near one side of the sampler with a minimum of sample disturbance. Sample material that is, or has been, in direct contact with the grab sampler will not be included in the sample volume.

#### 4.0 SAMPLE PROCESSING

#### 4.1 CORE SAMPLES

The steps in processing core tubes to minimize the effects of carry-down are as follows. The core tube will be placed on sawhorses and oriented with the hinged side of the core catcher to the side. The uppermost side of the core tube will be removed using a circular saw. The depth of cut on the saw will be set to just slightly over the wall thickness of the aluminum tube. A thin layer (approximately 1-cm or 0.38-inch thick) will be removed from the exposed surface of the sediment with a decontaminated stainless-steel scraper. The surface layer of sediment will be removed starting at the bottom of the core tube and moving toward the top. This method minimizes potential contamination of clean, deeper layers with material from shallower, potentially more contaminated layers.

The exposed sediment surface of the core will be photo-documented using either still photos or video. A qualified field geologist will log each core for Universal Soil Classification and note the presence of any soil structures, odors, or visible oil sheens. Sediment descriptions and the



interpreted *in situ* depths of each sediment horizon will be transcribed into a summary log (Figure 4).

Table 1 lists the proposed core locations, sample segments, and an initial sample analysis schedule. Stainless-steel plates will be inserted between each 1-foot *in situ* depth interval. Sediments from each segment will be collected from the center of the core starting at the inserted plate marking the top of the segment and continuing down the segment to the start of the next depth interval. Sediment touching the sides of the core tube will be left in place. Approximately 1 liter of sediment will be needed for all the required analyses. Additional sample volume may be collected and archived if available within a core segment. Table 2 lists by analyte the holding time requirements. Sediment will be collected from each segment starting from below each inserted plate and extending down the core tube to the start of the next segment, Sediments will be collected proportionally along the entire interval until sufficient sample volume is obtained. The distance down the tube that segment represents will be recorded to provide information on the actual collection interval for each sample.

#### 4.2 GRAB SAMPLES

Table 1 lists the proposed grab locations, sample depth, and the sample analysis schedule. The exposed sediment surface of the core will be photo-documented using still photos. A qualified field geologist will log each grab for Universal Soil Classification and note the presence of any soil structures, odors, or visible oil sheens on the Qualitative Sample Characteristics (QSC) form (Figure 5). Depth of grab sampler penetration, surface winnowing, or other disturbance will be noted. Surface and subsurface sediment descriptions and the *in situ* depths of each identified sediment horizon will be recorded.

Sediments will be collected from the center of the grab sampler to a depth of 10 cm. Sediment touching the sides of the grab sampler will not be placed in the sample container.

Approximately 1 liter of sediment will be needed for all the required analyses. Additional sample volume may be collected and archived. Table 2 lists by analyte the holding time requirements.

#### 5.0 SAMPLE HANDLING PROCEDURES

Unopened and unprocessed core tubes will be kept in sight of the sampling crew or in a secure area at all times. Grab samples will be processed as soon as they are collected. Sediment samples also will be kept in sight of the sampling crew or in a secure, locked vehicle at all times. Samples will be transported to the AMEC Geomatrix office at the end of the day for storage (samples will be placed in coolers with "blue ice" or frozen) until transferred to the testing laboratories. Transfer of samples from AMEC Geomatrix custody to the laboratory will

AMEC Geomatrix, Inc.



be documented using chain-of-custody procedures (Figure 6). If someone other than the sample collector transports samples to the laboratory, the collector will sign and date the chain-of-custody form and insert the name of the person or firm transporting the samples under "transported by" before sealing the container with a Custody Seal.

The chain-of-custody forms will state that the samples are not homogenized. The analytical laboratory will be responsible for homogenizing the entire sample volume prior to taking individual aliquots of the homogenized sediments for separate analytical methods. Samples not scheduled for the initial analysis round will be archived and stored at the analytical laboratory in a secure area. Storage requirements for all archived samples will include freezing and storage of the samples in a temperature-monitored freezer at -18°C.

#### 6.0 ANALYSIS SCHEDULE

Table 1 provides a list of the sediment samples proposed for initial analysis. A total of 83 of the sediment samples collected during this investigation will be initially analyzed for SMS list of analytes, carbazole, and total organic carbon (TOC). Five surface samples in the vicinity of two outfalls within the project boundaries will also be initially analyzed for dioxins/furans. Surplus sediment sample volume from each sample will be frozen (-18°C) and archived at the analytical laboratory. All sediment samples collected but not initially analyzed will be frozen and archived at the analytical laboratory as described in Section 5.0. Depending on the results of the initial round of analyses, additional analysis may be conducted.

#### 7.0 LABORATORY ANALYTICAL METHODS AND TARGET DETECTION LIMITS

All analytical methods will follow rigorous standard testing protocols. The specific analyses chosen for the samples must be capable of returning accurate results at the data-quality objective (DQO) concentrations listed in Table 3. If published compliance criteria are not available for a chemical then the standard reporting limits provided by the analytical laboratory for the method will be used for the DQO. Test methods selected to achieve these results are presented in Table 4 along with the reporting limits for each analytical method provided by ARI. If the reporting limits for an analyte are above the DQO, then the sample may be reanalyzed using a different method to obtain a satisfactory reporting limit.

As described in the SMS, total PCB concentrations will be calculated by summing the detected concentrations for nine Aroclors (i.e., Aroclor 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268). Undetected Aroclors will not be included in the calculation of total PCB values. If all nine Aroclors are reported as undetected, then the value reported as the total PCB value will be the highest reporting unit among the individual Aroclors.



Total low-molecular-weight polycyclic aromatic hydrocarbons (LPAHs) will be calculated by summing the detected concentrations for naphthalene, acenaphthylene, acenaphthene, phenanthrene, anthracene, and fluorene. If all LPAHs are reported as undetected, then the value reported as the total LPAH value will be the LPAH compound with the highest reporting limit.

Total high-molecular-weight polycyclic aromatic hydrocarbons (HPAHs) will be calculated by summing the detected concentrations of fluoranthene, pyrene, benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. If all HPAHs are reported as undetected, then the value reported as the total HPAH value will be the HPAH compound with the highest reporting limit.

Analytical laboratory quality control (QC) checks include the use of standard EPA analytical methodologies (including analysis of method blanks, spikes, and surrogates), laboratory QC samples, and certified reference materials (if required). These QC checks are detailed in Tables 5 through 9. Additionally, the analyses will be carried out under the laboratory's standard operating procedures (SOPs).

#### 8.0 QUALITY OBJECTIVES AND CRITERIA

This section outlines the objectives of the Sample and Analysis Plan and summarizes relevant quality assurance (QA) criteria.

#### 8.1 QUALITY OBJECTIVES

The goals for the analytical data are to produce data of sufficient quality to meet the project DQOs. The primary DQO for this project is that the sediment concentrations must be sufficiently accurate to compare to the SMS SQS for marine sediments (Table 3). Because the SQS for many organic compounds is based on carbon-normalized concentrations, the samples must also be analyzed for TOC. Comparison of carbon-normalized values against the SQS listed in Table 3 may be inappropriate if TOC values are below 0.5 percent or above 4.0 percent. The project DQOs for the semivolatile organic compounds and PCB data must be accurate at the dry-weight-based standards specified in Table 3. The practical quantitation limits for the analytes in this study must be at least as low as the concentrations presented in Table 3.

To meet the goal of returning data accurate to within the SQS, data-quality indicators (DQIs) also need to be established. DQIs are specific measured parameters, including the familiar PARCC parameters (precision, accuracy, representativeness, comparability, and completeness), as well as sensitivity.



The basis for assessing each of these elements of data quality is discussed in the following sections. Precision and accuracy QC limits for analytical methods are identified in Tables 5 through 10.

#### 8.1.1 Precision

Precision measures the reproducibility of measurements. Precision is strictly defined as the degree of mutual agreement among independent measurements as the result of repeated application of the same process under similar conditions. Analytical precision is the measurement of the variability associated with duplicate (two) or replicate (more than two) analyses. If the recoveries of analytes in the laboratory control sample (LCS) are within established control limits, then precision is within limits. Total precision is the measurement of the variability associated with the entire sampling and analysis process. Total precision measures variability introduced by both the laboratory and field operations and is determined by analysis of duplicate or replicate field samples. Field-duplicate samples (10% frequency) and matrix-duplicate spiked samples (one per analytical batch) shall be analyzed to assess field and analytical precision, and the precision measurement is determined using the relative percent difference between the duplicate sample results. For replicate analyses, the relative standard deviation is determined.

# 8.1.2 Accuracy

Accuracy is a statistical measurement of correctness and includes components of random error (variability due to imprecision) and systemic error. It therefore reflects the total error associated with a measurement. A measurement is accurate when the value reported does not differ from the true value or known concentration of the spike or standard. Analytical accuracy is measured by comparing the percent recovery of analytes spiked into an LCS to a control limit. For compounds, such as PCBs, surrogate compound recoveries are also used to assess accuracy and method performance for each sample analyzed.

Both accuracy and precision are calculated for each analytical batch, and the associated sample results are interpreted by considering these specific measurements. The formula for calculation of accuracy returns a percent recovery from pure and sample matrices. Limits of accuracy for Method 8082 (PCBs), Method 8270D (semivolatile organic compounds [SVOCs]), Method 8081A (Pesticides), Method 6010/200.8 (inductively coupled plasma optical emission spectrophotometer [ICP-OES] and ICP mass spectrophotometer [ICPMS] metals), Method 7000 series (cold vapor atomic absorption [CVAA] metals), and Method 1613B (Dioxins/Furans) are contained in Tables 5 through 10, respectively.



# 8.1.3 Representativeness

Objectives for representativeness are defined for each sampling and analysis task and are a function of the investigative objectives. Representativeness shall be achieved through use of standard field, sampling, and analytical procedures. Representativeness is also determined by appropriate program design, with consideration of elements such as proper sample locations, sampling procedures, and sample intervals. Decisions regarding the number and locations of samples to be collected are documented in Section 2.0.

# 8.1.4 Comparability

Comparability is the confidence with which one data set can be compared to another data set. An objective for this quality assurance/quality control (QA/QC) program is to produce data comparable to previously collected data. The range of field conditions encountered is considered in determining comparability. Comparability will be achieved by using standard methods for sampling and analysis, reporting data in standard units, using suitable certified reference material (CRM), and using standard reporting formats. Field documentation using standardized data collection forms shall support the assessment of comparability.

#### 8.1.5 Completeness

Completeness is calculated and reported for each method, matrix, and analyte combination. The number of valid results divided by the number of intended individual analyte results, expressed as a percentage, determines the completeness of the data set. For completeness requirements, valid results are all results not qualified with an "R" flag (see Table 11 for an explanation of flagging criteria). The requirement for completeness is 90 percent for the sediment samples scheduled for the initial round of analyses.

# 8.2 FIELD QUALITY ASSURANCE

Field QC will include the collection and chemical analysis of field-duplicate samples to meet a field-duplicate frequency of approximately 10 percent.

# 8.3 DOCUMENTATION AND RECORDS

Documentation and records for the field portion and the analytical portion will consist of the following items.

# 8.3.1 Field

Data and log forms produced in the field will be reviewed daily by the person recording the data, so that any errors or omissions can be corrected. All completed data sheets will be removed daily from the field clipboard and photocopied; the original data sheets are filed in a fireproof file cabinet and the photocopies stored in the project file. All data transcribed from



field forms into electronic forms and tables will be 100 percent verified for accuracy and freedom from transcription errors.

# 8.3.2 Analytical Laboratory

Analytical laboratory documentation will consist of a case narrative, providing descriptions of any problems and corrective actions, copies of the chain-of-custody forms, tabulated analytical results, data qualifiers, and blank and matrix spike results with calculated percent recoveries and differences. A detailed documentation package (raw data, analyst's reports, extraction logs, chromatograms, etc.) will be provided by the laboratory in case the basic data review discussed in Section 9.1 encounters deficiencies requiring more thorough laboratory documentation.

# 8.4 INSTRUMENT/EQUIPMENT TESTING, INSPECTION, MAINTENANCE

This section includes procedures for equipment testing, inspection, and maintenance.

#### 8.4.1 Field

Prior to each daily sampling event, the differential Global Positioning System (DGPS) will be tested for accuracy. A checkpoint accessible to the field crew will be occupied. At the DGPS checkpoint, the DGPS unit will be stationed and a position reading will be taken. The DGPS position will be compared to the known checkpoint coordinates. The DGPS position readings should agree to within 1 to 2 m of the known checkpoint coordinates. If the position readings do not agree within 1 to 2 m, the DGPS unit will be carefully checked and electronics reset. After checking and resetting the DGPS, if the positions still do not agree, other actions may be taken including replacing the unit.

# 8.4.2 Analytical Laboratory

Analytical instruments shall be calibrated in accordance with the analytical methods specified in the laboratory SOPs. All analytes reported shall be included in the initial and continuing calibrations, and these calibrations shall meet the acceptance criteria specified in Tables 5 through 10. Records of standard preparation and instrument calibration shall be maintained, and calibration standards shall be traceable to regional reference materials (RRMs).

Instrument calibration shall be checked at the frequency specified by the relevant analytical method, using materials prepared independently of the CRM. Multipoint calibrations shall contain the minimum number of calibration points specified by the applicable analytical method, with all points used for the calibration being contiguous. If more than the minimum number of standards are analyzed for the initial calibration, all of the standards analyzed shall



be included in the initial calibration. The continuing calibration verification will not be used as the LCS.

#### 9.0 DATA VALIDITY AND USABILITY

This section describes procedures for data validation, verification, and usability.

# 9.1 DATA REVIEW, VERIFICATION, AND VALIDATION

One hundred percent of the data received from the laboratory will be validated at a Level 1 (basic) review. This Level 1 review will include the following steps.

- Verify that the laboratory utilized the specified extract, analysis, and cleanup methods.
- Review sample holding time.
- Verify that sample numbers and analyses match those requested on the chain-ofcustody form.
- Verify that the required reporting limits have been achieved.
- Verify that field duplicates, matrix spikes, and laboratory control samples were run at the proper frequency and have met QC criteria.
- Verify that the surrogate compound analyses have been performed and have met QC criteria.
- Verify that initial and continuing calibrations were run at the proper frequency and have met acceptance criteria.
- Verify that the lab blanks are free of contaminants.

#### 9.2 VERIFICATION AND VALIDATION METHODS

Data that appear to have significant deficiencies will be validated using the more comprehensive Level 2 verification and review in accordance with EPA's functional guidelines for data validation (EPA 1999 and 2004). Following this review, data qualifiers assigned by the laboratory may be amended.

#### 9.3 RECONCILIATION WITH USER REQUIREMENTS

Following receipt of all of the analytical data reports, the consultant team project manager will review the sample results to determine if they fall within the acceptance limits and goals set forth in this Plan. If the DQIs do not meet the project requirements, the data may be discarded and reanalysis performed. The decision to discard or reanalyze will be made jointly between



the consultant team and the client. If the failure is traced to the analytical laboratory (e.g., sample handling, extraction, or instrument calibration and maintenance), techniques will be reassessed prior to reanalysis.

#### 10.0 REPORTING

A data report summarizing the results of the characterization will be prepared by the consultant team and the Boeing Project Manager for submittal to Ecology. This report will include a narrative of field activities, chain-of-custody records, a Level 1 data review, data tables and maps for sample locations, data tables and maps summarizing the results of the analytical analyses, and electronic data tables.

Sediment chemistry data will be compared against the SMS SQS and Cleanup Screening Level (CSL) numerical criteria (Table 3). The SMS SQS for many organic compounds is based on carbon-normalized concentrations. Comparison of carbon-normalized values against the SQS criteria listed in Table 3 may be inappropriate if TOC values are below 0.5 percent or are above 4.0 percent. Sediment samples with TOC concentrations outside the carbon normalization range will be compared to the dry-weight-based standards specified in Table 3.

#### 11.0 SCHEDULE

The fieldwork for this investigation is dependent on Ecology approval of this Plan. Fieldwork will start within 4 weeks following Ecology approval of the Plan and the issuance of a Hydraulic Permit Approval for the proposed sampling from Washington Department of Fish and Wildlife. Field activities are expected to take up to 6 days. The schedule and duration of the field sampling, laboratory analysis, and reporting is presented below.

| Task                                                                                                    | Schedule                     |
|---------------------------------------------------------------------------------------------------------|------------------------------|
| Collect and submit sediment samples                                                                     | 1 week, Week 1               |
| Receive initial chemical laboratory data (SMS, carbazole, and dioxin/furan)                             | 4 weeks, Weeks 2 through 5   |
| Evaluate preliminary data, depending on results conduct additional analyses                             | 4weeks, Weeks 6 through 9    |
| Coordinate with Ecology and other agencies to determine proposed remediation dredge depth (if required) | 2 weeks, Weeks 10 through 11 |
| Receive results of additional dioxin analysis for ecological and human health risk assessment           | 4 weeks, Weeks 12 through 15 |



Perform data quality review and prepare data report

Submit data report to Ecology

4 weeks, Weeks 16 through 19

Week 20

#### 12.0 HEALTH AND SAFETY

Worker health and safety requirements will follow the Site-Specific Health and Safety Plan prepared in accordance with applicable state regulations for hazardous waste site workers, Chapter 296-843 WAC.

# 13.0 WASTE MANAGEMENT

All waste derived during this investigation will be placed in proper containers, labeled, characterized, and disposed of by Boeing in accordance with the appropriate regulations.

#### 14.0 REFERENCES

- Ecology (Washington State Department of Ecology). 2008. Sediment Sampling and Analysis Plan Appendix. Ecology, Olympia.
- EPA (U.S. Environmental Protection Agency). 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA, OSWER, EPA 540/R 99-008, Washington, D.C.
- EPA. 2004, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA, OSWER, EPA 540/R 04-004, Washington, D.C.
- PSEP (Puget Sound Estuary Program). 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Prepared for the U.S. Environmental Protection Agency and Puget Sound Water Quality Action Team.



# SEDIMENT SAMPLING LOCATIONS AND INITAL ANALYSIS SCHEDULE

Boeing Isaacson-Thompson Site Tukwila, Washington

| Proposed<br>Sample<br>Location | (WA SPC No         | Coordinates<br>orth NAD 83;<br>y Feet)<br>Northing | Estimated<br>Mudline<br>Elevation<br>(feet MLLW) 1 | Sample<br>Type | Samples<br>Collected <sup>2</sup> | Preliminary List of<br>Initial<br>Samples Analyzed <sup>3</sup> | Initial Analysis Schedule                                                 |
|--------------------------------|--------------------|----------------------------------------------------|----------------------------------------------------|----------------|-----------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|
| SD-501G                        | 1275945            | 195120                                             | -11.9                                              | Grab           | 0-10cm                            | 0-10 cm                                                         | SMS list of analytes, carbazole, TOC                                      |
| SD-501G<br>SD-501              | 1275945            | 195120                                             | -11.9                                              | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| 3D-301                         | 1275945            | 193120                                             | -11.9                                              | Core           | from 1 foot                       |                                                                 | • • •                                                                     |
|                                |                    |                                                    |                                                    |                | below surface                     | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-502G                        | 1276019            | 195069                                             | 1.0                                                | Grab           | 0-10 cm                           | 8-9 feet<br>0-10 cm                                             | SMS list of analytes, carbazole, TOC                                      |
| SD-502G<br>SD-502              | 1276019            | 195069                                             | -1.0<br>-1.0                                       | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-502                         | 12/6019            | 195069                                             | -1.0                                               | Core           | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC SMS list of analytes, carbazole, TOC |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-503G                        | 1275974            | 195000                                             | -11.5                                              | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, TOC                                      |
| SD-503G                        | 1275974            | 195000                                             | -11.5<br>-11.5                                     | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| 3D-303                         | 12/39/4            | 193000                                             | -11.5                                              | Core           | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-504G                        | 1276049            | 194943                                             | 0.4                                                | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, TOC                                      |
| SD-504G<br>SD-504              | 1276049            | 194943                                             | 0.4                                                | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| 3D-304                         | 1270049            | 194943                                             | 0.4                                                | Core           | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| OD 5050 4                      | 1276004            | 194880                                             | -11.1                                              | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, TOC                                      |
| SD-505G <sup>4</sup>           |                    |                                                    |                                                    |                | 1-foot intervals                  | 2-3 feet                                                        | • • • • • • • • • • • • • • • • • • • •                                   |
| SD-505 <sup>5</sup>            | 1276004            | 194880                                             | -11.1                                              | Core           | from 1 foot                       | 2-3 feet<br>4-5 feet                                            | SMS list of analytes, carbazole, TOC SMS list of analytes, carbazole, TOC |
|                                |                    |                                                    |                                                    |                | below surface                     |                                                                 | SMS list of analytes, carbazole, TOC SMS list of analytes, carbazole, TOC |
|                                |                    |                                                    |                                                    |                |                                   | 6-7 feet<br>8-9 feet                                            | SMS list of analytes, carbazole, TOC                                      |
| CD FOCC                        | 4076070            | 194821                                             | 0.0                                                | Grab           | to up to 19 feet<br>0-10 cm       |                                                                 |                                                                           |
| SD-506G<br>SD-506              | 1276079<br>1276079 | 194821                                             | 0.0                                                | Core           | 1-foot intervals                  | 0-10 cm<br>2-3 feet                                             | SMS list of analytes, carbazole, TOC                                      |
| 3D-506                         | 12/60/9            | 194621                                             | 0.0                                                | Core           | from 1 foot                       | 2-3 feet<br>4-5 feet                                            | SMS list of analytes, carbazole, TOC SMS list of analytes, carbazole, TOC |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC SMS list of analytes, carbazole, TOC |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-507G                        | 1276034            | 194760                                             | -9.7                                               | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                |                                   |                                                                 | dioxins/furans, TOC                                                       |
| SD-507                         | 1276034            | 194760                                             | -9.7                                               | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-508G                        | 1276124            | 194702                                             | -2.9                                               | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, dioxins/furans, TOC                      |
| SD-508                         | 1276124            | 194702                                             | -2.9                                               | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-509G                        | 1276063            | 194641                                             | -9.9                                               | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, dioxins/furans, TOC                      |
| SD-509                         | 1276063            | 194641                                             | -9.9                                               | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
| SD-510G                        | 1276154            | 194582                                             | 0.4                                                | Grab           | 0-10 cm                           | 0-10 cm                                                         | SMS list of analytes, carbazole, TOC                                      |
| SD-510                         | 1276154            | 194582                                             | 0.4                                                | Core           | 1-foot intervals                  | 2-3 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | from 1 foot                       | 4-5 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | below surface                     | 6-7 feet                                                        | SMS list of analytes, carbazole, TOC                                      |
|                                |                    |                                                    |                                                    |                | to up to 19 feet                  | 8-9 feet                                                        | SMS list of analytes, carbazole, TOC                                      |

#### SEDIMENT SAMPLING LOCATIONS AND INITAL ANALYSIS SCHEDULE

Boeing Isaacson-Thompson Site Tukwila, Washington

| Proposed<br>Sample   |         | orth NAD 83;<br>y Feet) | Estimated<br>Mudline<br>Elevation | Sample | Samples                | Preliminary List of Initial |                                      |
|----------------------|---------|-------------------------|-----------------------------------|--------|------------------------|-----------------------------|--------------------------------------|
| Location             | Easting | Northing                | (feet MLLW) 1                     | Type   | Collected <sup>2</sup> | Samples Analyzed 3          | Initial Analysis Schedule            |
| SD-511G              | 1276093 | 194521                  | -10.1                             | Grab   | 0-10 cm                | 0-10 cm                     | SMS list of analytes, carbazole, TOC |
| SD-511               | 1276093 | 194521                  | -10.1                             | Core   | 1-foot intervals       | 2-3 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | from 1 foot            | 4-5 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | below surface          | 6-7 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | to up to 19 feet       | 8-9 feet                    | SMS list of analytes, carbazole, TOC |
| SD-512G <sup>6</sup> | 1276184 | 194462                  | 0.4                               | Grab   | 0-10 cm                | 0-10 cm                     | SMS list of analytes, carbazole, TOC |
| SD-512 <sup>7</sup>  | 1276184 | 194462                  | 0.4                               | Core   | 1-foot intervals       | 2-3 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | from 1 foot            | 4-5 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | below surface          | 6-7 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | to up to 19 feet       | 8-9 feet                    | SMS list of analytes, carbazole, TOC |
| SD-513G              | 1276122 | 194401                  | -9.6                              | Grab   | 0-10 cm                | 0-10 cm                     | SMS list of analytes, carbazole, TOC |
| SD-513               | 1276122 | 194401                  | -9.6                              | Core   | 1-foot intervals       | 2-3 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | from 1 foot            | 4-5 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | below surface          | 6-7 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | to up to 19 feet       | 8-9 feet                    | SMS list of analytes, carbazole, TOC |
| SD-514G              | 1276213 | 194342                  | 0.3                               | Grab   | 0-10 cm                | 0-10 cm                     | SMS list of analytes, carbazole,     |
|                      |         |                         |                                   |        |                        |                             | dioxins/furans, TOC                  |
| SD-514               | 1276213 | 194342                  | 0.3                               | Core   | 1-foot intervals       | 2-3 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | from 1 foot            | 4-5 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | below surface          | 6-7 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | to up to 19 feet       | 8-9 feet                    | SMS list of analytes, carbazole, TOC |
| SD-515G              | 1276152 | 194281                  | -9.3                              | Grab   | 0-10 cm                | 0-10 cm                     | SMS list of analytes, carbazole,     |
|                      |         |                         |                                   |        |                        |                             | dioxins/furans, TOC                  |
| SD-515               | 1276152 | 194281                  | -9.3                              | Core   | 1-foot intervals       | 2-3 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | from 1 foot            | 4-5 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | below surface          | 6-7 feet                    | SMS list of analytes, carbazole, TOC |
|                      |         |                         |                                   |        | to up to 19 feet       | 8-9 feet                    | SMS list of analytes, carbazole, TOC |

- Notes:

  1. Estimated from bathymetric survey.

  2. See Section 3.3 and 3.4 for discussion of the target sample depth.
- 3. Intervals to be analyzed may be changed based on sediment characteristics observed by the field geologist during core processing and actual recovery depth.

  4. Duplicate grab collected at this location (sample designated SD-516G).
- 5. Duplicate core collected at this location (sample designated SD-516).
- 6. Duplicate grab collected at this location (sample designated SD-517G).7. Duplicate core collected at this location (sample designated SD-517).

# Abbreviations:

cm = centimeter

MLLW = mean lower low water

NAD = North American Datum

SMS = Sediment Management Standards

TOC = total organic carbon

WA SPC = Washington State Plane Coordinates

# **ANALYTE HOLDING TIMES**

Boeing Isaacson-Thompson Site Tukwila, Washington

| Analyte                        | Sample Preservation | Holding Time |
|--------------------------------|---------------------|--------------|
| Metals (except mercury)        | Cool 4°C            | 6 months     |
|                                | Freeze -18°C        | 2 years      |
| Mercury                        | Freeze -18°C        | 28 days      |
| Semivolatile Organic Compounds | Cool 4°C            | 14 days      |
|                                | Freeze -18°C        | 1 years      |
| PCBs                           | Cool 4°C            | 14 days      |
|                                | Freeze -18°C        | 1 years      |
| Dioxins/furans                 | Cool 4°C            | 14 days      |
|                                | Freeze -18°C        | 1 years      |
| Total Organic Carbon           | Cool 4°C            | 14 days      |
|                                | Freeze -18°C        | 6 months     |

# Abbreviations:

C = centigrade

PCB = polychlorinated biphenyl

# DATA QUALITY OBJECTIVES FOR THE CONSTITUENTS OF CONCERN PRACTICAL QUANTITATION REQUIREMENTS

Boeing Isaacson-Thompson Site Tukwila, Washington

|                                | 0.1            |                                   |                   |
|--------------------------------|----------------|-----------------------------------|-------------------|
| Chemical Parameter             | Sediment Manag | ement Standards  CSL <sup>2</sup> | LAET <sup>3</sup> |
| Metals                         | mg/kg dry wt   | mg/kg dry wt                      | mg/kg dry wt      |
| Arsenic                        | 57             | 93                                | 57                |
| Cadmium                        | 5.1            | 6.7                               | 5.1               |
| Chromium                       | 260            | 270                               | 260               |
| Copper                         | 390            | 390                               | 390               |
| Lead                           | 450            | 530                               | 450               |
| Mercury                        | 0.41           | 0.59                              | 0.41              |
| Silver                         | 6.1            | 6.1                               | 6.1               |
| Zinc                           | 410            | 960                               | 410               |
| Nonionizable Organic Compounds | mg/kg carbon   | mg/kg carbon                      | μg/kg dry wt      |
| Aromatic Hydrocarbons          |                |                                   |                   |
| Total LPAH                     | 370            | 780                               | 5200              |
| Naphthalene                    | 99             | 170                               | 2100              |
| Acenaphthylene                 | 66             | 66                                | 1300              |
| Acenaphthene                   | 16             | 57                                | 500               |
| Fluorene                       | 23             | 79                                | 540               |
| Phenanthrene                   | 100            | 480                               | 1500              |
| Anthracene                     | 220            | 1200                              | 960               |
| 2-Methylnaphthalene            | 38             | 780                               | 670               |
| Total HPAH                     | 960            | 5300                              | 12000             |
| Fluoranthene                   | 160            | 1200                              | 1700              |
| Pyrene                         | 1000           | 1400                              | 2600              |
| Benz[a]anthracene              | 110            | 270                               | 1300              |
| Chrysene                       | 110            | 460                               | 1400              |
| Total benzofluoranthenes       | 230            | 450                               | 3200              |
| Benzo[a]pyrene                 | 99             | 210                               | 1600              |
| Indeno[1,2,3-c,d]pyrene        | 34             | 88                                | 600               |
| Dibenzo[a,h]anthracene         | 12             | 33                                | 230               |
| Benzo[g,h,i]perylene           | 31             | 78                                | 670               |
| Chlorinated Benzenes           |                |                                   |                   |
| 1,2-Dichlorobenzene            | 2.3            | 2.3                               | 35                |
| 1,4-Dichlorobenzene            | 3.1            | 9                                 | 110               |
| 1,2,4-Trichlorobenzene         | 0.81           | 1.8                               | 31                |
| Hexachlorobenzene              | 0.38           | 2.3                               | 22                |

# DATA QUALITY OBJECTIVES FOR THE CONSTITUENTS OF CONCERN PRACTICAL QUANTITATION REQUIREMENTS

Boeing Isaacson-Thompson Site Tukwila, Washington

|                              | <u> </u>            |                  |              |
|------------------------------|---------------------|------------------|--------------|
|                              | On dissert Massacra |                  |              |
| <u> </u>                     |                     | ement Standards  | 3            |
| Chemical Parameter           | SQS <sup>1</sup>    | CSL <sup>2</sup> | LAET 3       |
| Phthalate Esters             |                     |                  |              |
| Dimethyl phthalate           | 53                  | 53               | 71           |
| Diethyl phthalate            | 61                  | 110              | 200          |
| Di-n-butyl phthalate         | 220                 | 1700             | 1400         |
| Butyl benzyl phthalate       | 4.9                 | 64               | 63           |
| Bis[2-ethylhexyl]phthalate   | 47                  | 78               | 1300         |
| Di-n-octyl phthalate         | 58                  | 4500             | 6200         |
| Miscellaneous                |                     |                  |              |
| Dibenzofuran                 | 15                  | 58               | 540          |
| Hexachlorobutadiene          | 3.9                 | 6.2              | 11           |
| N-nitrosodiphenylamine       | 11                  | 11               | 28           |
| Carbazole <sup>4</sup>       | _                   | _                | _            |
| Dioxins/Furans (PCDD/PCDF) 4 | _                   | _                | _            |
| Pesticides and PCBs          |                     |                  |              |
| Total PCBs                   | 12                  | 65               | 130          |
| Ionizable Organic Compounds  | μg/kg dry wt        | μg/kg dry wt     | μg/kg dry wt |
| Phenol                       | 420                 | 1200             | 420          |
| 2-Methylphenol               | 63                  | 63               | 63           |
| 4-Methylphenol               | 670                 | 670              | 670          |
| 2,4-Dimethylphenol           | 29                  | 29               | 29           |
| Pentachlorophenol            | 360                 | 690              | 360          |
| Benzyl alcohol               | 57                  | 73               | 57           |
| Benzoic acid                 | 650                 | 650              | 650          |

## Notes:

- 1. Sediment Management Standards Sediment Quality Standards (173-204-320) WAC.
- 2. Sediment Management Standards Cleanup Screening Levels (173-204-520) WAC.
- 3. LAET = Lowest-Apparent-Effects Threshold.
- 4. DQOs have not been established. Standard method reporting limits will be substituted.

#### Abbreviations:

CSL = Cleanup Screening Level

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

LAET = lowest-apparent-effects threshold

LPAH = low-molecular-weight polycyclic aromatic hydrocarbon

mg/kg dry wt = milligrams per kilogram dry weight

PCBs = polychlorinated biphenyls

SQS = sediment quality standards

μg/kg dry wt = micrograms per kilogram dry weight

WAC = Washington Administrative Code

# ANALYTICAL METHODOLOGIES AND REPORTING LIMITS

Boeing Isaacson-Thompson Site Tukwila, Washington

|                                 | Sample Prep/                  | Analytical               | Reporting  |
|---------------------------------|-------------------------------|--------------------------|------------|
| Analyte                         | Extraction                    | Method                   | Limit 1    |
| Conventionals                   | T .=                          |                          | l "        |
| Total Organic Carbon (Sediment) | ARI 602S                      | EPA 9060/Plumb 1981      | 200 mg/kg  |
| Total Solids                    | ARI 639S                      | EPA 160.1/PSEP           | 0.10%      |
| Metals (mg/kg)                  | T                             |                          | 1          |
| Arsenic                         | EPA 3050                      | EPA 200.8 (ICPMS)        | 0.5        |
| Cadmium                         | EPA 3050                      | EPA 6010 (ICP-OES)       | 0.2        |
| Chromium                        | EPA 3050                      | EPA 6010 (ICP-OES)       | 0.5        |
| Copper                          | EPA 3050                      | EPA 6010 (ICP-OES)       | 0.2        |
| Lead                            | EPA 3050                      | EPA 6010 (ICP-OES)       | 2.0        |
| Mercury                         | EPA 7471A                     | EPA 7471A (CVAA)         | 0.05       |
| Silver                          | EPA 3050                      | EPA 6010 (ICP-OES)       | 1.0        |
| Zinc                            | EPA 3050                      | EPA 6010 (ICP-OES)       | 1          |
| Nonionizable Organic Compounds  |                               |                          |            |
| Aromatic Hydrocarbons (µg/kg)   |                               |                          |            |
| Total LPAH                      | _                             | _                        | _          |
| Naphthalene                     | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Acenaphthylene                  | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Acenaphthene                    | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Fluorene                        | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Phenanthrene                    | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Anthracene                      | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| 2-Methylnaphthalene             | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Total HPAH                      | _                             |                          | _          |
| Fluoranthene                    | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Pyrene                          | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Benz[a]anthracene               | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Chrysene                        | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Total benzofluoranthenes        | EPA 3550B                     | EPA 8270D - PSEP         | 40         |
| Benzo[a]pyrene                  | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Indeno[1,2,3-c,d]pyrene         | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Dibenzo[a,h]anthracene          | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Benzo[g,h,i]perylene            | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Chlorinated Benzenes (µg/kg)    | LI A 3330D                    | El A 0210D - 1 0El       | 20         |
| 1,2-Dichlorobenzene             | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| 1,4-Dichlorobenzene             | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| 1,2,4-Trichlorobenzene          | EPA 3550B                     | EPA 8270D/8260C - PSEP   | 20/5       |
| Hexachlorobenzene               | EPA 3550B                     | EPA 8270D/8081A - PSEP   | 20/3       |
| Phthalate Esters (µg/kg)        | LI A 3330D                    | EI A 02/00/0001A - 1 3EI | 20/1       |
| Dimethyl phthalate              | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Diethyl phthalate               | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Di-n-butyl phthalate            | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
|                                 | EPA 3550B<br>EPA 3550B        | EPA 8270D - PSEP         |            |
| Butyl benzyl phthalate          |                               |                          | 20         |
| Bis[2-ethylhexyl]phthalate      | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Di-n-octyl phthalate            | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Miscellaneous (μg/kg)           | EDA OSSOD                     | EDA 00700 DOED           | - 00       |
| Dibenzofuran                    | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Hexachlorobutadiene             | EPA 3550B                     | EPA 8270D/8081A - PSEP   | 20/1       |
| N-nitrosodiphenylamine          | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Carbazole                       | EPA 3550B                     | EPA 8270D - PSEP         | 20         |
| Pesticides and PCBs (μg/kg)     | T                             |                          | T          |
| Total PCBs                      | PSDDA Sonication <sup>2</sup> | EPA 8082                 | 20 µg/kg   |
|                                 | (low levels)                  |                          | per Aroclo |

#### **ANALYTICAL METHODOLOGIES AND REPORTING LIMITS**

Boeing Isaacson-Thompson Site Tukwila, Washington

| Analuta                            | Sample Prep/<br>Extraction | Analytical<br>Method | Reporting |  |
|------------------------------------|----------------------------|----------------------|-----------|--|
| Ionizable Organic Compounds (µg/kg |                            |                      |           |  |
| Phenol                             | EPA 3550B                  | EPA 8270D - PSEP     | 20        |  |
| 2-Methylphenol                     | EPA 3550B                  | EPA 8270D - PSEP     | 20        |  |
| 4-Methylphenol                     | EPA 3550B                  | EPA 8270D - PSEP     | 20        |  |
| 2,4-Dimethylphenol                 | EPA 3550B                  | EPA 8270D - PSEP     | 20        |  |
| Pentachlorophenol                  | EPA 3550B                  | EPA 8270D - PSEP     | 100       |  |
| Benzyl alcohol                     | EPA 3550B                  | EPA 8270D - PSEP     | 20        |  |
| Benzoic acid                       | EPA 3550B                  | EPA 8270D - PSEP     | 200       |  |
| Dioxins/Furans (PCDD/PCDF)         |                            |                      |           |  |
| 2,3,7,8-TCDD                       |                            | EPA 1613B            | 1.0 pg/g  |  |
| 2,3,7,8-TCDF                       | _                          | EPA 1613B            | 1.0 pg/g  |  |
| 1,2,3,7,8-PeCDD                    | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,7,8-PeCDF                    |                            | EPA 1613B            | 5.0 pg/g  |  |
| 2,3,4,7,8-PeCDF                    | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,4,7,8-HxCDD                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,6,7,8-HxCDD                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,7,8,9-HxCDD                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,4,7,8-HxCDF                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,6,7,8-HxCDF                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,7,8,9-HxCDF                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 2,3,4,6,7,8-HxCDF                  | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,4,6,7,8-HpCDD                | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,4,6,7,8-HpCDF                | _                          | EPA 1613B            | 5.0 pg/g  |  |
| 1,2,3,4,7,8,9-HpCDF                | — EPA 1613B 5              |                      | 5.0 pg/g  |  |
| OCDD                               | — EPA 1613B                |                      | 10 pg/g   |  |
| OCDF                               | _                          | EPA 1613B            | 10 pg/g   |  |

# Notes:

- 1. Reporting limits obtained from ARI Labs are subject to change based on MDL studies.
- 2. Puget Sound Dredged Disposal Analysis protocol for low detection limits.

# Abbreviations:

ARI = Analytical Resources, Inc.

CVAA = cold-vapor atomic absorption

EPA = U.S. Environmental Protection Agency

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

ICP-OES = inductively coupled plasma optical emission spectrophotometer

LPAH = low-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligrams per kilogram

PCBs = polychlorinated biphenyls

PSDDA = Puget Sound Dredged Disposal Analysis

PSEP Puget Sound Estuary Program

μg/kg = micrograms per kilogram

# **SUMMARY OF QUALITY OBJECTIVES FOR METHOD 8082—PCBs**

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality-Control Element                                  | Frequency of Implementation                                         | Acceptance Criteria                                     |
|----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|
| Initial Calibration                                      | After CCVs fail                                                     | RSD $\leq$ 20% or r $\geq$ 0.995                        |
| Continuing Calibration Verification (CCV)                | At the beginning and end of analytical sequence, and every 12 hours | % Recovery = 75% to 125%                                |
| Method Blank (MB)                                        | 1 per extraction batch of ≤20 samples                               | Analytes < RL                                           |
| Laboratory Control Sample (LCS)                          | 1 per extraction batch of ≤20 samples                               | Solids: % Recovery = 37% to 116%                        |
| Matrix Spike (MS)                                        | 1 per 20 samples                                                    | % Recovery = 37% to 116%                                |
| Matrix Duplicate (MD) or<br>Matrix-Spike Duplicate (MSD) | 1 per 20 samples                                                    | RPD ≤ 50%                                               |
| Regional Reference Material (RRM)                        | 1 per 50 samples                                                    | Advisory Limits: Average +/- 2SD % Recovery 19% to 112% |
| Surrogates                                               | Every sample as specified                                           | % Recovery = 34% to 141%                                |
| Target Analyte Confirmation                              | Every detected compound                                             | RPD <u>&lt;</u> 40%                                     |

# Abbreviations:

PCBs = polychlorinated biphenyls

RL = reporting limit

RPD = relative percent difference

RSD = relative standard deviation

SD = standard deviation

# SUMMARY OF QUALITY OBJECTIVES FOR METHOD 8270D—SVOCs

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality-Control Element                                  | Frequency of Implementation            | Acceptance Criteria                                                                                  |
|----------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|
| Initial Calibration                                      | After CCV fails                        | r > 0.990 or RSD < 20%,<br>RRF >0.050 for SPCC and >0.010 for other cmpds.                           |
| Continuing Calibration Verification (CCV)                | At the beginning of each 12 hour shift | %D < 20% for CCC and < 40% for other cmpds,<br>RRF >0.050 for SPCC and >0.010 for other cmpds.       |
| Method Blank (MB)                                        | 1 per extraction batch of <20 samples  | Analytes < RL                                                                                        |
| Laboratory Control Sample (LCS)                          | 1 per extraction batch of <20 samples  | Solids: % Recovery = 10% to 160% B/N cmpds<br>% Recovery = 10% to 140% A cmpds                       |
| Matrix Spike (MS)                                        | 1 per 20 samples                       | Solids: % Recovery = 10% to 160% B/N cmpds<br>% Recovery = 10% to 140% A cmpds                       |
| Matrix Duplicate (MD) or Matrix Spike<br>Duplicate (MSD) | 1 per 20 samples                       | RPD < 50%                                                                                            |
| Surrogates:                                              | Every sample as specified              |                                                                                                      |
| Interference-Free Matrix                                 |                                        | Interference-Free Matrix Solids: % Recovery = 34% to 106% B/N cmpds % Recovery = 14% to 109% A cmpds |
| Project Sample Matrix                                    |                                        | Project Sample Matrix  % Recovery = 30% to 113% A cmpds  % Recovery = 10% to 116% A cmpds            |

#### Abbreviations:

A = acid compounds (cmpds) RL = reporting limit

B/N = base, neutral compounds (cmpds) RPD = relative percent difference CCC = calibration check compounds RSD = relative standard deviation

cmpds = compounds SPCC = system performance check compounds



# SUMMARY OF QUALITY OBJECTIVES FOR METHOD 8081A—PESTICIDES

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality Control<br>Element                   | Frequency of Implementation | Acceptance<br>Criteria <sup>1</sup>                     |
|----------------------------------------------|-----------------------------|---------------------------------------------------------|
| Initial Calibration                          | As needed                   | RSD ≤ 20%                                               |
| Initial Calibration Verification (ICV)       | After initial calibration   | % Recovery = 80-120%                                    |
| Continuing Calibration<br>Verification (CCV) | Every 12 hours              | % Drift ≤ 20%, %D ≤ 20%                                 |
| Method Blank (MB)                            | 1 per batch of ≤20 samples  | Analytes < RL                                           |
| Laboratory Control Sample (LCS)              | 1 per batch of ≤20 samples  | <u>Soil</u> : % Recovery = 37% to 150%                  |
| Matrix Spike (MS)                            | 1 per 20 samples            | % Recovery = 37% to 150%                                |
| Matrix-Spike Duplicate (MSD)                 | 1 per 20 samples            | RPD ≤ 50%                                               |
| Surrogates:                                  | Every sample as specified   |                                                         |
| Interference-Free Matrix                     |                             | Interference-Free Matrix Soil: % Recovery = 53% to 113% |
| Project Sample Matrix                        |                             | Project Sample Matrix % Recovery = 26% to 143%          |
| Target Analyte Confirmation<br>Duplicate     | Every detected compound     | RPD <u>&lt;</u> 40%                                     |

#### Notes:

1. Control limits, reporting limits, and method detection limits are subject to change based on annual verification and review by the analytical laboratory.

# Abbreviations:

RL = reporting limit

RPD = relative percent difference

RSD = relative standard deviation

%D = percent difference

# SUMMARY OF QUALITY OBJECTIVES FOR METHOD 6010/ 200.8—ICP and ICPMS METALS

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality-Control Element                               | Description of Element                                                          | Frequency of Implementation                                       | Acceptance Criteria                                                                           |
|-------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Initial Calibration                                   | Option 1: 1 std and blank, and a low-level-check standard at RL                 | Daily                                                             | Option 1: Low-level-check standard ± 1 RL                                                     |
|                                                       | Option 2: 3 stds and blank                                                      |                                                                   | Option 2: r > 0.995                                                                           |
| Instrumental Precision                                | % RSD 3 integrations (exposures)                                                | Each calibration and calibration verification standards (ICV/CCV) | % RSD < 5%                                                                                    |
| Initial Calibration Verification (ICV)                | Midlevel (2nd source) verification                                              | After initial calibration                                         | % Recovery 90% to 110%                                                                        |
| Initial Calibration Blank (ICB)                       | Interference-Free Matrix to assess analysis contamination                       | After initial calibration                                         | Analytes < RL                                                                                 |
| Continuing Calibration Verification (CCV)             | Midlevel verification                                                           | Every 10 samples and at end of analytical sequence                | % Recovery 90% to 110%                                                                        |
| Continuing Calibration Blank (CCB)                    | Interference-Free Matrix to assess analysis contamination                       | Every 10 samples and at end of analytical sequence                | Analytes < RL                                                                                 |
| Method Blank (MB)                                     | Interference-Free Matrix to assess overall method contamination                 | 1 per extraction batch of <20 samples                             | Analytes < RL or < 1/10th lowest sample instrument concentration.                             |
| Laboratory Control Sample (LCS)                       | Interference-Free Matrix containing all target analytes                         | 1 per extraction batch of <20 samples                             | % Recovery = 80% to 120%  Sporadic Marginal Failures <sup>1</sup> ;  % Recovery = 80% to 140% |
| Matrix Spike (MS)                                     | Sample matrix spiked with all or a subset of target analytes prior to digestion | 1 per 20 samples                                                  | % Recovery = 75% to 125%                                                                      |
| Matrix Duplicate (MD) or Matrix-Spike Duplicate (MSD) | Refer to text for MD or MS                                                      | 1 per 20 samples                                                  | RPD < 20%                                                                                     |

# Notes:

1. The number of Sporadic Marginal Failure (SMF) allowances depend on the number of target analytes reported from the analysis. In the instance of only seven metals, one SMF is allowed.

#### Abbreviations:

RL = reporting limit RSD = relative standard deviation

RPD = relative percent difference

# SUMMARY OF QUALITY OBJECTIVES FOR METHOD 7000 SERIES—CVAA METALS

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality-Control Element                               | Description of Element                                          | Frequency of Implementation                        | Acceptance Criteria      |
|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|--------------------------|
| Initial Calibration                                   | 3 stds and blank                                                | Daily                                              | r > 0.995                |
| Instrumental Precision                                | RPD of 2 injections                                             | All standards, and ICV/CCV                         | RPD < 10%                |
| Initial Calibration Verification (ICV)                | Midlevel (2nd source) verification                              | After initial calibration                          | % Recovery = 90% to 110% |
| Initial Calibration Blank (ICB)                       | Interference-Free Matrix to assess analysis contamination       | After initial calibration                          | Analytes < RL            |
| Continuing Calibration Blank (CCB)                    | Interference-Free Matrix to assess analysis contamination       | Every 10 samples and at end of analytical sequence | Analytes < RL            |
| Continuing Calibration Verification (CCV)             | Midlevel verification                                           | Every 10 samples and at end of analytical sequence | % Recovery = 80% to 120% |
| Method Blank (MB)                                     | Interference-Free Matrix to assess overall method contamination | 1 per preparation batch of <20 samples             | Analytes < RL            |
| Laboratory Control Sample (LCS)                       | Interference-Free Matrix containing target analytes             | 1 per preparation batch of <20 samples             | % Recovery = 80% to 120% |
| Matrix Spike (MS)                                     | Sample matrix spiked with target analytes prior to digestion    | 1 per 20 samples                                   | % Recovery = 75% to 125% |
| Matrix Duplicate (MD) or Matrix-Spike Duplicate (MSD) | Refer to text for MD or MS                                      | 1 per 20 samples                                   | RPD <20%                 |
| Post-Digestion Spike (PDS)                            | Sample digestate spiked with target analytes                    | As needed to confirm matrix effects                | % Recovery = 85% to 115% |

#### Notes:

1. The number of Sporadic Marginal Failure (SMF) allowances depend on the number of target analytes reported from the analysis. In the instance of only seven metals, one SMF is allowed.

#### Abbreviations:

RL = reporting limit

RPD = relative percent difference



# SUMMARY OF QUALITY OBJECTIVES FOR METHOD 1613B—DIOXINS/FURANS

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality Control<br>Element                           | Frequency of Implementation             | Acceptance<br>Criteria                       |
|------------------------------------------------------|-----------------------------------------|----------------------------------------------|
| Initial Calibration                                  | Until CCV fails                         | m/z ratio within ± 15% of theoretical        |
|                                                      |                                         | Signal/noise ratio ≥10:1                     |
|                                                      |                                         | RR RSD ≤ 20%                                 |
|                                                      |                                         | RRF RSD <u>&lt;</u> 35%                      |
|                                                      |                                         | RTs within windows                           |
|                                                      |                                         | GC resolution < 25%                          |
| Mass Calibration and Mass<br>Spectrometer Resolution | Beginning and end of each 12-hour shift | Resolving power ≥ 10,000                     |
| Window Defining Mix                                  | Beginning of each                       | RTs within windows                           |
|                                                      | 12-hour shift                           |                                              |
| Continuing Calibration                               | Beginning of each                       | m/z ratio within <u>+</u> 15% of theoretical |
| Verification (CCV)                                   | 12-hour shift                           | Signal/noise ratio ≥10:1                     |
|                                                      |                                         |                                              |
|                                                      |                                         | RR %D ≤ <u>+</u> 20%                         |
|                                                      |                                         | RRF %D < ± 35%                               |
|                                                      |                                         | RTs within windows                           |
| Method Blank (MB)                                    | 1 per extraction batch                  | Analytes < RL                                |
|                                                      | The community battern                   | or < 5x Sample Conc.                         |
| Ongoing Precision and                                | 1 per sample batch                      | 2,3,7,8-TCDD 67-158%                         |
| Recovery (OPR)                                       | , a same                                | 2,3,7,8-TCDF 75-158%                         |
| , ,                                                  |                                         | 1,2,3,7,8-PeCDD 70-142%                      |
|                                                      |                                         | 1,2,3,7,8-PeCDF 80-134%                      |
|                                                      |                                         | 2,3,4,7,8-PeCDF 68-160%                      |
|                                                      |                                         | 1,2,3,4,7,8-HxCDD 70-164%                    |
|                                                      |                                         | 1,2,3,6,7,8-HxCDD 76-134%                    |
|                                                      |                                         | 1,2,3,7,8,9-HxCDD 64-162%                    |
|                                                      |                                         | 1,2,3,4,7,8-HxCDF 72-134%                    |
|                                                      |                                         | 1,2,3,6,7,8-HxCDF 84-130%                    |
|                                                      |                                         | 1,2,3,7,8,9-HxCDF 78-130%                    |
|                                                      |                                         | 2,3,4,6,7,8-HxCDF 70-156%                    |
|                                                      |                                         | 1,2,3,4,6,7,8-HpCDD 70-140%                  |
|                                                      |                                         | 1,2,3,4,6,7,8-HpCDF 82-132%                  |
|                                                      |                                         | 1,2,3,4,7,8,9-HpCDF 78-138%                  |
|                                                      |                                         | OCDD 78-144%                                 |
|                                                      |                                         | OCDF 63-170 %                                |



# SUMMARY OF QUALITY OBJECTIVES FOR METHOD 1613B—DIOXINS/FURANS

Boeing Isaacson-Thompson Site Tukwila, Washington

| Quality Control<br>Element  | Frequency of Implementation | Acceptance<br>Criteria            |
|-----------------------------|-----------------------------|-----------------------------------|
| Labeled Compound Recoveries | Each sample and QC sample   | 13C12-2,3,7,8-TCDF 24-169%        |
|                             |                             | 13C12-1,2,3,7,8-PeCDD 25-181%     |
|                             |                             | 13C12-1,2,3,7,8-PeCDF 24-185%     |
|                             |                             | 13C12-2,3,4,7,8-PeCDF 21-178%     |
|                             |                             | 13C12-1,2,3,4,7,8-HxCDD 32-141%   |
|                             |                             | 13C12-1,2,3,6,7,8,-HxCDD 28-130%  |
|                             |                             | 13C12-1,2,3,4,7,8-HxCDF 26-152%   |
|                             |                             | 13C12-1,2,3,6,7,8-HxCDF 26-123%   |
|                             |                             | 13C12-1,2,3,7,8,9-HxCDF 29-147%   |
|                             |                             | 13C12-2,3,4,6,7,8,-HxCDF 28-136%  |
|                             |                             | 13C12-1,2,3,4,6,7,8-HpCDD 23-140% |
|                             |                             | 13C12-1,2,3,4,6,7,8-HpCDF 28-143% |
|                             |                             | 13C12-1,2,3,4,7,8,9-HpCDF 26-138% |
|                             |                             | 13C12-OCDD 17-157%                |
|                             |                             | 37Cl4-2,3,7,8-TCDD 35-197%        |
|                             |                             | 13C12-2,3,7,8-TCDD 25-164%        |

# Abbreviation(s)

%D: percent difference

CCV: continuing calibration verification

GC: gas chromatography MB: method blank m/z: ion abundance

OPR: ongoing precision and recovery

QC: quality control RR: relative response

RRF: relative response factor RSD: relative standard deviation

RT: retention time

# **DATA QUALIFIERS**

Boeing Isaacson-Thompson Site Tukwila, Washington

| Qualifier | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U         | The compound was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UJ        | The compound was analyzed for, but was not detected; the associated quantitation limit is an estimate because quality-control criteria were not met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| J         | The analyte was positively identified, but the associated numerical value is an estimate quantity because quality-control criteria were not met or because concentrations reported are less than the quantitation limit or lowest calibration standard.                                                                                                                                                                                                                                                                                                                                                                                   |
| N         | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NJ        | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| R         | Quality control indicates that data are unusable (compound may or may not be present). Reanalysis is necessary for verification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UY        | PCB Methods only. The laboratory uses the Y qualifier when interferences (usually the presence of the overlapping PCB Aroclor at high concentrations) cause the detection limit to be raised. The Y-flagged Aroclor may be present at concentrations at or below the limit reported, but in the opinion of the analyst, insufficient information is present to confirm the detection according to the method's protocols. The concentration should be treated as a non-detected value at a raised detection limit. The "U" has been added to the lab's "Y" qualifier to stress that the sample should be treated as a non-detected value. |
| EMPC      | Dioxin/furan analysis only. Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmational ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria".                                                                                                                                                                                                                                                                                                                    |
| Х         | Dioxin/furan analysis only. Analyte signal includes interference from polychlorinated diphenyl ethers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Z         | Dioxin/furan analysis only. Analyte signal includes interference from the sample matrix or perfluorokerosene ions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# Abbreviations:

PCB = polychlorinated biphenyl



**FIGURES** 



BOEING ISAACSON-THOMPSON SITE Sediment Investigation Sample and Analysis Plan Tukwila, Washington

| By: rhg | Date: 4/28/2011 | Project No. | LY11160060 |
|---------|-----------------|-------------|------------|
| AME     | C Geomatrix     | Figure      | 1          |



Previous Surface Locations

Previous Sediment Core Locations



PREVIOUS SAMPLING LOCATIONS Sediment Investigation Sample and Analysis Plan Tukwila, Washington

| By: rhg | Date: 5/11/2011 | Project No. | LY11160060 |
|---------|-----------------|-------------|------------|
| AMEC G  | eomatrix        | Figure      | 2          |

File path: P:\Boeing ITLY11160060 Isaacson-Thompson 2011\Data\SAP\Figure 2Ver2.mxd



**• Proposed Sampling Locations** 

**Previous Surface Locations** 

**Previous Sediment Core Locations** 



PROPOSED SAMPLING LOCATIONS Sediment Investigation Sample and Analysis Plan Tukwila, Washington

| Ву: | rhg    | Date: 5/11/2011 | Project No. | LY11160060 |
|-----|--------|-----------------|-------------|------------|
|     | AMEC G | eomatrix        | Figure      | 3          |

Project: Boeing Isaacson-Thompson

-6.9

Project No: LY11160060

Mudline elevation:

Maximum depth of retained sediment: 16.5 ft ft MLLW Percent recovery (on-deck): 75%

Station: SD-512

Core Laboratory collection processing

 Date:
 8/15/2011
 8/15/2011
 Field Log: NPB

 Time:
 8:07
 11:00
 Summary Log: NPB



# **CORE SUMMARY LOG**

Boeing Isaacson-Thompson Site Sediment Investigation Sample and Analysis Plan

| By: rhg | Date: 04/28/11 | Project No.: LY11160060 |
|---------|----------------|-------------------------|
| AMEC G  | omatrix        | Figure 4                |

| Contact Points    Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Contact Points   Conta | Coordinate Datum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |        | QUALI   | TATIVE SA | MPLE ( | CHARA      | CTERISTIC      | cs         | P                   | age of       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------|---------|-----------|--------|------------|----------------|------------|---------------------|--------------|
| North   East   Depth   Unit   Rep   Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North   East   Depth   Unit   Rep   Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Coord        | linate | Datum   |           |        |            | Project Loca   |            | •                   |              |
| North   East   Depth   Unit   Rep   Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North   East   Depth   Unit   Rep   Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |        |         |           |        |            |                |            | <b>.</b>            |              |
| Penetration   Copy   Color   Corse   Gravel   Sand   Silt   Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Penetration   Depth   Unit   Initials   Section   Sect   |             |              |        | Coordin | nates     |        |            | Water Dep      | oth        |                     | Time         |
| Penetration   Depth   Unit   Initials   Depth   Unit   Unit   Initials   Depth   Unit   Unit   Initials   Depth   Unit   U   | Surficial Wood Estimate:   Contact Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | North        |        |         |           | East   |            |                |            | Gear                |              |
| urficial sediment characteristics:    Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Color   Circle major & underline modifying)   Color      |             |              |        |         |           |        |            | f              | t          |                     |              |
| urficial sediment characteristics:  Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urficial sediment characteristics:  Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Penetration |              | Ifide  |         | es        | Sı     | ırficial W | ood Estimate:  |            |                     |              |
| urificial sediment characteristics:  Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | urificial sediment characteristics:  Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Initials     | ns >   | Weatl   | ner i 분 % | Co     | ntact Poi  | nts            |            |                     |              |
| Moisture   Wet   Wet   Moist   Damp   Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Moisture   Wet   Wet   Moist   Damp   Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           | •            |        |         |           |        |            |                |            | X5 =                | %            |
| Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent that race Fine Medium Coarse Gravel Sand Silt Clay  Medium Dense Dense Very Dense  Sand / Gravel Very Loose Loose Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  (Circle major & underline modifying)  Gravel Sand Silt Clay  Medium Dense Dense Very Dense  Silt / Clay - Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent With trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent With trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Ubsurface sediment characteristics:  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay - Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  (Circle major & underline modifying)  Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological: % Debris: % Oil Sheen: None Trace (<5%) %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |        |         |           |        | 0.4        | 011.01         |            | T ( 500)            |              |
| Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Medium Coarse Gravel Sand Silt Clay  Missurface sediment characteristics:  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay - Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Very Wet     Wet     Moist     Damp     Dry       Color     (Circle major & underline modifying)     Description       Light     Medium     Dark     Olive     Gray     Brown     Black     Other       Major Constituent     (Circle major & underline modifying)       Fine     Medium     Coarse       Gravel     Sand     Silt     Clay       Minor Constituent with trace       Sand / Gravel -     Very Loose     Loose     Medium Dense     Dense     Very Dense       Salt / Clay -     Very Soft     Soft     Medium Stiff     Stiff     Very Stiff     Hard       Moisture       Very Wet     Wet     Moist     Circle major & underline modifying)       Light     Medium     Dark     Olive     Gravel     Sand     Silt     Clay       Major Constituent     (Circle major & underline modifying)       Fine     Medium     Coarse     Gravel     Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Biological: |              |        | %       | Debris:   |        | %          | Oil Sheen:     | None       | Trace (<5%          | ) ——%        |
| Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Mousturface sediment characteristics:  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense Silt / Clay Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color C |             | t We         | et     | Moist   | Damp      | Dry    |            |                |            |                     |              |
| Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Ubsurface sediment characteristics:  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense Silt / Clay Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent Wedium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  ubsurface sediment characteristics:  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological: % Debris: % Oil Sheen: None Trace (<5%) %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Mediu        | ım     | Dark    |           | •      | •          |                |            | ••                  |              |
| Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  ubsurface sediment characteristics:  Density / Consistency  Sand / Gravel - Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay - Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  ubsurface sediment characteristics:  Density / Consistency  Sand / Gravel Very Loose Loose Medium Dense Dense Very Dense Silt / Clay Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological: % Debris: % Oil Sheen: None Trace (<5%) %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · ·         |              |        | Zan     |           |        | •          |                |            |                     |              |
| The Medium Coarse Gravel Sand Silt Clay    Coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The Medium Coarse Gravel Sand Silt Clay  Ubsurface sediment characteristics:  Density / Consistency  Sand / Gravel - Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay - Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological: % Debris: % Oil Sheen: None Trace (<5%) %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -           |              | ım     | Coars   | se        | •      | •          |                |            | •                   |              |
| Sand / Gravel - Very Loose Loose Medium Dense Dense Very Dense  Silt / Clay - Very Soft Soft Medium Stiff Stiff Very Stiff Hard  Moisture Very Wet Wet Moist Damp Dry  Color Light Medium Dark Olive Gray Brown Black Other  Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Density / Consistency         Sand / Gravel - Sitt / Clay - Very Loose       Loose       Medium Dense       Dense       Very Dense         Sitt / Clay - Very Soft       Soft       Medium Stiff       Stiff       Very Stiff       Hard         Moisture Very Wet Wet Moist Damp Dry         Color Light Medium Dark       (Circle major & underline modifying)         Light Medium Dark       Olive Gray Brown Black Other         Major Constituent Fine Medium Coarse       Gravel Sand Silt Clay         Minor Constituent with trace Fine Medium Coarse       Gravel Sand Silt Clay         Biological:       % Debris:       % Oil Sheen: None Trace (<5%)       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |        |         | se        | Gravel | Sand       | Silt           | Clay       |                     |              |
| Density / Consistency   Sand / Gravel - Very Loose   Loose   Medium Dense   Dense   Very Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Density / Consistency         Sand / Gravel - Sitt / Clay - Very Loose       Loose       Medium Dense       Dense       Very Dense         Sitt / Clay - Very Soft       Soft       Medium Stiff       Stiff       Very Stiff       Hard         Moisture Very Wet Wet Moist Damp Dry         Color Light Medium Dark       (Circle major & underline modifying)         Light Medium Dark       Olive Gray Brown Black Other         Major Constituent Fine Medium Coarse       Gravel Sand Silt Clay         Minor Constituent with trace Fine Medium Coarse       Gravel Sand Silt Clay         Biological:       % Debris:       % Oil Sheen: None Trace (<5%)       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ubourfore   | adim aret -  | ho=    | torioti |           |        |            |                |            |                     |              |
| Moisture Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Moisture Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological: % Debris: % Oil Sheen: None Trace (<5%) %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sand        | / Gravel -   | Ve     |         |           |        |            |                |            | •                   | Hard         |
| Very Wet Wet Moist Damp Dry  Color (Circle major & underline modifying) Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Very Wet Wet Moist Damp Dry   Color (Circle major & underline modifying)   Light Medium Dark Olive Gray Brown Black Other    Major Constituent Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Medium Coarse Silt Clay  Medium                                                                                                                                                                              |             | nit / Clay - | ve     | ery Son | 3011      | IVIC   | salam Sin  | . Juli         |            | very Sun            | Haiu         |
| Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Light Medium Dark Olive Gray Brown Black Other  Major Constituent (Circle major & underline modifying) Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | t We         | et     | Moist   | Damp      | Dry    |            |                |            |                     |              |
| Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological:% Debris:% Oil Sheen: None Trace (<5%)%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Mediu        | ım     | Dark    |           | •      | -          |                |            | •                   |              |
| Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fine Medium Coarse Gravel Sand Silt Clay  Minor Constituent with trace Fine Medium Coarse Gravel Sand Silt Clay  Biological:% Debris:% Oil Sheen: None Trace (<5%)%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Major Cons  | tituent      |        |         |           | (C     | ircle maio | or & underline | modifving  | 1)                  |              |
| Fine Medium Coarse Gravel Sand Silt Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fine Medium Coarse Gravel Sand Silt Clay  Biological:% Debris:% Oil Sheen: None Trace (<5%)%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           |              | ım     | Coars   | se        | •      |            |                |            | <i></i>             |              |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biological:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |        |         |           | Ores   | <b>.</b>   | 077            | <b>~</b> : |                     |              |
| Biological:        %         Debris:        %         Oil Sheen:         None         Trace (<5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |        |         |           |        |            |                |            |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Biological: |              |        | %       | Debris:   |        | %          | Oil Sheen:     | None       | Trace (<5%)         | ) %          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |        |         |           |        |            |                |            |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |        |         |           |        |            |                |            |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |        |         |           |        |            |                |            |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |        |         |           |        | QUA        | LITATIVE S     | AMPLE      | CHARAC <sup>*</sup> | TERISTICS FO |
| QUALITATIVE SAMPLE CHARACTERISTICS FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITATIVE SAMPLE CHARACTERISTICS FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |        |         |           |        | See        |                |            |                     |              |
| QUALITATIVE SAMPLE CHARACTERISTICS FO  Boeing Isaacson-Thompson Site Sediment Investigation Sample and Analysis Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Boeing Isaacson-Thompson Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |        |         |           |        |            | 1              |            | · ·                 |              |
| Boeing Isaacson-Thompson Site Sediment Investigation Sample and Analysis Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boeing Isaacson-Thompson Site Sediment Investigation Sample and Analysis Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |        |         |           |        |            | MEC Co         |            |                     |              |
| Boeing Isaacson-Thompson Site Sediment Investigation Sample and Analysis Pla  By: rhg  Date: 04/28/11  Project No.: LY11160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boeing Isaacson-Thompson Site Sediment Investigation Sample and Analysis Pla  By: rhg  Date: 04/28/11  Project No.: LY11160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |        |         |           |        | A          | MEC Ge         | oma        | LI'IX               | Figure 5     |

LY11160060 / Figure 4\_5\_6.xls

| AMEC Geomatrix, Inc.<br>3500 188th Street SW, Suite 601<br>Lynnw ood, WA 98037                                                                                                                                                 | СН                                    | AIN (                  | OF CU      | STOD     | Υ         |                                   |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|------------|----------|-----------|-----------------------------------|------------------------------------|
| Rob Gilmour (425) 921-4003                                                                                                                                                                                                     |                                       | Ana                    | lysis Cont | tainers  |           | 1                                 |                                    |
| Place COC Form Number Label Here or write in seq. number helow.                                                                                                                                                                | Sediment                              | Archive                |            |          |           | Recorded<br>Checked               | by:                                |
| Hace Sample ID Label Here                                                                                                                                                                                                      |                                       |                        |            |          |           | Number                            | r of containers                    |
| Place Samele ID Label Here                                                                                                                                                                                                     |                                       |                        |            |          |           | Number                            | r of containers                    |
| Place Sample ID Label Here                                                                                                                                                                                                     |                                       |                        |            |          |           | Number                            | r of containers                    |
| ■ Place■Sample ID■Label Here■                                                                                                                                                                                                  |                                       |                        |            |          |           | Number                            | of containers                      |
| Place Sample ID Label Here                                                                                                                                                                                                     |                                       |                        |            |          |           | Number                            | r of containers                    |
| Place Sample ID Label Here                                                                                                                                                                                                     |                                       |                        |            |          |           | Number                            | r of containers                    |
| ■ Nace Sample ID Label Here                                                                                                                                                                                                    |                                       |                        |            |          |           | Number                            | r of containers                    |
| Laboratory Sample Receipt  RI Project Manager: Kelley Bottem roject: Boeing Isaacson-Thompson rediment not homogenized. Homogenize entire sample volume for each sample pr lotes: Analyze for the SMS list of analytes and TOC | Nam Date Time rior to taking Nam Date | ne:<br>e:<br>e:<br>ne: | ished By   | Transp   | orted By  | Ree Name: Date: Time: Name: Date: | ceived By                          |
| otes: Analyze for the SMS list of analytes and TOC rchive samples are to be frozen at -18°C in a secured storage area.                                                                                                         | Date                                  |                        | Boe        | eing Isa | acso      | JSTODY<br>n-Thomp                 | FORM  Dison Site  And Analysis Pla |
|                                                                                                                                                                                                                                | Ву:                                   |                        | HEHR IN    |          | : 04/28/1 |                                   | Project No.: LY11160               |
|                                                                                                                                                                                                                                |                                       | AM                     | IEC 0      | eon      | natı      | ix                                | Figure 6                           |

# **Uplands Quality Assurance Project Plan (QAPP)**

# Final Uplands QAPP Remedial Investigation/Feasibility Study Boeing Isaacson-Thompson Site Tukwila, Washington

September 16, 2011

Prepared for

**The Boeing Company** 



# **TABLE OF CONTENTS**

|             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Page</u>                                                                                    |
|-------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1.0         | INTI                            | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-1                                                                                            |
| 2.0         | QUA<br>2.1<br>2.2<br>2.3<br>2.4 | DECISION QUALITY OBJECTIVES REPRESENTATIVENESS COMPARABILITY MEASUREMENT QUALITY OBJECTIVES 2.4.1 Precision 2.4.2 Accuracy 2.4.3 Bias 2.4.4 Sensitivity 2.4.5 Completeness                                                                                                                                                                                                                                                                                                                                                            | 2-1<br>2-1<br>2-1<br>2-3<br>2-3<br>2-3<br>2-4<br>2-4<br>2-5<br>2-5                             |
| 3.0         | LAB                             | ORATORY METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-1                                                                                            |
| 5.0         | 4.1<br>4.2<br>4.3<br>4.4<br>4.5 | LABORATORY INSTRUMENT CALIBRATION FIELD EQUIPMENT CALIBRATION FIELD DOCUMENTATION SAMPLE HANDLING PROCEDURES AND TRANSFER OF CUSTODY FIELD AND LABORATORY QUALITY CONTROL SAMPLES 4.5.1 Blind Field Duplicates 4.5.2 Field Trip Blanks 4.5.3 Laboratory Matrix Spike 4.5.4 Laboratory Matrix Spike Duplicate 4.5.5 Laboratory Duplicates 4.5.6 Laboratory Duplicates 4.5.7 Laboratory Control Sample 4.5.8 Surrogate Spikes LABORATORY QA/QC FOR CHEMICAL AND CONVENTIONAL ANALYSES ERECTIVE ACTIONS DATA VERIFICATION AND VALIDATION | 4-1<br>4-1<br>4-1<br>4-2<br>4-2<br>4-2<br>4-3<br>4-3<br>4-3<br>4-3<br>4-4<br>4-4<br>5-1<br>5-2 |
| 6.0         | DAT                             | 'A MANAGEMENT PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-1                                                                                            |
| 7.0         | REF                             | ERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-1                                                                                            |
| <u>Tabl</u> | <u>e</u>                        | LIST OF TABLES <u>Title</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |
| C-          | 1                               | Site Soil Laboratory Analytical Methods, Method Detection Limits, and Reporting Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nits                                                                                           |
| C-          | 2                               | Site Groundwater, Seep, and Stormwater Laboratory Analytical Methods, Method Dete Limits, and Reporting Limits                                                                                                                                                                                                                                                                                                                                                                                                                        | ection                                                                                         |
| C-          | 3                               | Catch Basin Solids Laboratory Analytical Methods, Method Detection Limits, and Rep<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                          | orting                                                                                         |
| C-          | 4                               | Soil Vapor Laboratory Analytical Methods, Method Detection Limits, and Reporting L                                                                                                                                                                                                                                                                                                                                                                                                                                                    | imits                                                                                          |
| C-          | 5                               | Building Materials and Wipe Samples Laboratory Analytical Methods, Method Detecti<br>Limits, and Reporting Limits                                                                                                                                                                                                                                                                                                                                                                                                                     | on                                                                                             |

## 1.0 INTRODUCTION

This quality assurance project plan (QAPP) establishes the quality assurance/quality control (QA/QC) procedures in support of the remedial investigation/feasibility study (RI/FS) at the Boeing Isaacson-Thompson Site (Site) located in Tukwila, Washington. This QAPP is an appendix to the Site Ecology Review Draft Final *Work Plan, Remedial Investigation/Feasibility Study, Boeing Isaacson-Thompson Site, Tukwila, Washington* (Work Plan; Landau Associates 2011), one of the required deliverables under the Agreed Order (No. DE7088) dated April 23, 2010 between Boeing and the Washington State Department of Ecology (Ecology). This QAPP was prepared using Ecology's *Guidelines for Preparing Quality Assurance Project Plans for Environmental* Studies (Ecology 2004).

The planned scope of the RI, as described in the Work Plan, includes collection of soil, groundwater, seep, catch basin solids, stormwater, soil vapor, indoor air, and building material samples and submittal of the samples to a laboratory for analysis. This QAPP presents the project quality objectives, laboratory methods, QA/QC requirements, corrective actions, and data management procedures for the RI.

# 2.0 QUALITY ASSURANCE OBJECTIVES

The QA objectives for this project are to develop and implement procedures that will ensure collection of representative data of known, acceptable, and defensible quality. The data quality parameters used to assess the acceptability of the data are precision, accuracy, representativeness, comparability, and completeness. These parameters are discussed in the following sections.

# 2.1 DECISION QUALITY OBJECTIVES

The decision quality objectives (DQOs) specify how good the project decisions must be to accomplish the overall project goal. As stated in the Agreed Order, the RI/FS is intended to provide sufficient data, analysis, and evaluations to enable Ecology to select a cleanup action for the Site.

The decisions required to meet this goal include:

- The number of samples to collect and the locations of the samples that will be considered sufficient for evaluating cleanup action alternatives
- The analytical methods required to evaluate the data against screening criteria protective of human health and the environment
- The type of media (e.g., soil, groundwater, storm drain solids, stormwater, soil vapor, indoor air, and building material) that may require cleanup.

To achieve the overall project goal, the DQO will be to obtain data that is representative of site conditions and that is comparable to selected screening criteria, as described below.

# 2.2 REPRESENTATIVENESS

Representativeness expresses the degree to which data accurately and precisely represent an actual condition or characteristic of a population. Representativeness can be evaluated using replicate samples, representative sampling locations, and blanks. Representativeness for the RI sampling will be accomplished using appropriate selection of sampling locations for each media of potential concern (groundwater, soil, soil vapor, and catch basin solids). A detailed description is provided in the Work Plan and Appendix A (Sampling and Analysis Plan) to the Work Plan. A general description of the sampling plan for each media of concern is described below:

Twenty-five groundwater monitoring wells and one temporary well point are planned to be installed at the Site. Groundwater monitoring at these wells, five of the existing monitoring wells, seven existing piezometers, and seeps, if any, will provide information adequate for evaluating groundwater flow and groundwater quality at the Site. Groundwater monitoring at the permanent monitoring wells and piezometers, including water level measurements and sample collection, will be conducted during four consecutive quarterly events. All groundwater samples will be analyzed for polychlorinated biphenyls (PCBs), semivolatile

- organic compounds [SVOCs; including polycyclic aromatic hydrocarbons (PAHs)], total and dissolved metals, volatile organic compounds (VOCs), and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons.
- Soil samples will be collected at 49 proposed locations throughout the Site, including at each of the proposed monitoring well locations, and at three locations along the outside of the wooden bulkhead located on the Thompson property, if possible. Soil samples will be collected from additional locations, as required, to determine the extent of any contamination identified based on field observations. At each location, soil samples will be collected from depth intervals with evidence of contamination and from below the zone of contamination to define the vertical limits of the contamination. At soil boring locations where no evidence of contamination is present, at least three soil samples will be collected in the upper 15 ft of soil. Analytical results for these samples, combined with analytical data for soil samples collected previously at over 100 locations, should provide information necessary to evaluate soil quality throughout the Site. All soil samples will be analyzed for PCBs; SVOCs (including PAHs); metals; VOCs; and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons
- Samples of the solids in each catch basin, oil/water separator, Vortechs® vault, and manhole connected to the storm drain at the Site will be collected and analyzed for PCBs; SVOCs (including PAHs); metals; VOCs; and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons, and total organic carbon (TOC). Three samples will be analyzed for dioxins/furans.
- Stormwater samples will be collected twice from two locations along the storm drain that discharges to Outfall A and from one location along the storm drain that discharges to Outfall B. Stormwater samples will be analyzed for PCB; SVOCs (including PAHs); total metals; VOCs; and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons
- Soil vapor samples will be collected within the main building located on the Site (Building 14-01) and analyzed for VOCs. The soil vapor samples will be collected from directly below the floor slab at five locations within the southwestern portion of the building where VOCs have been detected in groundwater.
- Based on the results of the soil vapor samples, indoor air samples may also be collected from the southwestern portion of Building 14-01 to characterize potential vapor intrusion that may result from the VOCs in groundwater.
- Based on the results of the storm drain solids, building material may be sampled. Materials
  that may be sampled include building siding materials, paint from building or equipment
  surfaces, roofing materials, rooftop runoff, surface debris, and caulking. Building material
  samples, including surface debris, may be analyzed for PCBs and metals. Surface debris may
  also be analyzed for SVOCs.

To determine that the analytical results are representative of the sampled item and not influenced by cross-contamination, method blanks will be analyzed with each analysis as described in Section 4.5.6.

# 2.3 COMPARABILITY

Comparability expresses the confidence with which one data set can be evaluated in relation to another data set. For this work, comparability of data will be established through the use of standard analytical methodologies with detection limits that can meet screening level criteria to the extent practicable, standard reporting formats, and common traceable calibration and reference materials. Methods to be used for analysis of soil and catch basin solids, soil vapor, indoor air, stormwater, groundwater, and building materials are discussed in Section 3.0.

# 2.4 MEASUREMENT QUALITY OBJECTIVES

The measurement quality objectives (MQOs) for the project specify how good the data must be in order to meet the objectives of the project and are based on precision and accuracy, as described in this Section.

# 2.4.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average values. Analytical precision is measured through matrix spike/matrix spike duplicate (MS/MSD) samples for organic analysis and through laboratory duplicate samples for inorganic analyses.

Analytical precision measurements will be carried out on project-specific samples at a minimum frequency of 1 per sample analysis group or 1 in 20 samples, whichever is more frequent per matrix analyzed, as practical. Laboratory precision will be evaluated against quantitative relative percent difference (RPD) performance criteria provided by the laboratory.

Field precision will be evaluated by the collection of groundwater blind field duplicates at a minimum frequency of 1 per sampling event or 1 in 20 samples. No field duplicates will be collected for soil and catch basin solids due to the inherent heterogeneity of the media or for soil vapor samples due to the limited number of these samples being collected. Control limits for the groundwater field duplicates and replicates will be 20 percent unless the duplicate sample values are within five times the reporting limit, in which case the control limit interval will be plus or minus the reporting limit.

Precision measurements can be affected by the nearness of a chemical concentration to the method detection limit (MDL), where the percent error (expressed as RPD) increases. The equation used to express precision is as follows:

$$RPD = \left| \frac{C_1 - C_2}{(C_1 + C_2)/2} \right| \times 100$$

where:  $C_1$  = first sample value

 $C_2$  = second sample value (duplicate)

RPD = relative percent difference.

#### 2.4.2 ACCURACY

Accuracy is an expression of the degree to which a measured or computed value represents the true value. Field accuracy is controlled by adherence to sample collection procedures as outlined in the sampling and analysis plan (SAPP.

Analytical accuracy may be assessed by analyzing "spiked" samples with known standards (surrogates, laboratory control samples, and/or matrix spike) and measuring the percent recovery. Accuracy measurements on matrix spike samples will be carried out at a minimum frequency of 1 per laboratory analysis group or 1 in 20 samples per matrix analyzed. Because MS/MSDs measure the effects of potential matrix interferences of a specific matrix, the laboratory will perform MS/MSDs only on samples from this investigation and not from other projects. Surrogate recoveries will be determined for every sample analyzed for organics.

Laboratory accuracy will be evaluated against quantitative matrix spike and surrogate spike recovery performance criteria provided by the laboratory. Accuracy can be expressed as a percentage of the true or reference value, or as a percent recovery in those analyses where reference materials are not available and spiked samples are analyzed. The equation used to express accuracy is as follows:

$$\frac{Percent}{Recovery} = \frac{(Spiked\ Sample\ Result\ - Unspiked\ Sample\ Result)}{Amount\ of\ Spike\ Added}\ x\ 100$$

Control limits for percent recovery for soil, catch basin solids, soil vapor, indoor air, stormwater, building materials, and groundwater samples will be laboratory acceptance limits generated according to U.S. Environmental Protection Agency (EPA) guidelines.

# 2.4.3 BIAS

Bias is the systematic or persistent distortion of a measured process that causes errors in one direction. Bias of the laboratory results will be evaluated based on analysis of method blanks and matrix spike samples as described in Section 3.0.

# 2.4.4 SENSITIVITY

Sensitivity is the ability to discern the difference between very small amounts of a substance. For the purposes of this project, sensitivity is the lowest concentration that can be accurately detected by the analytical method. The analytical method will be considered sufficiently sensitive if the detection limits are below project screening levels. Proposed method and detection limits are discussed in Section 3.0.

# 2.4.5 COMPLETENESS

Completeness is a measure of the proportion of data obtained from a task sampling plan that is determined to be valid. It is calculated as the number of valid data points divided by the total number of data points requested. The QA objective for completeness during this project will be 95 percent. Completeness will be routinely determined and compared to this control criterion.

# 3.0 LABORATORY METHODS

Soil, groundwater, seep, storm drain solids, and stormwater samples will be analyzed for SVOCs (including PAHs); PCBs; total metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); VOCs; and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons. Groundwater and seep samples will also be analyzed for dissolved metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); total dissolved solids (TDS); nitrate; and sulfate. Storm drain solids will also be analyzed for TOC and three samples will be analyzed for dioxins/furans. Soil vapor samples will be analyzed for VOCs only. All analytes detected below the laboratory reporting limit and above the method detection limit will be reported and qualified as an estimate (i.e., flagged with a J).

Laboratory methods, reporting limits, and method detection limits for the analysis of each of the above constituents in soil and groundwater are summarized in Tables C-1 and C-2, respectively. Laboratory methods for the analysis of catch basin solids will include Puget Sound Estuary Program (PSEP methods); the laboratory methods, reporting limits, and method detection limits for this media are summarized separately in Table C-3. Laboratory methods and reporting limits for the analysis of soil vapor samples are summarized in Table C-4. Laboratory methods, reporting limits, and method detection limits for the analysis of building material samples, including wipe samples, are summarized in Table C-5. For all groundwater analyses except dissolved metals, any suspended material in the sample will be allowed to settle and the sample will not be agitated prior to analysis of the supernatant. For the dissolved metals analyses, the samples will be filtered in the field to remove any suspended material. An acid/silica gel cleanup will be applied to all soil samples analyzed for diesel-range and motor oil-range petroleum hydrocarbons.

Sample containers, preservation, and holding times are provided in the SAP (AppendixA of the Work Plan).

# 4.0 QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS

This section describes the procedures that will be implemented to: 1) ensure sample integrity from the time of sample collection to the time of analysis in the laboratory, 2) obtain the appropriate chemical and physical data, 3) collect field and laboratory quality control samples, 4) monitor performance of the laboratory and field measurement systems, 5) correct any deviations from the methods or QA requirements established in this QAPP, and 6) report and validate the data.

# 4.1 LABORATORY INSTRUMENT CALIBRATION

The analytical laboratory project manager is responsible for maintaining laboratory instruments in proper working order including routine maintenance and calibration, and training of personnel in maintenance and calibration procedures. Laboratory instruments will be properly calibrated with appropriate check standards and calibration blanks for each parameter before beginning each analysis. Instrument performance check standards, where required, and calibration blank results will be recorded in a laboratory logbook dedicated to each instrument. At a minimum, the preventive maintenance schedules contained in the EPA methods and in the equipment manufacturer's instructions will be followed. Laboratory calibration procedures and schedules will be as described in the laboratory QAPP.

# 4.2 FIELD EQUIPMENT CALIBRATION

Field meters, including pH, conductivity, dissolved oxygen (DO), temperature probes, and photoionization detector (PID) will be calibrated and maintained in accordance with the manufacture's specifications. All routine maintenance will be recorded in the field sampling logs.

# 4.3 FIELD DOCUMENTATION

A complete record of all field activities will be maintained for the duration of the field phase of the work. Documentation will include the following:

- Daily recordkeeping by field personnel of all field activities
- Recordkeeping of all samples collected for analysis (field sampling forms)
- Use of sample labels and tracking forms for all samples collected for analysis.

The field logs will provide a description of all sampling activities, sampling personnel, weather conditions, and a record of all modifications to the procedures and plans identified in the SAP. The field logs are intended to provide sufficient data and observations to enable participants to reconstruct events that occurred during the sampling period.

Sample possession and handling will also be documented so that it is traceable from the time of sample collection to the laboratory and data analysis. Sample chain-of-custody forms and procedures are described in the SAP.

### 4.4 SAMPLE HANDLING PROCEDURES AND TRANSFER OF CUSTODY

Samples submitted to the analytical laboratories will be collected in the appropriate sample containers and preserved as specified in Table A-1 of the SAP (Appendix A of the Work Plan). The storage temperatures and maximum holding times for physical/chemical analyses are also presented in Table A-1 of the SAP.

The transportation and handling of samples will be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to release of samples. Samples will be logged on a chain-of-custody form and will be kept in coolers on ice until delivery to the analytical laboratory. The chain-of-custody will accompany each shipment of samples to the laboratory. Procedures for sample transportation and handling are described in Section 2.7 of the SAP.

### 4.5 FIELD AND LABORATORY QUALITY CONTROL SAMPLES

Field and analytical laboratory control samples will be collected to evaluate data precision, accuracy, representativeness, completeness, and comparability of the analytical results for this investigation. Soil, catch basin solids, soil vapor, indoor air, building materials, and groundwater quality control samples are described below. The frequency at which they will be collected and/or analyzed is also described.

### 4.5.1 BLIND FIELD DUPLICATES

A blind field duplicate will be collected at a frequency of at least 1 per 20 groundwater samples per chemical analysis, not including QC samples, but not less than one field duplicate per sampling event (any continuous sampling period not interrupted by more than 2 days). The blind field duplicate will consist of a split sample collected at a single sample location. No soil or catch basin solids blind field duplicate samples will be collected due to the inherent heterogeneity of the samples. No soil vapor blind field duplicates will be collected due to the limited number of these samples that will be collected. Groundwater blind field duplicates will be collected by alternately filling sample containers for both the original and the corresponding duplicate sample at the same location to decrease variability between the duplicates. Blind field duplicate sample results will be used to evaluate data precision.

#### 4.5.2 FIELD TRIP BLANKS

Field trip blanks will consist of deionized or distilled water sealed in a sample container provided by the analytical laboratory. The trip blank will accompany samples collected for the analysis of VOCs during transportation to and from the field, and then will be returned to the laboratory with each shipment. The trip blank will remain unopened until submitted to the laboratory for analysis. One trip blank per cooler containing groundwater and soil samples for VOCs and gasoline-range petroleum hydrocarbons analysis will be evaluated to determine possible sample contamination during transport.

### 4.5.3 LABORATORY MATRIX SPIKE

A minimum of one laboratory MS per 20 samples, or one MS sample per batch of samples if fewer than 20 samples are obtained in a sample event, will be analyzed for all organic and inorganic analyses. The matrix spikes will be performed using Site samples. These analyses will be performed to provide information on accuracy and to verify that extraction and concentration levels are acceptable. The laboratory spikes will follow EPA guidance for MS and MSDs.

### 4.5.4 LABORATORY MATRIX SPIKE DUPLICATE

A minimum of one laboratory MSD per 20 samples, or one MSD sample per batch of samples if fewer than 20 samples are obtained in a sample event, will be analyzed for all organic analyses. The analysis of MSD samples will be performed to provide information on the precision of chemical analyses. The laboratory spikes will follow EPA guidance for matrix and blank spike duplicates.

### 4.5.5 LABORATORY DUPLICATES

A minimum of one laboratory duplicate per 20 samples, or one laboratory duplicate sample per batch of samples if fewer than 20 samples are obtained in a sample event, will be analyzed for metals. These analyses will be performed to provide information on the precision of chemical analyses. The laboratory duplicate will follow EPA guidance in the method.

### 4.5.6 LABORATORY METHOD BLANKS

A minimum of one laboratory method blank per 20 samples, one every 12 hours, or one per batch of samples analyzed (if fewer than 20 samples are analyzed in a sample event) will be analyzed for all parameters (except grain size and total solids) to assess possible laboratory contamination. Dilution water will be used whenever possible. Method blanks will contain all reagents used for analysis. The generation and analysis of additional method, reagent, and glassware blanks may be necessary to verify that laboratory procedures do not contaminate samples.

#### 4.5.7 LABORATORY CONTROL SAMPLE

A minimum of one laboratory control sample per 20 samples, or one laboratory control sample per sample batch if fewer than 20 samples are obtained in a sample event, will be analyzed for all parameters.

### 4.5.8 SURROGATE SPIKES

All project samples analyzed for organic compounds will be spiked with appropriate surrogate compounds as defined by the analytical methods.

### 4.6 LABORATORY QA/QC FOR CHEMICAL AND CONVENTIONAL ANALYSES

QA/QC for chemical testing includes laboratory instrument and analytical method QA/QC. Instrument QA/QC monitors the performance of the instrument and method QA/QC monitors the performance of sample preparation procedures. The analytical laboratory will be responsible for instrument and method QA/QC. QA/QC procedures to be performed by the laboratory for analysis of soil and groundwater samples will be in accordance with methods specified in Tables C-1 and C-2, respectively. QA/QC procedures to be performed by the laboratory for analysis of catch basin solids samples will be in accordance with methods specified in Table C-3. QA/QC procedures to be performed by the laboratory for analysis of soil vapor samples will be in accordance with methods specified in Table C-4. QA/QC procedures to be performed by the laboratory for analysis of building material samples will be in accordance with methods specified in Table C-5.

When an instrument or method control limit is exceeded, the laboratory will contact the project manager immediately. The laboratory will be responsible for correcting the problem and will reanalyze the samples within the sample holding time if sample reanalysis is appropriate. Corrective actions are described further in Section 5.0.

### 5.0 CORRECTIVE ACTIONS

Corrective actions will be needed for two categories of nonconformance:

- Deviations from the methods or QA requirements established in this QAPP
- Equipment or analytical malfunctions.

Corrective action procedures to be implemented based on detection of unacceptable data are developed on a case-by-case basis. Such actions may include one or more of the following:

- Altering procedures in the field
- Using a different batch of sample containers
- Performing an audit of field or laboratory procedures
- Reanalyzing samples (if holding times allow)
- Resampling and analyzing
- Evaluating sampling and analytical procedures to determine possible causes of the discrepancies
- Accepting the data without action, acknowledging the level of uncertainty
- Rejecting the data as unusable.

During field operations and sampling procedures, the field personnel will be responsible for conducting and reporting required corrective actions. A description of any action taken will be entered in the daily field notebook. The project manager will be consulted immediately if field conditions are such that conformance with this QAPP is not possible. The field coordinator will consult with the Landau Associates' project manager, who may authorize changes or exceptions to the QA/QC portion of the QAPP, as necessary and appropriate.

During laboratory analysis, the laboratory QA officer will be responsible for taking required corrective actions in response to equipment malfunctions. If an analysis does not meet DQOs outlined in this QAPP, corrective action will follow the guidelines in the noted EPA analytical methods and the EPA guidelines for data validation for organics and inorganics analyses (EPA 1999 and 2004). At a minimum, the laboratory will be responsible for monitoring the following:

- Calibration check compounds must be within performance criteria specified in the EPA method or corrective action must be taken prior to initiation of sample analysis. No analyses may be performed until these criteria are met.
- Before processing any samples, the analyst should demonstrate, through analysis of a reagent blank that interferences from the analytical system, glassware, and reagents are within acceptable limits. Each time a set of samples is extracted or there is a change in reagents, a reagent blank should be processed as a safeguard against chronic laboratory contamination. The blank samples should be carried through all stages of the sample preparation and measurement steps.

- Method blanks should, in general, be below instrument detection limits. If contaminants are present, then the source of contamination must be investigated, corrective action taken and documented, and all samples associated with a contaminated blank reanalyzed. If, upon reanalysis, blanks do not meet these requirements, Landau Associates will be notified immediately to discuss whether analyses may proceed.
- Surrogate spike analysis must be within the specified range for recovery limits for each analytical method utilized or corrective action must be taken and documented. Corrective action includes: 1) reviewing calculations, 2) checking surrogate solutions, 3) checking internal standards, and 4) checking instrument performance. Subsequent action could include recalculating the data and/or reanalyzing the sample if any of the above checks reveal a problem. If the problem is determined to be caused by matrix interference, reanalysis may be waived if so directed following consultation with Landau Associates. If the problem cannot be corrected through reanalysis, the laboratory will notify Landau Associates prior to data submittal so that additional corrective action can be taken, if appropriate.
- If the recovery of a surrogate compound in the method blank is outside the recovery limits, the blank will be reanalyzed along with all samples associated with that blank. If the surrogate recovery is still outside the limits, Landau Associates will be notified immediately to discuss whether analyses may proceed.
- If quantitation limits or matrix spike control limits cannot be met for a sample, Landau Associates will be notified immediately to discuss corrective action required.
- If holding times are exceeded, all positive and undetected results may need to be qualified as estimated concentrations. If holding times are grossly exceeded, Landau Associates may determine the data to be unusable.

If analytical conditions are such that nonconformance with this QAPP is indicated, Landau Associates will be notified as soon as possible so that any additional corrective actions can be taken. The laboratory project manager will then document the corrective action by a memorandum submitted to Landau Associates. A narrative describing the anomaly; the steps taken to identify and correct the anomaly; and any recalculation, reanalyses, or re-extractions will be submitted with the data package in the form of a cover letter.

### 5.1 DATA VERIFICATION AND VALIDATION

All RI data will be verified and validated to determine the results are acceptable and meet the quality objectives described in Section 2.1. Prior to submitting a laboratory report, the laboratory will verify that all the data are consistent, correct, and complete, with no errors or omissions.

Validation of the data will be performed by Landau Associates following the guidelines in the appropriate sections of the EPA Contract Laboratory Program *National Functional Guidelines for Organic and Inorganic Data Review* (EPA 1999 and 2004) and will include evaluations of the following:

- Chain-of-custody records
- Holding times
- Laboratory method blanks

- Surrogate recoveries
- Laboratory matrix spikes and matrix spike duplicates
- Blank spikes/laboratory control samples
- Laboratory duplicates
- Corrective action records
- Completeness
- Overall assessment of data quality.

In the event that a portion of the data is outside the DQO limits or the EPA guidance (EPA 1999 and 2004), or sample collection and/or documentation practices are deficient, corrective action(s) will be initiated. Corrective action, as described in Section 5.0, will be determined by the field coordinator and Landau Associates' QA officer in consultation with the Landau Associates' project/task manager and may include any of the following:

- Rejection of the data and resampling
- Qualification of the data
- Modified field and/or laboratory procedures.

Data qualification arising from data validation activities will be described in the data validation report, rather than in individual corrective action reports.

### 6.0 DATA MANAGEMENT PROCEDURES

All laboratory analytical results, including QC data, will be submitted in hard copy and electronically to Landau Associates. Electronic format will include comma separated value (CSV) files that will be downloaded directly to an Excel spreadsheet. Following validation of the data, any qualifiers will be added to the Excel spreadsheets. All survey data will be provided electronically in a format that can be downloaded into an Excel spreadsheet. All field data (groundwater field parameter data and water levels measurements) will be entered into an Excel spreadsheet and verified to determine all entered data is correct and without omissions and errors. Following receipt of all RI data and all survey data, water level measurements, field parameters, and analytical results will be formatted electronically and uploaded to Ecology's Environmental Information Management (EIM) system

\* \* \* \* \* \* \* \* \* \*

Senduckero

This document has been prepared under the supervision and direction of the following key staff:

LANDAU ASSOCIATES, INC.

Kristy J. Hendrickson, P.E.

Principal

Stacy J. Lane, L.G. Senior Geologist

KJH/SJL/tam

### 7.0 REFERENCES

Barrick, R.C., D.S. Becker, L.B. Brown, H.Beller, and R. Pastorok. 1988. *Sediment quality values refinement: 1988 update and evaluation of Puget Sound AET.* Volume I. Final Report. Prepared for Tetra Tech, Inc., Bellevue, WA, and the U.S. Environmental Protection Agency, Seattle, WA. PTI Environmental Services, Bellevue, WA.

Ecology. 2004. *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies.* Washington State Department of Ecology. July.

Ecology. 1997. *Analytical Methods for Petroleum Hydrocarbons*. Publication No. ECY 97-602. Washington State Department of Ecology. June.

EPA. 2004. *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99/008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

EPA. 1986. *Test Methods for Evaluating Solid Waste*. EPA/SW-846, Third Edition, with 2007 updates. U.S. Environmental Protection Agency.

Landau Associates. 2011. Final Work Plan, Building 14-01 Investigation, Boding Isaacson-Thompson Site, Tukwila, Washington. Prepared for The Boeing Company. March 29.

PSEP. 1997a. Puget Sound Estuary Program: Recommended guidelines for sampling marine sediment, water column, and tissue in Puget Sound. Final report. Prepared for U.S. EPA, Region 10, Seattle WA and Puget Sound Water Quality Action Team, Olympia, WA. King County Water Pollution Control Division Environmental Laboratory, Seattle, WA.

PSEP. 1997b. Puget Sound Estuary Program: Recommended guidelines for measuring metals in Puget Sound sediment and tissue samples. Final Report. Prepared for U.S. EPA, Region 10, Seattle WA and Puget Sound Water Quality Action Team, Olympia, WA. King County Water Pollution Control Division Environmental Laboratory, Seattle, WA.

PSEP. 1986. Puget Sound Estuary Program: Recommended protocols for measuring conventional sediment variables in Puget Sound. Final report. Prepared for U.S. EPA, Region 10, Office of Puget Sound, Seattle, WA and the U.S. Army Corps of Engineers, Seattle District, Seattle, WA. Tetra Tech, Inc., Bellevue, WA.

## TABLE C-1 SITE SOIL LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Analyte                                     | Analytical<br>Method (a)     | Laboratory<br>Reporting Limits (b) | II.   | thod<br>on Limits |
|---------------------------------------------|------------------------------|------------------------------------|-------|-------------------|
| SEMIVOLATILES                               |                              |                                    |       |                   |
| Phenol                                      | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| 1,2,4-Trichlorobenzene                      | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| 1,2-Dichlorobenzene                         | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 1,3-Dichlorobenzene                         | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 1,4-Dichlorobenzene                         | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 1-Methylnaphthalene                         | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 2,2'-Oxybis(1-Chloropropane)                | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 2,4,5-Trichlorophenol                       | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.021 | mg/kg             |
| 2,4,6-Trichlorophenol                       | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.011 | mg/kg             |
| 2,4-Dichlorophenol                          | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.018 | mg/kg             |
| 2,4-Dimethylphenol                          | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.008 | mg/kg             |
| 2,4-Dinitrophenol                           | EPA Method 8270 (Low Level)  | 0.2 mg/kg                          | 0.05  | mg/kg             |
| 2,4-Dinitrotoluene                          | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.019 | mg/kg             |
| 2,6-Dinitrotoluene                          | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.015 | mg/kg             |
| 2-Chloronaphthalene                         | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 2-Chlorophenol                              | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.005 | mg/kg             |
| 2-Methylnaphthalene                         | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| 2-Methylphenol                              | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.005 | mg/kg             |
| 2-Nitroaniline                              | EPA Method 8270 (Low Level)  | 0.02 mg/kg<br>0.1 mg/kg            | 0.019 | mg/kg             |
| 2-Nitrophenol                               | EPA Method 8270 (Low Level)  | 0.11 mg/kg<br>0.02 mg/kg           | 0.019 | mg/kg             |
| 3,3'-Dichlorobenzidine                      | EPA Method 8270 (Low Level)  | 0.02 mg/kg<br>0.1 mg/kg            | 0.054 | mg/kg             |
| 3-Nitroaniline                              | EPA Method 8270 (Low Level)  | 0.1 mg/kg<br>0.1 mg/kg             | 0.034 | mg/kg             |
| 3-Nitroaniine<br>4,6-Dinitro-2-Methylphenol |                              |                                    | 0.025 |                   |
| · ·                                         | EPA Method 8270 (Low Level)  | 0.2 mg/kg                          | II.   | mg/kg             |
| 4-Bromophenyl-phenylether                   | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| 4-Chloro-3-methylphenol                     | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.015 | mg/kg             |
| 4-Chloroaniline                             | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.024 | mg/kg             |
| 4-Chlorophenyl-phenylether                  | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| 4-Methylphenol                              | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.005 | mg/kg             |
| 4-Nitroaniline                              | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.023 | mg/kg             |
| 4-Nitrophenol                               | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.028 | mg/kg             |
| Acenaphthene                                | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Acenaphthylene                              | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Anthracene                                  | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Benzo(a)anthracene                          | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Benzo(a)pyrene                              | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Benzo(b)fluoranthene                        | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Benzo(g,h,i)perylene                        | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Benzo(k)fluoranthene                        | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Benzoic Acid                                | EPA Method 8270 (Low Level)  | 0.2 mg/kg                          | 0.043 | mg/kg             |
| Benzyl Alcohol                              | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.046 | mg/kg             |
| bis(2-Chloroethoxy) Methane                 | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.002 | mg/kg             |
| Bis-(2-Chloroethyl) Ether                   | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.005 | mg/kg             |
| bis(2-Ethylhexyl)phthalate                  | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.009 | mg/kg             |
| Butylbenzylphthalate                        | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| Carbazole                                   | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.002 | mg/kg             |
| Chrysene                                    | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Dibenz(a,h)anthracene                       | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Dibenzofuran                                | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |
| Diethylphthalate                            | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| Dimethylphthalate                           | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| Di-n-Butylphthalate                         | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.005 | mg/kg             |
| Di-n-Octyl phthalate                        | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.005 | mg/kg             |
| Fluoranthene                                | EPA Method 8270 (Low Level)  | 0.02 mg/kg<br>0.005 mg/kg          | 0.003 | mg/kg             |
| Fluorene                                    | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Hexachlorobenzene                           | EPA Method 8270 (Low Level)  | 0.003 mg/kg                        | 0.001 | mg/kg             |
| Hexachlorobetizerie Hexachlorobutadiene     | EPA Method 8270 (Low Level)  | 0.02 mg/kg<br>0.02 mg/kg           | 0.003 | mg/kg             |
| Hexachlorocyclopentadiene                   | EPA Method 8270 (Low Level)  | 0.02 mg/kg<br>0.1 mg/kg            | 0.003 | mg/kg             |
| Hexachloroethane                            |                              | 0.1 mg/kg<br>0.02 mg/kg            | 0.012 |                   |
|                                             | EPA Method 8270 (Low Level)  | 0.02 mg/kg<br>0.005 mg/kg          | II.   | mg/kg             |
| ndeno(1,2,3-cd)pyrene                       | EPA Method 8270 (Level avel) | 0 0                                | 0.002 | mg/kg             |
| sophorone                                   | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| Naphthalene                                 | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Nitrobenzene                                | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.004 | mg/kg             |
| N-Nitroso-Di-N-Propylamine                  | EPA Method 8270 (Low Level)  | 0.02 mg/kg                         | 0.003 | mg/kg             |
| N-Nitrosodiphenylamine                      | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.013 | mg/kg             |
| Pentachlorophenol                           | EPA Method 8270 (Low Level)  | 0.1 mg/kg                          | 0.027 | mg/kg             |
| Phenanthrene                                | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.002 | mg/kg             |
| Pyrene                                      | EPA Method 8270 SIM          | 0.005 mg/kg                        | 0.001 | mg/kg             |

## TABLE C-1 SITE SOIL LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                            | Analytical                         | Laboratory                 | Method                       |
|--------------------------------------------|------------------------------------|----------------------------|------------------------------|
| Analyte                                    | Method (a)                         | Reporting Limits (b)       | Detection Limits             |
| VOLATILES                                  |                                    |                            |                              |
| Chloromethane                              | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 1,1,1,2-Tetrachloroethane                  | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| 1,1,1-Trichloroethane                      | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| 1,1,2,2-Tetrachloroethane                  | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 1,1,2-Trichloroethane                      | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 1,1,2-Trichlorotrifluoroethane             | EPA Method 8260                    | 0.002 mg/kg                | 0.0003 mg/kg                 |
| 1,1-Dichloroethane                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| 1,1-Dichloroethene                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 1,1-Dichloropropene                        | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 1,2,3-Trichlorobenzene                     | EPA Method 8260                    | 0.005 mg/kg                | 0.0003 mg/kg                 |
| 1,2,3-Trichloropropane                     | EPA Method 8260                    | 0.002 mg/kg                | 0.0005 mg/kg                 |
| 1,2,4-Trichlorobenzene                     | EPA Method 8260                    | 0.005 mg/kg                | 0.0003 mg/kg                 |
| 1,2,4-Trimethylbenzene                     | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| 1,2-Dibromo-3-chloropropane                | EPA Method 8260                    | 0.005 mg/kg                | 0.0005 mg/kg                 |
| 1,2-Dichlorobenzene                        | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 1,2-Dichloroethane                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg<br>0.001 mg/kg | 0.0002 mg/kg<br>0.0003 mg/kg |
| 1,3-Dichlorobenzene                        | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg<br>0.001 mg/kg |                              |
| 1,3-Dichloropenzene                        | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg<br>0.001 mg/kg | 0.0002 mg/kg<br>0.0002 mg/kg |
| 1,4-Dichlorobenzene                        | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg<br>0.0002 mg/kg |
| 2,2-Dichloropropane                        | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg<br>0.0003 mg/kg |
| 2-Butanone                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0005 mg/kg                 |
| 2-Chloroethylvinylether                    | EPA Method 8260                    | 0.005 mg/kg                | 0.0003 mg/kg                 |
| 2-Chlorotoluene                            | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 2-Hexanone                                 | EPA Method 8260                    | 0.005 mg/kg                | 0.0004 mg/kg                 |
| 4-Chlorotoluene                            | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| 4-Isopropyltoluene                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| 4-Methyl-2-Pentanone (MIBK)                | EPA Method 8260                    | 0.005 mg/kg                | 0.0004 mg/kg                 |
| Acetone                                    | EPA Method 8260                    | 0.005 mg/kg                | 0.0005 mg/kg                 |
| Acrolein                                   | EPA Method 8260                    | 0.05 mg/kg                 | 0.038 mg/kg                  |
| Acrylonitrile                              | EPA Method 8260                    | 0.005 mg/kg                | 0.001 mg/kg                  |
| Benzene                                    | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| Bromobenzene                               | EPA Method 8260                    | 0.001 mg/kg                | 0.0001 mg/kg                 |
| Bromochloromethane                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| Bromodichloromethane                       | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| Bromoethane                                | EPA Method 8260                    | 0.002 mg/kg                | 0.0004 mg/kg                 |
| Bromoform                                  | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| Bromomethane                               | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Carbon Disulfide                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0006 mg/kg                 |
| Carbon Tetrachloride                       | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Chlorobenzene                              | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Chloroethane                               | EPA Method 8260                    | 0.001 mg/kg                | 0.0005 mg/kg                 |
| Chloroform                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| cis-1,2-Dichloroethene                     | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| cis-1,3-Dichloropropene                    | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Dibromochloromethane                       | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| Dibromomethane<br>Ethylpenzene             | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg<br>0.001 mg/kg | 0.0001 mg/kg<br>0.0002 mg/kg |
| Ethylbenzene<br>Ethylene Dibromide         | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg<br>0.001 mg/kg | 0.0002 mg/kg<br>0.0001 mg/kg |
| Hexachlorobutadiene                        | EPA Method 8260<br>EPA Method 8260 | 0.001 mg/kg<br>0.001 mg/kg |                              |
| Isopropylbenzene                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0004 mg/kg<br>0.0002 mg/kg |
| m,p-Xylene                                 | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg<br>0.0004 mg/kg |
| Methyl lodide                              | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Methylene Chloride                         | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Naphthalene                                | EPA Method 8260                    | 0.002 mg/kg                | 0.0004 mg/kg                 |
| n-Butylbenzene                             | EPA Method 8260                    | 0.000 mg/kg                | 0.0003 mg/kg                 |
| n-Propylbenzene                            | EPA Method 8260                    | 0.001 mg/kg                | 0.0003 mg/kg                 |
| o-Xylene                                   | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| sec-Butylbenzene                           | EPA Method 8260                    | 0.001 mg/kg                | 0.0002 mg/kg                 |
| Styrene                                    | EPA Method 8260                    | 0.001 mg/kg                | 0.0001 mg/kg                 |
|                                            |                                    |                            |                              |

## TABLE C-1 SITE SOIL LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                        | Analytical      | Laboratory           | Method           |
|----------------------------------------|-----------------|----------------------|------------------|
| Analyte                                | Method (a)      | Reporting Limits (b) | Detection Limits |
| VOLATILES (continued)                  |                 |                      |                  |
| tert-Butylbenzene                      | EPA Method 8260 | 0.001 mg/kg          | 0.0003 mg/kg     |
| Tetrachloroethene                      | EPA Method 8260 | 0.001 mg/kg          | 0.0003 mg/kg     |
| Toluene                                | EPA Method 8260 | 0.001 mg/kg          | 0.0001 mg/kg     |
| trans-1,2-Dichloroethene               | EPA Method 8260 | 0.001 mg/kg          | 0.0003 mg/kg     |
| trans-1,3-Dichloropropene              | EPA Method 8260 | 0.001 mg/kg          | 0.0002 mg/kg     |
| trans-1,4-Dichloro-2-butene            | EPA Method 8260 | 0.005 mg/kg          | 0.0004 mg/kg     |
| Trichloroethene                        | EPA Method 8260 | 0.001 mg/kg          | 0.0002 mg/kg     |
| Trichlorofluoromethane                 | EPA Method 8260 | 0.001 mg/kg          | 0.0003 mg/kg     |
| Vinyl Acetate                          | EPA Method 8260 | 0.005 mg/kg          | 0.0004 mg/kg     |
| Vinyl Chloride                         | EPA Method 8260 | 0.001 mg/kg          | 0.0002 mg/kg     |
| METALS                                 |                 |                      |                  |
| Antimony                               | EPA Method 6020 | 0.2 mg/kg            | 0.013 mg/kg      |
| Arsenic                                | EPA Method 6020 | 0.2 mg/kg            | 0.087 mg/kg      |
| Barium                                 | EPA Method 6020 | 0.5 mg/kg            | 0.056 mg/kg      |
| Beryillium                             | EPA Method 6020 | 0.2 mg/kg            | 0.018 mg/kg      |
| Cadmium                                | EPA Method 6020 | 0.1 mg/kg            | 0.012 mg/kg      |
| Chromium                               | EPA Method 6020 | 0.5 mg/kg            | 0.038 mg/kg      |
| Chromium VI                            | EPA Method 7196 | 0.1 mg/kg            | 0.03 mg/kg       |
| Copper                                 | EPA Method 6020 | 0.5 mg/kg            | 0.036 mg/kg      |
| Lead                                   | EPA Method 6020 | 0.1 mg/kg            | 0.047 mg/kg      |
| Mercury                                | EPA Method 7471 | 0.025 mg/kg          | 0.002 mg/kg      |
| Nickel                                 | EPA Method 6020 | 0.5 mg/kg            | 0.049 mg/kg      |
| Selenium                               | EPA Method 6020 | 0.5 mg/kg            | 0.099 mg/kg      |
| Silver                                 | EPA Method 6020 | 0.2 mg/kg            | 0.008 mg/kg      |
| Thallium                               | EPA Method 6020 | 0.2 mg/kg            | 0.003 mg/kg      |
| Zinc                                   | EPA Method 6020 | 4.0 mg/kg            | 0.339 mg/kg      |
| PCBs                                   |                 |                      |                  |
| Aroclor 1016                           | EPA Method 8082 | 0.033 mg/kg          | 0.009 mg/kg      |
| Aroclor 1242                           | EPA Method 8082 | 0.033 mg/kg          | NA               |
| Aroclor 1248                           | EPA Method 8082 | 0.033 mg/kg          | NA               |
| Aroclor 1254                           | EPA Method 8082 | 0.033 mg/kg          | NA               |
| Aroclor 1260                           | EPA Method 8082 | 0.033 mg/kg          | 0.007 mg/kg      |
| Aroclor 1221                           | EPA Method 8082 | 0.033 mg/kg          | NA               |
| Aroclor 1232                           | EPA Method 8082 | 0.033 mg/kg          | NA               |
| TOTAL PETROLEUM HYDROCARBONS           |                 |                      |                  |
| Gasoline-Range Petroleum Hydrocarbons  | NWTPH-G (c)     | 5 mg/kg              | 0.002 mg/kg      |
| Diesel-Range Petroleum Hydrocarbons    | NWTPH-Dx (c,d)  | 5 mg/kg              | 0.002 mg/kg      |
| Motor Oil-Range Petroleum Hydrocarbons | NWTPH-Dx (c,d)  | 10 mg/kg             | 0.001 mg/kg      |

NA - Not available

SIM - Selected Ion Monitoring

<sup>(</sup>a) Analytical methods are from SW-846 and updates.

<sup>(</sup>b) Laboratory reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Instances may arise where high sample concentrations, nonhomogeneity of samples or matrix interferences preclude achieving the laboratory reporting limits.

<sup>(</sup>c) Methods NWTPH-G and NWTPH-Dx as described in Analytical Methods for Petroleum Hydrocarbons, Washington State Department of Ecology, Publication ECY97-602, June 1997 (Ecology 1997)

<sup>(</sup>d) An acid silica gel cleanup will be performed for all NWTPH-Dx analyses.

## SITE GROUNDWATER, SEEPS, AND STORMWATER LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                      | Analytical                           | Laboratory           | Method                   |
|--------------------------------------|--------------------------------------|----------------------|--------------------------|
| Analyte                              | Method (a)                           | Reporting Limits (b) | Detection Limits         |
| SEMIVOLATILES                        |                                      |                      |                          |
| 1,2,4-Trichlorobenzene               | EPA Method 8270D                     | 1.0 μg/L             | 0.383 μg/L               |
| 1,2-Dichlorobenzene                  | EPA Method 8270D                     | 1.0 μg/L             | 0.365 µg/L               |
| 1,3-Dichlorobenzene                  | EPA Method 8270D                     | 1.0 μg/L             | 0.358 µg/L               |
| 1,4-Dichlorobenzene                  | EPA Method 8270D                     | 1.0 μg/L             | 0.397 μg/L               |
| 1-Methylnaphthalene                  | EPA Method 8270D                     | 1.0 μg/L             | 0.479 μg/L               |
| 2,2'-Oxybis(1-Chloropropane)         | EPA Method 8270D                     | 1.0 μg/L             | 0.623 μg/L               |
| 2,4,5-Trichlorophenol                | EPA Method 8270D                     | 5.0 μg/L             | 2.220 μg/L               |
| 2,4,6-Trichlorophenol                | EPA Method 8270D                     | 5.0 μg/L             | 2.408 µg/L               |
| 2,4-Dichlorophenol                   | EPA Method 8270D                     | 5.0 μg/L             | 2.597 µg/L               |
| 2,4-Dimethylphenol                   | EPA Method 8270D                     | 3.0 μg/L<br>1.0 μg/L | 0.359 μg/L               |
| 2,4-Dinitrophenol                    | EPA Method 8270D                     | 10.0 μg/L            | 3.480 µg/L               |
| 2,4-Dinitrotoluene                   | EPA Method 8270D                     | 5.0 μg/L             | 2.520 μg/L               |
| 2,6-Dinitrotoluene                   | EPA Method 8270D                     | 5.0 μg/L             | 2.393 µg/L               |
|                                      | EPA Method 8270D                     | 3.0 μg/L<br>1.0 μg/L |                          |
| 2-Chloronaphthalene 2-Chlorophenol   | EPA Method 8270D                     | 1.0 μg/L<br>1.0 μg/L | 0.477 μg/L<br>0.529 μg/L |
| 2-Methylnaphthalene                  | EPA Method 8270D                     | 1.0 μg/L<br>1.0 μg/L | 0.529 μg/L<br>0.475 μg/L |
|                                      | EPA Method 8270D                     |                      |                          |
| 2-Methylphenol 2-Nitroaniline        | EPA Method 8270D                     | 1.0 μg/L<br>5.0 μg/L |                          |
|                                      | EPA Method 8270D                     |                      |                          |
| 2-Nitrophenol 3,3'-Dichlorobenzidine |                                      | 5.0 μg/L             | 1.5                      |
|                                      | EPA Method 8270D<br>EPA Method 8270D | 5.0 μg/L             | 1.510 µg/L               |
| 3-Nitroaniline                       |                                      | 5.0 μg/L             | 2.314 µg/L               |
| 4,6-Dinitro-2-Methylphenol           | EPA Method 8270D                     | 10.0 μg/L            | 3.087 µg/L               |
| 4-Bromophenyl-phenylether            | EPA Method 8270D                     | 1.0 µg/L             | 0.423 µg/L               |
| 4-Chloro-3-methylphenol              | EPA Method 8270D                     | 5.0 μg/L             | 2.417 µg/L               |
| 4-Chloroaniline                      | EPA Method 8270D                     | 5.0 μg/L             | 2.599 µg/L               |
| 4-Chlorophenyl-phenylether           | EPA Method 8270D                     | 1.0 µg/L             | 0.451 µg/L               |
| 4-Methylphenol                       | EPA Method 8270D                     | 1.0 µg/L             | 0.523 µg/L               |
| 4-Nitroaniline                       | EPA Method 8270D                     | 5.0 μg/L             | 2.249 µg/L               |
| 4-Nitrophenol                        | EPA Method 8270D                     | 5.0 μg/L             | 2.573 µg/L               |
| Acenaphthene                         | EPA Method 8270D                     | 1.0 µg/L             | 0.546 µg/L               |
| Acenaphthylene                       | EPA Method 8270D                     | 1.0 µg/L             | 0.480 µg/L               |
| Anthracene                           | EPA Method 8270D                     | 1.0 µg/L             | 0.531 µg/L               |
| Benzo(a)anthracene                   | EPA Method 8270D SIM                 | 0.01 µg/L            | 0.00320 µg/L             |
| Benzo(a)pyrene                       | EPA Method 8270D SIM                 | 0.01 µg/L            | 0.00505 µg/L             |
| Benzo(g,h,i)perylene                 | EPA Method 8270D                     | 1.0 µg/L             | 0.546 µg/L               |
| Benzoic Acid                         | EPA Method 8270D                     | 1.0 µg/L             | 5.111 µg/L               |
| Benzyl Alcohol                       | EPA Method 8270D                     | 5.0 μg/L             | 2.008 µg/L               |
| bis(2-Chloroethoxy) Methane          | EPA Method 8270D                     | 1.0 µg/L             | 0.565 µg/L               |
| Bis-(2-Chloroethyl) Ether            | EPA Method 8270D                     | 1.0 µg/L             | 0.583 µg/L               |
| bis(2-Ethylhexyl)phthalate           | EPA Method 8270D                     | 1.0 µg/L             | 1.877 µg/L               |
| Butylbenzylphthalate                 | EPA Method 8270D                     | 1.0 µg/L             | 0.557 µg/L               |
| Carbazole                            | EPA Method 8270D SIM                 | 1.0 μg/L             | 0.306 µg/L               |
| Chrysene                             | EPA Method 8270D SIM                 | 0.01 µg/L            | 0.00374 µg/L             |
| Dibenz(a,h)anthracene                | EPA Method 8270D SIM                 | 0.01 µg/L            | 0.00159 µg/L             |
| Dibenzofuran                         | EPA Method 8270D                     | 1.0 μg/L             | 0.479 µg/L               |
| Diethylphthalate                     | EPA Method 8270D                     | 1.0 μg/L             | 0.582 µg/L               |
| Dimethylphthalate                    | EPA Method 8270D                     | 1.0 μg/L             | 0.528 µg/L               |
| Di-n-Butylphthalate                  | EPA Method 8270D                     | 1.0 µg/L             | 0.537 µg/L               |
| Di-n-Octyl phthalate                 | EPA Method 8270D                     | 1.0 µg/L             | 0.508 µg/L               |
| Fluoranthene                         | EPA Method 8270D                     | 1.0 µg/L             | 0.515 µg/L               |
| Fluorene                             | EPA Method 8270D                     | 1.0 µg/L             | 0.558 µg/L               |
| Hexachlorobenzene                    | EPA Method 8270D                     | 1.0 µg/L             | 0.470 µg/L               |
| Hexachlorobutadiene                  | EPA Method 8270D                     | 1.0 µg/L             | 0.306 μg/L               |

## SITE GROUNDWATER, SEEPS, AND STORMWATER LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Analyte                                             | Analytical<br>Method (a) | Laboratory<br>Reporting Limits (b) | Method<br>Detection Limits |  |
|-----------------------------------------------------|--------------------------|------------------------------------|----------------------------|--|
| -                                                   | illourou (u)             | reporting Limite (5)               | Dottotion Limito           |  |
| SEMIVOLATILES (continued) Hexachlorocyclopentadiene | EPA Method 8270D         | 5.0 µg/L                           | 1.181 µg/L                 |  |
| Hexachloroethane                                    | EPA Method 8270D         | 3.0 μg/L<br>1.0 μg/L               |                            |  |
| Indeno(1,2,3-cd)pyrene                              | EPA Method 8270D SIM     | 0.01 μg/L                          | 0.350 μg/L<br>0.00341 μg/L |  |
| Isophorone                                          | EPA Method 8270D SiW     | 0.01 μg/L<br>1.0 μg/L              | 0.481 μg/L                 |  |
| Naphthalene                                         | EPA Method 8270D         | 1.0 μg/L<br>1.0 μg/L               |                            |  |
| Nitrobenzene                                        | EPA Method 8270D         | 1.0 μg/L<br>1.0 μg/L               | 0.522 μg/L<br>0.575 μg/L   |  |
| N-Nitroso-Di-N-Propylamine                          | EPA Method 8270D         | 1.0 μg/L<br>1.0 μg/L               | 0.560 μg/L                 |  |
| N-Nitrosodiphenylamine                              | EPA Method 8270D         | 1.0 μg/L<br>1.0 μg/L               | 0.460 μg/L                 |  |
| Pentachlorophenol                                   | EPA Method 8270D         | 5.0 μg/L                           | 2.411 μg/L                 |  |
| Phenanthrene                                        | EPA Method 8270D         | 3.0 μg/L<br>1.0 μg/L               | 0.557 μg/L                 |  |
| Phenol                                              | EPA Method 8270D         | 1.0 μg/L<br>1.0 μg/L               | 0.537 μg/L<br>0.519 μg/L   |  |
| Pyrene                                              | EPA Method 8270D SIM     | 0.01 μg/L                          | 0.00894 μg/L               |  |
| Total Benzofluoranthenes                            | EPA Method 8270D SIM     | 0.01 μg/L<br>0.02 μg/L             | 0.00496 μg/L               |  |
| VOLATILES                                           |                          |                                    |                            |  |
| 1,1,1,2-Tetrachloroethane                           | EPA Method 8260C         | 0.2 μg/L                           | 0.068 µg/L                 |  |
| 1,1,1-Trichloroethane                               | EPA Method 8260C         | 0.2 μg/L                           | 0.089 µg/L                 |  |
| 1,1,2,2-Tetrachloroethane                           | EPA Method 8260C         | 0.2 µg/L                           | 0.067 µg/L                 |  |
| 1,1,2-Trichloroethane                               | EPA Method 8260C         | 0.2 µg/L                           | 0.035 µg/L                 |  |
| 1,1,2-Trichlorotrifluoroethane                      | EPA Method 8260C         | 0.2 µg/L                           | 0.107 µg/L                 |  |
| 1,1-Dichloroethane                                  | EPA Method 8260C         | 0.2 μg/L                           | 0.053 µg/L                 |  |
| 1,1-Dichloroethene                                  | EPA Method 8260C         | 0.2 µg/L                           | 0.091 µg/L                 |  |
| 1,1-Dichloropropene                                 | EPA Method 8260C         | 0.2 μg/L                           | 0.092 µg/L                 |  |
| 1,2,3-Trichlorobenzene                              | EPA Method 8260C         | 0.5 μg/L                           | 0.087 µg/L                 |  |
| 1,2,3-Trichloropropane                              | EPA Method 8260C         | 0.5 µg/L                           | 0.226 µg/L                 |  |
| 1,2,4-Trichlorobenzene                              | EPA Method 8260C         | 0.5 μg/L                           | 0.100 µg/L                 |  |
| 1,2,4-Trimethylbenzene                              | EPA Method 8260C         | 0.2 μg/L                           | 0.058 μg/L                 |  |
| 1,2-Dibromo-3-chloropropane                         | EPA Method 8260C         | 0.5 µg/L                           | 0.212 μg/L                 |  |
| 1,2-Dichlorobenzene                                 | EPA Method 8260C         | 0.2 μg/L                           | 0.055 μg/L                 |  |
| 1,2-Dichloroethane                                  | EPA Method 8260C         | 0.2 μg/L                           | 0.075 μg/L                 |  |
| 1,2-Dichloropropane                                 | EPA Method 8260C         | 0.2 µg/L                           | 0.093 µg/L                 |  |
| 1,3,5-Trimethylbenzene                              | EPA Method 8260C         | 0.2 μg/L                           | 0.063 µg/L                 |  |
| 1,3-Dichlorobenzene                                 | EPA Method 8260C         | 0.2 µg/L                           | 0.040 µg/L                 |  |
| 1,3-Dichloropropane                                 | EPA Method 8260C         | 0.2 μg/L                           | 0.020 μg/L                 |  |
| 1,4-Dichlorobenzene                                 | EPA Method 8260C         | 0.2 μg/L                           | 0.057 μg/L                 |  |
| 2,2-Dichloropropane                                 | EPA Method 8260C         | 0.2 µg/L                           | 0.083 µg/L                 |  |
| 2-Butanone                                          | EPA Method 8260C         | 5.0 μg/L                           | 0.808 µg/L                 |  |
| 2-Chloroethylvinylether                             | EPA Method 8260C         | 1.0 µg/L                           | 0.086 μg/L                 |  |
| 2-Chlorotoluene                                     | EPA Method 8260C         | 0.2 µg/L                           | 0.042 μg/L                 |  |
| 2-Hexanone                                          | EPA Method 8260C         | 5.0 μg/L                           | 0.310 μg/L                 |  |
| 4-Chlorotoluene                                     | EPA Method 8260C         | 0.2 µg/L                           | 0.073 μg/L                 |  |
| 4-Isopropyltoluene                                  | EPA Method 8260C         | 0.2 µg/L                           | 0.075 μg/L                 |  |
| 4-Methyl-2-Pentanone (MIBK)                         | EPA Method 8260C         | 5.0 μg/L                           | 0.384 μg/L                 |  |
| Acetone                                             | EPA Method 8260C         | 5.0 μg/L                           | 0.720 μg/L                 |  |
| Acrolein                                            | EPA Method 8260C         | 5.0 μg/L                           | 0.292 μg/L                 |  |
| Acrylonitrile                                       | EPA Method 8260C-SIM     | 0.05 µg/L                          | 0.0158 μg/L                |  |
| Benzene                                             | EPA Method 8260C         | 0.2 µg/L                           | 0.056 μg/L                 |  |
| Bromobenzene                                        | EPA Method 8260C         | 0.2 μg/L                           | 0.051 μg/L                 |  |
| Bromochloromethane                                  | EPA Method 8260C         | 0.2 µg/L                           | 0.067 µg/L                 |  |
| Bromodichloromethane                                | EPA Method 8260C         | 0.2 µg/L                           | 0.053 µg/L                 |  |
| Bromoethane                                         | EPA Method 8260C         | 0.2 µg/L                           | 0.090 µg/L                 |  |
| Bromoform                                           | EPA Method 8260C         | 0.2 μg/L                           | 0.070 µg/L                 |  |
| Bromomethane                                        | EPA Method 8260C         | 1.0 µg/L                           | 0.043 µg/L                 |  |
| Carbon Disulfide                                    | EPA Method 8260C         | 0.2 µg/L                           | 0.087 µg/L                 |  |
| Carbon Tetrachloride                                | EPA Method 8260C         | 0.2 μg/L                           | 0.075 μg/L                 |  |

## SITE GROUNDWATER, SEEPS, AND STORMWATER LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                             | Analytical           | Laboratory           | Method                   |  |
|-----------------------------|----------------------|----------------------|--------------------------|--|
| Analyte                     | Method (a)           | Reporting Limits (b) | Detection Limits         |  |
| VOLATILES (continued)       |                      |                      |                          |  |
| Chlorobenzene               | EPA Method 8260C     | 0.2 µg/L             | 0.042 μg/L               |  |
| Chloroethane                | EPA Method 8260C     | 0.2 μg/L             | 0.042 μg/L<br>0.152 μg/L |  |
| Chloroform                  | EPA Method 8260C     | 0.2 μg/L             | 0.132 μg/L<br>0.081 μg/L |  |
| Chloromethane               | EPA Method 8260C     | 0.5 μg/L             | 0.001 μg/L<br>0.098 μg/L |  |
| cis-1,2-Dichloroethene      | EPA Method 8260C     | 0.02 μg/L            | 0.100 μg/L               |  |
| cis-1,3-Dichloropropene     | EPA Method 8260C     | 0.2 μg/L             | 0.058 µg/L               |  |
| Dibromochloromethane        | EPA Method 8260C     | 0.2 μg/L             | 0.090 µg/L               |  |
| Dibromomethane              | EPA Method 8260C     | 0.2 μg/L             | 0.081 µg/L               |  |
| Ethylbenzene                | EPA Method 8260C     | 0.2 μg/L             | 0.094 µg/L               |  |
| Ethylene Dibromide          | EPA Method 8260C     | 0.2 μg/L             | 0.075 μg/L               |  |
| Hexachlorobutadiene         | EPA Method 8260C     | 0.5 μg/L             | 0.112 μg/L               |  |
| Isopropylbenzene            | EPA Method 8260C     | 0.2 μg/L             | 0.062 µg/L               |  |
| m,p-Xylene                  | EPA Method 8260C     | 0.4 µg/L             | 0.144 µg/L               |  |
| Methyl lodide               | EPA Method 8260C     | 1.0 μg/L             | 0.040 μg/L               |  |
| Methylene Chloride          | EPA Method 8260C     | 0.5 µg/L             | 0.391 µg/L               |  |
| Naphthalene                 | EPA Method 8260C     | 0.5 μg/L             | 0.070 µg/L               |  |
| n-Butylbenzene              | EPA Method 8260C     | 0.2 µg/L             | 0.108 µg/L               |  |
| n-Propylbenzene             | EPA Method 8260C     | 0.2 μg/L             | 0.081 µg/L               |  |
| o-Xylene                    | EPA Method 8260C     | 0.2 µg/L             | 0.057 μg/L               |  |
| sec-Butylbenzene            | EPA Method 8260C     | 0.2 µg/L             | 0.077 μg/L               |  |
| Styrene                     | EPA Method 8260C     | 0.2 μg/L             | 0.066 μg/L               |  |
| tert-Butylbenzene           | EPA Method 8260C     | 0.2 μg/L             | 0.061 μg/L               |  |
| Tetrachloroethene           | EPA Method 8260C-SIM | 0.02 µg/L            | 0.00364 μg/L             |  |
| Toluene                     | EPA Method 8260C     | 0.2 μg/L             | 0.056 μg/L               |  |
| trans-1,2-Dichloroethene    | EPA Method 8260C     | 0.2 μg/L             | 0.085 μg/L               |  |
| trans-1,3-Dichloropropene   | EPA Method 8260C     | 0.2 μg/L             | 0.059 μg/L               |  |
| trans-1,4-Dichloro-2-butene | EPA Method 8260C     | 1.0 μg/L             | 0.243 μg/L               |  |
| Trichloroethene             | EPA Method 8260C     | 0.2 μg/L             | 0.076 μg/L               |  |
| Trichlorofluoromethane      | EPA Method 8260C     | 0.2 μg/L             | 0.092 μg/L               |  |
| Vinyl Acetate               | EPA Method 8260C     | 1.0 μg/L             | 0.068 μg/L               |  |
| Vinyl Chloride              | EPA Method 8260C-SIM | 0.02 μg/L            | 0.00225 μg/L             |  |
| METALS                      |                      |                      |                          |  |
| Antimony                    | EPA Method 200.8     | 0.2 μg/L             | 0.010 μg/L               |  |
| Arsenic                     | EPA Method 200.8     | 0.2 μg/L             | 0.048 μg/L               |  |
| Barium                      | EPA Method 200.8     | 0.5 μg/L             | 0.020 µg/L               |  |
| Beryillium                  | EPA Method 200.8     | 0.2 μg/L             | 0.021 µg/L               |  |
| Cadmium                     | EPA Method 200.8     | 0.1 µg/L             | 0.010 µg/L               |  |
| Chromium                    | EPA Method 200.8     | 0.5 µg/L             | 0.045 µg/L               |  |
| Chromium VI                 | EPA Method 7196      | 10 μg/L              | 3 μg/L                   |  |
| Copper                      | EPA Method 200.8     | 0.5 µg/L             | 0.158 μg/L               |  |
| Lead                        | EPA Method 200.8     | 0.1 µg/L             | 0.046 μg/L               |  |
| Mercury                     | EPA Method 7470A     | 0.02 µg/L            | 0.0026 µg/L              |  |
| Nickel                      | EPA Method 200.8     | 0.5 µg/L             | 0.079 μg/L               |  |
| Selenium                    | EPA Method 200.8     | 0.5 µg/L             | 0.127 μg/L               |  |
| Silver                      | EPA Method 200.8     | 0.2 μg/L             | 0.008 μg/L               |  |
| Thallium                    | EPA Method 200.8     | 0.2 μg/L             | 0.004 μg/L               |  |
| Zinc                        | EPA Method 200.8     | 4.0 μg/L             | 0.497 μg/L               |  |
| PCBs                        |                      |                      |                          |  |
| Aroclor 1016                | EPA Method 8082B     | 0.01 µg/L            | 0.00248 µg/L             |  |
| Aroclor 1242                | EPA Method 8082B     | 0.01 µg/L            | NA                       |  |
| Aroclor 1248                | EPA Method 8082B     | 0.01 µg/L            | NA                       |  |
| Aroclor 1254                | EPA Method 8082B     | 0.01 µg/L            | NA                       |  |
| Aroclor 1260                | EPA Method 8082B     | 0.01 µg/L            | 0.00276 µg/L             |  |
| Aroclor 1221                | EPA Method 8082B     | 0.01 µg/L            | NA                       |  |
| Aroclor 1232                | EPA Method 8082B     | 0.01 µg/L            | NA                       |  |

## SITE GROUNDWATER, SEEPS, AND STORMWATER LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Analytical<br>malyte Method (a)        |                  | Laboratory<br>Reporting Limits (b) | Method<br>Detection Limits |      |
|----------------------------------------|------------------|------------------------------------|----------------------------|------|
| Total Petroleum Hydrocarbons           |                  |                                    |                            |      |
| •                                      | ANA(TRUE O. ( )  | 050 "                              |                            |      |
| Gasoline-Range Petroleum Hydrocarbons  | NWTPH-G (c)      | 250 μg/L                           | 60                         | μg/L |
| Diesel-Range Petroleum Hydrocarbons    | NWTPH-Dx (c)     | 100 μg/L                           | 16                         | μg/L |
| Motor Oil-Range Petroleum Hydrocarbons | NWTPH-Dx (c)     | 200 μg/L                           | 49                         | μg/L |
| Conventionals                          |                  |                                    |                            |      |
| Sulfate                                | EPA Method 300.0 | 2.0 mg/L                           | 0.13                       | mg/L |
| Nitrate                                | EPA Method 300.0 | 0.01 mg/L                          | NA                         | J    |

NA - Not Available

SIM - Selected Ion Monitoring

- (a) Analytical methods are from SW-846 (EPA 1986) and updates.
- (b) Laboratory reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Instances may arise where high sample concentrations, nonhomogeneity of samples or matrix interferences preclude achieving the laboratory reporting limits.
- (c) Methods NWTPH-G and NWTPH-Dx as described in *Analytical Methods for Petroleum Hydrocarbons*, Washington State Department of Ecology, Publication ECY97-602, June 1997 (Ecology 1997)
- (d) Alternative method detection limits and reporting limits are from EPA Method SW-846-8270D

## TABLE C-3 CATCH BASIN SOLIDS LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                               | Analytical                                                 | Laboratory Meth           |                            |
|-----------------------------------------------|------------------------------------------------------------|---------------------------|----------------------------|
| Analyte                                       | Method (a)                                                 | Reporting Limits (b)      | Detection Limits           |
| SEMIVOLATILES                                 |                                                            |                           |                            |
| Phenol                                        | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| 1,2,4-Trichlorobenzene                        | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| 1,2-Dichlorobenzene                           | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.003 mg/kg                |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene    | EPA Method 8270 (Low Level)<br>EPA Method 8270 (Low Level) | 0.02 mg/kg                | 0.003 mg/kg<br>0.003 mg/kg |
| 1-Methylnaphthalene                           | EPA Method 8270 (Low Level) EPA Method 8270 (Low Level)    | 0.02 mg/kg<br>0.02 mg/kg  | 0.003 mg/kg<br>0.003 mg/kg |
| 2,2'-Oxybis(1-Chloropropane)                  | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.003 mg/kg                |
| 2,4,5-Trichlorophenol                         | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.021 mg/kg                |
| 2,4,6-Trichlorophenol                         | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.021 mg/kg                |
| 2,4-Dichlorophenol                            | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.018 mg/kg                |
| 2,4-Dimethylphenol                            | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.008 mg/kg                |
| 2,4-Dinitrophenol                             | EPA Method 8270 (Low Level)                                | 0.2 mg/kg                 | 0.05 mg/kg                 |
| 2,4-Dinitrotoluene                            | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.019 mg/kg                |
| 2,6-Dinitrotoluene                            | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.015 mg/kg                |
| 2-Chloronaphthalene                           | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.003 mg/kg                |
| 2-Chlorophenol                                | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.005 mg/kg                |
| 2-Methylnaphthalene                           | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| 2-Methylphenol                                | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.005 mg/kg                |
| 2-Nitroaniline                                | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.019 mg/kg                |
| 2-Nitrophenol                                 | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.009 mg/kg                |
| 3,3'-Dichlorobenzidine<br>3-Nitroaniline      | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.054 mg/kg                |
| 4,6-Dinitro-2-Methylphenol                    | EPA Method 8270 (Low Level)<br>EPA Method 8270 (Low Level) | 0.1 mg/kg<br>0.2 mg/kg    | 0.025 mg/kg<br>0.041 mg/kg |
| 4-Bromophenyl-phenylether                     | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| 4-Chloro-3-methylphenol                       | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.015 mg/kg                |
| 4-Chloroaniline                               | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.024 mg/kg                |
| 4-Chlorophenyl-phenylether                    | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.003 mg/kg                |
| 4-Methylphenol                                | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.005 mg/kg                |
| 4-Nitroaniline                                | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.023 mg/kg                |
| 4-Nitrophenol                                 | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.028 mg/kg                |
| Acenaphthene                                  | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.002 mg/kg                |
| Acenaphthylene                                | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Anthracene                                    | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Benzo(a)anthracene                            | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Benzo(a)pyrene                                | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Benzo(b)fluoranthene                          | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.002 mg/kg                |
| Benzo(g,h,i)perylene                          | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Benzo(k)fluoranthene Benzoic Acid             | EPA Method 8270 SIM<br>EPA Method 8270 (Low Level)         | 0.005 mg/kg               | 0.002 mg/kg<br>0.043 mg/kg |
| Benzyl Alcohol                                | EPA Method 8270 (Low Level)                                | 0.2 mg/kg<br>0.02 mg/kg   | 0.043 mg/kg<br>0.046 mg/kg |
| bis(2-Chloroethoxy) Methane                   | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.002 mg/kg                |
| Bis-(2-Chloroethyl) Ether                     | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.005 mg/kg                |
| bis(2-Ethylhexyl)phthalate                    | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.009 mg/kg                |
| Butylbenzylphthalate                          | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| Carbazole                                     | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.002 mg/kg                |
| Chrysene                                      | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.002 mg/kg                |
| Dibenz(a,h)anthracene                         | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Dibenzofuran                                  | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
| Diethylphthalate                              | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| Dimethylphthalate                             | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| Di-n-Butylphthalate                           | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.005 mg/kg                |
| Di-n-Octyl phthalate                          | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.005 mg/kg                |
| Fluoranthene                                  | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.002 mg/kg                |
| Fluorene<br>Hexachlorobenzene                 | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
|                                               | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.003 mg/kg                |
| Hexachlorobutadiene Hexachlorocyclopentadiene | EPA Method 8270 (Low Level)<br>EPA Method 8270 (Low Level) | 0.02 mg/kg<br>0.1 mg/kg   | 0.003 mg/kg<br>0.012 mg/kg |
| Hexachloroethane                              | EPA Method 8270 (Low Level)                                | 0.1 mg/kg<br>0.02 mg/kg   | 0.012 mg/kg<br>0.005 mg/kg |
| Indeno(1,2,3-cd)pyrene                        | EPA Method 8270 (Low Level)  EPA Method 8270 SIM           | 0.005 mg/kg               | 0.003 mg/kg                |
| Isophorone                                    | EPA Method 8270 (Low Level)                                | 0.005 mg/kg<br>0.02 mg/kg | 0.002 mg/kg                |
| Naphthalene                                   | EPA Method 8270 (LGW Level)                                | 0.005 mg/kg               | 0.003 mg/kg                |
| Nitrobenzene                                  | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.004 mg/kg                |
| N-Nitroso-Di-N-Propylamine                    | EPA Method 8270 (Low Level)                                | 0.02 mg/kg                | 0.003 mg/kg                |
| N-Nitrosodiphenylamine                        | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.013 mg/kg                |
| Pentachlorophenol                             | EPA Method 8270 (Low Level)                                | 0.1 mg/kg                 | 0.027 mg/kg                |
| Phenanthrene                                  | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.002 mg/kg                |
| Pyrene                                        | EPA Method 8270 SIM                                        | 0.005 mg/kg               | 0.001 mg/kg                |
|                                               |                                                            |                           |                            |

### CATCH BASIN SOLIDS LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Analyte                                          | Analytical<br>Method (a)           | Laboratory<br>Reporting Limits (b) |          | thod<br>on Limits |
|--------------------------------------------------|------------------------------------|------------------------------------|----------|-------------------|
| VOLATILES                                        |                                    | reporting zimite (2)               | 20100111 |                   |
| Chloromethane                                    | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,1,1,2-Tetrachloroethane                        | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,1,1-Trichloroethane                            | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,1,2,2-Tetrachloroethane                        | EPA Method 8260                    |                                    | 0.0002   |                   |
| 1,1,2,2-1 etracnioroethane 1,1,2-Trichloroethane | EPA Method 8260                    | 0.001 mg/kg                        |          | mg/kg             |
|                                                  |                                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,1,2-Trichlorotrifluoroethane                   | EPA Method 8260<br>EPA Method 8260 | 0.002 mg/kg                        | 0.0003   | mg/kg             |
| 1,1-Dichloroethane                               |                                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,1-Dichloroethene                               | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,1-Dichloropropene                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,2,3-Trichlorobenzene                           | EPA Method 8260                    | 0.005 mg/kg                        | 0.0003   | mg/kg             |
| 1,2,3-Trichloropropane                           | EPA Method 8260                    | 0.002 mg/kg                        | 0.0005   | mg/kg             |
| 1,2,4-Trichlorobenzene                           | EPA Method 8260                    | 0.005 mg/kg                        | 0.0003   | mg/kg             |
| 1,2,4-Trimethylbenzene                           | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,2-Dibromo-3-chloropropane                      | EPA Method 8260                    | 0.005 mg/kg                        | 0.0005   | mg/kg             |
| 1,2-Dichlorobenzene                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,2-Dichloroethane                               | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,2-Dichloropropane                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,3,5-Trimethylbenzene                           | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 1,3-Dichlorobenzene                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,3-Dichloropropane                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 1,4-Dichlorobenzene                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 2,2-Dichloropropane                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 2-Butanone                                       | EPA Method 8260                    | 0.005 mg/kg                        | 0.0005   | mg/kg             |
| 2-Chloroethylvinylether                          | EPA Method 8260                    | 0.005 mg/kg                        | 0.0003   | mg/kg             |
| 2-Chlorotoluene                                  | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 2-Hexanone                                       | EPA Method 8260                    | 0.005 mg/kg                        | 0.0004   | mg/kg             |
| 4-Chlorotoluene                                  | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| 4-Isopropyltoluene                               | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| 4-Methyl-2-Pentanone (MIBK)                      | EPA Method 8260                    | 0.005 mg/kg                        | 0.0004   | mg/kg             |
| Acetone                                          | EPA Method 8260                    | 0.005 mg/kg                        | 0.0005   | mg/kg             |
| Acrolein                                         | EPA Method 8260                    | 0.05 mg/kg                         | 0.038    | mg/kg             |
| Acrylonitrile                                    | EPA Method 8260                    | 0.005 mg/kg                        | 0.001    | mg/kg             |
| Benzene                                          | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| Bromobenzene                                     | EPA Method 8260                    | 0.001 mg/kg                        | 0.0001   | mg/kg             |
| Bromochloromethane                               | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| Bromodichloromethane                             | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| Bromoethane                                      | EPA Method 8260                    | 0.002 mg/kg                        | 0.0004   | mg/kg             |
| Bromoform                                        | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| Bromomethane                                     | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Carbon Disulfide                                 | EPA Method 8260                    | 0.001 mg/kg                        | 0.0006   | mg/kg             |
| Carbon Tetrachloride                             | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Chlorobenzene                                    | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Chloroethane                                     | EPA Method 8260                    |                                    |          |                   |
|                                                  |                                    | 0.001 mg/kg                        | 0.0005   | mg/kg             |
| Chloroform                                       | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| cis-1,2-Dichloroethene                           | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| cis-1,3-Dichloropropene                          | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Dibromochloromethane                             | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| Dibromomethane                                   | EPA Method 8260                    | 0.001 mg/kg                        | 0.0001   | mg/kg             |
| Ethylbenzene                                     | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Ethylene Dibromide                               | EPA Method 8260                    | 0.001 mg/kg                        | 0.0001   | mg/kg             |
| Hexachlorobutadiene                              | EPA Method 8260                    | 0.001 mg/kg                        | 0.0004   | mg/kg             |
| Isopropylbenzene                                 | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| m,p-Xylene                                       | EPA Method 8260                    | 0.001 mg/kg                        | 0.0004   | mg/kg             |
| Methyl Iodide                                    | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Methylene Chloride                               | EPA Method 8260                    | 0.002 mg/kg                        | 0.0006   | mg/kg             |
| Naphthalene                                      | EPA Method 8260                    | 0.005 mg/kg                        | 0.0004   | mg/kg             |
| n-Butylbenzene                                   | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| n-Propylbenzene                                  | EPA Method 8260                    | 0.001 mg/kg                        | 0.0003   | mg/kg             |
| o-Xylene                                         | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| sec-Butylbenzene                                 | EPA Method 8260                    | 0.001 mg/kg                        | 0.0002   | mg/kg             |
| Styrene                                          | EPA Method 8260                    | 0.001 mg/kg                        | 0.0001   | mg/kg             |

### CATCH BASIN SOLIDS LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE **TUKWILA, WASHINGTON**

|                                        | A batt t                 | 1 -1                                 | Marth and                  |
|----------------------------------------|--------------------------|--------------------------------------|----------------------------|
| Analyte                                | Analytical<br>Method (a) | Laboratory<br>Reporting Limits (b)   | Method<br>Detection Limits |
|                                        | Metriod (a)              | Reporting Limits (b)                 | Detection Limits           |
| VOLATILES (continued)                  |                          |                                      |                            |
| tert-Butylbenzene                      | EPA Method 8260          | 0.001 mg/kg                          | 0.0003 mg/kg               |
| Tetrachloroethene                      | EPA Method 8260          | 0.001 mg/kg                          | 0.0003 mg/kg               |
| Toluene                                | EPA Method 8260          | 0.001 mg/kg                          | 0.0001 mg/kg               |
| trans-1,2-Dichloroethene               | EPA Method 8260          | 0.001 mg/kg                          | 0.0003 mg/kg               |
| trans-1,3-Dichloropropene              | EPA Method 8260          | 0.001 mg/kg                          | 0.0002 mg/kg               |
| trans-1,4-Dichloro-2-butene            | EPA Method 8260          | 0.005 mg/kg                          | 0.0004 mg/kg               |
| Trichloroethene                        | EPA Method 8260          | 0.001 mg/kg                          | 0.0002 mg/kg               |
| Trichlorofluoromethane                 | EPA Method 8260          | 0.001 mg/kg                          | 0.0003 mg/kg               |
| Vinyl Acetate                          | EPA Method 8260          | 0.005 mg/kg                          | 0.0004 mg/kg               |
| Vinyl Chloride                         | EPA Method 8260          | 0.001 mg/kg                          | 0.0002 mg/kg               |
| METALS                                 |                          |                                      |                            |
| Antimony                               | EPA Method 6020          | 0.2 mg/kg                            | 0.013 mg/kg                |
| Arsenic                                | EPA Method 6020          | 0.2 mg/kg                            | 0.087 mg/kg                |
| Barium                                 | EPA Method 6020          | 0.5 mg/kg                            | 0.056 mg/kg                |
| Beryillium                             | EPA Method 6020          | 0.2 mg/kg                            | 0.018 mg/kg                |
| Cadmium                                | EPA Method 6020          | 0.1 mg/kg                            | 0.012 mg/kg                |
| Chromium                               | EPA Method 6020          | 0.5 mg/kg                            | 0.038 mg/kg                |
| Chromium VI                            | EPA Method 7196          | 0.1 mg/kg                            | 0.003 mg/kg                |
| Copper                                 | EPA Method 6020          | 0.1 mg/kg<br>0.5 mg/kg               | 0.036 mg/kg                |
| Lead                                   | EPA Method 6020          | 0.1 mg/kg                            | 0.047 mg/kg                |
| Mercury                                | EPA Method 7471          | 0.025 mg/kg                          | 0.002 mg/kg                |
| Nickel                                 | EPA Method 7471          | 0.025 mg/kg                          | 0.002 mg/kg                |
| Selenium                               |                          |                                      | 3 3                        |
|                                        | EPA Method 6020          | 0.5 mg/kg                            | 0.099 mg/kg                |
| Silver                                 | EPA Method 6020          | 0.2 mg/kg                            | 0.008 mg/kg                |
| Thallium                               | EPA Method 6020          | 0.2 mg/kg                            | 0.003 mg/kg                |
| Zinc                                   | EPA Method 6020          | 4.0 mg/kg                            | 0.339 mg/kg                |
| PCBs                                   |                          |                                      |                            |
| Aroclor 1016                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | 0.009 mg/kg                |
| Aroclor 1242                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | NA                         |
| Aroclor 1248                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | NA                         |
| Aroclor 1254                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | NA                         |
| Aroclor 1260                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | 0.011 mg/kg                |
| Aroclor 1221                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | NAgr.tg                    |
| Aroclor 1232                           | EPA Method 8082 (e)      | 0.020 mg/kg                          | NA NA                      |
|                                        |                          |                                      |                            |
| TOTAL PETROLEUM HYDROCARBONS           |                          |                                      |                            |
| Gasoline-Range Petroleum Hydrocarbons  | NWTPH-G (c)              | 5 mg/kg                              | 0.002 mg/kg                |
| Diesel-Range Petroleum Hydrocarbons    | NWTPH-Dx (c,d)           | 5 mg/kg                              | 0.007 mg/kg                |
| Motor Oil-Range Petroleum Hydrocarbons | NWTPH-Dx (c,d)           | 10 mg/kg                             | 0.001 mg/kg                |
| Total Organic Carbon                   | Plumb, 1981              | 0.02 %                               | 0.0029 %                   |
| Total Solids                           | EPA 160.1/PSEP           | 0.1 %                                | NA                         |
|                                        |                          |                                      | 1                          |
| DIOXINS/FURANS                         |                          |                                      |                            |
| 2,3,7,8-TCDF                           | EPA Method 1613B         | 0.00000019 mg/kg                     | 0.000001 mg/kg             |
| 2,3,7,8-TCDD                           | EPA Method 1613B         | 0.00000034 mg/kg                     | 0.000001 mg/kg             |
| 1,2,3,7,8-PeCDF                        | EPA Method 1613B         | 0.00000080 mg/kg                     | 0.000005 mg/kg             |
| 2,3,4,7,8-PeCDF                        | EPA Method 1613B         | 0.00000079 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,7,8-PeCDD                        | EPA Method 1613B         | 0.00000095 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,4,7,8-HxCDF                      | EPA Method 1613B         | 0.00000064 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,6,7,8-HxCDF                      | EPA Method 1613B         | 0.00000098 mg/kg                     | 0.000005 mg/kg             |
| 2,3,4,6,7,8-HxCDF                      | EPA Method 1613B         | 0.00000096 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,7,8,9-HxCDF                      | EPA Method 1613B         | 0.00000090 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,4,7,8-HxCDD                      | EPA Method 1613B         | 0.00000101 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,6,7,8-HxCDD                      | EPA Method 1613B         | 0.00000059 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,7,8,9-HxCDD                      | EPA Method 1613B         | 0.00000038 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,4,6,7,8-HpCDF                    | EPA Method 1613B         | 0.00000005 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,4,7,8,9-HpCDF                    | EPA Method 1613B         | 0.00000009 mg/kg                     | 0.000005 mg/kg             |
| 1,2,3,4,6,7,8-HpCDD                    | EPA Method 1613B         | 0.00000099 mg/kg<br>0.00000115 mg/kg | 0.000005 mg/kg             |
| OCDF                                   | EPA Method 1613B         | 0.00000113 mg/kg                     | 0.000005 mg/kg             |
| OCDD                                   | EPA Method 1613B         |                                      | 0 0                        |
| 0000                                   | EPA IVIEUTOU TOTOD       | 0.00000179 mg/kg                     | 0.00001 mg/kg              |

NA - Not Available

SIM - Selected Ion Monitoring

<sup>(</sup>a) Analytical methods are from SW-846 and updates.

<sup>(</sup>b) Laboratory reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Instances may arise where high sample concentrations, nonhomogeneity of samples

or matrix interferences preclude achieving the laboratory reporting limits.

(c) Methods NWTPH-G and NWTPH-Dx as described in *Analytical Methods for Petroleum Hydrocarbons*, Washington State Department of Ecology, Publication ECY97-602, June 1997 (Ecology 1997)

(d) An acid silica gel cleanup will be performed for all NWTPH-Dx analyses.

<sup>(</sup>e) Puget Sound Dredged Disposal Analysis (PSDDA) protocol will be applied to sample preparation and extraction.

# TABLE C-4 SOIL VAPOR LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| VOLATILES                   | Method (a)       | Reporting             | rget<br>ı Limits (b) |
|-----------------------------|------------------|-----------------------|----------------------|
| VOLATILES                   |                  |                       |                      |
| 1,1,1-Trichloroethane       | EPA Method TO-15 | 1 μg/m <sup>3</sup>   | 0.18 ppbV            |
| 1,1,2,2-Tetrachloroethane   | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.15 ppbV            |
| 1,1,2-Trichloroethane       | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.18 ppbV            |
| 1,1-Dichloroethane          | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.25 ppbV            |
| 1,1-Dichloroethene          | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.25 ppbV            |
| 1,2-Dibromoethane           | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.13 ppbV            |
| 1,2-Dichlorobenzene         | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.17 ppbV            |
| 1,2-Dichloroethane          | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.13 ppbV            |
| 1,3-Dichlorobenzene         | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.17 ppbV            |
| 1,4-Dichlorobenzene         | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.17 ppbV            |
| 2-Butanone                  | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.34 ppbV            |
| 2-Hexanone                  | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.24 ppbV            |
| 4-Methyl-2-Pentanone (MIBK) | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.24 ppbV            |
| Acetone                     | EPA Method TO-15 | 5.0 μg/m <sup>3</sup> | 2.1 ppbV             |
| Benzene                     | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.31 ppbV            |
| Bromodichloromethane        | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.15 ppbV            |
| Bromoethane                 | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.26 ppbV            |
| Bromoform                   | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.097 ppbV           |
| Carbon Disulfide            | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.32 ppbV            |
| Carbon Tetrachloride        | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.16 ppbV            |
| cis-1,2-Dichloroethene      | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.25 ppbV            |
| cis-1,3-Dichloropropene     | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.22 ppbV            |
| Ethylbenzene                | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.23 ppbV            |
| m,p-Xylene                  | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.23 ppbV            |
| Methyl tert-Butyl Ether     | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.28 ppbV            |
| Methylene Chloride          | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.29 ppbV            |
| p-Xylene                    | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.23 ppbV            |
| Styrene                     | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.23 ppbV            |
| Tetrachloroethene           | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.15 ppbV            |
| Toluene                     | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.27 ppbV            |
| trans-1,2-Dichloroethene    | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.25 ppbV            |
| trans-1,3-Dichloropropene   | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.22 ppbV            |
| Trichloroethene             | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.19 ppbV            |
| Trichlorofluoromethane      | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.18 ppbV            |
| Trichlorotrifluoroethane    | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.13 ppbV            |
| Vinyl Acetate               | EPA Method TO-15 | 1.0 μg/m <sup>3</sup> | 0.28 ppbV            |
| Vinyl Chloride              | EPA Method TO-15 | 1.0 µg/m <sup>3</sup> | 0.39 ppbV            |

SIM = Selected ion monitoring

- (a) Analytical methods are from SW-846 and upddates.
- (b) Target reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Instances may arise where high sample concentrations, nonhomogeneity of samples or matrix interferences preclude achieving the target reporting limits.

## TABLE C-5 Page BUILDING MATERIALS AND WIPE SAMPLES LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON

| Analysis                     | Sample Matrix | Analytical Method           | Reporting<br>Limits (a) | Method Detection<br>Limits (b) |
|------------------------------|---------------|-----------------------------|-------------------------|--------------------------------|
| PCBs                         |               |                             |                         |                                |
| Aroclor 1016                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | 0.0633 mg/kg                   |
| Aroclor 1242                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | NA                             |
| Aroclor 1248                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | NA                             |
| Aroclor 1254                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | NA                             |
| Aroclor 1260                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | 0.123 mg/kg                    |
| Aroclor 1221                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | NA                             |
| Aroclor 1232                 | Solids (c)    | EPA Method 8082             | 0.8 mg/kg               | NA                             |
| METALS                       |               |                             |                         |                                |
| Antimony                     | Solids (c)    | EPA Method 6010B            | 5.0 mg/kg               | 0.32 mg/kg                     |
| Arsenic                      | Solids (c)    | EPA Method 6010B            | 5.0 mg/kg               | 0.46 mg/kg                     |
| Barium                       | Solids (c)    | EPA Method 6010B            | 0.3 mg/kg               | 0.06 mg/kg                     |
| Beryllium                    | Solids (c)    | EPA Method 6010B            | 0.1 mg/kg               | 0.01 mg/kg                     |
| Cadmium                      | Solids (c)    | EPA Method 6010B            | 0.2 mg/kg               | 0.11 mg/kg                     |
| Chromium                     | Solids (c)    | EPA Method 6010B            | 0.5 mg/kg               | 0.27 mg/kg                     |
| Hexavalent Chromium          | Solids (c)    | EPA Method 7196             | 0.1 mg/kg               | 0.03 mg/kg                     |
| Copper                       | Solids (c)    | EPA Method 6010B            | 0.2 mg/kg               | 0.05 mg/kg                     |
| Lead                         | Solids (c)    | EPA Method 6010B            | 2.0 mg/kg               | 0.13 mg/kg                     |
| Mercury                      | Solids (c)    | EPA Method 7471A            | 0.025 mg/kg             | 0.00 mg/kg                     |
| Nickel                       | Solids (c)    | EPA Method 6010B            | 1.0 mg/kg               | 0.30 mg/kg                     |
| Selenium                     | Solids (c)    | EPA Method 6010B            | 5.0 mg/kg               | 0.65 mg/kg                     |
| Silver                       | Solids (c)    | EPA Method 6010B            | 0.3 mg/kg               | 0.03 mg/kg                     |
| Thallium                     | Solids (c)    | EPA Method 6010B            | 5.0 mg/kg               | 0.53 mg/kg                     |
| Zinc                         | Solids (c)    | EPA Method 6010B            | 1.0 mg/kg               | 0.12 mg/kg                     |
| SEMIVOLATILES                |               |                             |                         |                                |
| Phenol                       | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.004 mg/kg                    |
| 1,2,4-Trichlorobenzene       | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.004 mg/kg                    |
| 1,2-Dichlorobenzene          | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 1,3-Dichlorobenzene          | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 1,4-Dichlorobenzene          | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 1-Methylnaphthalene          | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 2,2'-Oxybis(1-Chloropropane) | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 2,4,5-Trichlorophenol        | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.021 mg/kg                    |
| 2,4,6-Trichlorophenol        | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.011 mg/kg                    |
| 2,4-Dichlorophenol           | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.018 mg/kg                    |
| 2,4-Dimethylphenol           | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.008 mg/kg                    |
| 2,4-Dinitrophenol            | Solids (c)    | EPA Method 8270 (Low Level) | 0.2 mg/kg               | 0.05 mg/kg                     |
| 2,4-Dinitrotoluene           | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.019 mg/kg                    |
| 2,6-Dinitrotoluene           | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.015 mg/kg                    |
| 2-Chloronaphthalene          | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 2-Chlorophenol               | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.005 mg/kg                    |
| 2-Methylnaphthalene          | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| 2-Methylphenol               | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.005 mg/kg                    |
| 2-Nitroaniline               | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.019 mg/kg                    |
| 2-Nitrophenol                | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.009 mg/kg                    |
| 3,3'-Dichlorobenzidine       | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.054 mg/kg                    |
|                              |               |                             |                         |                                |

## TABLE C-5 Page: BUILDING MATERIALS AND WIPE SAMPLES LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS BOEING ISAACSON-THOMPSON

| 3-Nitroanliline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis                    | Sample Matrix | Analytical Method           | Reporting<br>Limits (a) | Method Detection<br>Limits (b) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-----------------------------|-------------------------|--------------------------------|
| 4-G-Dintros-2-Methylphenol 4-Gromophenyl-phenylether 5-Solds (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg 4-Chloros-methylphenol 4-Chloros-methylphenol 4-Chloros-methylphenol 4-Chloros-methylphenol 5-Solds (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.024 mg/kg 4-Chloropaniline 5-Solds (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.026 mg/kg 1-Chloropaniline 5-Solds (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg 4-Methylphenol 5-Solds (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.023 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.023 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.026 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.026 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 (SIM 0.005 mg/kg 0.001 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg 1-Nitrosniline 5-Solds (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg 1-Nitrosniline 1-Nitrosniline 5-Solds (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg 1-Nitrosniline 1-Nitrosn | SEMIVOLATILES (cont)        |               |                             |                         |                                |
| 4-Bromophenyt-phenylether   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.004 mg/kg   4-Chloro-3-methylphenol   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.024 mg/kg   4-Chlorophenyt-phenylether   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.024 mg/kg   4-Chlorophenyt-phenylether   Soilds (c)   EPA Method 8270 (Low Level)   0.02 mg/kg   0.003 mg/kg   4-Nitrophenol   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.003 mg/kg   4-Nitrophenol   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.023 mg/kg   4-Nitrophenol   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.023 mg/kg   4-Nitrophenol   Soilds (c)   EPA Method 8270 (Low Level)   0.1 mg/kg   0.022 mg/kg   4-Nitrophenol   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Acenaphthylene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.001 mg/kg   Acenaphthylene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.001 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.001 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.001 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.001 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   Benzo(a)pyrene   Soilds (c)   EPA Method 8270 SIM   0.005 mg/kg   0.002 mg/kg   0.002 mg/kg   0.002 mg/kg   0.002 m    | 3-Nitroaniline              | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.025 mg/kg                    |
| 4-Chloro-3-methylphenol         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.015 mg/kg           4-Chlororaniline         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.022 mg/kg         0.023 mg/kg         0.023 mg/kg         0.003 mg/kg         0.003 mg/kg         0.005 mg/kg         0.005 mg/kg         0.005 mg/kg         0.005 mg/kg         0.005 mg/kg         0.025 mg/kg         0.025 mg/kg         0.025 mg/kg         0.025 mg/kg         0.025 mg/kg         0.023 mg/kg         0.025 mg/kg         0.023 mg/kg         0.025 mg/kg         0.025 mg/kg         0.027 mg/kg         0.025 mg/kg         0.027 mg/kg         0.027 mg/kg         0.027 mg/kg         0.001 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,6-Dinitro-2-Methylphenol  | Solids (c)    | EPA Method 8270 (Low Level) | 0.2 mg/kg               | 0.041 mg/kg                    |
| 4-Chlorophenyl-phenylether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.020 mg/kg           4-Chlorophenyl-phenylether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           4-Mitrophenol         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.023 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.028 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Acenaphthylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)pyrene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Bromophenyl-phenylether   | Solids (c)    | EPA Method 8270 (Low Level) |                         | 0.004 mg/kg                    |
| 4-Chlorophenyl-phenylether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.03 mg/kg           4-Methylphenol         Solids (c)         EPA Method 8270 (Low Level)         0.10 mg/kg         0.025 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.023 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Acenaphthylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)pyrane         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a),jibuoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k)fluoranthene         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Chloro-3-methylphenol     | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.015 mg/kg                    |
| 4-Chlorophenyl-phenylether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.03 mg/kg           4-Methylphenol         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.023 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.023 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Acenaphthylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)pyrene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a),i)pyrene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k),i)buoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k),i)buoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k),i)buoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzy (k),i)buoranthene         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Chloroaniline             | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.024 mg/kg                    |
| 4-Methylphenol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           4-Nitroaniline         Solids (c)         EPA Method 8270 (Low Level)         0.1 mg/kg         0.023 mg/kg           4-Nitrophenol         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Acenaphthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Acenaphthylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)privene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Chlorophenyl-phenylether  | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| 4-Nitrophenol   Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Methylphenol              | Solids (c)    | EPA Method 8270 (Low Level) |                         | 0.005 mg/kg                    |
| Acenaphthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Acenaphthylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)pryrene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           Bis-(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Bis-(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Bis-(2-Chloroethoxy) Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Nitroaniline              | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.023 mg/kg                    |
| Acenaphthylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)aprthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)filuoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)filuoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k)filuoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzoic Acid         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.2 mg/kg         0.043 mg/kg           Bis-(2-Chloroethxyl) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Bis/(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Nitrophenol               | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.028 mg/kg                    |
| Anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(a)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)prene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(c) Acid         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzol Acid         Solids (c)         EPA Method 8270 (Low Level)         0.22 mg/kg         0.043 mg/kg           Benzol Acid         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Buylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Chrysene         Solids (c) <td>Acenaphthene</td> <td>Solids (c)</td> <td>EPA Method 8270 SIM</td> <td>0.005 mg/kg</td> <td>0.002 mg/kg</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acenaphthene                | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| Benzo(a)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Benzol Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.048 mg/kg           bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Bis(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylphexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butybenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acenaphthylene              | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Benzo(a)pyrene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(b)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(c)fultoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.22 mg/kg         0.043 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.043 mg/kg           bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           bis(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butybenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Chrysene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anthracene                  | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Benzo(p)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzo(s,h,i)perylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzoic Acid         Solids (c)         EPA Method 8270 (Low Level)         0.2 mg/kg         0.043 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           bis(2-Chloroethy) Bether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Chloroethy) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Chloroethy) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Chlyhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofu,a)nhtha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a)anthracene          | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Benzo(g,h,i)perylene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.20 mg/kg         0.002 mg/kg           Benzolc Acid         Solids (c)         EPA Method 8270 (Low Level)         0.2 mg/kg         0.043 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.007 mg/kg           Bis-(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg <td< td=""><td>Benzo(a)pyrene</td><td>Solids (c)</td><td>EPA Method 8270 SIM</td><td>0.005 mg/kg</td><td>0.001 mg/kg</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzo(a)pyrene              | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Benzo(k)fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Benzol Acid         Solids (c)         EPA Method 8270 (Low Level)         0.2 mg/kg         0.043 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dimethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Butylpht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(b)fluoranthene        | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| Benzoic Acid         Solids (c)         EPA Method 8270 (Low Level)         0.2 mg/kg         0.043 mg/kg           Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           bis(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dimethylphthalate         Solids (c)         EPA Method 8270 SIM         0.002 mg/kg         0.001 mg/kg           Di-n-Dutylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Ctyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo(g,h,i)perylene        | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Benzyl Alcohol         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.046 mg/kg           bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Bis-(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dimethylphthalate         Solids (c)         EPA Method 8270 SIM         0.02 mg/kg         0.004 mg/kg           Di-n-Butylphthalate         Solids (c)         EPA Method 8270 SIM         0.02 mg/kg         0.004 mg/kg           Di-n-Cotyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo(k)fluoranthene        | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| bis(2-Chloroethoxy) Methane         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Bis-(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Butylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Di-n-Octyl prithalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzoic Acid                | Solids (c)    | EPA Method 8270 (Low Level) | 0.2 mg/kg               | 0.043 mg/kg                    |
| Bis-(2-Chloroethyl) Ether         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Butylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzyl Alcohol              | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.046 mg/kg                    |
| bis(2-Ethylhexyl)phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.009 mg/kg           Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 SIM         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Butylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.005 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.005 mg/kg           Fluorene         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bis(2-Chloroethoxy) Methane | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.002 mg/kg                    |
| Butylbenzylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Butylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Fluoranthene         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bis-(2-Chloroethyl) Ether   | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.005 mg/kg                    |
| Carbazole         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.002 mg/kg           Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Butylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluorene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Fluorene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Hexachlorobutadiene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.003 mg/kg           Hexachlorocyclopentadiene         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bis(2-Ethylhexyl)phthalate  | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.009 mg/kg                    |
| Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Dimethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Dctyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.005 mg/kg           Fluorene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Hexachlorobenzene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.001 mg/kg           Hexachlorocyclopentadiene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.003 mg/kg           Hexachlorocythane         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Butylbenzylphthalate        | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.004 mg/kg                    |
| Chrysene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.002 mg/kg           Dibenz(a,h)anthracene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Dibenzofuran         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Diethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Dimethylphthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.004 mg/kg           Di-n-Dctyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Di-n-Octyl phthalate         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.005 mg/kg           Fluoranthene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.005 mg/kg           Fluorene         Solids (c)         EPA Method 8270 SIM         0.005 mg/kg         0.001 mg/kg           Hexachlorobenzene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.001 mg/kg           Hexachlorocyclopentadiene         Solids (c)         EPA Method 8270 (Low Level)         0.02 mg/kg         0.003 mg/kg           Hexachlorocythane         Solids (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbazole                   | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.002 mg/kg                    |
| Dibenzofuran Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Diethylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg Dimethylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg Di-n-Butylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Di-n-Octyl phthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Fluoranthene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.000 mg/kg Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Hexachlorocethane Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.002 mg/kg Isophorone Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Nitrobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.003 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                        | Chrysene                    | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| Diethylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg Dimethylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg Di-n-Butylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Di-n-Octyl phthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Fluoranthene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Isophorone Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.003 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Nitrobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.027 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                           | Dibenz(a,h)anthracene       | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Dimethylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg Di-n-Butylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Di-n-Octyl phthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Fluoranthene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg 1ndeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg 1sophorone Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg 1sophorone Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.003 mg/kg Nitrobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg 0.002 mg/kg 0.003 mg/kg | Dibenzofuran                | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| Di-n-Butylphthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Di-n-Octyl phthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Fluoranthene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachlorocethane Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Isophorone Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Naphthalene Solids (c) EPA Method 8270 (Low Level) 0.002 mg/kg 0.003 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.0027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.0027 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diethylphthalate            | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.004 mg/kg                    |
| Di-n-Octyl phthalate Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Fluoranthene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.001 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachlorocthane Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Isophorone Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Naphthalene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimethylphthalate           | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.004 mg/kg                    |
| Fluoranthene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachloroethane Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Isophorone Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.003 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Di-n-Butylphthalate         | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.005 mg/kg                    |
| Fluorene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.001 mg/kg Hexachlorobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachloroethane Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Isophorone Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.003 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-n-Octyl phthalate        | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.005 mg/kg                    |
| Hexachlorobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorobutadiene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Hexachlorocyclopentadiene Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.012 mg/kg Hexachloroethane Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.005 mg/kg Indeno(1,2,3-cd)pyrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Isophorone Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Nitrobenzene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluoranthene                | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| HexachlorobutadieneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgHexachlorocyclopentadieneSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.012 mg/kgHexachloroethaneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.005 mg/kgIndeno(1,2,3-cd)pyreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgIsophoroneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgNaphthaleneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgNitrobenzeneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.004 mg/kgN-Nitroso-Di-N-PropylamineSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgN-NitrosodiphenylamineSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.013 mg/kgPentachlorophenolSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.027 mg/kgPhenanthreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluorene                    | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |
| HexachlorocyclopentadieneSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.012 mg/kgHexachloroethaneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.005 mg/kgIndeno(1,2,3-cd)pyreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgIsophoroneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgNaphthaleneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgNitrobenzeneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.004 mg/kgN-Nitroso-Di-N-PropylamineSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgN-NitrosodiphenylamineSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.013 mg/kgPentachlorophenolSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.027 mg/kgPhenanthreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachlorobenzene           | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| HexachloroethaneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.005 mg/kgIndeno(1,2,3-cd)pyreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgIsophoroneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgNaphthaleneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgNitrobenzeneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.004 mg/kgN-Nitroso-Di-N-PropylamineSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgN-NitrosodiphenylamineSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.013 mg/kgPentachlorophenolSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.027 mg/kgPhenanthreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hexachlorobutadiene         | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| Indeno(1,2,3-cd)pyreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgIsophoroneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgNaphthaleneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgNitrobenzeneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.004 mg/kgN-Nitroso-Di-N-PropylamineSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgN-NitrosodiphenylamineSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.013 mg/kgPentachlorophenolSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.027 mg/kgPhenanthreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hexachlorocyclopentadiene   | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.012 mg/kg                    |
| IsophoroneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgNaphthaleneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kgNitrobenzeneSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.004 mg/kgN-Nitroso-Di-N-PropylamineSolids (c)EPA Method 8270 (Low Level)0.02 mg/kg0.003 mg/kgN-NitrosodiphenylamineSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.013 mg/kgPentachlorophenolSolids (c)EPA Method 8270 (Low Level)0.1 mg/kg0.027 mg/kgPhenanthreneSolids (c)EPA Method 8270 SIM0.005 mg/kg0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hexachloroethane            | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.005 mg/kg                    |
| Naphthalene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg Nitrobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Indeno(1,2,3-cd)pyrene      | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| Nitrobenzene Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.004 mg/kg N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isophorone                  | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| N-Nitroso-Di-N-Propylamine Solids (c) EPA Method 8270 (Low Level) 0.02 mg/kg 0.003 mg/kg N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Naphthalene                 | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
| N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nitrobenzene                | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.004 mg/kg                    |
| N-Nitrosodiphenylamine Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.013 mg/kg Pentachlorophenol Solids (c) EPA Method 8270 (Low Level) 0.1 mg/kg 0.027 mg/kg Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-Nitroso-Di-N-Propylamine  | Solids (c)    | EPA Method 8270 (Low Level) | 0.02 mg/kg              | 0.003 mg/kg                    |
| Phenanthrene Solids (c) EPA Method 8270 SIM 0.005 mg/kg 0.002 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-Nitrosodiphenylamine      | Solids (c)    |                             |                         | 0.013 mg/kg                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pentachlorophenol           | Solids (c)    | EPA Method 8270 (Low Level) | 0.1 mg/kg               | 0.027 mg/kg                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenanthrene                | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.002 mg/kg                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrene                      | Solids (c)    | EPA Method 8270 SIM         | 0.005 mg/kg             | 0.001 mg/kg                    |

### **TABLE C-5 BUILDING MATERIALS AND WIPE SAMPLES** LABORATORY ANALYTICAL METHODS, METHOD DETECTION LIMITS, AND REPORTING LIMITS **BOEING ISAACSON-THOMPSON**

| Analysis            | Sample Matrix | Analytical Method | Repor<br>Limits | •       | Method Detection<br>Limits (b) |
|---------------------|---------------|-------------------|-----------------|---------|--------------------------------|
|                     |               |                   |                 |         |                                |
| PCBs                |               |                   |                 |         |                                |
| Aroclor 1016        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| Aroclor 1242        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| Aroclor 1248        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| Aroclor 1254        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| Aroclor 1260        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| Aroclor 1221        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| Aroclor 1232        | Wipes         | 8082              | 1.0             | ug/Wipe | NA                             |
| METALS              |               |                   |                 |         |                                |
| Antimony            | Wipes         | 6010B             | 2.5             | ug/Wipe | NA                             |
| Arsenic             | Wipes         | 6010B             | 2.5             | ug/Wipe | NA                             |
| Barium              | Wipes         | 6010B             | 0.2             | ug/Wipe | NA                             |
| Beryllium           | Wipes         | 6010B             | 0.05            | ug/Wipe | NA                             |
| Cadmium             | Wipes         | 6010B             | 0.1             | ug/Wipe | NA                             |
| Chromium            | Wipes         | 6010B             | 0.25            | ug/Wipe | NA                             |
| Hexavalent Chromium | Wipes         | 7196              | 1               | ug/Wipe | NA                             |
| Copper              | Wipes         | 6010B             | 0.1             | ug/Wipe | NA                             |
| Lead                | Wipes         | 6010B             | 1               | ug/Wipe | NA                             |
| Mercury             | Wipes         | 7471A             | 0.005           | ug/Wipe | NA                             |
| Nickel              | Wipes         | 6010B             | 0.5             | ug/Wipe | NA                             |
| Selenium            | Wipes         | 6010B             | 2.5             | ug/Wipe | NA                             |
| Silver              | Wipes         | 6010B             | 0.15            | ug/Wipe | NA                             |
| Thallium            | Wipes         | 6010B             | 2.5             | ug/Wipe | NA                             |
| Zinc                | Wipes         | 6010B             | 0.5             | ug/Wipe | NA                             |

NA = Not available

<sup>(</sup>a) Laboratory reporting limits are based on current laboratory data and may be modified during the investigation process as methodology is refined. Instances may arise where high sample concentrations, nonhomogeneity of samples or matrix interferences preclude achieving the laboratory reporting limits.

<sup>(</sup>b) Method detection limits for solid materials are subject to change based on the specific sample matrix (e.g., paint, caulking, etc)

<sup>(</sup>c) Solids include paint, building siding, caulk, concrete joint material, surface debris, and roofing materials

### **Site Health and Safety Plans (HASPs)**

### **Upland HASP**

### Final Uplands HASP Remedial Investigation/Feasibility Study Boeing Isaacson-Thompson Site Tukwila, Washington

September 16, 2011

Prepared for

**The Boeing Company** 



### TABLE OF CONTENTS

|      |                                               | Page       |
|------|-----------------------------------------------|------------|
| 1.0  | INTRODUCTION                                  | 1-1        |
|      | 1.1 PURPOSE AND REGULATORY COMPLIANCE         | 1-1        |
|      | 1.2 CHAIN OF COMMAND                          | 1-1        |
|      | 1.3 SITE WORK ACTIVITIES                      | 1-2        |
|      | 1.4 SITE DESCRIPTION                          | 1-2        |
| 2.0  | HAZARD EVALUATION AND CONTROL MEASURES        | 2-1        |
|      | 2.1 TOXICITY OF CHEMICALS OF CONCERN          | 2-1        |
|      | 2.2 POTENTIAL EXPOSURE ROUTES                 | 2-1        |
|      | 2.2.1 Inhalation                              | 2-1        |
|      | 2.2.2 Skin Contact                            | 2-1        |
|      | 2.2.3 Ingestion                               | 2-2        |
|      | 2.3 HEAT STRESS AND HYPOTHERMIA               | 2-2        |
|      | 2.3.1 Heat Stress                             | 2-2        |
|      | 2.3.2 Hypothermia 2.4 OTHER PHYSICAL HAZARDS  | 2-2<br>2-3 |
|      | 2.4.1 Slips/Falls                             | 2-3<br>2-3 |
|      | 2.4.1 Ships/rans 2.4.2 Machinery/Moving Parts | 2-3<br>2-3 |
|      | 2.4.3 Confined Spaces                         | 2-3        |
|      | 2.4.4 Noise                                   | 2-3        |
| 3.0  | PROTECTIVE EQUIPMENT AND AIR MONITORING       | 3-1        |
| 5.0  | 3.1 PROTECTIVE EQUIPMENT                      | 3-1        |
|      | 3.2 AIR MONITORING                            | 3-1        |
| 4.0  | SAFETY EQUIPMENT LIST                         | 4-1        |
| 5.0  | EXCLUSION AREAS                               | 5-1        |
|      | 5.1 EXCLUSION ZONE                            | 5-1        |
|      | 5.2 CONTAMINATION REDUCTION ZONE              | 5-1        |
|      | 5.3 SUPPORT ZONE                              | 5-1        |
| 6.0  | MINIMIZATION OF CONTAMINATION                 | 6-1        |
| 7.0  | DECONTAMINATION                               | 7-1        |
| 8.0  | DISPOSAL OF CONTAMINATED MATERIALS            | 8-1        |
| 9.0  | SITE SECURITY AND CONTROL                     | 9-1        |
| 10.0 | SPILL CONTAINMENT                             | 10-1       |
| 11.0 | EMERGENCY RESPONSE PLAN                       | 11-1       |
|      | 11.1 PLAN CONTENT AND REVIEW                  | 11-1       |
|      | 11.2 PLAN IMPLEMENTATION                      | 11-1       |
|      | 11.3 EMERGENCY RESPONSE CONTACTS              | 11-2       |
|      | 11.4 FIRES                                    | 11-2       |
|      | 11.5 PLAN DOCUMENTATION AND REVIEW            | 11-3       |
| 12.0 | MEDICAL SURVEILLANCE                          | 12-1       |

### LIST OF TABLES

<u>Table</u> <u>Title</u>

D-1 Human Health Information for Chemicals of Concern

### LIST OF ATTACHMENTS

| <u>Attachment</u> | <u>Title</u>                                    |
|-------------------|-------------------------------------------------|
| D-1               | Air Monitoring Strategy                         |
| D-2               | Emergency Information and Route to Hospital Map |
| D-3               | Certification                                   |

### Site Health and Safety Plan Summary

Site Name: Boeing Isaacson-Thompson Site

Location: 8811 East Marginal Way South, Tukwila, Washington

**Client**: The Boeing Company

**Proposed Dates of Activities**: 2011

Type of Facility: Former aerospace manufacturing facility and vacant asphalt capped land

Land Use of Area Surrounding Facility: Industrial

Site Activities: Drilling soil boreholes using direct-push and hollow-stem auger techniques, well

installation, groundwater sampling, seep sampling, and catch basin solids sampling

Potential Site Contaminants: Metals, total petroleum hydrocarbons, polycyclic aromatic hydrocarbons,

volatile organic compounds, semivolatile organic compounds, and

polychlorinated biphenyls

Routes of Entry: Skin contact with soil, groundwater, or catch basin solids; incidental ingestion of soil,

water, or catch basin solids; and inhalation of airborne droplets, dusts, or vapors

Protective Measures: Hard hat, safety glasses, gloves, protective clothing, steel-toed boots, fall

protection equipment during seep sampling

### 1.0 INTRODUCTION

This Site-specific health and safety plan (HASP) addresses procedures to minimize the risk of chemical exposures, physical accidents to onsite workers, and environmental contamination.

### 1.1 PURPOSE AND REGULATORY COMPLIANCE

The HASP covers each of the required elements as specified in 29 CFR 1910.120 or equivalent Washington State Department of Labor and Industries regulations. When combined with the Landau Associates Health and Safety Program, this Site-specific HASP meets all applicable regulatory requirements.

This HASP will be made available to all Landau Associates' personnel and subcontractors involved in field work on this project. For subcontractors, this HASP represents minimum safety procedures. Subcontractors are responsible for their own safety while present onsite or conducting work for this project. Subcontractor work may involve safety and health procedures not addressed in the HASP. The HASP was originally prepared by a Certified Industrial Hygienist and has been reviewed by the Landau Associates' Corporate Health and Safety Officer. By signing the documentation form provided with this HASP (Attachment D-3), project workers also certify their agreement to comply with this HASP. Both Landau Associates and its subcontractors are independently responsible for the health and safety of their own employees on the project.

### 1.2 CHAIN OF COMMAND

The Landau Associates chain-of-command for health and safety on this project involves the following individuals:

Landau Associates' Task Manager: Stacy Lane. The Task Manager, in conjunction with the Project Manager (Kris Hendrickson), has overall responsibility for the successful outcome of the project. The Task Manager, in consultation with Corporate Health and Safety (H&S) Manager and the Project Manager, makes final decisions regarding questions concerning the implementation of the Site HASP.

Landau Associates' Project H&S Coordinator: To be determined. As the Project H&S Coordinator, this individual is responsible for implementing the HASP in the field. The Project H&S Coordinator informs subcontractors of the minimum requirements of this HASP. This person will conduct ambient air monitoring to determine the level of personal protective equipment (PPE) and monitor for PPE upgrade action levels. This person will also assure that proper protective equipment is available and used in the correct manner, decontamination activities are carried out properly, and that employees have knowledge of the local emergency medical system.

**Landau Associates' Corporate H&S Manager**: Christine Kimmel. The Landau Associates Corporate H&S Manager has overall responsibility for preparation and modification of this HASP. In the event that health and safety issues arise during Site operations, the H&S Manager will attempt to resolve them in discussion with the appropriate members of the project team.

**Project Team Members:** Project team members are responsible for having the correct training and understanding the H&S requirements for this project and implementing these procedures in the field. Team members will receive technical guidance from the Project H&S Coordinator.

### 1.3 SITE WORK ACTIVITIES

This HASP covers Site field activities to be conducted throughout the remedial investigation (RI) at the Boeing Isaacson-Thompson Site. The field activities associated with the RI include:

- Drilling shallow boreholes using direct-push technology
- Installation of shallow groundwater wells using hollow-stem auger methods
- Collection of groundwater samples following installation of the wells
- Collection of seep samples
- Water level monitoring at the monitoring wells
- Collection of solids from stormwater catch basins.

### 1.4 SITE DESCRIPTION

The Site is located between the eastern bank of the Lower Duwamish Waterway (LDW) and East Marginal Way South in Tukwila, Washington. A strip of land owned by the Port of Seattle separates the Isaacson parcel from the LDW. The Thompson parcel is developed with a large industrial building (Building 14-01) and several support structures. The Isaacson parcel consists of vacant asphalt-capped land used for a variety of commercial, industrial, and marine-related activities. The Site is approximately 29 acres and relatively flat.

### 2.0 HAZARD EVALUATION AND CONTROL MEASURES

### 2.1 TOXICITY OF CHEMICALS OF CONCERN

Based on previous Site information and knowledge of the types of activities conducted at the Site, the following chemicals may be present at this Site: metals, total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and semivolatile organic compounds (SVOCs).

Human health hazards of these chemicals are summarized in Table D-1. The information provided in this table covers potential toxic effects that might occur if relatively significant acute and/or chronic exposure occurred. However, this information does not indicate that such effects are likely to occur from the planned Site activities. The chemicals that may be encountered at this Site are not expected to be present at concentrations that could cause significant health hazards from short-term exposures. The types of planned work activities and use of monitoring procedures and protective measures will further limit potential exposures at this Site.

Health standards are presented using the following abbreviations:

- PEL Permissible exposure limit
- TWA Time-weighted average exposure limit for any 8-hour work shift
- STEL Short-term exposure limit expressed as a 15-minute time-weighted average and not to be exceeded at any time during a work day.

### 2.2 POTENTIAL EXPOSURE ROUTES

### 2.2.1 INHALATION

Inhalation of dusts generated during soil sampling and drilling could be an issue if the weather is dry, windy, or warm. Exposure via this route could potentially occur if chemicals are present in the soil and dust particles become airborne during Site activities or if VOCs are liberated when samples are exposed to air or during drilling of soil boreholes.

### 2.2.2 SKIN CONTACT

Exposure via this route could occur if contaminated soil, groundwater, or catch basin solids contact the skin or clothing. Protective clothing and decontamination activities specified in this HASP will minimize the potential for skin contact with the contaminants.

### 2.2.3 INGESTION

Exposure via this route could occur if individuals eat, drink, or perform other hand-to-mouth contact in the contaminated (exclusion) zones. Decontamination procedures established in this HASP will minimize the inadvertent ingestion of contaminants.

### 2.3 HEAT STRESS AND HYPOTHERMIA

### 2.3.1 HEAT STRESS

Use of impermeable clothing reduces the cooling ability of the body due to evaporation reduction. This may lead to heat stress. If such conditions occur during Site activities, appropriate work-rest cycles will be utilized and water or electrolyte-rich fluids (Gatorade or equivalent) will be made available to minimize heat stress effects.

Also, when ambient temperatures exceed 70°F, monitoring of employee pulse rates will be conducted. Each employee will check his or her pulse rate at the beginning of each break period. Take the pulse at the wrist for 6 seconds, and multiply by 10. If the pulse rate exceeds 110 beats per minute, then reduce the length of the next work period by one-third.

Example: After a 1-hour work period at 80°F, a worker has a pulse rate of 120 beats per minute. The worker must shorten the next work period by one-third, resulting in a work period of 40 minutes until the next break.

### 2.3.2 HYPOTHERMIA

Hypothermia can result from abnormal cooling of the core body temperature. It is caused by exposure to a cold environment and wind-chill. Wetness or water immersion can also play a significant role.

Typical warning signs of hypothermia include fatigue, weakness, lack of coordination, apathy, and drowsiness. A confused state is a key symptom of hypothermia. Shivering and pallor are usually absent, and the face may appear puffy and pink. Body temperatures below 90°F require immediate treatment to restore temperature to normal.

Current medical practice recommends slow re-warming as treatment for hypothermia, followed by professional medical care. This can be accomplished by moving the person into a sheltered area and wrapping with blankets in a warm room. In emergency situations, where body temperature falls below 90°F and a heated shelter is not available, use a sleeping bag, blankets, and body heat from another individual to help restore normal body temperature.

### 2.4 OTHER PHYSICAL HAZARDS

### 2.4.1 SLIPS/FALLS

As with all field work sites, caution will be exercised to prevent slips on rain-slick surfaces, stepping on sharp objects, etc. Personnel will maintain good housekeeping procedures and keep the work area clear of debris and/or equipment. Work will not be performed on elevated platforms without fall protection.

During seep sampling, the following procedures will be used:

- A minimum of two workers will be onsite during seep sampling activities. The first worker (sampler) will be responsible for sample collection and the second worker (rescuer) will be responsible for providing safety oversight. The rescuer will be positioned at the rescue tripod that is attached to the sampler through the fall protection devices and will maintain visual or radio contact with the sampler at all times and will not perform other tasks during sampling.
- Excess vegetation will be removed from the bulkhead in the sampling area prior to sampling.
- A 20-ft extension ladder will be lowered from the bulkhead, placed at an approximate 45 degree angle from the bulkhead, and tied off to the bulkhead. The ladder footing will be secured on solid ground.
- Independent fall protection equipment will be used including a secured tripod and a fall harness for the sampler.

At least one person with current training in first aid and CPR will be onsite at all times.

### 2.4.2 MACHINERY/MOVING PARTS

The drilling equipment or sampling vessel may be equipped with various winches, motors, booms, and other machines. These present a general physical hazard from moving parts. Personnel will stand clear of machinery at all times unless specific instructions are given by the drill rig operator or other person in authority. Steel-toed shoes or boots will be worn at all times when on the Site. When possible, appropriate guards will be in place during equipment use.

### 2.4.3 CONFINED SPACES

Confined space entry is not anticipated for this project. Personnel will not enter any confined space without certified training and specific approval of the Project Manager, Task Manager, Corporate H&S Manager, and Boeing project representative.

### **2.4.4** Noise

Appropriate hearing protection (ear muffs or ear plugs with a noise reduction rating of at least 20 decibals (acoustic; dBA) will be used if individuals work near high-noise-generating equipment (> 85 dBA). Determination of the need for hearing protection will be made by the Project H&S Coordinator.

### 3.0 PROTECTIVE EQUIPMENT AND AIR MONITORING

### 3.1 PROTECTIVE EQUIPMENT

Work for this project will be conducted in Level D protection. Level C protection is presented as a contingency only and represents a modified protection level, incorporating respiratory protection only where required by Site conditions. Situations requiring Levels A or B protection are not anticipated for this project; should they occur, work will stop and the HASP will be amended, as appropriate, prior to resuming work.

Workers performing general Site activities where skin contact with highly contaminated materials is unlikely and inhalation risks are not expected will wear coveralls, eye protection, gloves (whenever handling samples), and safety boots. Level D protection will consist of the following:

- Hard hats
- Rain gear or poly-coated Tyvek (wet operations) or uncoated Tyvek (dry operations)
- Safety glasses
- Steel-toed, chemical-resistant boots
- Nitrile, neoprene, or equivalent inner and outer gloves
- Fall protection equipment during seep sampling.

Workers performing Site activities where heavily contaminated materials are detected will wear chemical-resistant gloves (nitrile, neoprene, or other appropriate outer and inner gloves) and coated Tyvek or other chemical-resistant suits. Workers will use face shields or goggles, as necessary, to avoid splashes.

When performing activities in which inhalation of chemical vapors and dusts is a concern, workers will wear half-mask or full-face air-purifying respirators with combination cartridges. Cartridges should be changed, at a minimum, on a daily basis. They should be changed more frequently if chemical vapors are detected inside the respirator or other symptoms of breakthrough are noted (e.g., irritation, dizziness, breathing difficulty).

Workers performing seep sampling will utilize the procedures and fall protection equipment described in Section 2.4.1.

### 3.2 AIR MONITORING

Direct-reading instruments give immediate, real time readings of contaminant levels. Reliable direct-reading instruments, such as the combustible gas indicator, photoionization detector (PID), flame ionization detector, dust meter, and colorimetric tubes, are available for situations commonly encountered

at hazardous and contaminated substance sites. The appropriate type of monitoring equipment depends on the suspected type and concentration of chemical contaminants. The primary limitation of directreading instruments is that most do not quantify specific chemical compounds.

Air monitoring for VOCs and dust will be conducted during drilling or other intrusive activities. A PID will be used to monitor for VOCs and air monitoring for dust will be conducted using a SKC HAZ-DUST 1 (or equivalent) particulate meter (Table D-1). The instruments will be calibrated prior to each day's activity according to manufacturer's instructions. Calibration will be recorded in the health and safety logbook or field notes. Readings will be entered into the logbook at a minimum of 30-minute intervals.

Attachment 1 identifies the air monitoring strategy to be used during field investigations.

### 4.0 SAFETY EQUIPMENT LIST

The following safety equipment must be available onsite:

- First aid kit
- Mobile telephone
- Steel-toed safety boots
- Chemical-resistant coveralls and gloves
- Safety glasses
- Hard hat
- Air monitoring instruments
- Half-face or full face respirator with cartridges
- Fall protection equipment (during seep sampling).

## 5.0 EXCLUSION AREAS

If migration of chemicals from the work area is a possibility, or as otherwise required by regulations or client specifications, Site control will be maintained by establishing clearly identified work zones. These will include the exclusion zone, contaminant reduction zone, and support zone, as discussed below.

## 5.1 EXCLUSION ZONE

Exclusion zones will be established around each contaminated substance activity location. Only persons with appropriate training and authorization from the Project H&S Coordinator will enter this perimeter while work is being conducted.

## 5.2 CONTAMINATION REDUCTION ZONE

A contamination reduction zone will consist of a decontamination station that must be used to exit the exclusion zone. The station will have the brushes and wash fluids necessary to decontaminate personnel and equipment leaving the exclusion zone. Care will be taken to prevent the spread of contamination from this area.

## 5.3 SUPPORT ZONE

A support zone will be established outside the contamination reduction area to stage clean equipment, don protective clothing, take rest breaks, etc.

## 6.0 MINIMIZATION OF CONTAMINATION

To make the work zone procedure function effectively, the amount of equipment and number of personnel allowed in contaminated areas must be minimized. In addition, the amounts of sample collected should not exceed what is needed for laboratory analysis and record samples. Do not kneel on contaminated ground, stir up unnecessary dust, or perform any practice that increases the probability of hand-to-mouth transfer of contaminated materials. Eating, drinking, chewing gum, or using smokeless tobacco, are forbidden in the exclusion zone. Smoking is prohibited everywhere on the Site.

## 7.0 DECONTAMINATION

Decontamination is necessary to limit the migration of contaminants between sampling intervals, from the work zone(s) onto the Site, or from the Site into the surrounding environment. Equipment decontamination procedures are presented in Section 2.9 of the Sampling and Analysis Plan (SAP; Appendix A of the Work Plan) and personnel decontamination are discussed in the following sections, and the following types of equipment will be available to perform these activities:

- Boot and glove wash bucket and rinse bucket
- Scrub brushes long handled
- Spray rinse applicator
- Plastic garbage bags
- 5-gallon container with soap solution.

Proper decontamination (decon) procedures will be employed to ensure that contaminated materials do not contact individuals and are not spread from the Site. These procedures will also ensure that contaminated materials generated during Site operations and during decontamination are managed appropriately. All nondisposable equipment will be decontaminated in the contamination reduction zone.

Personnel working in exclusion zones will perform a limited decontamination in the contamination reduction zone prior to changing respirator cartridges (if worn), taking rest breaks, drinking liquids, etc. They will decontaminate fully before eating lunch or leaving the Site. The following describes the procedures for decon activities:

- 1. In the contamination reduction zone, wash and rinse outer gloves and boots in portable buckets.
- 2. Inspect protective outer suit, if worn, for severe contamination, rips, or tears.
- 3. If suit is highly contaminated or damaged, full decontamination will be performed.
- 4. Remove outer gloves. Inspect and discard if ripped or damaged.

## 8.0 DISPOSAL OF CONTAMINATED MATERIALS

All disposable sampling equipment and personal protective equipment will be rinsed to remove gross contamination and placed inside of a 10 mil polyethylene bag or other appropriate containers. These disposable supplies and containers will be removed from the Site by the field personnel and disposed of in a normal refuse container (dumpster) and/or solid waste landfill, unless visibly contaminated with hazardous substances. In such cases, the Project Manager and/or Task Manager will determine the need for special handling and disposal, according to applicable regulations. Waste water generated during decontamination will be handled as described in Section 2.0 of the SAP (Appendix A of the Work Plan).

## 9.0 SITE SECURITY AND CONTROL

Site security and control will be the responsibility of the Project H&S Coordinator. The "buddy system" will be used when working in designated hazardous areas. Any security or control problems will be reported to the client or appropriate authorities.

## 10.0 SPILL CONTAINMENT

|       | Sources     | of   | bulk  | chemicals   | subject    | to  | spillage   | are   | not  | expected | to | be | used | in | this | project. |
|-------|-------------|------|-------|-------------|------------|-----|------------|-------|------|----------|----|----|------|----|------|----------|
| Accor | dingly, a s | pill | conta | inment plar | n is not r | equ | ired for t | his p | roje | et.      |    |    |      |    |      |          |

## 11.0 EMERGENCY RESPONSE PLAN

The Emergency Response Plan outlines the steps necessary for appropriate response to emergency situations. The following paragraphs summarize the key Emergency Response Plan procedures for this project.

## 11.1 PLAN CONTENT AND REVIEW

The principal hazards addressed by the Emergency Response Plan include the following: fire or explosion, medical emergencies, uncontrolled contaminant release, and situations such as the presence of chemicals above exposure guidelines or inadequate protective equipment for the hazards present. However, in order to help anticipate potential emergency situations, field personnel should always exercise caution and look for signs of potentially hazardous situations, including the following as examples:

- Visible or odorous chemical contaminants
- Drums or other containers
- General physical hazards (e.g., traffic, cranes, moving equipment, ships, sharp or hot surfaces, slippery or uneven surfaces)
- Possible sources of radiation
- Live electrical wires or equipment; underwater pipelines or cables; and poisonous or dangerous animals.

These and other potential problems should be anticipated and steps taken to avert problems before they occur. All personnel will certify (Attachment 3) that they are familiar with the contents of this HASP and acknowledge their agreement to comply with the provisions of this HASP.

The Emergency Response Plan will be reviewed during the onsite health and safety briefing so that all personnel will know what their duties are should an emergency occur.

## 11.2 PLAN IMPLEMENTATION

The Project H&S Coordinator will act as the lead individual in the event of an emergency situation and evaluate the situation. This individual will determine the need to implement the emergency procedures, in concert with other resource personnel including client representatives and the Corporate H&S Manager. Other onsite field personnel will assist the H&S Coordinator, as required, during the emergency.

If the Emergency Response Plan is implemented, the Project H&S Coordinator or designees are responsible for alerting all personnel at the affected area by use of a signal device (such as a hand-held air horn), visual, or shouted instructions, as appropriate.

Emergency evacuation routes and safe assembly areas will be identified and discussed in the onsite health and safety briefing, as appropriate. The buddy system will be employed during evacuation to ensure safe escape, and the Project H&S Coordinator will be responsible for roll-call to account for all personnel.

## 11.3 EMERGENCY RESPONSE CONTACTS

Site personnel must know who to notify in the event of Emergency Response Plan implementation. The following information will be readily available at the Site in a location known to all workers:

- Emergency Telephone Numbers: see list in Attachment 2
- Route to Nearest Hospital: see directions and map in Attachment 2
- Site Descriptions: see the description at the beginning of this HASP
- If a significant environmental release of contaminants occurs, the federal, state, and local agencies noted in this HASP must be notified within 24 hours. Contact the Project Manager as soon as possible and he/she will be responsible for notifying agencies listed in Attachment 2. If the release to the environment includes navigable waters, also notify the National Response Center.

In the event of an emergency situation requiring implementation of the Emergency Response Plan (e.g., fire or explosion, serious injury, tank leak or other material spill, presence of chemicals above exposure guidelines, inadequate personnel protection equipment for the hazards present), cease all work immediately. Offer whatever assistance is required, but do not enter work areas without proper protective equipment. Workers not needed for immediate assistance will decontaminate per normal procedures (if possible) and leave the work area, pending approval by the Project H&S Coordinator for re-start of work. The following general emergency response safety procedures should be followed.

## **11.4 FIRES**

Landau Associates' personnel will attempt to control only very small fires. If an explosion appears likely, evacuate the area immediately. If a fire occurs that cannot be readily controlled, then immediate intervention by the local fire department or other appropriate agency is imperative. Use these steps:

- Contact fire agency identified in Attachment D-2
- Inform Project Manager/Project H&S Coordinator of the situation.

- Contact Boeing Emergency Dispatch (206-655-2222)
- Call 911 if a medical emergency occurs.

If a worker leaves the Site to seek medical attention, another worker should accompany the patient. When in doubt about the severity of an accident or exposure, always seek medical attention as a conservative approach. Notify the Project Manager of the outcome of the medical evaluation as soon as possible. For minor cuts and bruises, an onsite first aid kit will be available.

If a worker is seriously injured or becomes ill or unconscious, immediately request assistance from the emergency contact sources noted in the Site-specific plan. Do not attempt to assist an unconscious worker in an untested confined space without applying confined space entry procedures or without using proper respiratory protection, such as a self-contained breathing apparatus.

In the event that a seriously injured person is also heavily contaminated, use clean plastic sheeting to prevent contamination of the inside of the emergency vehicle. Less severely injured individuals may also have their protective clothing carefully removed or cut off before transport to the hospital. If it is deemed appropriate to transport the victim to the hospital, follow the route map on Attachment 2.

## 11.5 PLAN DOCUMENTATION AND REVIEW

The Project Manager/Project H&S Coordinator will notify the Corporate H&S Manager as soon as possible after an emergency situation has been stabilized. The Project Manager will also notify the appropriate client contacts, and regulatory agencies, if applicable.

The Project Manager and Corporate H&S Manager will critique the emergency response action following the event. The results of the critique will be used in to improve future Emergency Response Plans and actions.

## 12.0 MEDICAL SURVEILLANCE

A medical surveillance program has been instituted for Landau Associates and will also be in effect for Subcontractor employees having exposures to hazardous substances. For Landau Associates, exams are given before employment; annually, thereafter; and upon termination. Content of exams is determined by the Occupational Medicine physician, in compliance with applicable regulations, and is detailed in the Landau Associates' General Health and Safety Program.

Each team member will have undergone a physical examination as noted above in order to verify that he/she is physically able to use protective equipment, work in hot environments, and not be predisposed to occupationally induced disease. Additional exams may be needed to evaluate specific exposures or unexplainable illness.

\* \* \* \* \* \* \* \* \* \*

This document has been prepared under the supervision and direction of the following key staff:

LANDAU ASSOCIATES, INC.

Kristy J. Hendrickson, P.E.

Principal

Kathryn F. Hartley Project Scientist

# TABLE D-1 HUMAN HEALTH INFORMATION FOR CONTAMINANTS OF CONCERN

| Contaminant                 | PEL                            | I.D.L.H.  | Route of Exposure                                                       | Symptoms of Acute Exposure                                                                                                                                                       | Instruments Used to<br>Monitor Contaminant |
|-----------------------------|--------------------------------|-----------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 2-Butanone (MEK)            | 200 parts per<br>million (ppm) | 3,000 ppm | Inhalation, ingestion, dermal contact                                   | Irritated eyes, skin, and nose; headache; dizziness; vomiting; dermatitis                                                                                                        | Photoionization<br>(PID) meter             |
| 4-Methyl-2-Pentanone (MIBK) | 50 ppm                         | 500 ppm   | Inhalation, ingestion, dermal contact                                   | Irritated eyes, skin and mucus membranes; headache; narcosis; dermatitis; liver and kidney damage                                                                                | PID meter                                  |
| Trichloroethene (TCE)       | 50 ppm                         | 1,000 ppm | Inhalation, ingestion, dermal contact                                   | Irritated eyes and skin; headache; visual disturbance; lassitude; dizziness; tremor; drowsiness; nausea; vomiting; dermatitis; cardiac arrhythmias; paresthesia; liver injury    | PID meter                                  |
| Tetrachloroethene (PCE)     | 25 ppm                         | 150 ppm   | Inhalation, ingestion,<br>absorption, and skin or eye<br>contact        | Irritated eyes, skin, nose, throat, respiratory system; nausea; flushed face and neck; dizziness, incoordination; headache; drowsiness; skin erythema; liver damage              | PID meter                                  |
| Benzene                     | 1 ppm                          | 500 ppm   | Inhalation, ingestion,<br>absorption, and skin or eye<br>contact        | Irritated eyes, skin, nose, and respiratory system; giddiness; headache; nausea; staggered gait; dermatitis; fatigue; anorexia; lassitude; bone marrow depressant (carcinogenic) | PID meter                                  |
| Toluene                     | 100 ppm                        | 500 ppm   | Inhalation, ingestion, percutaneous absorption, and skin & eye contact. | Headache, dizziness, drowsiness, coordination problems, and coma                                                                                                                 | PID meter                                  |
| Xylene                      | 100 ppm                        | 900 ppm   | Inhalation, ingestion, percutaneous absorption, and skin & eye contact. | Nervous system depression, liver and kidney damage                                                                                                                               | PID meter                                  |
| Ethylbenzene                | 100 ppm                        | 800 ppm   | Inhalation, ingestion, percutaneous absorption, and skin & eye contact. | Nervous system depression, headaches, dizziness, nausea, convulsions, and coma                                                                                                   | PID meter                                  |

# TABLE D-1 HUMAN HEALTH INFORMATION FOR CONTAMINANTS OF CONCERN

| Contaminant | PEL                                       | I.D.L.H.              | Route of Exposure                                               | Symptoms of Acute Exposure                                                                                                                                                                                                                               | Instruments Used to<br>Monitor Contaminant |
|-------------|-------------------------------------------|-----------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Gasoline    | 300 ppm                                   | 500 ppm               | Inhalation, skin absorption, ingestion, skin and/or eye contact | Irritation eyes, skin, mucous membrane; dermatitis; headache; lassitude; blurred vision; dizziness; slurred speech; confusion; convulsions; chemical pneumonitis (aspiration liquid); possible liver, kidney damage; (potential occupational carcinogen) | PID meter                                  |
| Copper      | 1 milligram per<br>cubic meter<br>(mg/m³) | 100 mg/m <sup>3</sup> | Inhalation, skin or eye contact, ingestion                      | Irritated eyes, respiratory system; cough dysprea; wheezing                                                                                                                                                                                              | Dust Meter                                 |
| Arsenic     | 0.002 mg/m <sup>3</sup>                   | 5.0 mg/m³             | Inhalation, eye contact, dermal contact                         | Skin and mucous membrane irritation; respiration irritation (potential occupational carcinogen)                                                                                                                                                          | Dust Meter                                 |
| Mercury     | 0.05 mg/m <sup>3</sup>                    | 10 mg/m <sup>3</sup>  | Inhalation eye contact, dermal contact                          | Irritated eyes, skin; cough; chest pains                                                                                                                                                                                                                 | Dust Meter                                 |
| Lead        | 0.05 mg/m <sup>3</sup>                    | 100 mg/m <sup>3</sup> | Inhalation, ingestion, dermal contact                           | Weakness, lassitude, facial pallor, kidney disease                                                                                                                                                                                                       | Dust Meter                                 |
| PCBs        | 0.2 mg/m <sup>3</sup>                     | 10 mg/m <sup>3</sup>  | Inhalation, skin absorption, ingestion, skin and/or eye contact | Irritated eyes; chloracne; liver damage; reproductive effects                                                                                                                                                                                            | Dust Meter                                 |

PEL = Permissible exposure limit.

IDLH = Immediately dangerous to life and health [National Institute for Occupational Safety and Health (NIOSH)].

Notes: Occupational Safety and Health Administration (OSHA) ceiling value not to be exceeded during any part of the working day. Benzo(a)pyrene is listed as an indicator for polycyclic aromatic hydrocarbons (PAHs).

# ATTACHMENT D-1 AIR MONITORING STRATEGY

| EXPOSURE                    | METHOD                            | MONITORING<br>DESCRIPTION             | ACTION LEVEL (a)                                                | ACTION                                                                                                                   |
|-----------------------------|-----------------------------------|---------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Total Volatile Organics     | Photoionization<br>Detector (PID) | Periodically, or when odors are noted | <25 parts per<br>million (ppm)<br>25-75 ppm<br>>75 ppm          | Level D Protection  Level C Protection  Shut Down; Contact Corp. Health & Safety Officer; Implement Engineering Controls |
| Particulate<br>Contaminants | Dust Meter                        | Handling samples/<br>Continuously     | <0.001 milligrams<br>per cubic meter<br>(mg/m³)<br>>0.001 mg/m³ | Level D Protection Implement Engineering Controls; Upgrade to Level C in Interim                                         |

<sup>(</sup>a) For ambient air monitoring.

#### **ATTACHMENT D-2**

#### **EMERGENCY INFORMATION**

#### **HOSPITAL - Harborview Medical Center**

325 Ninth Avenue

Seattle, Washington 98104

Information: (206) 744-3000

#### **DIRECTIONS** -

- 1. Exit site on East Marginal Way South heading southeast
- 2. Turn LEFT onto S Boeing Access Road (0.4 miles)
- 3. Merge onto I-5 North toward Seattle (6.4 miles)
- 4. Take the Dearborn St./James St. exit (Exit #164A) toward Madison Street (1.0 miles)
- 5. Take the James St exit
- 6. Turn RIGHT onto James St (0.1 miles)
- 7. Turn RIGHT onto 9<sup>th</sup> Ave (0.1 miles)
- 8. Proceed to hospital

TELEPHONE - Cellular telephones to be carried by each team on/offshore.

EMERGENCY TRANSPORTATION SYSTEMS (Fire, Police, Ambulance) -911

EMERGENCY ROUTES - Map (HASP Figure 1)

#### **EMERGENCY CONTACTS -**

| Poison Control Center                | (206) 526-2121                      |
|--------------------------------------|-------------------------------------|
| Project Manager – Kris Hendrickson   | (425) 778-0907, cell (206) 910-1378 |
| Corporate H&S Manager – Chris Kimmel | (425) 778-0907                      |
| Boeing Contact – Katie Moxley        | (206) 579-2110                      |
| National Response Center             | (800) 424-8802                      |
| WA Div. of Emergency Management      | (800) 258-5990                      |
|                                      |                                     |

In the event of an emergency on land, call for help as soon as possible.

Contact Boeing Onsite Clinic and Medical Technicians (206-655-2222 or 2-2222 from a plant phone) and have the following information available:

- Site Name: Isaacson-Thompson
- Building #: Main Thompson Building is 14-01
- Column Number
- Door Number.

Then dial 911 and give the following information:

- WHERE the emergency is use cross streets or landmarks
- PHONE NUMBER you are calling from
- WHAT HAPPENED type of injury
- HOW MANY persons need help
- WHAT is being done for the victim(s)
- YOU HANG UP LAST let the person you called hang up first.

## FIGURE 1 HOSPITAL ROUTE AND MAP





## ATTACHMENT D-3 CERTIFICATION

All field members are required to read and familiarize themselves with the contents of this Health & Safety Plan and acknowledge their agreement to comply with the provisions of the plan through the entry of a signature and date on the section below.

| -            |       |       |         | • |         | . 1     |
|--------------|-------|-------|---------|---|---------|---------|
| Кī           | m     | 7 616 | nature, |   | Certity | ' that' |
| $\mathbf{p}$ | y III | y ole | mature, |   | CCILII  | mat.    |

- I have read
- I understand
- I will comply with this Site Health and Safety Plan for Boeing Isaacson-Thompson environmental investigations.

| Printed Name                  | Signature              | Date | Affiliation |
|-------------------------------|------------------------|------|-------------|
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
|                               |                        |      |             |
| Personnel health and safety b | oriefing conducted by: |      |             |
| Name                          | Signatur               | e    | Date        |
| Plan prepared by:             |                        |      |             |
| /                             | /                      |      | /           |
| Name                          | Signatur               | e    | Date        |
| Plan reviewed by:             |                        |      |             |
| /                             | /                      |      | /           |
| Name                          | Signatur               | e    | Date        |







## SITE-SPECIFIC HEALTH & SAFETY PLAN

Boeing Isaacson-Thompson Site Field Surveys and Sediment Sampling Tukwila, Washington

Submitted to:
The Boeing Company

Submitted by:

AMEC Geomatrix, Inc., Lynnwood, WA

May 2011



## **TABLE OF CONTENTS**

|                         |                                      | Pi                                                                                                                                                                  | age            |  |  |  |  |  |
|-------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 1.0                     | INTRO                                | DUCTION                                                                                                                                                             | 1              |  |  |  |  |  |
| 2.0                     | WORK                                 | ER TRAINING                                                                                                                                                         | 2              |  |  |  |  |  |
| 3.0                     | PERS                                 | ONNEL AND RESPONSIBILITIES                                                                                                                                          | 3              |  |  |  |  |  |
| 4.0                     | HAZAF                                | RD-CONTROL MEASURES                                                                                                                                                 | 4              |  |  |  |  |  |
| 5.0                     | PERSONAL PROTECTIVE EQUIPMENT6       |                                                                                                                                                                     |                |  |  |  |  |  |
| 6.0                     | CHEM<br>6.1                          | ICAL HAZARDSPotential Chemicals of Concern                                                                                                                          |                |  |  |  |  |  |
|                         | 6.2                                  | POTENTIAL CHEMICAL EXPOSURE ROUTES                                                                                                                                  | 7              |  |  |  |  |  |
|                         |                                      | 6.2.2 Ingestion 6.2.3 Inhalation 6.2.4 Air-Monitoring Procedures                                                                                                    | 8              |  |  |  |  |  |
| 7.0                     | PHYSI<br>7.1                         | CAL HAZARDSNoise Hazards                                                                                                                                            | 9              |  |  |  |  |  |
|                         | 7.2<br>7.3<br>7.4                    | HEAT STRESSGRAB SAMPLING (PNEUMATICALLY POWERED GRAB)                                                                                                               | 11             |  |  |  |  |  |
| 8.0                     |                                      | LE HANDLING                                                                                                                                                         |                |  |  |  |  |  |
| 9.0                     |                                      | CAL SURVEILLANCE                                                                                                                                                    |                |  |  |  |  |  |
| 10.0                    |                                      | RDOUS WASTE DISPOSAL                                                                                                                                                |                |  |  |  |  |  |
| 11.0                    | EMER<br>11.1<br>11.2<br>11.3<br>11.4 | GENCY RESPONSE PLAN  EMERGENCY EQUIPMENT  ASSEMBLY POINT  MEDICAL EMERGENCIES  GENERAL EMERGENCIES                                                                  | 15<br>15<br>16 |  |  |  |  |  |
| 12.0                    | RECO                                 | RD KEEPING                                                                                                                                                          | 18             |  |  |  |  |  |
| 13.0                    | RECO                                 | RD OF REQUIRED HEALTH AND SAFETY COMMUNICATION                                                                                                                      | 19             |  |  |  |  |  |
|                         |                                      | TABLES                                                                                                                                                              |                |  |  |  |  |  |
| Table<br>Table<br>Table | 1B                                   | Potential Contaminants in Site Sediments Potential Contaminants in Nearby Sediments Entry Routes and Symptoms of Contaminants that May be Present at the Study Site |                |  |  |  |  |  |
| Table                   | 2B                                   | Entry Routes and Symptoms of Contaminants Found in Nearby Sediments                                                                                                 |                |  |  |  |  |  |
|                         |                                      |                                                                                                                                                                     |                |  |  |  |  |  |



## **TABLE OF CONTENTS**

(Continued)

#### **FIGURES**

Figure 1 Site Plan

Figure 2 Route to Harborview Medical Center

## **APPENDICES**

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix E
Appendix E
Appendix E
Appendix F
Appendix F
Appendix F
Appendix F
Appendix F
Appendix A
WAC 296-843 Regulations for Hazardous-Waste Operations
Environmental Project Health & Safety Meeting Form
Job Safety Analysis Sheets
Material Safety Data Sheets
Dust Exposure Calculation Worksheet
Emergency Summary Information



## SITE-SPECIFIC HEALTH & SAFETY PLAN

Boeing Isaacson-Thompson Site Field Surveys and Sediment Sampling Tukwila, Washington

#### 1.0 INTRODUCTION

This Site-Specific Health & Safety Plan (H&S Plan) focuses on field activities that will occur at the Boeing Isaacson-Thompson Site for sediment sampling, and is a supplement to the Corporate Health & Safety Guidelines. The Corporate Health & Safety Guidelines will be used on this project to cover general safety issues. This H&S Plan is designed to comply with State of Washington Occupational Health Standards WAC 296-843, Hazardous Waste Operations (Appendix A).

The project team will conduct sediment sampling at the work site, located on the west side of East Marginal Way S at the end of South 87<sup>th</sup> Place, Tukwila, Washington. Sampling activities will include collection of sediments from the intertidal and subtidal areas of the river for chemical analysis. Anticipated primary hazards are the potential for tripping or falling along the shoreline and piers, injury from operating vessels and machinery, and hazards from operating sampling equipment. Use of personal safety equipment (boots, gloves, safety glasses, and splash suits) will minimize chemical exposure hazards. Entry into confined spaces is not anticipated.

This H&S Plan applies to all AMEC Geomatrix, Inc. (AMEC), personnel, subcontractors, and visitors present during field surveys and sampling activities.

Any unforeseen situation that is not addressed in this H&S Plan, such as needing to operate gasoline-powered equipment on the site or use of flammable liquids on the site, will be discussed with the Boeing Representative prior to use.



#### 2.0 WORKER TRAINING

All personnel entering the exclusion zone, contamination-reduction zone, or support zone are required to have current hazardous-materials training, first aid and cardiopulmonary resuscitation (CPR) training, and medical surveillance on record with the Project Health & Safety Officer.

All field personnel will be provided with a review copy of this H&S Plan, the Corporate Health & Safety Guidelines, and WAC 296-843 (Appendix A), which details Washington State regulations for hazardous-waste operations. All employees must read these documents and sign (Section 13.0) of the Site Health & Safety Officer's copy.

The Site Health & Safety Officer will hold a daily "toolbox" safety meeting at the start of each field workday. Topics such as work zones, location of safety equipment, evacuation routes, and new safety issues will be discussed at this time. A record of the toolbox safety meeting will be made daily using the Environmental Project Health & Safety Field Meeting Form (Appendix B). Additional "toolbox" safety briefings will be held and documented for any personnel or subcontractors who arrive after the morning safety meeting has been held.

The Site Health & Safety Officer will make a log of the field activities performed each day on the daily safety meeting form.



#### 3.0 PERSONNEL AND RESPONSIBILITIES

The following key personnel from AMEC can be reached at the Lynnwood office by phone at (425) 921-4000 or by fax at (425) 921-4040 unless otherwise noted.

- Landau Corporate Health & Safety Manager, Chris Kimmel, (425) 778-0907
  - Addresses matters concerning corporate health and safety policy.
  - Coordinates with agencies on matters of health and safety.
- Landau Project Manager, Kris Hendrickson (425) 778-0907 (office), (206) 910-1378 (cell)
  - Coordinates with Project Managers.
  - Informs all employees and subcontractors of potential hazards before they begin work.
  - Implements health and safety requirements.
  - Consults with Site Health & Safety Officer if new site conditions arise.
- AMEC Project Health & Safety Officer, Tim Reinhardt, CIH (206) 838-8464 (direct), (425) 241-5816 (cell)
  - Addresses matters concerning corporate health and safety policy.
  - Coordinates with agencies on matters of health and safety.
- Site Health & Safety Officer, Gary Maxwell (206) 276-1034 (cell)
  - Develops project health and safety plans.
  - Reviews subcontractor health and safety plans.
  - Coordinates with Project Manager and subcontractors.
- AMEC Project Manager, Cliff Whitmus (425) 921-4023 (office), (206) 300-0520 (cell)
  - Coordinates with Site Health & Safety Officer and subcontractors.
  - Informs all employees of potential hazards before they begin work.
  - Implements health and safety requirements.
  - Consults with Site Health & Safety Officer if new site conditions arise.
  - Takes appropriate action as field conditions change.
- Boeing Representative, Katie Moxley (206) 579-2110
- Poison Control Center, (206) 526-2121
- National Response Center, (800) 424-8802
- WA Division of Emergency Management, (800) 258-5990
- Field Team Members
  - Complies with the H&S Plan requirements.
  - Informs Site Health & Safety Officer of potential uncontrolled work hazards when observed.
  - Works safely within scope of their training and experience.



#### 4.0 HAZARD-CONTROL MEASURES

For site control, establish a support zone, a contamination-reduction zone, and an exclusion zone on the sampling vessel and at any shore-based sample-processing area. These zones are required whenever potentially contaminated sediments or samples are being handled. Clearly define the zones at the site by using rope, barriers, tape, or other obvious marking methods. Also clearly define controlled entrances and exits from each zone. Of critical importance is the definition of the hot line separating the exclusion zone from the contamination-reduction zone and the borders of the contamination-reduction corridor. The exact zones will be determined by the Project Manager at the start of field sampling activities.

Communicate a site plan (Figure 1) at the work site. Identify evacuation routes and muster points, the support zone, contamination-reduction zone, and exclusion zone. Employees will not work alone in the exclusion zone, but will always be in contact with another team member who is equipped and ready to provide aid in an emergency under the "Buddy System."

Because ingestion is an exposure route for chemical contamination (see Section 6.2.2), eating is not permitted in the contamination-reduction zone or the exclusion zone. Likewise, smoking is not permitted in the support, contamination-reduction, or exclusion zones.

Wear eye protection and steel-toed boots at the work site. Before entering the exclusion zone, don Level "D" protective clothing: This clothing includes hard hats, chemical-resistant steel-toed boots, chemical-resistant splash suits, and eye protection. Wear ear protection while operating sediment coring equipment, the core tube cutting saw, and other loud machinery. Wear chemical-resistant gloves when handling samples or contaminated equipment. Wear life jackets when working on boats or pier structures

After sampling, perform decontamination in the contamination-reduction zone: Wash boots, gloves, and chemical-resistant splash suits (if reusable) with soap and water using a scrub brush; repeat this wash with a second soap bath and brush, followed by a clean-water rinse. After decontamination is complete, remove protective equipment before exiting the contamination-reduction zone. Wash hands after protective gear is removed.

Place soiled disposable protective clothing in plastic bags and seal with tape. Place bags containing waste into on-site waste disposal containers. Transfer waste wash water and rinse water into waste-disposal drums provided by Boeing. When disposing of waste materials, follow the instructions defined in the Hazardous Waste Disposal section (Section 10.0) of this document. All waste drums must be properly labeled to indicate their contents.



Visitors requesting to observe actual site work must be briefed by the Site Health & Safety Officer regarding restricted zones and other safety-related issues. Visitors must remain in the support zone unless they can show that they have hazardous-materials training and can provide their own safety equipment. Keep a record of all visitors and their company affiliations.

A Job Safety Analysis has been performed and is provided in Appendix C.

|                      |          | Anticipated Hazards |                 |                       |                      |       |             |             |         |                |                   |                |          |                      |            |                |
|----------------------|----------|---------------------|-----------------|-----------------------|----------------------|-------|-------------|-------------|---------|----------------|-------------------|----------------|----------|----------------------|------------|----------------|
|                      |          |                     |                 |                       |                      |       |             | Haz         | ards    |                |                   |                |          |                      |            |                |
|                      |          |                     |                 |                       |                      |       | Phy         | sical       |         |                |                   |                |          |                      |            |                |
| TASK                 | Chemical | Slip / Trip / Fall  | Heavy Equipment | Underground Utilities | Overhead Power Lines | Noise | Heat Stress | Cold Stress | Sunburn | Sharp/abrasion | Trench/Excavation | Confined Space | Traffic  | Insects and Wildlife | Electrical | General Safety |
| Sediment<br>Sampling | <b>✓</b> | ✓                   |                 |                       |                      | ✓     | ✓           | ✓           | ✓       | ✓              |                   |                | <b>✓</b> |                      |            | ✓              |
| Core<br>Processing   | 1        | <b>✓</b>            | <b>✓</b>        |                       |                      | ✓     | ✓           |             |         | ✓              |                   |                | ✓        |                      | ✓          | <b>✓</b>       |



## 5.0 PERSONAL PROTECTIVE EQUIPMENT

A modified Level D personal protection equipment (PPE) ensemble will be used with the main objective to prevent unnecessary dermal exposure. The Project H&S Officer will be consulted to up- or downgrade the PPE requirements. The following PPE is required for sediment sampling, unless conditions change:

| PPE Required                              | General Site Work and<br>Sediment Sampling |
|-------------------------------------------|--------------------------------------------|
| Steel-Toe/Shank Boots (rubber or leather) | X                                          |
| Hard Hat                                  | X/O                                        |
| Safety Glasses/Goggles                    | X                                          |
| Face Shield (for pressure washing)        | 0                                          |
| Hearing Protection                        | Av                                         |
| Gloves (nitrile inner/PVC outer):         | Av                                         |
| Outer Only                                | Av                                         |
| Inner Only                                | Av                                         |
| Splash Suit (rain gear)                   | Av                                         |
| Tyvek (or equivalent) Coverall (coated)   | Av                                         |
| High-Visibility Vest                      | Av                                         |
| Other (specify)                           |                                            |

Key:

X = PPE Required

O = PPE Optional

Av= Have Available



#### 6.0 CHEMICAL HAZARDS

Material Safety Data Sheets (MSDS) are provided in Appendix D for potentially toxic materials that might be used on project.

Potential chemical hazards are discussed below.

#### 6.1 POTENTIAL CHEMICALS OF CONCERN

Sediments at the study site may be contaminated with a variety of toxic compounds. High levels of polychlorinated biphenyls (PCBs) have been found at nearby sampling locations and low levels of volatile compounds have been found at one nearby sampling location. Although sediments may contain contaminants, concentration levels are expected to be below levels that will produce significant exposures when prescribed personal protective equipment is used. The planned sampling activities should limit potential exposures at this site because sediments to be sampled will be wet. Appropriate protective clothing will be used to further minimize any contact exposures.

Sampling and sample-handling activities may result in exposure to potentially contaminated sediments. Based on available site information, sediment samples are known or suspected to contain the chemicals listed in Table 1A. Chemicals found at a nearby sampling station are listed in Table 1B.

#### 6.2 POTENTIAL CHEMICAL EXPOSURE ROUTES

Possible routes for chemical exposure include skin and eye contact, ingestion, and inhalation. Entry routes and symptoms of contaminants known or suspected to be present at the study site are listed in Table 2A. Entry routes and symptoms for contaminants found at a nearby sampling location are listed in Table 2B.

#### 6.2.1 Skin/Eye Contact

Contamination with some types of chemicals can occur if the contaminant comes in direct contact with skin, eyes, or clothing. Contaminants may directly affect the skin or be absorbed through the skin. Protective clothing, eye protection, and decontamination procedures specified in this plan are designed to minimize the potential for skin and eye contact with contaminants.

## 6.2.2 Ingestion

Contamination may occur if individuals eat, drink, smoke, or have hand-to-mouth contact while in contaminated areas. Such activities will be restricted to the support zone, and personnel will be decontaminated before entering this area. Smoking is not permitted at the work site.



#### 6.2.3 Inhalation

Vapors from volatile materials can be inhaled and absorbed through the lungs. Low levels of volatile compounds have been found at a single sampling location in the Duwamish River navigation channel. Samples will be processed outside and extra ventilation will be available, if needed, to move stagnant air. The presence of significant amounts of volatile compounds in the air is not expected during core collection or processing.

Because the samples are wet, dusts are not expected to present a significant risk. Mud drippings will be kept damp and cleaned up daily to avoid the generation of any visible dust. Because waste mud and soils will be cleaned daily before they dry, the potential for dust creation is minimal. In the unlikely event that dust becomes an issue, a Dust Exposure Calculation Worksheet is provided in Appendix E.

Because sampling will be performed outdoors or in a well-ventilated environment and only small amounts of contaminated material will be handled, vapors are not expected to present a significant risk.

## 6.2.4 Air-Monitoring Procedures

During collection of the cores, the sediments will be inside of an unopened core tube; therefore, air quality monitoring is not needed for the on-water coring phase of the project.

The presence of significant amounts of volatile compounds is not expected during sediment sample processing. Sample processing will be performed in well ventilated areas, and only small amounts of sample materials will be handled at any one time. If strong odors are detected, personnel will leave the area until additional ventilation is in place that reduces the vapor levels below noticeable levels. If this is not possible, core processing will be suspended until air quality testing equipment is available.

Based on the maximum site contaminant concentrations, a combined occupational exposure limit to the mixture of soil-borne nonvolatile contaminants would not be reached until personal dust exposures exceeded 1 milligram per cubic meter (mg/m³), a level that is readily visible in ambient air.



#### 7.0 PHYSICAL HAZARDS

Job Safety Analysis Sheets for these activities on this project are provided in Appendix C.

- The site is a restricted industrial site. Personnel are restricted to authorized areas only. Industrial activities will occur at the site during sampling.
- Follow general safety precautions associated with working in industrial areas. Precautions include watching for moving equipment, overhead hazards, electrical hazards, and loud noises.
- Do not perform sampling activities without prior approval of the Boeing Representative. The Boeing Representative will be informed of the nature and location of each day's activities.
- Use steel-toed boots at all times at the site.
- Wear eye protection during all operations involving sample handling where significant risk of splashing is present.
- Wear ear protection while operating sediment coring equipment and other loud machinery.
- No smoking is permitted aboard vessels, inside buildings, or in sample processing areas.
- The use of matches or lighters is prohibited at all site areas.
- Wear life jackets and hard hats at all times while aboard vessels or on piers or docks.
- Wear hard hats at all times while working under buildings, piers, or dock structures with low overhead clearance.
- When operating a vehicle, observe all posted speed limits and traffic signs.
- Forklifts may be operating inside of buildings. Watch for moving traffic. Make eye contact with operator if are near operating equipment.
- When exiting buildings watch for traffic.

#### 7.1 Noise Hazards

Site personnel will wear hearing protection when working near noisy equipment, such as the MudMole™ sampler, the core tube cutting saw, or in other noisy conditions. Hearing protection will be worn when two people standing within 3 feet of each other cannot communicate at normal conversational voice levels. This is to prevent hearing loss that can occur when daily 8-hour TWA noise exposures meet or exceed 85 decibels adjusted (dBA) (WAC 296-817-20015).

#### 7.2 HEAT STRESS

Heat stress is a moderate hazard during the summer months in the Pacific Northwest, but becomes a significant hazard for workers wearing protective clothing. To avoid heat stress, cool potable water will be readily available, and site personnel will be encouraged to drink



plenty of fluids and take periodic work breaks in hot weather. The signs, symptoms, and treatment of heat stress include:

- **Heat rash**, which may result from exposure to heat or humid air.
- Heat cramps, which are caused by heavy sweating with inadequate electrolyte replacement. Signs and symptoms include: muscle spasms and pain in the hands, feet, and abdomen. Persons experiencing these symptoms should rest in a cooler area, drink cool (not cold) liquids, and gently massage cramped muscles.
- Heat exhaustion, which occurs from increased stress on various body organs including inadequate blood circulation due to cardiovascular insufficiency or dehydration. Signs and symptoms include: pale, cool, moist skin; heavy sweating; dizziness; nausea; and fainting. Persons experiencing these symptoms should lie down in a cooler area, drink cool liquids with electrolytes (Gatorade, etc.), remove any protective clothing, and cool body with wet compresses at forehead, back and neck, and/or armpits.
- Heat stroke is the most serious form of heat stress. Temperature regulation fails
  and the body temperature rises to critical levels. Immediate action must be taken
  to cool the body before serious injury and death occur. Competent medical help
  must be obtained. Signs and symptoms are: red, hot, usually dry skin; lack of or
  reduced perspiration; nausea; dizziness and confusion; strong, rapid pulse; and
  coma.

If site temperatures are forecast to exceed 85 degrees Fahrenheit (°F) and physically demanding site work will occur in impermeable clothing, the Site Health & Safety Officer will promptly consult with a certified industrial hygienist (CIH) and a radial pulse monitoring method will be implemented to ensure that heat stress will be properly managed among the affected workers. The following chart indicates the relative risk of heat stress.



Combined temperature and humidity conditions that result in a heat index exceeding 100 will trigger mandatory radial-pulse monitoring and heat-stress management.



## 7.3 GRAB SAMPLING (PNEUMATICALLY POWERED GRAB)

Hazards include strains while moving the sampling equipment and pinching extremities in moving parts. When moving the grab sampler use care and observe proper lifting techniques.

On a daily basis, inspect the grab for damage, loose bolts, or cracked welds. Make sure lifting shackles are tight before lifting the grab with the winch.

The winch operator should coordinate movement of lifted loads with the deckhand and not operate the winch until the deckhand is ready and use agreed-upon hand signals in noisy conditions.

When cleaning the grab sampler, the direction control (open or closing) valve should be left in the previous position and the safety valve closed to ensure that the grab cannot be accidentally operated. After making sure that your hands are clear of any moving parts, set the direction control valve then arm the grab by opening the safety valve just prior to deployment of the sampler.

Wear hard hat, heavy chemical-resistant gloves, and eye protection when operating sampler.

Spare air cylinders should be securely stored to avoid tipping or damage to the valves.

## 7.4 MUDMOLE<sup>TM</sup> SAMPLING

The MudMole<sup>™</sup> uses compressed air to operate a reciprocating pneumatic hammer that drives the sediment core tube into the bottom sediments. Hazards include strains while moving the equipment, noise from the air compressor, hydraulic power pack, and the MudMole<sup>™</sup>. Care should be used to observe proper lifting techniques when manually moving the MudMole<sup>™</sup>.

The MudMole™ and air supply hoses should be inspected daily to ensure that they are in good condition.

Air disconnect fittings must be safety pinned before starting the air compressor.

The winch operator should coordinate movement of lifted loads with the deckhand and not operate the winch until the deckhand is ready and use agreed upon hand signals in noisy conditions

Wear hard hat, heavy chemical-resistant gloves, and eye protection when operating sampler. Hearing protection must be worn when the air compressor is running.



#### 8.0 SAMPLE HANDLING

Place samples into containers with snug-fitting lids to prevent leakage of the sample material or preservative. Pack glass containers carefully to reduce the chances of breakage. Clearly label all sample containers. Double-check the sample container lid for tightness before transporting the sample. Pack sediment-sample containers in plastic ice chests for transport.

Wear the prescribed level of protective clothing when handling sample containers. Advise laboratory personnel either by telephone or written statement of the sample hazard level and the potential contaminants the sample may contain.

Samples will be transported by AMEC personnel whenever practical. If transportation by common carrier is necessary, federal regulations relating to the shipment of hazardous materials will be followed. Ask the Site Health & Safety Officer for help in filling out the required paperwork before shipment.



#### 9.0 MEDICAL SURVEILLANCE

All employees and subcontractors must have a medical surveillance physical performed before working at the field site and at least once every other year thereafter, at no cost to the employee. A final medical exam should be performed when employment with the firm ends. The employee has the option to waive the exit medical exam if an annual exam has been performed within the previous 6 months. An additional medical-surveillance physical should be performed as soon as possible following any emergency incident involving chemicals or at any time that signs or symptoms of a chemical overexposure are detected. It is the responsibility of the employee to remind his or her supervisor when it is time to have an annual medical exam.

A record of the physician's report will be provided to the employee, if requested, and a copy of the report will be kept in the employee's personnel record for 30 years from the date of termination of employment.

For the medical-surveillance exam, the physician will do the following:

- Perform an occupational and medical history (baseline) physical examination including the following:
  - Medical history and general physical exam
  - Visual acuity test
  - Audiogram
  - Pulmonary function test
  - Any other tests the physician feels are appropriate
- Provide a written medical report containing the following:
  - The results of the medical examination
  - The examining physician's opinion of the employee's fitness to be exposed to worksite conditions, including any recommended restrictions or limitations.
- Notify patient of any abnormal findings at time of exam.
- Inform the Corporate Health & Safety Manager if there are any medical abnormalities or irregularities.
- Supply patient with copies of exam results, if requested.

WorkCare, Inc., will retain all records of exams.



#### 10.0 HAZARDOUS WASTE DISPOSAL

AMEC and its subcontractors will employ safe and prudent waste-collection and housekeeping practices to minimize the spread of contamination beyond the work zone and the amount of investigation-derived wastes. Although Boeing is ultimately responsible for the final and proper disposal of all investigation-derived wastes, the Project Manager will work with the Boeing Representative to ensure the proper collection, packaging, and identification of waste materials so that Boeing can properly dispose of waste materials.

All hazardous waste materials must be disposed of according to federal and state laws. In the field, place waste chemicals in a leak-proof container, and write the name of the chemical and estimated concentration on the container. Different materials must not be mixed together.

Store waste sediments left over from sample processing and decontamination waste water in waste-disposal drums provided by Boeing. Label each waste-disposal drum with labels provided by the Boeing Representative. Disposal of the stored waste material is the responsibility of Boeing.

To the extent practical, contaminated equipment and soiled disposable protective clothing will be placed in plastic bags, sealed with tape, and placed in designated hazardous waste receptacles. Used core tubes will be plastic wrapped and placed in a hazardous waste dumpster provided by the client.

Equipment that cannot be disposed of will be decontaminated using light oil (WD-40 or kerosene). The decontamination process will be performed over a waterproof tarp, and oil drippings will be captured in pans and then placed in waste drums. A 20:B/C fire extinguisher will be kept nearby while performing decontamination using petroleum products.

If excess sediment is collected, it will be placed into waste disposal drums provided by Boeing. Drum lids are to be securely fastened in place at the end of each day.

Document all material placed into the drums. Record the sampling station number, type, and quantity of each waste material on the barrel label.



#### 11.0 EMERGENCY RESPONSE PLAN

Immediately notify the Project Manager, Project Health & Safety Officer, and the Boeing Representative of any emergency or injury. WorkCare should be contacted within 1 hour of an injury. An emergency situation is defined as any chemical loss, discovery of physical injury, explosion, fire, spill, toxic atmosphere, earthquake, or similar dangerous or harmful situation.

Any person discovering an emergency shall immediately alert others by voice, if practical. Evacuation routes will be discussed during the orientation or daily toolbox safety meetings. Shore based sampling crews will be equipped with a cellular telephone for use in case of emergency. A summary of emergency contacts is provided in Appendix F.

Employees not engaged in correcting or mitigating the emergency must leave the area. Employees will reassemble at a prearranged assembly point, and the Site Health & Safety Officer will account for all personnel.

#### 11.1 EMERGENCY EQUIPMENT

The following minimum emergency equipment will be readily available on site and functional at all times:

- First Aid Kit, contents approved by the Site Health & Safety Officer;
- Absorbent material sufficient to contain the volume of the largest single container of hazardous materials (e.g., gas and diesel) brought on site;
- Portable fire extinguisher(s) (4:A, 20:B/C min or equivalent) (e.g., in truck or drill rig cab);
- Two spare sets of PPE suitable for entering the emergency zone; and
- A copy of the current site-specific health and safety plan.

#### 11.2 ASSEMBLY POINT

An assembly point of refuge will be identified by the Site Health & Safety Officer and communicated to the field team each day. This point will be clear of adjacent hazards and preferably upwind or cross-wind for the entire day. In an emergency, all site personnel and visitors will evacuate to the muster point for roll call versus the daily site log. It is important that each person on site understand their role in an emergency, and that they remain calm and act efficiently to ensure everyone's safety.

Reasonably foreseeable emergency situations include: Medical emergencies, accidental release of hazardous materials (such as gasoline or diesel) or hazardous waste, and general



emergencies such as fire, thunderstorm, flooding, and earthquake. Expected actions for each potential incident are outlined below.

#### 11.3 MEDICAL EMERGENCIES

In the event of a medical emergency, the following procedures should be used.

- 1. Stop any imminent hazard if you can safely do so.
- 2. Remove ill, injured, or exposed person(s) from immediate danger if moving them will clearly not cause them harm, and no hazards exist to the rescuers.
- 3. Evacuate other on-site personnel to a safe place in an upwind or cross-wind direction until it is safe for work to resume.
- 4. If serious injury or life-threatening condition exists, call:

## Boeing emergency number ([206] 655-2222) immediately.

Clearly describe the location, injury, and conditions to the dispatcher. Designate a person to go to the site entrance and direct emergency equipment to the injured person(s). Provide the responders with a copy of this H&S Plan, to alert them to chemicals of potential concern.

- 5. Trained personnel may provide first aid/cardiopulmonary resuscitation if it is necessary and safe to do so. Remove contaminated clothing and PPE only if this can be done without endangering the injured person.
- 6. Call the Project Health & Safety Officer or the Project Manager.
- 7. For serious accidents involving a fatality, life threatening injuries, or multiple persons being injured, the accident scene should be persevered for investigators. Equipment involved in the accident should only be moved to the extent necessary to conduct rescue operations and to prevent further injuries.
- 8. Immediately implement steps to prevent recurrence of the accident.

A map (Figure 2) showing the nearest hospital location is attached to this H&S Plan.

Harborview Medical Center 325 Ninth Avenue Seattle, Washington 98104 (206) 744-3000

Telephone number of nearest Poison Control Center: (800) 222-1222.



#### 11.4 GENERAL EMERGENCIES

In the case of fire, rapid flooding, explosion, earthquake, or other imminent hazard, work shall be halted and the **Boeing Emergency Dispatch will be contacted at (206) 655-2222** when using a Boeing land line. The Boeing Fire Department is the primary emergency response at the site and will call in additional resources as needed. All on-site personnel will be immediately evacuated to a safe place.

The local police/fire department shall be notified if the emergency poses a continuing hazard by calling 911. In the event of a thunderstorm, outdoor work will be discontinued until the threat of lightning has abated. During the incipient phase of a fire, the available fire extinguisher(s) may be used by persons trained in putting out fires, if it is safe for them to do so. In summary, remember the following in an emergency:

- For all life-threatening emergencies at the site, call (206) 655-2222.
- Do not move a victim unless absolutely necessary.
- Provide first aid as necessary until paramedics arrive.
- Do not move any equipment involved in the accident unless it is necessary to facilitate rescue. This will help investigators to determine the cause of the accident.
- Any accident or injury must be reported to the Boeing Representative and the Project Health & Safety Officer as soon as possible.
- You must report the death, or probable death, of any employee, or the in-patient hospitalization of two or more employees within 8 hours to the Washington Department of Labor and Industries at 1-800-423-7233.



#### 12.0 RECORD KEEPING

Documentation of hazardous materials, CPR and first-aid training, medical surveillance, daily health and safety reports, and safety meetings will be kept at the AMEC Seattle office and will be available for inspection at any time. All records are to be kept for 30 years.

Internal health and safety audits to verify implementation of the H&S Plan may be performed at any time and without prior notice during site investigations. Corrective action will be determined and follow-up audits will be performed if violations of the H&S are identified.



## 13.0 RECORD OF REQUIRED HEALTH AND SAFETY COMMUNICATION

The people listed below were given a copy of the H&S Plan for Boeing Isaacson-Thompson Site Field Surveys and Sediment Sampling. By signing below, they indicate that they have read the plan, including the attached appendices, and that they understand the requirements detailed for work practices on this project.

| Name | Signature | Date |
|------|-----------|------|
|      |           |      |
|      |           |      |
|      |           | _    |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           |      |
|      |           | _    |
|      |           | -    |



**TABLES** 



#### **TABLE 1A**

#### POTENTIAL CONTAMINANTS IN SITE SEDIMENTS

Boeing Isaacson-Thompson Site Tukwila, Washington

|                             | Maximum<br>Detected Value | PEL<br>in mg/m <sup>1</sup> | TLV<br>in mg/m¹ | STEL<br>in mg/m <sup>1</sup> | IDLH<br>in mg/m¹ |
|-----------------------------|---------------------------|-----------------------------|-----------------|------------------------------|------------------|
| Metals² (mg/kg)             |                           |                             | 100             |                              |                  |
| Silver                      | 5.7                       | 0.01                        | 0.01            |                              | 10               |
| Cadmium                     | 12.4                      | 0.005                       | 0.005           |                              | 50               |
| Chromium                    | 340                       | 1.0                         | 1.0             |                              | 250              |
| Mercury                     | 4.6                       | 0.01                        | 0.01            | 0.03                         | 10               |
| Copper                      | 297                       | 1                           | 1               |                              | 100              |
| Lead                        | 5,590                     | 0.05                        | 0.05            |                              | 100              |
| Zinc                        | 1,740                     | 5                           | 5               |                              | 500              |
| LPAHs³ (µg/kg)              |                           | 0.2                         |                 |                              | 80               |
| Acenaphthene                | 760                       | NE                          | NE              | NE                           | NE               |
| Phenanthrene                | 1,400                     | 0.2                         | 0.2             | NE                           | NE               |
| HPAHs³ (µg/kg)              |                           | 0.2                         |                 |                              | 80               |
| Fluoranthene                | 5,300                     | 0.2                         | 0.2             |                              | 80               |
| Pyrene                      | 830                       | 0.2                         | 0.2             |                              | 80               |
| Benzo(a)anthracene          | 2,200                     | 0.2                         | 0.2             |                              | 80               |
| Chrysene                    | 2,800                     | 0.2                         | 0.2             |                              | 80               |
| Phthalates (µg/kg)          |                           |                             |                 |                              |                  |
| Butyl benzyl phthalate      | 7,100                     | 0.54                        | NE              | NE                           | NE               |
| Bis(2-ethylhexyl) phthalate | 8,600                     | 5                           | 5               | 10                           | NE               |
| PCBs <sup>1</sup>           | 51,000                    | 0.5                         | 0.5             |                              | 5                |

#### Note(s)

- 1. Identified as possible carcinogen; exposure limit based on PCB compound with 54% chlorine (Aroclor® 1254).
- 2. Exposure limits based on lowest reported value for metallic form as dust or metallic compound.
- 3. Identified as possible carcinogen; exposure limit based on the closely related coal-tar volatiles.
- 4. Occupational exposure limit from literature (Aldyreva, M.V., et al., 1974, Gig Tr Sostoyanie Spetsificheskikh Funkts Rab Neftekhim Khim Prom-Sti: 154-9).

#### Abbreviation(s)

HPAHs = high-molecular-weight polycyclic aromatic hydrocarbons

IDLH = immediately dangerous to life and health

LPAHs = low-molecular-weight polycyclic aromatic hydrocarbons

mg/kg = milligrams per kilogram

mg/m = milligrams per meter

NE = not established

PCBs = polychlorinated biphenyls

PEL = permissible exposure limit

STEL = short-term exposure limit

TLV = threshold limit value

μg/kg = micrograms per kilogram



#### **TABLE 1B**

# POTENTIAL CONTAMINANTS IN NEARBY SEDIMENTS

Boeing Isaacson-Thompson Site Tukwila, Washington

| Volatiles                          | Maximum Detected<br>Value in Sediment<br>in mg/kg | TWA<br>in mg/m³ | STEL<br>in mg/m³ | IDLH<br>in mg/m³ |
|------------------------------------|---------------------------------------------------|-----------------|------------------|------------------|
| Cis-1,2-Dichlorethene <sup>1</sup> | 200                                               | 790             | NE               | 16,120           |
| Toluene                            | 8.3                                               | 375             | 560              | 7,660            |
| Xylene                             | 5.3                                               | 435             | 655              | 4,410            |
| Vinyl chloride <sup>2</sup>        | 60                                                | 1               | 5                | Carcinogen       |

#### Note(s)

- 1. Values based on 1,2-Dicholoethylene. Exposure limits based on lowest reported value for metallic form as dust or metallic compound.
- 2. Identified as possible carcinogen.

#### Abbreviation(s)

IDLH = immediately dangerous to life and health

mg/kg = milligrams per kilogram

mg/m³ = milligrams per cubic meter

NE = not established

STEL = short-term-exposure limit

TWA = time-weighted average



# **TABLE 2A**

# ENTRY ROUTES AND SYMPTOMS OF CONTAMINANTS THAT MAY BE PRESENT AT THE STUDY SITE

Boeing Isaacson-Thompson Site Tukwila, Washington

|                                                 | Entry Routes                                                         | Common Symptoms <sup>1</sup>                                                                                                  | Target Organs                                              |
|-------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Metals                                          |                                                                      |                                                                                                                               |                                                            |
| Cadmium                                         | Inhalation,<br>ingestion                                             | Cough, chest tightness, chills, muscular aches                                                                                | Respiratory<br>systems, kidneys,<br>prostrate              |
| Chromium Silver                                 | Inhalation,<br>ingestion, skin or<br>eye contact                     | Sensitization dermatitis                                                                                                      | Respiratory<br>system, skin                                |
| Silver                                          | Inhalation,<br>ingestion, skin or<br>eye contact                     | Blue-gray eyes, throat irritation, gastrointestinal distress                                                                  | Nasal septum,<br>skin, eyes,<br>gastrointestinal<br>tract  |
| Mercury                                         | Inhalation,<br>ingestion, skin or<br>eye contact, skin<br>absorption | Cough; chest pains;<br>irritability; indecision; spastic,<br>jerky movements; visual<br>disturbance                           | Skin, respiratory,<br>system, CNS,<br>kidneys, eyes        |
| Copper                                          | Inhalation,<br>ingestion, skin or<br>eye contact                     | Cough, chest tightness, itching, dermatitis, fever, chills, upper respiratory symptoms                                        | Respiratory,<br>system, CNS,<br>liver, kidneys             |
| Lead Inhalation, ingestion, skin or eye contact |                                                                      | Weakness, lassitude,<br>insomnia, facial pallor,<br>constipation, anemia, eye<br>irritation, paralysis of wrists<br>or ankles | Gastrointestinal<br>tract, CNS,<br>kidneys, blood,<br>gums |
| Zinc Inhalation, ingestion                      |                                                                      | Metallic taste, dry throat,<br>cough, low-back pain,<br>vomiting                                                              | Respiratory<br>system                                      |
| LPAHs                                           | Inhalation,<br>ingestion, skin or<br>eye contact                     | Skin irritation, nausea,<br>vomiting, diarrhea,<br>convulsions                                                                | Skin, CNS,<br>kidneys, liver                               |
| Acenaphthene                                    | ND                                                                   | ND                                                                                                                            | ND                                                         |
| Phenanthrene                                    | ND                                                                   | ND                                                                                                                            | ND                                                         |
| HPAHs                                           | Inhalation,<br>ingestion, skin or<br>eye contact                     | Skin irritation, nausea,<br>vomiting, diarrhea,<br>convulsions                                                                | Skin, CNS,<br>kidneys, liver                               |
| Fluoranthene                                    | ND                                                                   | ND                                                                                                                            | ND                                                         |
| Pyrene                                          | ND                                                                   | ND                                                                                                                            | ND                                                         |
| Benzo(a)anthracene ND                           |                                                                      | ND                                                                                                                            | ND                                                         |
| Chrysene                                        | ND                                                                   | ND                                                                                                                            | ND                                                         |



#### **TABLE 2A**

# ENTRY ROUTES AND SYMPTOMS OF CONTAMINANTS THAT MAY BE PRESENT AT THE STUDY SITE

Boeing Isaacson-Thompson Site Tukwila, Washington

|                             | Entry Routes        | Common Symptoms <sup>1</sup>         | Target Organs |
|-----------------------------|---------------------|--------------------------------------|---------------|
| Phthalates                  |                     |                                      |               |
| Butyl benzyl phthalate      | ND                  | ND                                   | ND            |
| Bis(2-ethylhexyl) phthalate | ND                  | ND                                   | ND            |
| PCBs                        | Skin or eye contact | Skin irritation, nausea,<br>vomiting | Skin, liver   |

#### Note(s)

1. Symptoms are those most useful in recognizing field exposure to a contaminant. Other less-obvious symptoms may occur.

#### Abbreviation(s)

CNS = central nervous system

HPAHs = high-molecular-weight polycyclic aromatic hydrocarbons

IDLH = immediately dangerous to life and health

LPAHs = low-molecular-weight polycyclic aromatic hydrocarbons

ND = no data were available



#### **TABLE 2B**

# ENTRY ROUTES AND SYMPTOMS OF CONTAMINANTS FOUND IN NEARBY SEDIMENTS

Boeing Isaacson-Thompson Site Tukwila, Washington

|                        | Entry Routes                                                         | Common Symptoms <sup>1</sup>                                                                                                                                         | Target Organs                                           |
|------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Volatiles              |                                                                      |                                                                                                                                                                      |                                                         |
| Cis-1,2-Dicholorethene | Inhalation,<br>ingestion, skin or<br>eye contact                     | Eye and skin irritation,<br>CNS depression²                                                                                                                          | Respiratory<br>system, eyes,<br>CNS                     |
| Toluene                | Inhalation, skin<br>absorption,<br>ingestion, skin or<br>eye contact | Fatigue, weakness, confusion, euphoria, dizziness, headache, dilated pupils, muscle fatigue, itching or tingling, insomnia                                           | CNS, liver,<br>kidneys, skin                            |
| Vinyl chloride         | Inhalation                                                           | Weakness, abdominal pain,<br>gastrointestinal bleeding,<br>hepatomegaly, pallor or cyan of<br>extremities, carcinogen                                                | Liver, CNS, blood, respiratory system, lymphatic system |
| Xylene                 | Inhalation, skin<br>absorption,<br>ingestion, skin or<br>eye contact | Dizziness, excitement, drowsiness, incoherent staggering gait; irritated eyes, nose, and throat; corneal vacuolization; nausea, vomiting, abdominal pain; dermatitis | CNS, eyes, GI<br>tract, blood, liver,<br>kidneys, skin  |

#### Note(s)

- 1. Symptoms are those most useful in recognizing field exposure to a contaminant. Other less-obvious symptoms may occur.
- 2. Symptoms based on 1,2-Dicholoethylene.

# Abbreviation(s)

CNS = central nervous system GI = gastrointestinal



**FIGURES** 





BOEING ISAACSON-THOMPSON SITE Sediment Investigation Sample and Analysis Plan Tukwila, Washington

| Ву: | rhg    | Date: 4/28/2011 | Project No. | LY11160060 |
|-----|--------|-----------------|-------------|------------|
|     | AMEC G | eomatrix        | Figure      | 1          |



FOR SERIOUS INJURIES CALL:

Boeing Emergency (206) 655-2222

Boeing Isaacson-Thompson Site

Tukwilla, WA

Project No. LY11160060

Figure 2

Date: 5-13-2011

**AMEC Geomatrix** 

Take the James Street exit

Turn RIGHT (East) at James Street (0.1 mi.)

Turn RIGHT (South) onto 9th Avenue (0.2mi)

Arrive at Harborview Medical Center, 325 – 9<sup>th</sup> Ave., Seattle WA



# **APPENDIX A**

WAC 296-843 Regulations for Hazardous-Waste Operations

Last Update: 2/17/09

# Chapter 296-843 WAC Hazardous waste operations

| WAC S         | Sections          |                                                                                                               |
|---------------|-------------------|---------------------------------------------------------------------------------------------------------------|
|               | -843-100          | Scope.                                                                                                        |
|               | -843-110          | Evaluations and inspections.                                                                                  |
|               |                   | Complete a preliminary site evaluation before allowing employees to enter the site.                           |
| <u> 296-</u>  | -843-11010        | Conduct ongoing evaluations of safety and health hazards.                                                     |
| <u> 296</u> - | -843-120          | Health and safety plan (HASP).                                                                                |
| <u>296</u> -  | <u>-843-12005</u> | Develop and maintain a written site-specific health and safety plan (HASP).                                   |
| 296-          | -843-130          | Sampling and monitoring.                                                                                      |
| 296-          | -843-13005        | Conduct monitoring for health and safety hazards during initial site entry.                                   |
| 296-          | -843-13010        | Evaluate employee exposure to hazardous substances during clean-up operations.                                |
| <u>296</u> -  | -843-140          | Site control.                                                                                                 |
| <u>296-</u>   | <u>-843-14005</u> | Establish site control.                                                                                       |
| <u>296</u> -  | <u>-843-150</u>   | Worker and equipment decontamination.                                                                         |
| <u>296-</u>   | <u>-843-15005</u> | Establish and implement decontamination procedures before any worker or equipment enters a contaminated area. |
| <u>296</u> -  | <u>-843-15010</u> | Provide showers and changing rooms.                                                                           |
| <u>296</u> -  | <u>-843-15015</u> | Provide washing facilities.                                                                                   |
| 296-          | <u>-843-160</u>   | Emergency response for hazardous waste sites.                                                                 |
| <u>296-</u>   | <u>-843-16005</u> | Establish an emergency response plan for anticipated emergencies before beginning hazardous waste operations. |
| <u>296</u> -  | -843-170          | Employee exposure controls.                                                                                   |
| <u>296</u> -  | <u>-843-17005</u> | Control employee exposure to site health and safety hazards.                                                  |
| 296-          | <u>-843-180</u>   | Drum and container handling.                                                                                  |
| <u>296</u> -  | <u>-843-18005</u> | Handle drums and containers safely.                                                                           |
| <u>296</u> -  | <u>-843-18010</u> | Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.                |
| <u>296</u> -  | <u>-843-18015</u> | Maintain worker safety in drum and container opening areas.                                                   |
| <u>296</u> -  | -843-18020        | Ship and transport drums and containers safely.                                                               |
|               | <u>-843-190</u>   | Personal protective equipment (PPE).                                                                          |
|               |                   | Provide and use appropriate PPE.                                                                              |
|               | -843-200          | Training, briefings, and information.                                                                         |
|               |                   | Inform workers, contractors and subcontractors about the hazardous waste site.                                |
|               |                   | Train workers, supervisors and managers before work begins on the site.                                       |
|               |                   | Provide additional training to your managers and supervisors.                                                 |
|               |                   | Training for postemergency response.                                                                          |
|               |                   | Make sure your employees receive written documentation of training.                                           |
|               |                   | Provide refresher training to employees.                                                                      |
|               |                   | Use qualified trainers.                                                                                       |
| <u> 296-</u>  | -843-210          | Medical surveillance.                                                                                         |

296-843-21005 Provide medical surveillance for your employees.

| 296-843-220   | Recordkeeping and information access.                 |
|---------------|-------------------------------------------------------|
| 296-843-22005 | Make your records accessible.                         |
| 296-843-22010 | Keep medical surveillance records for your employees. |
| 296-843-300   | Definitions.                                          |
|               |                                                       |
|               |                                                       |
|               |                                                       |

#### 296-843-100 Scope.

| Scope.                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This chapter applies if you have any of the following:                                                                                                                                                                    |
| □ Employees working in operations involving hazardous waste at a treatment, storage, and disposal (TSD) facility required to have a permit or interim status AND regulated by any of the following:                       |
| $\ \square$ 40 CFR Parts 264 and 265 under the Resource Conservation and Recovery Act of 1976 (RCRA), 42 U.S.C. 6901 et seq.;                                                                                             |
| □ Agencies implementing RCRA through agreements with the United States Environmental Protection Agency (U.S.E.P.A.);                                                                                                      |
| □ Chapter 173-303 WAC, Dangerous waste regulations;                                                                                                                                                                       |
| OR                                                                                                                                                                                                                        |
| □ Employees conducting initial investigations of government-identified sites before determining whether hazardous substances are present;                                                                                 |
| OR                                                                                                                                                                                                                        |
| □ Corrective actions, involving clean-up operations, at sites covered by the Resource Conservation and Recovery Act of 1976 (RCRA) as amended (42 U.S.C. 6901 et seq.) or chapter 70.105 RCW, Hazardous waste management; |
| OR                                                                                                                                                                                                                        |
| □ Employees performing clean-up operations at an uncontrolled hazardous waste site. Sites include, but are not limited to:                                                                                                |
| ☐ The Environmental Protection Agency's (EPA) National Priority Site List (NPL); see http://www.epa.gov/superfund/sites/npl/wa.htm;                                                                                       |
| □ Sites recommended for inclusion on the EPA NPL;                                                                                                                                                                         |
| ☐ State priority site lists, for example those listed under chapter 173-340 WAC, Model Toxics Control Act (MTCA); see http://www.ecy.wa.gov/programs/tcp/cscs/CSCSpage.HTM;                                               |
| ☐ Unlisted sites recognized by a federal, state or local government as an uncontrolled hazardous waste site. Examples of such sites include:                                                                              |

- Sites that do not meet clean-up goals established by the MTCA and that pose a threat or potential threat to human health or the environment;
  - Clandestine drug lab sites designated for cleanup;
- □ Postemergency response cleanup at the site of a hazardous substance release regulated by chapter 296-824 WAC, Emergency response.

#### IMPORTANT:

This chapter applies to hazardous waste sites until cleanup at the site is determined to be complete by the governing regulatory agency.

# Site Evaluation Health & Safety Plan (HASP) Development Cycle



#### Illustration 1

#### Other rules that may apply to hazardous waste operations:

You will find safety and health requirements (for example, personal protective equipment) are addressed in other rules and also in this chapter. If you find a conflict in requirements, you need to meet the more protective requirement. Contact your local L&I office if you need assistance in making this determination.

Examples of other rules that may apply:

- ☐ Chapter 296-800 WAC, Safety and health core rules:
- □ WAC 296-800-140, Accident prevention program;
- □ WAC 296-800-210, Lighting;
- □ WAC 296-800-230, Drinking water, bathrooms, washing facilities and waste disposal.
- ☐ Chapter 296-24 WAC, Safety standards for general safety.
- ☐ Chapter 296-833 WAC, Temporary housing for workers.

| □ Chapter 296-62 WAC,                      | General occupatio            | nal h  | ealth.                                                                   |                          |
|--------------------------------------------|------------------------------|--------|--------------------------------------------------------------------------|--------------------------|
| ☐ Chapter 296-155 WAC                      | ;, Safety standards          | for c  | onstruction work.                                                        |                          |
| ☐ Chapter 296-824 WAC                      | ;, Emergency respo           | onse.  |                                                                          |                          |
| ☐ Chapter 296-841 WAC                      | ;, Respiratory haza          | rds.   |                                                                          |                          |
| □ Chapter 296-842 WAC                      | , Respirators.               |        |                                                                          |                          |
|                                            |                              |        |                                                                          |                          |
| [Statutory Authority: RCW 49.17.0          | )10, 49.17.040, 49.17.       | 050, a | nd 49.17.060. 04-02-053, § 296-843-100, filed 1/                         | 5/04, effective 5/1/04.] |
|                                            |                              |        |                                                                          |                          |
|                                            |                              |        |                                                                          |                          |
| 296-843-110<br>Evaluations and inspectio   | ns.                          |        |                                                                          |                          |
|                                            |                              |        |                                                                          |                          |
| Your responsibility:                       |                              |        |                                                                          |                          |
|                                            | pefore entering the          | cita s | and periodically throughout the hazardous                                | waste operations         |
| You must:                                  | clore entering the           | SILC E | and periodically unoughout the nazardous                                 | waste operations.        |
|                                            | site evaluation hefe         | ro all | owing ampleyage to enter the site                                        |                          |
|                                            | ile evaluation belo          | re all | owing employees to enter the site                                        |                          |
| WAC <u>296-843-11005</u> .                 |                              |        |                                                                          |                          |
| Conduct ongoing evaluate                   | ions of safety and           | healt  | h hazards                                                                |                          |
| WAC <u>296-843-11010</u> .                 |                              |        |                                                                          |                          |
| [Statutory Authority: BCW 40 17 (          | 010 40 17 040 40 17          | 050 0  | ind 49.17.060. 04-02-053, § 296-843-110, filed 1/                        | 5/04 offoctive 5/1/04 1  |
| Claudory Admonty. RCW 49.17.               | 710, 49.17.040, 49.17.       | 050, a | ind 49.17.000. 04-02-055, § 250-645-110, filed 1/                        | 5/04, enective 5/1/04.j  |
|                                            |                              |        |                                                                          |                          |
|                                            |                              |        |                                                                          |                          |
| 296-843-11005<br>Complete a preliminary si | te evaluation befo           | re al  | lowing employees to enter the site.                                      |                          |
|                                            |                              |        |                                                                          |                          |
| You must:                                  |                              |        |                                                                          |                          |
| ☐ Complete a preliminar                    | v sito ovaluation hy         | , doin | a all the following:                                                     |                          |
|                                            | -                            | · uoin | <u> </u>                                                                 | <del>.</del>             |
|                                            | Collect or develop the       |        | The site location and approximate size                                   |                          |
|                                            | following information to the |        |                                                                          |                          |
|                                            | extent available:            |        | A description of the response activity and the job tasks to be performed |                          |

The time needed to cover all planned activities

|                                                                  |   | The site's topography and all ways to                                                                                                                                                |  |  |
|------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                  |   | access the site                                                                                                                                                                      |  |  |
|                                                                  |   | The current status and capabilities of any emergency response team                                                                                                                   |  |  |
|                                                                  |   | assisting during an emergency                                                                                                                                                        |  |  |
|                                                                  |   | The safety and health hazards expected at the site                                                                                                                                   |  |  |
|                                                                  |   | The hazardous substances and                                                                                                                                                         |  |  |
|                                                                  |   | health hazards at the site, including their chemical and physical properties                                                                                                         |  |  |
|                                                                  |   | All hazardous substance dispersion pathways                                                                                                                                          |  |  |
|                                                                  |   | An emergency response plan                                                                                                                                                           |  |  |
| Have a qualified                                                 |   | Potential site hazards and risks                                                                                                                                                     |  |  |
| person evaluate the preliminary                                  |   |                                                                                                                                                                                      |  |  |
| site information<br>to identify:                                 |   | The most appropriate methods to protect employees                                                                                                                                    |  |  |
|                                                                  |   | Conditions that have the potential to cause death or serious harm, including potential inhalation or skin absorption hazards that are immediately dangerous to life or health (IDLH) |  |  |
|                                                                  |   | □ Examples include:                                                                                                                                                                  |  |  |
|                                                                  |   | Confined space entry                                                                                                                                                                 |  |  |
|                                                                  |   | <ul> <li>Potentially explosive or<br/>flammable environments</li> </ul>                                                                                                              |  |  |
|                                                                  |   | Visible vapor clouds                                                                                                                                                                 |  |  |
|                                                                  |   | Areas where plants or animals have died                                                                                                                                              |  |  |
|                                                                  |   | Risks related to specific on-site hazardous substances and health hazards                                                                                                            |  |  |
|                                                                  |   | □ Examples include:                                                                                                                                                                  |  |  |
|                                                                  |   | <ul> <li>Exposures exceeding the<br/>permissible exposure limits<br/>(PELs) or published<br/>exposure levels</li> </ul>                                                              |  |  |
|                                                                  |   | IDLH concentrations                                                                                                                                                                  |  |  |
|                                                                  |   | Potential skin absorption and irritation sources                                                                                                                                     |  |  |
|                                                                  |   | Potential eye irritation sources                                                                                                                                                     |  |  |
|                                                                  |   | Explosion sensitivity and flammability ranges                                                                                                                                        |  |  |
|                                                                  |   | Oxygen deficient atmospheres                                                                                                                                                         |  |  |
| Have a qualified person prepare an initial site characterization |   | Identify known and suspected health and safety hazards for the site                                                                                                                  |  |  |
| and analysis for the site to:                                    |   | Aid in selecting control methods to protect employees from site hazards                                                                                                              |  |  |
|                                                                  | I |                                                                                                                                                                                      |  |  |

|  | Brief employees on site conditions before any work starts |
|--|-----------------------------------------------------------|
|  | Initiate the site-specific health and safety plan (HASP)  |
|  |                                                           |

Note: Characterization and analysis of site hazards is an ongoing process for work on the hazardous waste site.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-11005, filed 1/5/04, effective 5/1/04.]

#### 296-843-11010

Conduct ongoing evaluations of safety and health hazards.

#### You must:

| (1) Have a qualified person complete further evaluation of health and safety hazards at the site immediately after initial entry to:             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Identify site hazards in more detail.                                                                                                          |
| □ Help select appropriate:                                                                                                                       |
| □ Control methods to protect employees from site hazards.                                                                                        |
| □ Personal protective equipment (PPE) for site operations.                                                                                       |
| Note: For more information, see WAC <u>296-843-170</u> , Hazard controls, and WAC <u>296-843-190</u> , Personal protective equipment.  You must: |
| (2) Make sure your site safety and health supervisor or another qualified person performs periodic inspections to                                |
| □ Determine if the site-specific HASP is effective.                                                                                              |
| □ Correct any deficiencies.                                                                                                                      |
|                                                                                                                                                  |

#### 296-843-120

Health and safety plan (HASP).

# Your responsibility:

To establish a written health and safety plan (HASP).

#### You must:

Develop and maintain a written site-specific health and safety plan (HASP)

WAC 296-843-12005.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-120, filed 1/5/04, effective 5/1/04.]

#### 296-843-12005

Develop and maintain a written site-specific health and safety plan (HASP).

**Reference:** If your overall program required under WAC 296-800-140, Accident prevention program (APP), meets requirements of this chapter, you do not need to duplicate those portions of your APP in the site-specific health and safety plan (HASP).

#### You must:

□ Develop a written HASP for each hazardous waste site, **BEFORE** beginning hazardous waste operations, that includes at least the following:

#### Hazard analysis:

- □ Identification and evaluation of on-site safety and health hazards.
- □ A safety and health risk (hazard) analysis for each site task and operation that is identified in the comprehensive work plan.

#### Organization chart:

- □ An organizational structure that reflects current site operations, including the following:
- Establish and identify the chain of command.
- · Identify the site safety and health supervisor and other personnel responsible for employee safety and health.
- Specify the overall responsibilities of supervisors and employees.
- Include the name and title of the person with responsibility and authority to direct all hazardous waste operations.
- Include a site safety and health supervisor responsible for developing and implementing the HASP and verifying compliance.
- Identify the functions and responsibilities of all personnel needed for hazardous waste operations and emergency response.
  - Identify site specific lines of authority, responsibility, and communication.

## Comprehensive work plan:

- □ A written comprehensive work plan of tasks, objectives, logistics, and resources for site operations, including the following:
- Addresses anticipated clean-up activities and normal operating procedures unless that information is already available in another document.

- Defines work tasks and objectives.
- Describes how the work tasks and objectives will be accomplished.
- Establishes the personnel requirements to implement the work plan.
- Provides for implementation of training, briefings, and information as required by WAC 296-843-200.

#### Site control plan:

□ An up-to-date site control plan before clean-up operations begin to minimize employee exposure to hazardous substances and including the following (unless it's available in another document):

- A site map.
- Establish site work zones.
- How the "buddy system" is used.
- The site communications plan, including how employees are alerted during emergencies.
- The site's standard operating procedures (SOPs) or safe work practices.
- Identification of the nearest medical assistance.

#### Personal protective equipment:

- ☐ A PPE plan that addresses all of the following:
- Site hazards and activities.
- Methods to evaluate the effectiveness of the PPE plan.
- Criteria for selecting and fitting PPE, including work duration, use limitations of particular PPE, and medical considerations such as temperature extremes and heat stress.
  - Training on PPE use.
  - Procedures for putting on and taking off PPE.
  - PPE inspection procedures prior to, during, and after use.
  - Decontamination and disposal of PPE.
  - Maintenance and storage of PPE.

#### Additional elements:

|           | $\perp$ A sampling and monitoring plan (see WAC <u>296-843-130</u> ) that includes sampling of drums and containers.             |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|
|           | ☐ Site control measures (see WAC <u>296-843-140</u> ).                                                                           |
|           | □ Decontamination procedures (see WAC <u>296-843-150</u> ).                                                                      |
|           | $\hfill \Box$ Spill containment plans (see WAC $\underline{296\text{-}843\text{-}180},$ Drum and container handling).            |
| <u>18</u> | $\ \square$ Standard operating procedures for sampling, managing, and handling drums and containers (see WAC <u>296-843-0</u> ). |
|           | □ Entry procedures for tanks or vaults (see chapter 296-809 WAC, Confined spaces).                                               |
|           | $\square$ A training, briefings, and information plan (see WAC <u>296-843-200</u> ).                                             |
|           |                                                                                                                                  |

□ A medical surveillance plan (see WAC 296-843-210), that includes site-specific medical surveillance requirements.

| □ Sanitation (see WAC 296-155-140).                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Lighting (see WAC 296-800-210).                                                                                                                                                             |
| □ Excavations (see chapter 296-155 WAC, Part N, Excavation, trenching and shoring).                                                                                                           |
| □ Any relationship or interaction between other programs and the site-specific program.                                                                                                       |
| <b>Note:</b> The emergency response plan required by WAC <u>296-843-160</u> , Emergency response for hazardous waste sites, is also included as a separate section in the HASP.               |
| You must:                                                                                                                                                                                     |
| ☐ Keep a copy of your HASP on site.                                                                                                                                                           |
| Reference: For more information, see WAC 296-843-220, Recordkeeping and information access.                                                                                                   |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, 49.17.060. 07-03-163, § 296-843-12005, filed 1/24/07, effective 4/1/07; 04-02-05 § 296-843-12005, filed 1/5/04, effective 5/1/04.] |
| Your responsibility:                                                                                                                                                                          |
| To conduct monitoring for health and safety hazards to protect employees.                                                                                                                     |
| You must:                                                                                                                                                                                     |
| Conduct monitoring for health and safety hazards during initial site entry                                                                                                                    |
| WAC <u>296-843-13005</u> .                                                                                                                                                                    |
| Evaluate employee exposure to hazardous substances during clean-up operations                                                                                                                 |
| WAC <u>296-843-13010</u> .                                                                                                                                                                    |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-130, filed 1/5/04, effective 5/1/04.]                                                          |
| 296-843-13005 Conduct monitoring for health and safety hazards during initial site entry.                                                                                                     |
| You must:                                                                                                                                                                                     |

| <ul> <li>Make visual observations of the site to detect signs of actual or potential immediately dangerous to life or hea</li> <li>(IDLH) or other dangerous conditions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ☐ Conduct representative air monitoring with direct reading test equipment, when the preliminary site evaluation not eliminate the potential for ionizing radiation or IDLH conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n does     |
| □ Assess the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| □ Potential IDLH conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| □ Exposure over radioactive material dose limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| □ Potential exposure over permissible exposure limits (PELs) or other published exposure levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| $\hfill\Box$<br>Other dangerous conditions, such as the presence of flammable or oxygen-deficient atmospheres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <b>Reference:</b> See WAC 296-62-09004, Ionizing radiation, for additional information about radioactive material dose limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-13005, filed 1/5/04, effective 5/1/04.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 296-843-13010<br>Evaluate employee exposure to hazardous substances during clean-up operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| IMPORTANT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| The clean-up operation begins when soil, surface water, or containers are moved or disturbed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| You must:  □ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on.        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on.        |
| □ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| <ul> <li>Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentate</li> <li>Include requirements for maintaining and calibrating the monitoring and sampling instruments used.</li> <li>Monitor whenever employees may be exposed to concentrations exceeding PELs or other published exposure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| <ul> <li>□ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentate</li> <li>□ Include requirements for maintaining and calibrating the monitoring and sampling instruments used.</li> <li>□ Monitor whenever employees may be exposed to concentrations exceeding PELs or other published exposulevels.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e          |
| <ul> <li>□ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentation</li> <li>□ Include requirements for maintaining and calibrating the monitoring and sampling instruments used.</li> <li>□ Monitor whenever employees may be exposed to concentrations exceeding PELs or other published exposurelevels.</li> <li>□ Evaluate employees who are likely to have the highest exposure to hazardous substances or health hazardous.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e          |
| □ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentation of the include requirements for maintaining and calibrating the monitoring and sampling instruments used.  □ Monitor whenever employees may be exposed to concentrations exceeding PELs or other published exposurelevels.  □ Evaluate employees who are likely to have the highest exposure:  □ Monitor all employees who are likely to have the highest exposure to hazardous substances or health hazardabove the PEL or published exposure limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | re<br>s    |
| <ul> <li>□ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentate</li> <li>□ Include requirements for maintaining and calibrating the monitoring and sampling instruments used.</li> <li>□ Monitor whenever employees may be exposed to concentrations exceeding PELs or other published exposure levels.</li> <li>□ Evaluate employees who are likely to have the highest exposure:</li> <li>□ Monitor all employees who are likely to have the highest exposure to hazardous substances or health hazard above the PEL or published exposure limit.</li> <li>□ Use personal sampling frequently enough to characterize the exposures of these employees.</li> <li>• When results indicate exposure is over the PEL or other published exposure level, identify all employees likely above the PEL or published exposure limit.</li> <li>Note: You may use a representative sampling approach by documenting that the employees and chemicals chose monitoring are representative of both:</li> </ul> | s<br>to be |
| <ul> <li>□ Identify the type of personnel monitoring and environmental sampling you plan to use, including instrumentate</li> <li>□ Include requirements for maintaining and calibrating the monitoring and sampling instruments used.</li> <li>□ Monitor whenever employees may be exposed to concentrations exceeding PELs or other published exposure levels.</li> <li>□ Evaluate employees who are likely to have the highest exposure:</li> <li>□ Monitor all employees who are likely to have the highest exposure to hazardous substances or health hazard above the PEL or published exposure limit.</li> <li>□ Use personal sampling frequently enough to characterize the exposures of these employees.</li> <li>• When results indicate exposure is over the PEL or other published exposure level, identify all employees likely above the PEL or published exposure limit.</li> <li>Note: You may use a representative sampling approach by documenting that the employees and chemicals chosen.</li> </ul>                                      | s<br>to be |

| ☐ Conduct monitoring when the possibility of one of the following exists:                                                                                                                                                                   |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| ☐ An atmosphere that is immediately dangerous to life or health (IDLH);                                                                                                                                                                     |                                  |
| OR                                                                                                                                                                                                                                          |                                  |
| □ A flammable atmosphere;                                                                                                                                                                                                                   |                                  |
| OR                                                                                                                                                                                                                                          |                                  |
| □ Employee exposures exceeding PELs or other published exposure levels.                                                                                                                                                                     |                                  |
| Examples of situations where these possibilities may exist:                                                                                                                                                                                 |                                  |
| <ul> <li>Work begins on a different portion of the site.</li> </ul>                                                                                                                                                                         |                                  |
| <ul> <li>Contaminants other than those previously monitored are being handled.</li> </ul>                                                                                                                                                   |                                  |
| - A different type of site operation starts, such as moving from drum opening to expl                                                                                                                                                       | loratory well drilling.          |
| <ul> <li>Handling leaking drums or containers.</li> </ul>                                                                                                                                                                                   |                                  |
| <ul> <li>Working in areas with obvious liquid contamination such as a spill or lagoon.</li> </ul>                                                                                                                                           |                                  |
| Time has passed and employee exposure levels may have significantly increased                                                                                                                                                               |                                  |
|                                                                                                                                                                                                                                             |                                  |
| 296-843-140<br>Site control.                                                                                                                                                                                                                |                                  |
| 296-843-140 Site control.  Your responsibility:                                                                                                                                                                                             |                                  |
| Site control.                                                                                                                                                                                                                               |                                  |
| Site control.  Your responsibility:                                                                                                                                                                                                         |                                  |
| Your responsibility:  To establish a plan to control access to the site.                                                                                                                                                                    |                                  |
| Your responsibility:  To establish a plan to control access to the site.  You must:                                                                                                                                                         |                                  |
| Your responsibility:  To establish a plan to control access to the site.  You must:  Establish a site control plan                                                                                                                          | filed 1/5/04, effective 5/1/04.] |
| Your responsibility:  To establish a plan to control access to the site.  You must:  Establish a site control plan  WAC 296-843-14005.  [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-140, | filed 1/5/04, effective 5/1/04.] |
| Your responsibility:  To establish a plan to control access to the site.  You must:  Establish a site control plan  WAC 296-843-14005.  [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-140, | filed 1/5/04, effective 5/1/04.] |
| Your responsibility: To establish a plan to control access to the site. You must: Establish a site control plan WAC 296-843-14005.  [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-140,     |                                  |

- □ Control access to the exclusion and contamination reduction zones.
- □ Make sure people wear personal protective equipment (PPE) appropriate to their work zone. **Table 1**

**Site Work Zone Requirements** 

|                                                                      | 1         | Requirements                                                                                         |
|----------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------|
| For this type of work zone:                                          | You must: |                                                                                                      |
| Exclusion zone                                                       |           | Establish entry and exit checkpoints on the zone's boundary                                          |
|                                                                      |           | Regulate the flow of people and equipment into and out of the zone                                   |
|                                                                      |           | Make sure exits go through a contamination reduction corridor                                        |
| Contamination reduction zone with a contamination reduction corridor |           | Enter through a control point from the clean zone                                                    |
|                                                                      |           | Provide a transition or buffer between the exclusion zone and the clean zone                         |
|                                                                      |           | Perform all decontamination procedures                                                               |
|                                                                      |           | Establish separate decontamination routes for people and equipment, if practical                     |
|                                                                      |           | Remove all PPE worn in the contamination reduction or exclusion zones before entering the clean zone |
| Clean zone or support zone                                           |           | no employee exposure to dous substances or health ds                                                 |

Note: See Illustration 2 for an example of site work zones.



Illustration 2 - SITE
WORK ZONES



[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-14005, filed 1/5/04, effective 5/1/04.]

#### 296-843-150

Worker and equipment decontamination.

#### Your responsibility:

To make sure the necessary facilities and equipment for effective decontamination are available and used.

#### You must:

Establish and implement decontamination procedures before any worker or equipment enters a contaminated area

WAC 296-843-15005.

Provide showers and changing rooms

WAC 296-843-15010.

Provide washing facilities

WAC 296-843-15015.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-150, filed 1/5/04, effective 5/1/04.]

#### 296-843-15005

Establish and implement decontamination procedures before any worker or equipment enters a contaminated area

#### You must:

| Establish, implement, and communicate decontamination pro | ocedures to all workers, to include the following: |
|-----------------------------------------------------------|----------------------------------------------------|
|-----------------------------------------------------------|----------------------------------------------------|

☐ Standard operating procedures to minimize worker contact with:

- · Hazardous substances.
- Contaminated equipment.
- ☐ Decontaminating all:
- Workers leaving a contaminated area.
- Equipment leaving a contaminated area.

□ Decontaminating, cleaning, laundering, repairing, or replacing protective clothing or equipment (PPE) as needed to maintain effectiveness.

| $\hfill \square$ Immediate removal of clothing, such as cotton coveralls, wet with hazardous substances and use of the nearest shower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Decontaminate or dispose of clothing before removal from the work zone.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| □ Periodically monitoring procedures for effectiveness by the site safety and health supervisor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ Correct your procedures when found ineffective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| □ Establish decontamination areas to minimize contact of contaminated employees and equipment with uncontaminated employees or equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| □ Make sure only authorized employees remove protective clothing or equipment from changing rooms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\ \square$ Inform commercial laundries or cleaning establishments about the potentially harmful effects from exposure to hazardous substances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| □ Properly decontaminate or dispose of decontamination equipment and solvents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-15005, filed 1/5/04, effective 5/1/04.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 296-843-15010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Provide showers and changing rooms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Provide showers and changing rooms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Provide showers and changing rooms.  You must:  □ Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Provide showers and changing rooms.  You must:  Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>You must:</li> <li>Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:</li> <li>Separate changing areas:</li> <li>One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| You must:  Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:  Separate changing areas:  One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off the work site.  Another where employees can put on, remove, store, and dispose of work clothing and PPE with an exit leading to                                                                                                                                                                                                                                                                                                                                                                                                                             |
| You must:  Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:  Separate changing areas:  One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off the work site.  Another where employees can put on, remove, store, and dispose of work clothing and PPE with an exit leading to the work site.                                                                                                                                                                                                                                                                                                                                                                                                              |
| You must:    Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:   Separate changing areas:   One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off the work site.   Another where employees can put on, remove, store, and dispose of work clothing and PPE with an exit leading to the work site.   A shower area separating the changing areas.                                                                                                                                                                                                                                                                                                                                                          |
| Provide showers and changing rooms.  You must:  □ Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:  □ Separate changing areas:  • One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off the work site.  • Another where employees can put on, remove, store, and dispose of work clothing and PPE with an exit leading to the work site.  □ A shower area separating the changing areas.  □ Prevent clean areas from being contaminated by hazardous substances.  □ Provide and use other effective means for worker cleansing, if temperature conditions prevent the effective use of                                                                                                                   |
| Provide showers and changing rooms.  You must:  □ Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following: □ Separate changing areas:  • One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off the work site.  • Another where employees can put on, remove, store, and dispose of work clothing and PPE with an exit leading to the work site.  □ A shower area separating the changing areas. □ Prevent clean areas from being contaminated by hazardous substances. □ Provide and use other effective means for worker cleansing, if temperature conditions prevent the effective use of water. □ Locate showers and change rooms where worker exposures are below permissible exposure limits (PELs) or othe |
| You must:    Provide changing areas and showers outside a contaminated area, when needed for worker decontamination, that include at least the following:   Separate changing areas:   One to provide a clean area where employees can remove, store, and put on street clothing with an exit leading off the work site.   Another where employees can put on, remove, store, and dispose of work clothing and PPE with an exit leading to the work site.   A shower area separating the changing areas.   Prevent clean areas from being contaminated by hazardous substances.   Provide and use other effective means for worker cleansing, if temperature conditions prevent the effective use of water.   Locate showers and change rooms where worker exposures are below permissible exposure limits (PELs) or othe published exposure levels.              |

**Change Room Layout** 



[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-15010, filed 1/5/04, effective 5/1/04.]

#### 296-843-15015

Provide washing facilities.

#### You must:

| Provide adequate washing facilities to employe      | ees working in nazardous waste operations that are. |
|-----------------------------------------------------|-----------------------------------------------------|
| $\hfill\Box$ Close and convenient to the work area. |                                                     |

 $\hfill \Box$  Located in areas where employee exposure is below PELs or other published exposure levels.

□ Equipped so an employee can remove hazardous substances from themselves without assistance.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-15015, filed 1/5/04, effective 5/1/04.]

# 296-843-160

Emergency response for hazardous waste sites.

#### Your responsibility:

To establish an emergency response plan for emergencies at the hazardous waste site.

#### You must:

Establish an emergency response plan for anticipated emergencies before beginning hazardous waste operations WAC <u>296-843-16005</u>.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-160, filed 1/5/04, effective 5/1/04.]

#### 296-843-16005

Establish an emergency response plan for anticipated emergencies before beginning hazardous waste operations.

| Exemption: Employers are exempt from preparing an emergency response plan if they do ALL of the following:    Evacuate all employees from the danger area during an emergency.    Prohibit employees from assisting in the emergency response.    Prepare an emergency action plan that complies with WAC 296-24-567(1), Evacuation plan.  IMPORTANT: |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment, storage, and disposal (TSD) employers are not required to duplicate subjects fully addressed in the contingency plan required by permits when the contingency plan is part of their emergency response plan. Examples o permits would be those issued by the department of ecology.                                                        |
| You must:                                                                                                                                                                                                                                                                                                                                             |
| (1) Establish and maintain the plan to reflect current site conditions, information, and personnel:                                                                                                                                                                                                                                                   |
| □ Include policies or procedures for at least the following:                                                                                                                                                                                                                                                                                          |
| □ Preemergency planning.                                                                                                                                                                                                                                                                                                                              |
| □ Coordination with outside organizations.                                                                                                                                                                                                                                                                                                            |
| □ Current site topography, layout, and weather conditions.                                                                                                                                                                                                                                                                                            |
| □ Personnel roles.                                                                                                                                                                                                                                                                                                                                    |
| □ Lines of authority.                                                                                                                                                                                                                                                                                                                                 |
| □ Communication.                                                                                                                                                                                                                                                                                                                                      |
| □ Reporting incidents to local, state, and federal government agencies.                                                                                                                                                                                                                                                                               |
| □ Emergency recognition and prevention.                                                                                                                                                                                                                                                                                                               |
| □ Safe distances and places of refuge.                                                                                                                                                                                                                                                                                                                |
| □ Site security and control.                                                                                                                                                                                                                                                                                                                          |
| □ Evacuation routes.                                                                                                                                                                                                                                                                                                                                  |
| □ Decontamination not covered by the site-specific HASP.                                                                                                                                                                                                                                                                                              |
| □ Emergency medical treatment and first aid.                                                                                                                                                                                                                                                                                                          |
| □ Emergency alert and response.                                                                                                                                                                                                                                                                                                                       |
| □ Personal protective equipment and emergency equipment.                                                                                                                                                                                                                                                                                              |
| □ Employee training.                                                                                                                                                                                                                                                                                                                                  |
| □ Critique of the response effort and appropriate followup.                                                                                                                                                                                                                                                                                           |
| ☐ Use available information at the time of the emergency to:                                                                                                                                                                                                                                                                                          |
| □ Evaluate the incident and site response capabilities.                                                                                                                                                                                                                                                                                               |
| □ Proceed with appropriate steps to implement your emergency response plan.                                                                                                                                                                                                                                                                           |

| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-170, filed 1/5/04, effectively approximately ap | mployee exposure |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 296-843-17005 Control employee exposure to site health and safety hazards.  You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 296-843-17005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-170, filed 1/5/04, effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tive 5/1/04.]    |
| WAC <u>296-843-17005</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Control employee exposure to site health and safety hazards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Implement feasible controls to protect employees from exposure to site hazards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Your responsibility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| 296-843-170<br>Employee exposure controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-16005, filed 1/5/04, eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fective 5/1/04.] |
| (3) Rehearse the plan as part of site operations training.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| ☐ To begin emergency procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| ☐ To lower background noise to assist communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| ☐ To stop work activities, if necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| □ An on-site emergency incident:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| (2) Establish an alarm system to alert employees to all of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| ☐ Integrated and compatible with, local, state, and federal plans for disasters, fires, and emergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y responses.     |
| OUR COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| ☐ Kept as a separate section of your site-specific health and safety plan (HASP);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |

| Using remotely operated material handling equipment.                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Removing all nonessential employees when opening drums.</li> </ul>                                                                                                                                                                                                                                                  |
| Wetting down dusty operations.                                                                                                                                                                                                                                                                                               |
| <ul> <li>Positioning employees upwind of possible hazards.</li> </ul>                                                                                                                                                                                                                                                        |
| $\hfill \Box$ Evaluate new technologies and other control measures before using them on a large scale.                                                                                                                                                                                                                       |
| ☐ Use any reasonable combination of controls and personal protective equipment (PPE) to reduce and maintain employee exposure at or below the PELs, published exposure levels, or dose levels when controls are not:                                                                                                         |
| □ Feasible;                                                                                                                                                                                                                                                                                                                  |
| OR                                                                                                                                                                                                                                                                                                                           |
| □ Effective.                                                                                                                                                                                                                                                                                                                 |
| ☐ Make sure PPE is NOT used as a replacement control.                                                                                                                                                                                                                                                                        |
| □ PPE should be used only as a supplement to controls.                                                                                                                                                                                                                                                                       |
| <b>Note:</b> For those hazardous substances without PELs or published exposure levels, use other published literature and material safety data sheets (MSDSs) to help decide what level of protection is appropriate. For more information about MSDSs, see WAC 296-800-180 in the <i>Safety and Health Core Rules</i> book. |
| You must:                                                                                                                                                                                                                                                                                                                    |
| ☐ Use employee rotation to reduce exposure below ionizing radiation PELs or dose limits, when that is the <b>only</b> feasible means of protecting employees.                                                                                                                                                                |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-17005, filed 1/5/04, effective 5/1/04.]                                                                                                                                                                                       |
| 296-843-180<br>Drum and container handling.                                                                                                                                                                                                                                                                                  |
| Your responsibility:                                                                                                                                                                                                                                                                                                         |
| To handle drums and containers in ways that minimize the hazard to employees.                                                                                                                                                                                                                                                |
| You must:                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                              |

Handle drums and containers safely

WAC <u>296-843-18005</u>.

Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely

WAC 296-843-18010.

Maintain worker safety in drum and container opening areas

WAC 296-843-18015.

Ship and transport drums and containers safely

| □ Select, position, and operate tools and material handling equipment to prevent the ignition of flammable vapors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Handle tanks and vaults containing hazardous substances with the same precautions as for drums and containers taking into account the size of tank or vault.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Handling spills and leaks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ☐ Contain and isolate the entire volume of a hazardous substance in a drum or container when a spill occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\hfill\Box$ Have available and use both of the following in areas where spills, leaks, or ruptures may occur:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ☐ United States Department of Transportation (DOT) specified salvage drums or containers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ☐ Suitable quantities of proper absorbent materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ☐ Empty drums and containers, that cannot be moved without rupturing, leaking, or spilling, into a sound container.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\hfill \Box$ Use a pump or other device classified for the material being transferred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ☐ Have fire-extinguishing equipment on-hand to control fires in their initial stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Reference: For further information, see the safety and health core rules, WAC 296-800-300, Portable fire extinguishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-18005, filed 1/5/04, effective 5/1/04.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-18005, filed 1/5/04, effective 5/1/04.]  296-843-18010  Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 296-843-18010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:  Allow only essential employees in the transfer area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:  Allow only essential employees in the transfer area.  Communicate as follows:  Signal the beginning and end of shock-sensitive (explosive) waste handling activities with an alarm system that is                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:  Allow only essential employees in the transfer area.  Communicate as follows:  Signal the beginning and end of shock-sensitive (explosive) waste handling activities with an alarm system that is capable of being perceived above background light and noise.                                                                                                                                                                                                                                                                                                                                                                                            |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:  Allow only essential employees in the transfer area.  Communicate as follows:  Signal the beginning and end of shock-sensitive (explosive) waste handling activities with an alarm system that is capable of being perceived above background light and noise.  Maintain continuous communications throughout the handing operation:  Between the employee-in-charge of the immediate handling area AND the site safety and health supervisor AND the                                                                                                                                                                                                     |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:  Allow only essential employees in the transfer area.  Communicate as follows:  Signal the beginning and end of shock-sensitive (explosive) waste handling activities with an alarm system that is capable of being perceived above background light and noise.  Maintain continuous communications throughout the handing operation:  Between the employee-in-charge of the immediate handling area AND the site safety and health supervisor AND the command post.                                                                                                                                                                                       |
| 296-843-18010 Handle drums and containers suspected of containing shock-sensitive (explosive) wastes safely.  You must:  Allow only essential employees in the transfer area.  Communicate as follows:  Signal the beginning and end of shock-sensitive (explosive) waste handling activities with an alarm system that is capable of being perceived above background light and noise.  Maintain continuous communications throughout the handing operation:  Between the employee-in-charge of the immediate handling area AND the site safety and health supervisor AND the command post.  Using portable radios, hand signals, or telephones, as appropriate.  Prevent the use of communication equipment or methods that could cause shock-sensitive (explosive) materials to |

| □ Consider packaged laboratory wastes or laboratory waste packs shock-sensitive or explosive until the contents have been characterized.                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Make sure laboratory waste packs are opened only:                                                                                                                                                                                |
| When necessary.                                                                                                                                                                                                                    |
| • By a person knowledgeable in the inspection, classification, and segregation of the containers within the pack.                                                                                                                  |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-18010, filed 1/5/04, effective 5/1/04.]                                                                                             |
| 296-843-18015 Maintain worker safety in drum and container opening areas.                                                                                                                                                          |
| You must:                                                                                                                                                                                                                          |
| □ Keep employees who are not involved in opening drums or containers a safe distance from the opening area.                                                                                                                        |
| $\hfill \Box$ Use appropriate shielding between the employee and the drums or containers, when excess interior pressure cannot be relieved from a remote location.                                                                 |
| □ Provide an explosion-resistant barrier that does not interfere with the work to protect employees working near or adjacent to drum or container opening operations from accidental explosions.                                   |
| □ Position controls for drum or container opening equipment, monitoring equipment, and fire suppression equipment behind the explosion-resistant barrier. Prohibit employees from standing on or working from drums or containers. |
| <b>Reference:</b> The shipment of shock-sensitive (explosive) waste may be prohibited under United States Department of Transportation (DOT) regulations. You and your shipper should refer to title 49 CFR.                       |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-18015, filed 1/5/04, effective 5/1/04.]                                                                                             |
| 296-843-18020<br>Ship and transport drums and containers safely.                                                                                                                                                                   |
| You must:                                                                                                                                                                                                                          |
| (1) Identify and classify drum and container contents prior to packaging for shipment.                                                                                                                                             |
| (2) Provide staging areas:                                                                                                                                                                                                         |
| □ Each staging area must have adequate entry and exit routes.                                                                                                                                                                      |
| ☐ The number of drum or container staging areas must be kept to the minimum needed to identify and classify materials safely and prepare them for transport.                                                                       |

(3) Permit bulking of hazardous wastes only after a thorough characterization of the wastes has been completed. Note: Handle, transport, label, and dispose of drums and containers according to this chapter and other United States Department of Transportation (DOT), WISHA, EPA, and Washington department of ecology regulations for: □ Drums. Containers. ☐ Hazardous substances. □ Contaminated soils. [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-18020, filed 1/5/04, effective 5/1/04.] 296-843-190 Personal protective equipment (PPE). Your responsibility: To use PPE to protect employees when feasible controls do not remove the hazardous exposure. You must: Provide and use appropriate PPE WAC <u>296-843-19005</u>. Reference: For additional information about developing a PPE plan, see the PPE user guide found at http://www.lni.wa.gov/wisha/publications/PPEGuide/PPEload.htm. Note: The manufacturer's information on PPE may be used to meet your PPE plan requirements. For example, the manufacturer's procedures for putting on and taking off PPE may be attached to the site-specific health and safety plan (HASP). [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-190, filed 1/5/04, effective 5/1/04.]

#### 296-843-19005

Provide and use appropriate PPE.

**Reference:** See WAC <u>296-843-110</u>, Evaluations and inspections, found in this chapter, for more information about how to identify hazards and complete your preliminary site evaluation.

#### You must:

(1) Make sure the PPE you provide and use for initial entry protects employees from known or suspected safety and health hazards identified during the preliminary site evaluation as follows:

| If                                                                                                     | Then                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The need for atmosphere supplying respirators and chemical protective clothing has NOT been eliminated | Provide atmosphere supplying respirators and protective clothing                                                                                             |
| Employees use respiratory protection other than a positive-pressure SCBA for initial entry             | Include an escape self-<br>contained breathing<br>apparatus (SCBA) with<br>enough air to reach a safe<br>location and always at least<br>five minutes of air |

□ Use Table 2, Selecting PPE in Various Exposure Situations, to determine the level of PPE to provide during initial entry:

#### You must:

- (2) Make sure the PPE you select provides employee protection based on:
- □ Actual and potential hazards identified during the site characterization and analysis (see WAC <u>296-843-110</u>, Evaluations and inspections).
  - ☐ Hazards likely to be encountered.
  - $\hfill\square$  Required tasks and their duration.
  - ☐ Site requirements and limitations.
  - ☐ Use Table 2 to identify the type of PPE that is required for various exposure situations.

#### Table 2

#### **Selecting PPE in Various Exposure Situations**

| If                           |                                                                                               | The                                                                                                                   | n                                                                                                             |                                                                                                        |
|------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| cond<br>char                 | nging site<br>ditions indicate a<br>nge in employee<br>osure                                  |                                                                                                                       |                                                                                                               | d adjust the level of<br>as appropriate                                                                |
|                              |                                                                                               | Note                                                                                                                  | <b>)</b> :                                                                                                    |                                                                                                        |
|                              |                                                                                               | prote<br>this                                                                                                         | ection v<br>will not                                                                                          | ecrease the level of when information indicates increase employee o safety or health hazards           |
| subs<br>poss<br>abso<br>with | re is a<br>stantial<br>sibility that skin<br>orption or contact<br>a hazardous<br>stance may: | Use totally encapsulating chemical protective (TECP) suits and make sure they will protect employees from the hazards |                                                                                                               |                                                                                                        |
|                              | Impair an employee's ability to escape                                                        |                                                                                                                       | remov<br>accor                                                                                                | decontaminate, inspect, and<br>ve TECP suits from service<br>ding to the manufacturer's<br>nmendations |
|                              | Cause<br>immediate<br>serious illness<br>or injury                                            |                                                                                                                       | Perform any TECP integrity tests recommended by the manufacturer and make sure all TECP suits are capable of: |                                                                                                        |
|                              | Is an IDLH or immediate death hazard                                                          | □ Maintaining positive air pressure                                                                                   |                                                                                                               |                                                                                                        |

|                              |                                                                                            |                                              |                                        | Preventing inward test gas leakage of more than 0.5%                                                                                                                               |
|------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                            | Note                                         | <b>)</b> :                             |                                                                                                                                                                                    |
|                              |                                                                                            | reco<br>TEC<br>air p<br>leak<br>proto<br>NFP | mmene<br>P suit's<br>ressure<br>age. O | manufacturer's ded procedures for testing a s ability to maintain positive e and prevent inward gas ther established test or these suits, for example, 1 and ASTM F1052-97, may ed |
| subs<br>poss<br>emp<br>to ha | re is a<br>stantial<br>sibility that<br>oloyee exposure<br>azardous<br>stances will<br>er: |                                              |                                        | tive-pressure SCBA or an irator with an escape SCBA                                                                                                                                |
|                              | Immediately cause death, serious illness, or serious injury                                |                                              | conta                                  | ct air supply from<br>mination and the entire<br>ator system from physical<br>ge                                                                                                   |
| OR                           |                                                                                            |                                              |                                        |                                                                                                                                                                                    |
|                              | Impair an employee's ability to escape                                                     |                                              |                                        |                                                                                                                                                                                    |

**Note:** If there is not a permissible exposure limit (PEL) or other published exposure level for a hazardous substance, you may use published studies and information as a guide for selecting appropriate PPE.

(3) PPE required by this standard is to be provided at no cost to the employees.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, 49.17.060. 09-05-071, § 296-843-19005, filed 2/17/09, effective 4/1/09; 04-02-053, § 296-843-19005, filed 1/5/04, effective 5/1/04.]

296-843-200

Training, briefings, and information.

#### Your responsibility:

To make sure employees and subcontractors have the training and information needed to work safely.

#### You must:

Inform workers and employers about the hazardous waste site

WAC 296-843-20005.

Train workers, supervisors and managers before work begins on the site

WAC 296-843-20010.

Provide additional training to your managers and supervisors

WAC 296-843-20015. Training for postemergency response WAC <u>296-843-20020</u>. Make sure your employees receive written documentation of training WAC 296-843-20025. Provide refresher training to employees WAC 296-843-20030. Use qualified trainers WAC <u>296-843-20035</u>. IMPORTANT: If law enforcement personnel participate in clean-up activities, they must receive appropriate hazardous waste cleanup training as described in this chapter. [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-200, filed 1/5/04, effective 5/1/04.] 296-843-20005 Inform workers, contractors and subcontractors about the hazardous waste site. You must: □ Inform employees, contractors, and subcontractors or their representatives, about: ☐ The nature, level, and degree of exposure to hazardous substances they're likely to encounter. ☐ All site-related emergency response procedures. ☐ Any identified potential fire, explosion, health, safety, or other hazards. ☐ Conduct briefings for employees, contractors, and subcontractors, or their representatives as follows: ☐ A preentry briefing before any site activity is started. □ Additional briefings, as needed, to make sure that the site-specific HASP is followed.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20005, filed 1/5/04, effective 5/1/04.]

Trained on how to protect themselves and other workers against the site hazards and risks.

□ Update all information to reflect current site activities and hazards.

☐ Make sure all employees working on the site are:

Informed of any risks identified.

#### 296-843-20010

IMPORTANT:

Train workers, supervisors and managers before work begins on the site.

| ☐ The eighty-hour training requirement does NOT apply to law enforcement personnel entering illicit drug labs, securing the premises, and obtaining evidence. Attendance at a forty-hour training course, such as presented by the criminal justice training commission, is acceptable. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ These training requirements do not apply to workers engaged in limited postemergency response activities provided they meet the conditions described in WAC 296-843-20020.                                                                                                            |

#### You must:

| ☐ Make sure workers have received twenty-four-, : | forty- or eighty-hour training as requi | red by Table 3 before |
|---------------------------------------------------|-----------------------------------------|-----------------------|
| participating in hazardous waste operations.      |                                         |                       |

- ☐ Safety, health, and other hazards known or suspected at the site.
- ☐ Use of personal protective equipment.
- ☐ Work practices to minimize worker's risk from the hazards.
- ☐ Use of engineering and other controls and equipment on the site.
- $\hfill \square$  Medical surveillance provided.
- □ Recognition of signs and symptoms that might indicate overexposure to site hazards.
- ☐ The contents of the site-specific health and safety plan (HASP) required by this chapter.

**Note:** The site-specific training can be provided as part of the twenty-four-, forty- or eighty-hour training or as part of the employee briefings provided all training and information requirements of WAC <u>296-843-200</u> are met.

Table 3

**Training Requirements** 

| If                                                                             | Then                                                                                                   | Notes | 3                                                                                                                                          |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Work and<br>exposures require<br>use of atmosphere<br>supplying<br>respirators | Provide eighty<br>hours of training<br>and three days of<br>supervised on-<br>site field<br>experience |       | y-hour training<br>pe fulfilled as<br>rs:                                                                                                  |
|                                                                                |                                                                                                        |       | One eighty-hour training session with emphasis on hazards requiring the use of atmosphere-supplying respirators and of chemical protective |

|                                                                                                                                                     |                                                                                                          | lo                                                                                                                                                     | lothing                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                     |                                                                                                          | OR                                                                                                                                                     | Journal                                                                                                                                                                                             |
|                                                                                                                                                     |                                                                                                          | ti<br>d<br>a<br>fic<br>ti<br>e<br>h<br>ti<br>a<br>s<br>s<br>r                                                                                          | One forty-hour raining class as lescribed below an additional orty hours of raining that emphasizes lazards requiring the use of atmosphere-upplying espirators and of chemical protective elothing |
| Work and exposures may                                                                                                                              | Provide forty                                                                                            | previou<br>supervi<br>experie<br>previou<br>experie<br>towards<br>forty ho<br>improve<br>compet<br>respirat<br>chemic<br>clothing<br>and pro<br>Worker | nce may count<br>the additional                                                                                                                                                                     |
| exposures may exceed the PEL or require protective clothing but do not require atmosphere supplying respirators                                     | and three days of<br>supervised on-<br>site field<br>experience                                          | may be<br>hour tra<br>sixteen<br>training<br>addition<br>supervi                                                                                       | come forty sined with hours of offsite and two hal days of sed on-site perience                                                                                                                     |
| Workers are occasionally onsite to perform specific limited tasks and unlikely to be exposed above PELs or other published exposure limits          | Provide twenty-<br>four hours of<br>training and one<br>day of supervised<br>on-site field<br>experience |                                                                                                                                                        |                                                                                                                                                                                                     |
| Workers are regularly on-site but work in areas fully characterized and monitored, with exposure under the PELs or other published exposure limits: | Provide twenty-<br>four hours of<br>training and one<br>day of supervised<br>on-site field<br>experience |                                                                                                                                                        |                                                                                                                                                                                                     |
| No need for respirators                                                                                                                             |                                                                                                          |                                                                                                                                                        |                                                                                                                                                                                                     |
| No health hazards                                                                                                                                   |                                                                                                          |                                                                                                                                                        |                                                                                                                                                                                                     |

| No possibility of an emergency Workers are at TSD facilities under normal operations (this does not include corrective actions cleanup at these facilities) | Provide twenty-<br>four hours of<br>training and one<br>day of supervised<br>on-site field<br>experience                                                                                                                                                         |                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Employees<br>perform<br>emergency<br>response activities                                                                                                    | Train workers to a level of competence in site emergencies, consistent with their assigned duties, to protect themselves and other employees                                                                                                                     |                                                                                                            |
| Workers qualify for limited postemergency response clean-up training                                                                                        | Provide at least eight hours of training                                                                                                                                                                                                                         | See WAC 296-843-<br>20020, Training for<br>postemergency<br>response, for detailed<br>training information |
| Workers have been previously trained (includes equivalent training)                                                                                         | Provide site-<br>specific training,<br>briefings and<br>information<br>required by this<br>chapter and<br>supervised field<br>experience on the<br>site of one day for<br>twenty-four-hour<br>and three days for<br>forty- or eighty-<br>hour trained<br>workers | Document equivalent training and work experience as required by WAC 296-843-20025                          |

**Note:** When calculating "training hours," WISHA assumes a "normal" workday of eight hours with sufficient time for lunch and other breaks.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20010, filed 1/5/04, effective 5/1/04.]

#### 296-843-20015

Provide additional training to your managers and supervisors.

#### You must:

 $\hfill \square$  Make sure the following receive appropriate training:

| □ On-site managers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Supervisors responsible for hazardous waste operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| □ Supervisors who directly supervise employees in hazardous waste operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\ \square$ Make sure such supervisors and on-site managers receive the same training as that required by the workers they supervise (see WAC $\underline{296-843-20010}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\hfill \square$ Make sure such supervisors and managers receive a minimum of eight additional hours of specialized training including the following information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| □ Written site-specific health and safety plan (HASP):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Training plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Personal protective equipment (PPE) plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spill containment plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Emergency management procedures to use when a release of hazardous substances occurs.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • Federal, state, and local agencies to be contacted if there is a release of hazardous substances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Sampling and monitoring plan (including procedures and techniques for monitoring health hazards).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ☐ Managing hazardous wastes and their disposal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20015, filed 1/5/04, effective 5/1/04.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 296-843-20020 Training for postemergency response.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 296-843-20020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 296-843-20020 Training for postemergency response.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 296-843-20020 Training for postemergency response.  You must:  □ Provide workers who participate only in limited postemergency response clean-up operations with a minimum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 296-843-20020 Training for postemergency response.  You must:  Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 296-843-20020 Training for postemergency response.  You must:  Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:  Cleanup is at a site that is a hazardous waste operation only because of an emergency response.  Clean-up work is directly supervised by someone who has completed at least forty hours of training in hazardous                                                                                                                                                                                                                                                                                                                                                             |
| 296-843-20020 Training for postemergency response.  You must:  Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:  Cleanup is at a site that is a hazardous waste operation only because of an emergency response.  Clean-up work is directly supervised by someone who has completed at least forty hours of training in hazardous waste operations as required in this chapter.                                                                                                                                                                                                                                                                                                               |
| 296-843-20020 Training for postemergency response.  You must:    Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:    Cleanup is at a site that is a hazardous waste operation only because of an emergency response.    Clean-up work is directly supervised by someone who has completed at least forty hours of training in hazardous waste operations as required in this chapter.    Written documentation is maintained at the work site supporting less than twenty-four hours of training.                                                                                                                                                                                             |
| 296-843-20020 Training for postemergency response.  You must:  Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:  Cleanup is at a site that is a hazardous waste operation only because of an emergency response.  Clean-up work is directly supervised by someone who has completed at least forty hours of training in hazardous waste operations as required in this chapter.  Written documentation is maintained at the work site supporting less than twenty-four hours of training.  The work:  Is performed in an area that has been monitored and fully characterized by a qualified person as an area where                                                                          |
| 296-843-20020 Training for postemergency response.  You must:  Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:  Cleanup is at a site that is a hazardous waste operation only because of an emergency response.  Clean-up work is directly supervised by someone who has completed at least forty hours of training in hazardous waste operations as required in this chapter.  Written documentation is maintained at the work site supporting less than twenty-four hours of training.  The work:  I sperformed in an area that has been monitored and fully characterized by a qualified person as an area where employee exposure cannot exceed PELs or other published exposure levels. |
| 296-843-20020 Training for postemergency response.  You must:  Provide workers who participate only in limited postemergency response clean-up operations with a minimum of eight hours of training, when these conditions are met:  Cleanup is at a site that is a hazardous waste operation only because of an emergency response.  Clean-up work is directly supervised by someone who has completed at least forty hours of training in hazardous waste operations as required in this chapter.  Written documentation is maintained at the work site supporting less than twenty-four hours of training.  The work:  Is performed in an area that has been monitored and fully characterized by a qualified person as an area where employee exposure cannot exceed PELs or other published exposure levels. |

| <b>Reference:</b> For additional information, see WAC <u>296-843-160</u> , Emergency response, and WAC 296-800-170, Employer chemical hazard communication.                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ☐ Make sure workers complete any other safety and health training needed to perform assigned clean-up tasks in a safe and healthful manner.                                                                                                                                                                                                                                                                                                                                                                                                 |
| □ Training may include topics such as the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Safety hazards and controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The content and availability of the site-specific health and safety plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Decontamination procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Operating procedures related to assigned clean-up tasks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PPE use and limitations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Hands-on exercises for PPE and decontamination.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Information about heat stress and hypothermia.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Make sure workers have been trained within the last twelve months.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20020, filed 1/5/04, effective 5/1/04.]                                                                                                                                                                                                                                                                                                                                                                                                      |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20020, filed 1/5/04, effective 5/1/04.]  296-843-20025  Make sure your employees receive written documentation of training.                                                                                                                                                                                                                                                                                                                  |
| 296-843-20025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 296-843-20025<br>Make sure your employees receive written documentation of training.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:  □ Certify and document annually that each manager, supervisor, and worker has either:                                                                                                                                                                                                                                                                                                                                                         |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:  Certify and document annually that each manager, supervisor, and worker has either:  Attended and successfully completed the training required by this section;                                                                                                                                                                                                                                                                               |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:  Certify and document annually that each manager, supervisor, and worker has either:  Attended and successfully completed the training required by this section;  OR                                                                                                                                                                                                                                                                           |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:  Certify and document annually that each manager, supervisor, and worker has either:  Attended and successfully completed the training required by this section;  OR  Demonstrated their competency.                                                                                                                                                                                                                                           |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:  Certify and document annually that each manager, supervisor, and worker has either:  Attended and successfully completed the training required by this section;  OR  Demonstrated their competency.  Record and maintain the method used to demonstrate competency.  Make sure your employees and supervisors who complete required training and field experience receive written                                                             |
| 296-843-20025 Make sure your employees receive written documentation of training.  You must:  Certify and document annually that each manager, supervisor, and worker has either: Attended and successfully completed the training required by this section; OR Demonstrated their competency. Record and maintain the method used to demonstrate competency. Make sure your employees and supervisors who complete required training and field experience receive written training documentation authenticated by the responsible trainer. |

| 296-843-20030<br>Provide refresher training to employees.                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| You must:                                                                                                                                          |
| □ Make sure all certified employees, supervisors, and managers receive eight hours of refresher training at least every twelve months that covers: |
| $\Box$ The topics specified in WAC <u>296-843-200</u> .                                                                                            |
| □ Assessments or evaluations of work-related incidents.                                                                                            |
| □ Any other relevant topics.                                                                                                                       |
| Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20030, filed 1/5/04, effective 5/1/04.]              |
| 296-843-20035<br>Use qualified trainers.                                                                                                           |
| You must:                                                                                                                                          |
| Use trainers that:                                                                                                                                 |
| ☐ Have demonstrated competent instructional skills.                                                                                                |
| □ Demonstrate knowledge of the subject matter and have either:                                                                                     |
| □ Satisfactorily completed a training program in the subject;                                                                                      |
| OR                                                                                                                                                 |
| ☐ Have the academic credentials and instructional experience needed for teaching the subject.                                                      |
| Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-20035, filed 1/5/04, effective 5/1/04.]              |
| 296-843-210<br>Medical surveillance.                                                                                                               |
| Your responsibility:                                                                                                                               |

You must:

Provide medical surveillance for your employees

WAC 296-843-21005.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-210, filed 1/5/04, effective 5/1/04.]

#### 296-843-21005

Provide medical surveillance for your employees.

| Υου   | must: |
|-------|-------|
| 1 O U | must. |

| ☐ Are or may be exposed to hazardous substances or health hazards for at least thirty days a year, at or above the | ıе |
|--------------------------------------------------------------------------------------------------------------------|----|
| permissible exposure limits (PELs) or other published exposure levels.                                             |    |

□ Establish a medical surveillance plan for all employees who meet any of the following:

| □ Wear a respirator for at least thirty days a \( \) |
|------------------------------------------------------|
|------------------------------------------------------|

□ Are injured, become ill, or develop signs or symptoms of possible overexposure to hazardous substances or health hazards.

☐ Are hazardous materials team (HAZMAT) members.

**Reference:** Employees who use respirators less than thirty days a year are required to have a respirator medical evaluation as outlined by chapter 296-842 WAC, Respirators. Completion of a medical examination required by this section will meet the requirement for a respirator medical evaluation.

#### You must:

☐ Make sure medical examinations, consultations, and procedures are:

☐ Scheduled according to Table 4, Medical Examination Schedule.

□ Performed or supervised by a licensed physician.

□ Available:

- At a reasonable time and place.
- Without loss of pay.
- Without cost to employees.

Note: Examples of costs include: Mileage, gas, bus fare, and time spent outside normal work hours.

Table 4

#### **Medical Examination Schedule**

| If a worker                                         | Then provide an examination                                                                 |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| Is assigned to work that is covered by this chapter | Before work assignment begins                                                               |
| Continues to work in hazardous waste operations     | At least once every twelve<br>months, unless the attending<br>physician decides a different |

| Needs to be examined more                                                                                        | interval, up to twenty-four<br>months or less than twelve<br>months, is appropriate  At an interval less than twelve |  |  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| frequently based on the examining physician's medical judgment                                                   | months                                                                                                               |  |  |
| Is reassigned to an area where their work is not covered                                                         | As soon as possible, unless<br>he or she was examined<br>within the past six months                                  |  |  |
| OR                                                                                                               |                                                                                                                      |  |  |
| Employment is terminated                                                                                         |                                                                                                                      |  |  |
| Has an incident that results in injury or illness                                                                | As soon as possible                                                                                                  |  |  |
| OR                                                                                                               |                                                                                                                      |  |  |
| Develops signs or symptoms of possible overexposure to hazardous substances and health hazards                   |                                                                                                                      |  |  |
| OR                                                                                                               |                                                                                                                      |  |  |
| Has been exposed above the permissible exposure limits or published exposure levels                              |                                                                                                                      |  |  |
| Requires follow-up examinations or consultations because of medical necessity for an exposure incident or injury | When determined by the examining physician                                                                           |  |  |

#### You must:

| ☐ Make sure the medical examination includes the following information for each affected employee:                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\hfill \Box$ A medical and work history, with special emphasis on symptoms related to handling hazardous substances and health hazards.                                         |
| □ Information about fitness for duty including the ability to wear any personal protective equipment (PPE) under conditions that may be expected at the workplace.               |
| □ Any additional information that is determined by the examining physician.                                                                                                      |
| Note: The physician should consult the NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities http://www.cdc.gov/niosh/85-115.html.  You must: |
| □ Provide complete information to the examining physician, including:                                                                                                            |
| □ A copy of WAC <u>296-843-210</u> .                                                                                                                                             |
| ☐ Medical evaluation information required by chapter 296-842 WAC, Respirators.                                                                                                   |
| $\hfill \square$ A description of the employee's duties that relate to hazardous substance exposure.                                                                             |
| ☐ The actual or anticipated hazardous substance exposure levels for the employee.                                                                                                |
| ☐ A description of the PPE the employee uses or could use.                                                                                                                       |
| ☐ Information available from previous medical examinations.                                                                                                                      |
| ☐ Instruction to the physician that the physician's written opinion NOT include specific findings or diagnoses that are not related to occupational exposures.                   |

| <b>Note:</b> You are NOT required to send duplicate information to the physician for each employee. <b>You must:</b>                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Obtain the physician's written medical opinion that includes the following information:                                                                                                               |
| $\hfill \Box$ Whether medical conditions were found that would increase the employee's risk for impairment during emergency response work or respirator use.                                            |
| □ Limitations of the employee's assigned work, if any.                                                                                                                                                  |
| □ Examination and test results, if the employee requests this information.                                                                                                                              |
| $\ \square$ A statement that the employee has been confidentially informed of medical examination results (including medical conditions requiring followup required by WAC $\underline{296-843-210}$ ). |
| □ Provide the employee with a copy of the physician evaluation.                                                                                                                                         |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-21005, filed 1/5/04, effective 5/1/04.]                                                                  |
| 296-843-220 Recordkeeping and information access.                                                                                                                                                       |
| Your responsibility:                                                                                                                                                                                    |
| To keep records and make them accessible to employees.                                                                                                                                                  |
| You must:                                                                                                                                                                                               |
| Make your records accessible                                                                                                                                                                            |
| WAC <u>296-843-22005</u> .                                                                                                                                                                              |
| Keep medical surveillance records for your employees                                                                                                                                                    |
| WAC <u>296-843-22010</u> .                                                                                                                                                                              |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-220, filed 1/5/04, effective 5/1/04.]                                                                    |
| 296-843-22005<br>Make your records accessible.                                                                                                                                                          |
| You must:                                                                                                                                                                                               |
| □ Allow your written health and safety plan (HASP) and all other written plans required by this chapter to be inspected and copied by:                                                                  |
| □ Employees or their designated representative.                                                                                                                                                         |

| ☐ Site contractors or their designated representatives.                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------|
| □ Subcontractors or their designated representatives.                                                                                  |
| □ Personnel of any federal, state, or local agency with regulatory authority over the site.                                            |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-22005, filed 1/5/04, effective 5/1/04.] |
| 296-843-22010 Keep medical surveillance records for your employees.                                                                    |
| You must:                                                                                                                              |
| ☐ Keep medical surveillance records for each affected employee that include:                                                           |
| ☐ The employee's name and Social Security number.                                                                                      |
| ☐ Physicians' written opinions including recommended limitations and results of examinations and tests.                                |
| □ Any employee medical complaints regarding hazardous substance exposures.                                                             |
| □ A copy of all information given to the examining physician (except a copy of this chapter).                                          |
| ☐ Keep each employee's records for at least the duration of his or her employment plus thirty years.                                   |
| <b>Reference:</b> For additional requirements on medical and exposure records, see chapter 296-62 WAC, Part B, Access to records.      |
| [Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-22010, filed 1/5/04, effective 5/1/04.] |
|                                                                                                                                        |

296-843-300 **Definitions.** 

### **Buddy system**

A system of organizing employees into work groups so that each employee is assigned to observe another employee in the same work group. The purpose of this system is to provide rapid assistance to employees in the event of an emergency.

#### Clean-up operation

An operation where hazardous substances are removed, contained, incinerated, neutralized, stabilized, cleared up, or in any other manner processed or handled with the goal of making the site safer for people or the environment.

#### Contamination reduction zone

The buffer zone between the exclusion and the clean zone.

#### Decontamination

The removal of hazardous substances from employees and equipment, to the extent necessary, to avoid foreseeable adverse health effects.

#### **Emergency response or responding to emergencies**

An organized response to an anticipated release of a hazardous substance that is, or could become, an uncontrolled release.

#### **Exclusion zone**

A controlled area at a site, where contamination occurs, that is a risk to human health or the environment.

#### **Exposure or exposed**

Employee contact with a toxic substance, harmful physical agent, or oxygen deficient condition. Exposure can occur through various routes of entry, such as inhalation, ingestion, skin contact, or skin absorption.

#### **Facility**

Any building structure, installation, equipment, pipe, or pipeline (including any pipe into a sewer or publicly owned treatment works), well, pit, pond, lagoon, impoundment, ditch, storage container, motor vehicle, rolling stock, or aircraft;

#### OF

Any site or area where a hazardous substance has been deposited, stored, disposed of, placed, or otherwise located (not including any boat, ship or barge).

#### Hazardous substance

| An۱ | of the following | substances that | could adversely | v affect an exi | posed emplo | vee's health or s | afetv |
|-----|------------------|-----------------|-----------------|-----------------|-------------|-------------------|-------|
|     |                  |                 |                 |                 |             |                   |       |

| ☐ Substances defined under section 101(14) of the Comprehensive Environmental Response, Compensational Liability Act of 1980 (CERCLA) or "Superfund" Act (found at: http://www.epa.gov).                                   | on and |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ☐ Biological or other disease-causing agents released that could reasonably be expected to cause death, doehavioral abnormalities, cancer, genetic mutation, physiological malfunctions, including malfunctions in reprodu |        |
| $\ \square$ Is directly exposed to the agent in the environment.                                                                                                                                                           |        |
| □ Directly ingests, inhales, or assimilates the agent from the environment                                                                                                                                                 |        |

| ☐ Substances listed by the United States Department of Transportation as hazardous materials under Title 49 |
|-------------------------------------------------------------------------------------------------------------|
| (Transportation) in the Code of Federal Regulations (CFR), Part 172, section 101 and appendices (found at:  |
| http://www.nara.gov_search.for."List.of.CER.subjects")                                                      |

☐ Hazardous wastes as defined in this chapter.

□ Indirectly ingests the agent through a food chain.

#### Hazardous waste

Any substance designated by the department of ecology as a dangerous or extremely hazardous waste by chapter 173-303 WAC, Dangerous waste regulations.

#### Hazardous waste site

A hazardous waste site is any facility or location within the scope of this chapter.

#### Hazardous materials team (HAZMAT team)

A group of employees who are expected to perform responses to releases, or possible releases, of hazardous substances for the purpose of control and stabilization. As a result of their duties, HAZMAT team members may have close contact with hazardous substances.

#### Health hazard

A chemical, mixture, biological agent, or physical agent that may cause health effects in short- or long-term exposed employees based on statistically significant evidence from at least one study conducted using established scientific principles. Health hazards include:

| □ Cardinogens.                                                                                    |
|---------------------------------------------------------------------------------------------------|
| □ Toxic or highly toxic agents.                                                                   |
| □ Reproductive toxins.                                                                            |
| □ Irritants.                                                                                      |
| □ Corrosives.                                                                                     |
| □ Sensitizers.                                                                                    |
| □ Hepatotoxins (liver toxins).                                                                    |
| □ Nephrotoxins (kidney toxins).                                                                   |
| □ Neurotoxins (nervous system toxins).                                                            |
| $\hfill \square$ Substances that act on the hematopoietic system (blood or blood-forming system). |
| $\hfill \square$ Substances that can damage the lungs, skin, eyes, or mucous membranes.           |
| ☐ Hot or cold conditions.                                                                         |
| IDLH or immediately dangerous to life or health                                                   |
| Any atmospheric condition that would:                                                             |
| □ Cause an immediate threat to life;                                                              |
| OR                                                                                                |
| □ Cause permanent or delayed adverse health effects;                                              |
| OR                                                                                                |
| □ Interfere with an employee's ability to escape.                                                 |

#### Incidental release

A release that can be safely controlled at the time of the release and does not have the potential to become an uncontrolled release.

An example of a situation that results in an incidental release:

A tanker truck is receiving a load of hazardous liquid when a leak occurs. The driver knows the only hazard from the liquid is minor skin irritation. The employer has trained the driver on procedures and provided equipment to use for a release of this quantity. The driver puts on skin protection and stops the leak. A spill kit is used to contain, absorb, and pick up the spilled material for disposal.

#### Material safety data sheet (MSDS)

Written, printed, or electronic information (on paper, microfiche, or on-screen) that informs manufacturers, distributors, employers or employees about a hazardous chemical, its hazards and protective measures as required by chapter 296-839 WAC, Content and distribution of material safety data sheets (MSDSs) and label information.

#### Oxygen deficiency

An atmosphere where the percentage of oxygen by volume is less than 19.5%.

#### Permissible exposure limit (PEL)

Permissible exposure limits (PELs) are employee exposures to toxic substances or harmful physical agents that must not be exceeded. PELs are specified in applicable WISHA rules.

#### **Published exposure level**

Exposure limits published in "National Institute for Occupational Safety and Health (NIOSH) Recommendations for Occupational Safety and Health" (DHHS publication #92-100, 1992).

If an exposure limit is not published by NIOSH, then "published exposure level" means the exposure limits published by the American Conference of Governmental Industrial Hygienists (ACGIH) in "TLVs and BEIs-Threshold Limit Values for Chemical Substances and Physical Agents" (1999 edition).

#### Postemergency response

The stage of the emergency response where the immediate threat from the release has been stabilized or eliminated, and cleanup of the site has started. For more information, see the definition for "emergency response."

#### Site safety and health supervisor (or official)

The individual present at a hazardous waste site who is responsible to the employer and has the authority and knowledge necessary to establish the site-specific health and safety plan and verify compliance with applicable safety and health requirements.

#### Site work zones

Zones established at a hazardous waste site before clean-up work begins to control work on the site and access to the site. The work zones are: Exclusion zone, contamination reduction zone, and clean zone.

#### Uncontrolled hazardous waste site

An area where an accumulation of hazardous substances creates a threat to the health and safety of individuals or the environment or both. Examples include: Former municipal, county, or state landfills, locations where illegal or poorly managed waste disposal has taken place, or property of generators or former generators of hazardous substance waste (surface impoundments, landfills, dumps, and tank or drum farms).

#### **Uncontrolled release**

A release where significant safety and health risks could be created. Releases of hazardous substances that are either incidental or couldn't create a safety or health hazard (i.e., fire, explosion, or chemical exposure) aren't considered to be uncontrolled releases.

|    | Examples of conditions that could create a significant safety and health risk:                                                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | □ Large-quantity releases.                                                                                                                                                         |
|    | □ Small releases that could be highly toxic.                                                                                                                                       |
|    | □ Potentially contaminated individuals arriving at hospitals.                                                                                                                      |
| er | ☐ Airborne exposures that could exceed a WISHA permissible exposure limit or a published exposure limit and mployees aren't adequately trained or equipped to control the release. |
|    | Example of an uncontrolled release:                                                                                                                                                |

A forklift driver knocks over a container of a solvent-based liquid, releasing the contents onto the warehouse floor. The driver has been trained to recognize the vapor is flammable and moderately toxic when inhaled. The driver hasn't been trained or provided appropriate equipment to address this type of spill. In this situation, it isn't safe for the driver to attempt a response. The driver needs to notify someone of the release so an emergency response can be initiated.

[Statutory Authority: RCW 49.17.010, 49.17.040, 49.17.050, and 49.17.060. 04-02-053, § 296-843-300, filed 1/5/04, effective 5/1/04.]



## APPENDIX B

Environmental Project Health and Safety Meeting Form



# ENVIRONMENTAL PROJECT HEALTH AND SAFETY FIELD MEETING FORM

| Date:                  | Time:            | Project No.:     |
|------------------------|------------------|------------------|
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
| TOPICS DISCUSSED       |                  |                  |
| Physical Hazards:      |                  |                  |
| Chemical Hazards:      |                  |                  |
| Personal Protection:   |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
| Emergency Information: |                  |                  |
| Hospital Location:     |                  |                  |
|                        | <u>Attendees</u> |                  |
| Name/Comp              | any (printed)    | <u>Signature</u> |
|                        |                  |                  |
|                        |                  |                  |
|                        | -                |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        | -                |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        |                  |                  |
|                        | -                |                  |
|                        | -                |                  |
|                        | -                |                  |
| Meeting Conducted by:  |                  |                  |
| samg sanddolod by      | Signature        |                  |
|                        |                  |                  |



## APPENDIX C

Job Safety Analysis Sheets

#### **JOB SAFETY ANALYSIS** JSA # 01 **AMEC Geomatrix** All field projects NA Project Name: Project No: Date: 6/21/07 Task Location: All Task: Mobilization to and from client sites For this Project and Task, this document is a Certification of Hazard Assessment P. Hsieh T. Reinhardt Completed by: Reviewed by: Notes: **Task** Hazard **Risk Control Method** Mobilization to Site Driving accidents Vehicle to be fit for the purpose and well maintained. If using your own car, note that company insurance may not apply. Best to use a rental car or Flexcar, which are usually well-maintained. Loads to be secure and not to exceed vehicle specifications or legal limits. If loading vehicle heavily or towing, check vehicle GVWR and towing limits for vehicle and hitch. Get instruction in proper hitch operation if unfamiliar with towing equipment. Driver to be currently licensed and medically fit. All occupants will wear their seat belts whenever traveling. Driver to be rested and alert. If driving long distances, take breaks to stretch and keep alert. Change drivers or pull off the road to sleep if having difficulty staying awake. Minimize cell phone use. Use only a hands-free system, or pull over to use the cell phone. Plan your route ahead of time. Have maps or turn directions at hand for reference; highlight them to show critical turns. Check driver attitude. Be relaxed, unhurried, and do not drive aggressively. Keep right except to pass, pass only where sufficient distance and visibility exists, and maintain a spacing buffer for other drivers to make mistakes.

Driver must not be under the influence of alcohol, drugs, or

medication that impairs their ability to drive vehicle.

| AMEC Geomatr            | JO                            | B SAFETY ANALYSIS JSA # 02                                                       |
|-------------------------|-------------------------------|----------------------------------------------------------------------------------|
| Project Name: Boeing    | IT Sediment Sampling          | Project No: LY11160060 Date: May 2011                                            |
|                         | n and trailer towing          | Task Location: Boeing IT Site                                                    |
| Notes: For this Proj    | ect and Task, this document i | s a Certification of Hazard Assessment                                           |
| Task                    | Hazard                        | Risk Control Method                                                              |
| Mobilization to Site    | Driving Accidents             | Vehicle to be fit for purpose and well maintained.                               |
|                         |                               | Tomoro to so in ioi parposo and ioi inalinalina.                                 |
|                         |                               | Loads to be secure and not to exceed vehicle specification or legal              |
|                         |                               | limits.                                                                          |
|                         |                               | Driver to be licensed, trained, and medically fit.                               |
|                         |                               | Driver to be rested and alert.                                                   |
|                         |                               | Driver should not use cell phone while driving.                                  |
|                         |                               | Plan your route ahead of time, avoid narrow streets, sharp corners,              |
|                         |                               | and low overpasses when towing trailer.                                          |
|                         |                               | Driver must not be under the influence of alcohol, drugs, or                     |
|                         |                               | medication that impairs ability to drive vehicle.                                |
|                         |                               | Make sure vehicle has adequate fuel in tank before departure.                    |
|                         |                               | When carrying heavy loads or towing a boat, allow extra stopping                 |
|                         |                               | distance.                                                                        |
|                         |                               | Use caution when changing lanes.                                                 |
|                         | Flat tire / Breakdown         | Check tires for proper inflation before departure.                               |
|                         |                               | If possible, get completely off of the freeway at next exit.                     |
|                         |                               | Do not hesitate to call a tow truck if repairs cannot be made safely.            |
|                         |                               | Use extreme caution when outside of a disabled vehicle. Avoid                    |
|                         |                               | standing behind or on the traffic side of the vehicle.                           |
| Boat trailering         | Trailer safety                | Check trailer tire pressure.                                                     |
|                         |                               | Make sure that trailer is properly attached to towing vehicle.                   |
|                         |                               | Confirm that the trailer lights are working properly.                            |
| Launching boat          | Ramp accidents                | Prepare the boat for launching in a safe location.                               |
|                         |                               | Inspect for overhead power lines that might hit the boat.                        |
|                         |                               | Attach mooring lines and fenders before launching the boat.                      |
|                         |                               | Watch for pedestrian traffic when backing.                                       |
|                         |                               | Firmly set the parking brake when parked on boat ramp. Make sure                 |
|                         | Leaving dock                  | brake is holding before exiting cab of vehicle.  Check for other vessel traffic. |
|                         | Leaving dock                  | Crew should not until mooring lines until instructed to do so.                   |
|                         |                               | orew should not unite mooning lines until instructed to do so.                   |
|                         |                               | Do not jump from dock to boat.                                                   |
| All on water activities | Drowning                      | All personnel on boat must wear a life jacket.                                   |
|                         |                               | Have a throwable life ring readily available.                                    |
|                         |                               | Use caution to avoid falling overboard.                                          |
|                         |                               | Maintain visual contact with a man overboard as the vessel circles               |
|                         |                               | round to pick up victim.                                                         |
|                         | Head injuries                 | Wear hard hat when equipment is being lifted.                                    |
|                         | ,                             | The winch operator should coordinate lifting of equipment with deck              |
|                         |                               | crew.                                                                            |
|                         | Eye injuries                  | Wear safety glasses.                                                             |
|                         | Lyo mjunos                    | Total datoly gladdoo.                                                            |
|                         |                               | Wear UV filtering safety sun glasses to avoid sun burn to eyes.                  |
|                         | Sunburn                       | Wear long sleeved shirts to protect from sun exposure.                           |
|                         |                               | Reapply SPF30 or better sun screen often.                                        |

| AMEC      | Geomatri       | JO                             | B SAFETY ANALYSIS  JSA # 02                                                                                                                                                                                                                                                                                                         |
|-----------|----------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project N | lame: Boeing   | IT Sediment Sampling           | Project No: LY11160060 Date: May 2011                                                                                                                                                                                                                                                                                               |
| Task:     | Mobilization   | n and trailer towing           | Task Location: Boeing IT Site                                                                                                                                                                                                                                                                                                       |
| Notes:    | For this Proje | ect and Task, this document is | s a Certification of Hazard Assessment                                                                                                                                                                                                                                                                                              |
| Task      |                | Hazard                         | Risk Control Method                                                                                                                                                                                                                                                                                                                 |
|           |                |                                | Wear a wide brimmed hat.                                                                                                                                                                                                                                                                                                            |
|           |                | Trips / Falls                  | Us care when moving around boat.                                                                                                                                                                                                                                                                                                    |
|           |                | ·                              | Maintain good housekeeping practices. Avoid unnecessary deck                                                                                                                                                                                                                                                                        |
|           |                |                                | clutter.                                                                                                                                                                                                                                                                                                                            |
|           |                |                                | Wear appropriate PPE including non-slip rubber boots if working on wet or slick surfaces.                                                                                                                                                                                                                                           |
|           |                | Heat / Cold stress             | Take regular breaks on hot days or if feeling faint or overexerted.                                                                                                                                                                                                                                                                 |
|           |                |                                | Consume adequate food / beverages (water or sports drinks)                                                                                                                                                                                                                                                                          |
|           |                |                                | If possible, adjust work schedule to avoid temperature extremes.                                                                                                                                                                                                                                                                    |
|           |                |                                | Crew should watch each other for signs of thermal stress.                                                                                                                                                                                                                                                                           |
|           |                | Fire                           | Avoid refueling while on the water if possible.                                                                                                                                                                                                                                                                                     |
|           |                |                                | Have a dry chemical fire extinguisher readily available.                                                                                                                                                                                                                                                                            |
|           |                |                                | Smoking is prohibited at all times.                                                                                                                                                                                                                                                                                                 |
|           |                |                                | Avoid using flammable chemicals if possible.                                                                                                                                                                                                                                                                                        |
|           |                | Sinking                        | Continually assess weather conditions. Go back to harbor before                                                                                                                                                                                                                                                                     |
|           |                |                                | the weather conditions become dangerous.                                                                                                                                                                                                                                                                                            |
|           |                |                                | If vessel is tanking on water, immediately contact USCG on VHF                                                                                                                                                                                                                                                                      |
|           |                |                                | radio channel 16 to inform them of the situation. If possible run a                                                                                                                                                                                                                                                                 |
|           |                |                                | sinking vessel onto the beach. If you must abandon ship, place                                                                                                                                                                                                                                                                      |
|           |                |                                | emergency calls to the USCG and 911 if time allows. Take the                                                                                                                                                                                                                                                                        |
|           |                |                                | emergency signaling kit, hand held VHF (which is water proof) and                                                                                                                                                                                                                                                                   |
|           |                |                                | the throwable life ring with you.                                                                                                                                                                                                                                                                                                   |
|           |                | Oil Spills                     | Avoid pouring oil products while on the water.                                                                                                                                                                                                                                                                                      |
|           |                |                                | Have absorbent pads available to contain any spills.                                                                                                                                                                                                                                                                                |
|           |                |                                | If any oil spill enters the water, promptly notify the oil spill response hotline at 1 (800) 424-8802.                                                                                                                                                                                                                              |
|           |                | Collision                      | all crew members should keep alert for other vessel traffic.                                                                                                                                                                                                                                                                        |
|           |                |                                | Observe proper "rules of the road".                                                                                                                                                                                                                                                                                                 |
|           |                |                                | Stay to the right side of designated shipping channels.                                                                                                                                                                                                                                                                             |
|           |                | Homeland Security              | Maintain a minimum distance of 500 yards from Washington State ferry boats and US Navy vessels. If this is not possible, contact the vessel using the VHF radio to request permission to approach closer. After radio contact, if distance is less than 500 yards, maintain a dead slow speed. Failure to do so may result in fines |
|           |                |                                | and/or arrest.                                                                                                                                                                                                                                                                                                                      |
| Anchorin  | g              | Entanglement                   | Make sure anchor lines are untangled prior to deploying the anchor.                                                                                                                                                                                                                                                                 |
|           |                |                                | Keep feet out of bight of the anchor line.                                                                                                                                                                                                                                                                                          |
|           |                |                                | Avoid throwing the anchor. It is safer to lower the anchor to the                                                                                                                                                                                                                                                                   |
|           |                |                                | bottom.                                                                                                                                                                                                                                                                                                                             |
|           |                | Back strain                    | If possible, use an anchor winch to recover the anchor.                                                                                                                                                                                                                                                                             |
|           |                |                                | Keep back straight to minimize strain.                                                                                                                                                                                                                                                                                              |
|           |                |                                | If the anchor is set hard, use the boat to break it free.                                                                                                                                                                                                                                                                           |
|           |                | Returning to the dock          | Approach dock slowly.                                                                                                                                                                                                                                                                                                               |
|           |                |                                | Crew should not jump from the boat to the dock.                                                                                                                                                                                                                                                                                     |
|           |                |                                | Tie upwind/upstream mooring line first.                                                                                                                                                                                                                                                                                             |
| Recoveri  | ng boat        | Ramp accidents                 | Watch for pedestrian traffic when backing.                                                                                                                                                                                                                                                                                          |

| AMEC Geomatrix                            | JOB        | SAFETY ANALYSIS                                      | JSA # 02               |
|-------------------------------------------|------------|------------------------------------------------------|------------------------|
| Project Name: Boeing IT Sediment Sampl    | ing        | Project No: LY11160060                               | Date: May 2011         |
| Task: Mobilization and trailer towing     |            | Task Location: Boeing IT Site                        |                        |
| Notes: For this Project and Task, this de |            | Certification of Hazard Assessment                   |                        |
| Task Hazard                               |            | Risk Control Method                                  |                        |
|                                           |            | Firmly set the parking brake when parked or          | n boat ramp. Make sure |
|                                           |            | brake is holding before exiting cab of vehicle       | ).                     |
|                                           |            | Confirm that the boat is resting properly on t       | he trailer.            |
|                                           |            | Prepare the boat for trailering in a safe locat      | ion. Watch for vehicle |
|                                           |            | traffic.                                             |                        |
|                                           |            | Secure all cargo.                                    |                        |
|                                           |            | Secure boat to trailer.                              |                        |
|                                           |            | Confirm that the trailer lights are working pro      |                        |
| On the Job Accident Minor Injury          |            | Assess accident site to avoid further injury to      | o victim or rescuers.  |
|                                           |            | Render first aid as necessary.                       |                        |
|                                           |            | Transport victim to local first aid facility for for | •                      |
|                                           |            | necessary. The route to the nearest hospital         | should be included in  |
|                                           |            | the Project Health and Safety Plan.                  |                        |
|                                           |            | Call WorkCare for advice within 1 hr of injury       | ,                      |
|                                           |            | Fill out Incident Report Form as soon as pos         |                        |
| Serious Injury                            | / Fatality | Assess accident site to avoid further injury to      | o victim or rescuers.  |
|                                           |            | Call 911 to request Emergency Medical Serv           | vices (EMS) or if      |
|                                           |            | Render first aid as necessary. Avoid moving          | g the victim.          |
|                                           |            | Do not move any equipment that was involve           | ed in the accident     |
|                                           |            | except as necessary to facilitate rescue or to       |                        |
|                                           |            | Call WorkCare for advice within 1 hr of injury       |                        |
|                                           |            | Contact AMEC/Geomatrix Corporate H&S M               | lanager Don Kubik      |
|                                           |            | You must report the death, or probable deat          |                        |
|                                           |            | the in-patient hospitalization of two or more        | employees within       |
|                                           |            | 8 hours to the Washington Department of La           |                        |
|                                           |            | 1 (800) 423-7233.                                    |                        |

#### JSA # 03 **JOB SAFETY ANALYSIS AMEC Geomatrix** Project Name: Boeing IT Sediment Sampling Project No: LY11160060 Date: May 2011 Mudmole Sediment Sampling Task Location: Duwamish River Task: Completed by: GSM Reviewed by: For this Project and Task, this document is a Certification of Hazard Assessment Notes: Task Hazard **Risk Control Method** Boat use Misc. Refer to: JSA Boat Trailer Towing and Use.dot Moving the MudMole Back injury Use the boat winch whenever possible to lift heavy equipment. If this is not possible, ask someone to help you. Keep back straight to minimize strain. Foot injury Wear steel toed boots when handling heavy items. Running the Hydraulic Fire Use caution in refueling to avoid fuel spills. Power Pack Let engine cool before refueling. Smoking is prohibited when refueling. Have the dry chemical fire extinguisher readily available. Fuel Spill If any fuel enters the water use oil spill kit to mitigate damage and promptly notify the oil spill response line at 1 (800) 424-8802. Wear hearing protectors when the power pack is running. Noise Carefully monitor winch lines so they do not catch on anything. Raising the boat mast Entanglement Wear your hard hat. Have personnel move to center of deck away from hinge and Pinchina hydraulic cylinders. Do daily inspection of rigging. Do not use lifting equipment that is not Lifting the MudMole with Dropping heavy the winch equipment in good operating condition. Wear hard hat and steel toed boots. Never walk under a lifted load. Avoid placing body parts between a heavy load and a fixed object. Check that winch lines are not caught on anything before lifting. Entanglement Swinging heavy Check for wakes before lifting. Lift loads only when the boat is not equipment expected to be rocking. Watch for boat wakes, alert other crew members if you see one. Do not lift the grab until the deck hand is prepared to guide it. Lift slowly so that the deck hand can control the swing of the equipment. If a distraction occurs, the winch operator should stop all winch movement. Noise Running the Air Wear hearing protectors when the air compressor is running. Compressor Keep in mind that voice communications are impaired when wearing hearing protection. Injury from moving parts Always stop the air compressor before opening machinery covers. Injury from high pressure Make sure all air fittings are secure before starting air compressor.

Never direct compressed air towards your body.

Make sure the diver is clear of the moon pool before lowering

The winch operator should not lower or lift the Mudmole unless asked

Make sure diver is clear of the moon pool before lifting the MudMole.

Keep feet out of the bight of the air line.

to do so by operator of the Mudmole.

MudMole.

air

Entanglement

Communications

Mudmole

MudMole

Hitting the diver with the

Hitting the diver with the

Lowering the Mudmole

Lifting the Mudmole out of

into the water

the water

Sediment Coring

| Page 1 of 2 | Pac | ıe | 1 | of | 2 |
|-------------|-----|----|---|----|---|
|-------------|-----|----|---|----|---|

| AMEC Geomatrix                                   | JOI                          | B SAFETY ANALYSIS                                                                                                   | JSA # 03                 |
|--------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|
| Project Name: Boeing IT                          | Sediment Sampling            | Project No: LY11160060                                                                                              | Date: May 2011           |
| Task: Mudmole Sediment Sampling                  |                              | Task Location: Duwamish River                                                                                       |                          |
| Completed by: GSM                                |                              | Reviewed by:                                                                                                        |                          |
| Notes: For this Project                          | and Task, this document is a | a Certification of Hazard Assessment                                                                                |                          |
| Task                                             | Hazard                       | Risk Control Method                                                                                                 |                          |
|                                                  | Hanging up on the deck       | Watch that the Mudmole does not catch under                                                                         | the edge of the deck.    |
|                                                  | Swinging                     | Lay the Mudmole on the deck immediately after swing if the boat rocks.                                              | er use so that it cannot |
| Contaminated material spilling out of core tube. | Chemical contamination       | Wash the outside of the core tube while it is or                                                                    | ver the moon pool.       |
|                                                  |                              | Decant water inside the core tube over the box                                                                      | w of the boat rather     |
|                                                  |                              | than spilling it on the deck.                                                                                       |                          |
|                                                  |                              | Promptly wrap the ends of the core tube with f                                                                      | oil to contain           |
|                                                  |                              | contaminated sediments.  Promptly wash spilled sediment off of the decl                                             | ,                        |
|                                                  | +                            | Always wear proper PPE (splash suit, gloves,                                                                        |                          |
| Lowering the boat mast                           | Pinching                     | Have personnel move to center of deck away                                                                          |                          |
| Lowering the boat mast                           | i moning                     | cylinders.                                                                                                          | nom mige and             |
|                                                  | †                            | Make sure the mast does not crush items on to                                                                       | ables.                   |
|                                                  | Entanglement                 | Make sure winch line does not hang up on any                                                                        |                          |
| On the Job Accident Minor Injury                 |                              | Assess accident site to avoid further injury to                                                                     |                          |
|                                                  |                              | Render first aid as necessary.                                                                                      |                          |
|                                                  |                              | Call WorkCare for advice within 1 hr of injury                                                                      |                          |
|                                                  |                              | Transport victim to local first aid facility for follo                                                              |                          |
|                                                  |                              | necessary. The route to the nearest hospital s the Project Health and Safety Plan.                                  | hould be included in     |
|                                                  |                              | Fill out Incident Report Form as soon as possi                                                                      | ble.                     |
|                                                  | Serious Injury / Fatality    | Assess accident site to avoid further injury to                                                                     |                          |
|                                                  |                              | Call Boeing Emergency at (206) 655-2222 req<br>Medical Services (EMS) or if access to the bea<br>on VHF channel 16. |                          |
|                                                  |                              | Render first aid as necessary. Avoid moving t                                                                       |                          |
|                                                  |                              | Do not move any equipment that was involved                                                                         | •                        |
|                                                  |                              | as necessary to facilitate rescue or to assure s                                                                    | safety of other          |
|                                                  |                              | personnel.                                                                                                          |                          |
|                                                  |                              | Call WorkCare for advice within 1 hr of injury                                                                      | , ,                      |
|                                                  |                              | Contact Geomatrix Corporate H&S Manager E (510) 368-6433.                                                           | on Kubik                 |
|                                                  |                              | You must report the death, or probable death,                                                                       | of any employee, or      |
|                                                  |                              | the in-patient hospitalization of two or more en                                                                    |                          |
|                                                  |                              | 8 hours to the Washington Department of Lab                                                                         |                          |
|                                                  |                              | 1 (800) 423-7233.                                                                                                   |                          |

| AMEC Geomatrix                                   | JOB                                 | SAFETY ANALYSIS                                                                             | JSA # 04              |
|--------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|
| Project Name: Boeing IT S                        | ediment Sampling                    | Project No: LY11160060                                                                      | Date: May 2011        |
| Task: Mudmole Sedin                              |                                     | Task Location: Boeing IT Site                                                               |                       |
| Notes: For this Project a                        | nd Task, this document is a         | Certification of Hazard Assessment                                                          |                       |
| Task                                             | Hazard                              | Risk Control Method                                                                         |                       |
| Moving Core Tubes                                | Back injury                         | Core tubes are heavy, ask someone to help                                                   | ou carry them.        |
|                                                  |                                     | Keep back straight to minimize strain.                                                      | ou our j urour        |
|                                                  | Foot injury                         | Wear rubber steel toed boots when handling                                                  | heavy items.          |
|                                                  | Tripping / Falling                  | Use caution when walking while carrying a co                                                |                       |
|                                                  | Chemical contamination.             | Tightly wrap ends of core tube to prevent spil                                              |                       |
|                                                  |                                     | Always wear proper PPE (splash suit, gloves                                                 |                       |
| Cutting open the Core                            | Noise                               | Wear hearing protectors when using the saw                                                  |                       |
| -                                                |                                     | Keep in mind that voice communications are                                                  | impaired when         |
|                                                  |                                     | wearing hearing protection.                                                                 |                       |
|                                                  | Eye injury                          | Always wear eye protection.                                                                 |                       |
|                                                  | Electrical shock                    | Work in a covered area when it is raining.                                                  |                       |
|                                                  |                                     | Use a ground fault interrupter circuit (GFIC) t                                             | o protect against     |
|                                                  |                                     | electrical shock.                                                                           |                       |
|                                                  |                                     | Inspect electrical cords before use.                                                        |                       |
|                                                  | Laceration from saw                 | Have a firm grip on saw before starting cut.                                                |                       |
|                                                  |                                     | Use a sharp saw blade to reduce cutting resis                                               | stance.               |
|                                                  |                                     | Unplug the saw when replacing the blade or                                                  | doing other           |
|                                                  |                                     | maintenance.                                                                                |                       |
|                                                  |                                     | Do not reach under the saw when it is running                                               |                       |
| Contaminated material spilling out of core tube. | Chemical contamination              | Deploy tarp on ground to contain spilled sedi                                               | ment.                 |
|                                                  |                                     | Promptly clean up spilled sediment.                                                         |                       |
|                                                  |                                     | Always wear proper PPE (splash suit, gloves                                                 | , eye protection).    |
|                                                  |                                     | Avoid walking in spilled sediment.                                                          |                       |
|                                                  |                                     | Decon boot before leaving core processing a                                                 | rea.                  |
| Dumping waste sediment.                          | Splashing of contaminated material. | Slowly place waste into buckets.                                                            |                       |
|                                                  |                                     | Wear eye protection.                                                                        |                       |
|                                                  |                                     | Wear rubber gloves.                                                                         |                       |
| Washing used core processing tools.              | Splashing of contaminated material. | Do not drop equipment into buckets.                                                         |                       |
|                                                  |                                     | Wear eye protection.                                                                        |                       |
|                                                  |                                     | Wear splash suit and rubber gloves.                                                         |                       |
| Moving in work area.                             | Trips and Falls                     | Keep equipment orgainized to minimize clutte                                                |                       |
| On the Job Accident                              | Minor Injury                        | Assess accident site to avoid further injury to                                             | victim or rescuers.   |
|                                                  |                                     | Render first aid as necessary.                                                              |                       |
|                                                  |                                     | Transport victim to local first aid facility for fol                                        | •                     |
|                                                  |                                     | necessary. The route to the nearest hospital                                                | should be included in |
|                                                  |                                     | the Project Health and Safety Plan.                                                         |                       |
|                                                  |                                     | Call WorkCare for advice within 1 hr of injury                                              |                       |
|                                                  |                                     | Fill out Incident Report Form as soon as poss                                               |                       |
|                                                  | Serious Injury / Fatality           | Assess accident site to avoid further injury to                                             | victim or rescuers.   |
|                                                  |                                     | Call 911 to request Emergency Medical Servi<br>access to the beach is difficult, USGS on VH | , ,                   |

| AMEC Geomatrix             |                  | JOB         | SAFETY ANALY                                                                                                               | <b>YSIS</b>  | JSA # 04               |
|----------------------------|------------------|-------------|----------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|
| Project Name: Boeing IT Se | diment Sampli    | ng          | Project No: LY11160060                                                                                                     | )            | Date: May 2011         |
| Task: Mudmole Sedim        |                  |             | Task Location: Boeing IT Site                                                                                              |              |                        |
| Notes: For this Project an | nd Task, this do | cument is a | Certification of Hazard Assessmer                                                                                          | nt           |                        |
| Task                       | Hazard           |             | Risk Control Method                                                                                                        |              |                        |
|                            |                  |             | Render first aid as necessary. Av                                                                                          | oid moving   | the victim.            |
|                            |                  |             | Do not move any equipment that v                                                                                           | vas involve  | d in the accident      |
|                            |                  |             | except as necessary to facilitate repersonnel.                                                                             | escue or to  | assure safety of other |
|                            |                  |             | Call WorkCare for advice within 1                                                                                          | hr of injury | 1 (800) 455-6155.      |
|                            |                  |             | Contact AMEC/Geomatrix Corpora                                                                                             | ate H&S Ma   | anager Don Kubik       |
|                            |                  |             | You must report the death, or probate in-patient hospitalization of two 8 hours to the Washington Depart 1 (800) 423-7233. | o or more e  | mployees within        |

| AMEC Geomatrix                                            |                                |                |
|-----------------------------------------------------------|--------------------------------|----------------|
| Aries scomatrix                                           | JOB SAFETY ANALYSIS            | JSA # 05       |
| Project Name: Boeing IT Sediment                          | Project No: LY11160060         | Date: May 2011 |
| Task: Van Veen Grab Sampling                              | Task Location: Duwamish River  |                |
| Completed by: GSM                                         | Reviewed by:                   |                |
| Notes: For this Project and Task, this document is a Cert | ification of Hazard Assessment |                |

| Task                        | Hazard      | Risk Control Method                                                                                             |
|-----------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|
|                             |             |                                                                                                                 |
| Boat use                    | Misc.       | Refer to: JSA Boat Trailer Towing and Use.dot                                                                   |
|                             |             |                                                                                                                 |
| Moving the Van Veen Grab    | Back injury | Use the boat winch whenever possible to lift heavy equipment. If this is not possible, ask someone to help you. |
|                             |             | Keep back straight to minimize strain when lifting.                                                             |
|                             | Foot injury | Wear steel toed boots when handling heavy items.                                                                |
|                             |             |                                                                                                                 |
| Running the Hydraulic Power | Fire        | Use caution in refueling to avoid fuel spills.                                                                  |
|                             |             | Let engine cool before refueling.                                                                               |
|                             |             | Smoking is prohibited when refueling                                                                            |

|                                 | i oot irijury           | Wear steer toed boots when nahuling heavy items.                        |  |
|---------------------------------|-------------------------|-------------------------------------------------------------------------|--|
|                                 |                         |                                                                         |  |
| Running the Hydraulic Power     | Fire                    | Use caution in refueling to avoid fuel spills.                          |  |
|                                 |                         | Let engine cool before refueling.                                       |  |
|                                 |                         | Smoking is prohibited when refueling.                                   |  |
|                                 |                         | Have the dry chemical fire extinguisher readily available.              |  |
|                                 |                         |                                                                         |  |
|                                 | Fuel Spill              | Use oil spill kit to absorb the spill.                                  |  |
|                                 |                         | If any fuel enters the water use the spill kit to contain the spill and |  |
|                                 |                         | promptly notify the oil spill response line at 1 (800) 424-8802.        |  |
|                                 |                         |                                                                         |  |
|                                 | Noise                   | Wear hearing protectors when the power pack is running.                 |  |
|                                 |                         | Troda nodining protocolor mierrano portor paetrio ramining.             |  |
| Raising the boat mast           | Entanglement            | Carefully monitor winch lines so they do not catch on anything.         |  |
| raioning this boat mast         |                         | Wear your hard hat.                                                     |  |
|                                 |                         | Trod. your nate nate                                                    |  |
|                                 | Pinching                | Have personnel move to center of deck away from the mast pivots         |  |
|                                 |                         | and hydraulic cylinders.                                                |  |
|                                 |                         |                                                                         |  |
| Deconning the grab (gravity     | Pinching                | Make sure the grab is stable before reaching inside to clean it.        |  |
| Becoming the grae (gravity      | i moming                | make care the grap is classe screen readining molecule decarries        |  |
|                                 | Splashing of soap and   | Wear eye protection and splash suit.                                    |  |
|                                 | opidoming or odap dire  | The system and spider said                                              |  |
| Deconning the grab (power grab) | Pinching                | Engage safety valve before deconning the grab.                          |  |
| <u> </u>                        | g                       |                                                                         |  |
|                                 | Splashing of soap and   | Wear eye protection and splash suit.                                    |  |
|                                 | opiaciming or ocap aria | The system and spider such                                              |  |
| Lifting the Van Veen Grab with  | Dropping heavy          | Do daily inspection of rigging. Do not use lifting equipment that is    |  |
| the winch                       | equipment               | not in good operating condition.                                        |  |
| and which                       | очанринопи              | Do not lift the grab until the deck hand is prepared to guide it.       |  |
|                                 |                         | Wear hard hat.                                                          |  |
|                                 |                         | Never walk under a lifted load.                                         |  |
|                                 |                         | Avoid placing body parts between a heavy load and a fixed object.       |  |
|                                 |                         | proof practing body parts between a fleavy load and a fixed object.     |  |
|                                 | Entanglement            | Check that winch lines are not caught on anything before lifting.       |  |
|                                 | Linangiement            | oneon that winon lines are not caught on anything before litting.       |  |
|                                 | Swinging heavy          | Check for wakes before lifting. Lift loads only when the boat is not    |  |
|                                 | equipment               | expected to be rocking.                                                 |  |
|                                 | equipment               |                                                                         |  |
|                                 |                         | Watch for boat wakes, alert other crew members if you see one.          |  |

| AMEC Geomatrix                                                                          |                               |                |  |
|-----------------------------------------------------------------------------------------|-------------------------------|----------------|--|
| Alleo dedinati ix                                                                       | JOB SAFETY ANALYSIS           | JSA # 05       |  |
| Project Name: Boeing IT Sediment                                                        | Project No: LY11160060        | Date: May 2011 |  |
| Task: Van Veen Grab Sampling                                                            | Task Location: Duwamish River |                |  |
| Completed by: GSM                                                                       | Reviewed by:                  |                |  |
| Notes: For this Project and Task, this document is a Certification of Hazard Assessment |                               |                |  |

| Task                                       | Hazard                        | Risk Control Method                                                                                       |
|--------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                            |                               |                                                                                                           |
|                                            |                               | Never position your body between a fixed object and a swinging load.                                      |
|                                            |                               | Position the lifting point directly over the grab so that it is lifted straight up.                       |
|                                            |                               | Lift slowly so that the deck hand can control the swing of the equipment.                                 |
|                                            |                               | If a distraction occurs, the winch operator should stop all winch movement.                               |
| Arming the grab                            | Pinching                      | Coordinate arming the grab with winch operator.                                                           |
| 7 tilling the grab                         | i inoming                     | Never reach inside the grab after it is armed.                                                            |
|                                            |                               | grad arter to armost                                                                                      |
| Lowering the Van Veen Grab into the water  | Catching the edge of the boat | Lower the grab slowly so that the deck hand can guide the grab if necessary.                              |
| Lifting the Van Veen Grab out of the water | Hanging up on the deck        | Watch that the Van Veen Grab does not catch under the edge of the deck.                                   |
|                                            |                               | Have the boat hook handy so that you can guide the grab without having to lean over the side of the boat. |
|                                            | Swinging                      | Set the Van Veen Grab on stand immediately after use so that it cannot swing if the boat rocks.           |
|                                            | Pinching                      | Do not place hands under the grab as it is being lowered onto the stand.                                  |
| Contaminated Sediment                      | Chemical contamination        | Decant water inside the grab over the bow of the boat rather than                                         |
|                                            |                               | spilling it onto the deck.                                                                                |
|                                            |                               | Promptly wash spilled sediment off of the deck.                                                           |
|                                            |                               | Do not overfill waste buckets.                                                                            |
|                                            |                               | Waste sediment should be stored in an approved waste drum and properly labeled (if required).             |
|                                            |                               | Always wear proper PPE (splash suit, gloves, eye protection).                                             |
|                                            | Splashing                     | If dumping waste sediment overboard, use caution to avoid splashing contaminatted sediment.               |
| High pressure air (pneumatic grab only)    | Unsecured air tanks           | Air tanks must be secured at all times so that they do not roll or tip over.                              |
|                                            |                               |                                                                                                           |

| AMEC Geomatrix                                                                          |     |                               |                |
|-----------------------------------------------------------------------------------------|-----|-------------------------------|----------------|
|                                                                                         |     | JOB SAFETY ANALYSIS           | JSA # 05       |
| Project Name: Boeing IT Sediment                                                        |     | Project No: LY11160060        | Date: May 2011 |
| Task: Van Veen Grab Sampling                                                            |     | Task Location: Duwamish River |                |
| Completed by:                                                                           | GSM | Reviewed by:                  |                |
| Notes: For this Project and Task, this document is a Certification of Hazard Assessment |     |                               |                |

| Task                   | Hazard                    | Risk Control Method                                                                                                                                                                                                                            |  |
|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                        |                           |                                                                                                                                                                                                                                                |  |
|                        | Air induced injury        | Always bleed air pressure down before removing regulator from air cylinder.                                                                                                                                                                    |  |
|                        |                           | Never direct high pressure air onto your skin.                                                                                                                                                                                                 |  |
| Lowering the boat mast | Pinching                  | Have personnel move to center of deck away from hinge and cylinders.                                                                                                                                                                           |  |
|                        |                           | Make sure the mast does not crush items on tables.                                                                                                                                                                                             |  |
|                        | Entanglement              | Make sure winch line does not hang up on anything.                                                                                                                                                                                             |  |
| On the Job Accident    | Minor Injury              | Assess accident site to avoid further injury to victim or rescuers.  Render first aid as necessary.                                                                                                                                            |  |
|                        |                           | Transport victim to local first aid facility for follow up treatment if necessary. The route to the nearest hospital should be included in the Project Health and Safety Plan.                                                                 |  |
|                        |                           | Call WorkCare for advice within 1 hr of injury 1 (800) 455-6155.  Fill out Incident Report Form as soon as possible.                                                                                                                           |  |
|                        | Serious Injury / Fatality | Assess accident site to avoid further injury to victim or rescuers.  Call 911 to request Emergency Medical Services (EMS) or if access to the beach is difficult, USGS on VHF channel 16.                                                      |  |
|                        |                           | Render first aid as necessary. Avoid moving the victim.  Do not move any equipment that was involved in the accident  Call WorkCare for advice within 1 hr of injury 1 (800) 455-6155.  Contact AMEC/Geomatrix Corporate H&S Manager Don Kubik |  |
|                        |                           | You must report the death, or probable death, of any employee, or the in-patient hospitalization of two or more employees within 8 hours to the Washington Department of Labor and Industries at 1 (800) 423-7233.                             |  |



## APPENDIX D

Material Safety Data Sheets

### **ALCONOX MSDS**

#### Section 1: MANUFACTURER INFORMATION

Product name: Alconox

**Supplier:** Same as manufacturer.

Manufacturer: Alconox, Inc.

30 Glenn St. Suite 309

White Plains, NY 10603.

Manufacturer emergency 800-255-3924.

phone number: 813-248-0585 (outside of the United States).

Manufacturer: Alconox, Inc.

30 Glenn St. Suite 309

White Plains, NY 10603.

Supplier MSDS date: 2005/03/09 D.O.T. Classification: Not regulated.

#### **Section 2: HAZARDOUS INGREDIENTS**

| C.A.S.         | CONCENTRATION % | Ingredient Name                   | T.L.V.           | LD/50                                                                                             | LC/50                                                                            |
|----------------|-----------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 25155-<br>30-0 | 10-30           | SODIUM<br>DODECYLBENZENESULFONATE | NOT<br>AVAILABLE | 438<br>MG/KG<br>RAT ORAL<br>1330<br>MG/KG<br>MOUSE<br>ORAL                                        | NOT<br>AVAILABLE                                                                 |
| 497-19-<br>8   | 7-13            | SODIUM CARBONATE                  | NOT<br>AVAILABLE | 4090<br>MG/KG<br>RAT ORAL<br>6600<br>MG/KG<br>MOUSE<br>ORAL                                       | 2300<br>MG/M3/2H<br>RAT<br>INHALATION<br>1200<br>MG/M3/2H<br>MOUSE<br>INHALATION |
| 7722 -<br>88-5 | 10-30           | TETRASODIUM PYROPHOSPHATE         | 5 MG/M3          | 4000<br>MG/KG<br>RAT ORAL<br>2980<br>MG/KG<br>MOUSE<br>ORAL                                       | NOT<br>AVAILABLE                                                                 |
| 7758-2<br>9-4  | 10-30           | SODIUM PHOSPHATE                  | NOT<br>AVAILABLE | 3120<br>MG/KG<br>RAT ORAL<br>3100<br>MG/KG<br>MOUSE<br>ORAL<br>>4640<br>MG/KG<br>RABBIT<br>DERMAL | NOT<br>AVAILABLE                                                                 |

#### Section 2A: ADDITIONAL INGREDIENT INFORMATION

Note: (supplier).

CAS# 497-19-8: LD50 4020 mg/kg - rat oral. CAS# 7758-29-4: LD50 3100 mg/kg - rat oral.

#### Section 3: PHYSICAL / CHEMICAL CHARACTERISTICS

Physical state: Solid

Appearance & odor: Almost odourless.

White granular powder.

Odor threshold (ppm): Not available.

Vapour pressure Not applicable.

(mmHg):

Vapour density (air=1): Not applicable.

By weight: Not available.

Evaporation rate (butyl acetate = 1): Not applicable.

Boiling point (°C): Not applicable.

Freezing point (°C): Not applicable.

pH: (1% aqueous solution).

9.5

Specific gravity @ 20 °C: (water = 1).

0.85 - 1.10

**Solubility in water (%):** 100 - > 10% w/w

Coefficient of water\oil Not available.

dist.:

VOC: None

#### Section 4: FIRE AND EXPLOSION HAZARD DATA

Flammability: Not flammable.

Conditions of Surrounding fire.

Extinguishing media: Carbon dioxide, dry chemical, foam.

Water

Water fog.

**Special procedures:** Self-contained breathing apparatus required.

Firefighters should wear the usual protective gear.

**Auto-ignition temperature:** Not available.

Flash point (°C), None

method:

Lower flammability limit (% vol): Not applicable.

Upper flammability limit (% vol): Not applicable.

Not available.

Hazardous combustion Oxides of carbon (COx).

products: Hydrocarbons.

Rate of burning: Not available.

Explosive power: None

Section 5: REACTIVITY DATA

Chemical stability: Stable under normal conditions.

Conditions of instability: None known.

Hazardous Will not occur.

polymerization:

Incompatible Strong acids. substances: Strong oxidizers.

Hazardous

See hazardous combustion products.

decomposition products:

Section 6: HEALTH HAZARD DATA

Route of entry: Skin contact, eye contact, inhalation and ingestion.

**Effects of Acute Exposure** 

Eye contact: May cause irritation.

**Skin contact:** Prolonged contact may cause irritation. Inhalation: Airborne particles may cause irritation.

Ingestion: May cause vomiting and diarrhea.

May cause abdominal pain. May cause gastric distress.

Effects of chronic Contains an ingredient which may be corrosive.

exposure:

LD50 of product, species & route: > 5000 mg/kg rat oral.

LC50 of product, species Not available for mixture, see the ingredients section. & route:

Exposure limit of

material: Not available for mixture, see the ingredients section.

Sensitization to product: Not available.

Carcinogenic effects: Not listed as a carcinogen.

Reproductive effects: Not available. Teratogenicity: Not available. Mutagenicity: Not available. Synergistic materials: Not available.

Medical conditions

Not available. aggravated by exposure:

First Aid

**Skin contact:** Remove contaminated clothing.

Wash thoroughly with soap and water. Seek medical attention if irritation persists.

**Eye contact:** Check for and remove contact lenses.

Flush eyes with clear, running water for 15 minutes while holding

eyelids open: if irritation persists, consult a physician.

Inhalation: Remove victim to fresh air.

Seek medical attention if symptoms persist.

**Ingestion:** Dilute with two glasses of water.

Never give anything by mouth to an unconscious person. Do not induce vomiting, seek immediate medical attention.

#### Section 7: PRECAUTIONS FOR SAFE HANDLING AND USE

Leak/Spill: Contain the spill.

Recover uncontaminated material for re-use. Wear appropriate protective equipment.

Contaminated material should be swept or shoveled into

appropriate waste container for disposal.

Waste disposal: In accordance with municipal, provincial and federal regulations.

Handling procedures and Protect against physical damage.

equipment: Avoid breathing dust.

Wash thoroughly after handling. Keep out of reach of children.

Avoid contact with skin, eyes and clothing. Launder contaminated clothing prior to reuse.

Storage requirements: Keep containers closed when not in use.

Store away from strong acids or oxidizers. Store in a cool, dry and well ventilated area.

#### **Section 8: CONTROL MEASURES**

#### **Precautionary Measures**

Gloves/Type:



Neoprene or rubber gloves.

Respiratory/Type:



If exposure limit is exceeded, wear a NIOSH approved respirator.

Eye/Type:



Safety glasses with side-shields.

**Footwear/Type:** Safety shoes per local regulations. **Clothing/Type:** As required to prevent skin contact.

Other/Type: Eye wash facility should be in close proximity.

Emergency shower should be in close proximity.

Ventilation requirements:

Local exhaust at points of emission.

## **Material Safety Data Sheet**

#### SECTION 1 PRODUCT AND COMPANY IDENTIFICATION

#### CHEVRON REGULAR UNLEADED GASOLINE

**Product Number(s):** CPS201000 [See Section 16 for Additional Product Numbers]

Synonyms: Calco Regular Unleaded Gasoline

#### **Company Identification**

Chevron Products Company Marketing, MSDS Coordinator 6001 Bollinger Canyon Road San Ramon, CA 94583 United States of America

#### **Transportation Emergency Response**

CHEMTREC: (800) 424-9300 or (703) 527-3887

**Health Emergency** 

ChevronTexaco Emergency Information Center: Located in the USA. International collect calls accepted. (800) 231-0623 or (510) 231-0623

**Product Information** 

Technical Information: (510) 242-5357

SPECIAL NOTES: This MSDS applies to: Federal Reformulated Gasoline, California Reformulated Gasoline, Wintertime Oxygenated Gasoline,

Low RVP Gasoline and Conventional Gasoline.

#### SECTION 2 COMPOSITION/INFORMATION ON INGREDIENTS

| COMPONENTS | CAS NUMBER | AMOUNT |
|------------|------------|--------|

| Gasoline                          | 86290-81-5 | 100 %volume       |
|-----------------------------------|------------|-------------------|
| Benzene                           | 71-43-2    | 0.1 - 4.9 %volume |
| Ethyl benzene                     | 100-41-4   | 0.1 - 3 %volume   |
| Naphthalene                       | 91-20-3    | 0.1 - 2 %volume   |
| Ethanol                           | 64-17-5    | 0 - 10 %volume    |
| Methyl tert-butyl ether (MTBE)    | 1634-04-4  | 0 - 15 %volume    |
| Tertiary amyl methyl ether (TAME) | 994-05-8   | 0 - 17 %volume    |
| Ethyl tert-butyl ether (ETBE)     | 637-92-3   | 0 - 18 %volume    |

Motor gasoline is considered a mixture by EPA under the Toxic Substances Control Act (TSCA). The refinery streams used to blend motor gasoline are all on the TSCA Chemical Substances Inventory. The appropriate CAS number for refinery blended motor gasoline is 86290-81-5. The product specifications of motor gasoline sold in your area will depend on applicable Federal and State regulations.

#### **SECTION 3 HAZARDS IDENTIFICATION**

#### **EMERGENCY OVERVIEW**

- EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE

- HARMFUL OR FATAL IF SWALLOWED MAY CAUSE LUNG DAMAGE IF SWALLOWED
- VAPOR HARMFUL
- CAUSES SKIN IRRITATION
- CAUSES EYE IRRITATION
- LONG-TERM EXPOSURE TO VAPOR HAS CAUSED CANCER IN LABORATORY ANIMALS
- KEEP OUT OF REACH OF CHILDREN
- TOXIC TO AQUATIC ORGANISMS

#### **IMMEDIATE HEALTH EFFECTS**

**Eye:** Contact with the eyes causes irritation. Symptoms may include pain, tearing, reddening, swelling and impaired vision.

**Skin:** Contact with the skin causes irritation. Skin contact may cause drying or defatting of the skin. Symptoms may include pain, itching, discoloration, swelling, and blistering. Contact with the skin is not expected to cause an allergic skin response. Not expected to be harmful to internal organs if absorbed through the skin.

**Ingestion:** Because of its low viscosity, this material can directly enter the lungs, if swallowed, or if subsequently vomited. Once in the lungs it is very difficult to remove and can cause severe injury or death.

**Inhalation:** The vapor or fumes from this material may cause respiratory irritation. Symptoms of respiratory irritation may include coughing and difficulty breathing. Breathing this material at concentrations above the recommended exposure limits may cause central nervous system effects. Central nervous system effects may include headache, dizziness, nausea, vomiting, weakness, loss of coordination, blurred vision, drowsiness, confusion, or disorientation. At extreme exposures, central nervous system effects may include respiratory depression, tremors or convulsions, loss of consciousness, coma or death.

#### **DELAYED OR OTHER HEALTH EFFECTS:**

Reproduction and Birth Defects: This material is not expected to cause birth defects or other harm to the developing fetus based on animal data.

**Cancer:** Prolonged or repeated exposure to this material may cause cancer. Gasoline has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Contains benzene, which has been classified as a carcinogen by the National Toxicology Program (NTP) and a Group 1 carcinogen (carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Contains ethylbenzene which has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Contains naphthalene, which has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Whole gasoline exhaust has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Risk depends on duration and level of exposure. See Section 11 for additional information.

#### SECTION 4 FIRST AID MEASURES

**Eye:** Flush eyes with water immediately while holding the eyelids open. Remove contact lenses, if worn, after initial flushing, and continue flushing for at least 15 minutes. Get medical attention if irritation persists.

**Skin:** Wash skin with water immediately and remove contaminated clothing and shoes. Get medical attention if any symptoms develop. To remove the material from skin, use soap and water. Discard contaminated clothing and shoes or thoroughly clean before reuse.

**Ingestion:** If swallowed, get immediate medical attention. Do not induce vomiting. Never give anything by mouth to an unconscious person. **Inhalation:** Move the exposed person to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical

attention if breathing difficulties continue.

**Note to Physicians:** Ingestion of this product or subsequent vomiting may result in aspiration of light hydrocarbon liquid, which may cause pneumonitis.

#### SECTION 5 FIRE FIGHTING MEASURES

See Section 7 for proper handling and storage.

#### FIRE CLASSIFICATION:

OSHA Classification (29 CFR 1910.1200): Flammable liquid.

NFPA RATINGS: Health: 1 Flammability: 3 Reactivity: 0

#### FLAMMABLE PROPERTIES:

Flashpoint: (Tagliabue Closed Cup) < -45 °C (< -49 °F)

**Autoignition:** > 280 °C (> 536 °F)

Flammability (Explosive) Limits (% by volume in air): Lower: 1.4 Upper: 7.6

**EXTINGUISHING MEDIA:** Dry Chemical, CO2, AFFF Foam or alcohol resistant foam if >15% volume polar solvents (oxygenates).

#### PROTECTION OF FIRE FIGHTERS:

Fire Fighting Instructions: Use water spray to cool fire-exposed containers and to protect personnel. For fires involving this material, do not

enter any enclosed or confined fire space without proper protective equipment, including self-contained breathing apparatus. **Combustion Products:** Highly dependent on combustion conditions. A complex mixture of airborne solids, liquids, and gases including carbon monoxide, carbon dioxide, and unidentified organic compounds will be evolved when this material undergoes combustion.

#### SECTION 6 ACCIDENTAL RELEASE MEASURES

**Protective Measures:** Eliminate all sources of ignition in the vicinity of the spill or released vapor. If this material is released into the work area, evacuate the area immediately. Monitor area with combustible gas indicator.

**Spill Management:** Stop the source of the release if you can do it without risk. Contain release to prevent further contamination of soil, surface water or groundwater. Clean up spill as soon as possible, observing precautions in Exposure Controls/Personal Protection. Use appropriate techniques such as applying non-combustible absorbent materials or pumping. All equipment used when handling the product must be grounded. A vapor suppressing foam may be used to reduce vapors. Use clean non-sparking tools to collect absorbed material. Where feasible and appropriate, remove contaminated soil. Place contaminated materials in disposable containers and dispose of in a manner consistent with applicable regulations.

**Reporting:** Report spills to local authorities and/or the U.S. Coast Guard's National Response Center at (800) 424-8802 as appropriate or required. This material is covered by EPA's Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Petroleum Exclusion. Therefore, releases to the environment may not be reportable under CERCLA.

#### SECTION 7 HANDLING AND STORAGE

**Precautionary Measures:** READ AND OBSERVE ALL PRECAUTIONS ON PRODUCT LABEL. This product presents an extreme fire hazard. Liquid very quickly evaporates, even at low temperatures, and forms vapor (fumes) which can catch fire and burn with explosive violence. Invisible vapor spreads easily and can be set on fire by many sources such as pilot lights, welding equipment, and electrical motors and switches. Never siphon gasoline by mouth.

Use only as a motor fuel. Do not use for cleaning, pressure appliance fuel, or any other such use. Do not store in open or unlabeled containers. Do not get in eyes, on skin, or on clothing. Do not taste or swallow. Do not breathe vapor or fumes. Wash thoroughly after handling. Keep out of the reach of children.

**Unusual Handling Hazards:** WARNING! Do not use as portable heater or appliance fuel. Toxic fumes may accumulate and cause death. **General Handling Information:** Avoid contaminating soil or releasing this material into sewage and drainage systems and bodies of water. **Static Hazard:** Electrostatic charge may accumulate and create a hazardous condition when handling this material. To minimize this hazard, bonding and grounding may be necessary but may not, by themselves, be sufficient. Review all operations which have the potential of generating an accumulation of electrostatic charge and/or a flammable atmosphere (including tank and container filling, splash filling, tank cleaning, sampling, gauging, switch loading, filtering, mixing, agitation, and vacuum truck operations) and use appropriate mitigating procedures. For more

information, refer to OSHA Standard 29 CFR 1910.106, 'Flammable and Combustible Liquids', National Fire Protection Association (NFPA 77, 'Recommended Practice on Static Electricity', and/or the American Petroleum Institute (API) Recommended Practice 2003, 'Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents'. Improper filling of portable gasoline containers creates danger of fire. Only dispense gasoline into approved and properly labeled gasoline containers. Always place portable containers on the ground. Be sure pump nozzle is in contact with the container while filling. Do not use a nozzle's lock-open device. Do not fill portable containers that are inside a vehicle or truck/trailer bed.

**General Storage Information:** DO NOT USE OR STORE near heat, sparks or open flames. USE AND STORE ONLY IN WELL VENTILATED AREA. Keep container closed when not in use.

**Container Warnings:** Container is not designed to contain pressure. Do not use pressure to empty container or it may rupture with explosive force. Empty containers retain product residue (solid, liquid, and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition. They may explode and cause injury or death. Empty containers should be completely drained, properly closed, and promptly returned to a drum reconditioner or disposed of properly.

#### SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

#### **GENERAL CONSIDERATIONS:**

Consider the potential hazards of this material (see Section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment. If engineering controls or work practices are not adequate to prevent exposure to harmful levels of this material, the personal protective equipment listed below is recommended. The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

#### **ENGINEERING CONTROLS:**

Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below the recommended exposure limits.

#### PERSONAL PROTECTIVE EQUIPMENT

**Eye/Face Protection:** No special eye protection is normally required. Where splashing is possible, wear safety glasses with side shields as a good safety practice.

**Skin Protection:** No special protective clothing is normally required. Where splashing is possible, select protective clothing depending on operations conducted, physical requirements and other substances in the workplace. Suggested materials for protective gloves include: Chlorinated Polyethylene (or Chlorosulfonated Polyethylene), Nitrile Rubber, Polyurethane, Viton.

**Respiratory Protection:** Determine if airborne concentrations are below the recommended exposure limits. If not, wear an approved respirator that provides adequate protection from measured concentrations of this material, such as: Air-Purifying Respirator for Organic Vapors. When used as a fuel, this material can produce carbon monoxide in the exhaust. Determine if airborne concentrations are below the occupational

exposure limit for carbon monoxide. If not, wear an approved positive-pressure air-supplying respirator.

Use a positive pressure air-supplying respirator in circumstances where air-purifying respirators may not provide adequate protection.

#### **Occupational Exposure Limits:**

| Component                      | Limit     | TWA      | STEL    | Ceiling | Notation |
|--------------------------------|-----------|----------|---------|---------|----------|
|                                |           |          |         |         |          |
| Benzene                        | ACGIH_TLV | .5 ppm   | 2.5 ppm |         | Skin A1  |
| Benzene                        | OSHA_PEL  | 1 ppm    | 5 ppm   |         |          |
| Benzene                        | OSHA_Z2   | 10 ppm   |         | 25 ppm  |          |
| Ethanol                        | ACGIH_TLV | 1000 ppm |         |         | A4       |
| Ethanol                        | OSHA_PEL  | 1000 ppm |         |         |          |
| Ethyl benzene                  | ACGIH_TLV | 100 ppm  | 125 ppm |         | A3       |
| Ethyl benzene                  | OSHA_PEL  | 100 ppm  | 125 ppm |         |          |
| Ethyl tert-butyl ether (ETBE)  | ACGIH_TLV | 5 ppm    |         |         |          |
| Gasoline                       | ACGIH_TLV | 300 ppm  | 500 ppm |         | A3       |
| Gasoline                       | OSHA_PEL  | 300 ppm  | 500 ppm |         |          |
| Methyl tert-hutyl ether (MTRF) | ACGIH TIV | 50 nnm   |         |         | A3       |

| Methyl tert-butyl ether (MTBE)    | ACGIH_TLV | 50 ppm |        |         |
|-----------------------------------|-----------|--------|--------|---------|
| Naphthalene                       | ACGIH_TLV | 10 ppm | 15 ppm | Skin A4 |
| Naphthalene                       | OSHA_PEL  | 10 ppm | 15 ppm |         |
| Tertiary amyl methyl ether (TAME) | CHEVRON   |        | 50 ppm |         |

Refer to the OSHA Benzene Standard (29 CFR 1910.1028) and Table Z-2 for detailed training, exposure monitoring, respiratory protection and medical surveillance requirements before using this product.

#### SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Attention: the data below are typical values and do not constitute a specification.

Color: Colorless to yellow Physical State: Liquid Odor: Petroleum odor

pH: NA

Vapor Pressure: 5 psi - 15 psi (Typical) @ 37.8°C (100°F)

Vapor Density (Air = 1): 3 - 4 (Typical)

**Boiling Point:** 37.8°C (100°F) - 204.4°C (400°F) (Typical)

**Solubility:** Insoluble in water; miscible with most organic solvents.

Freezing Point: NA Melting Point: NA

**Specific Gravity:** 0.7 g/ml - 0.8 g/ml @ 15.6°C (60.1°F)

Viscosity: <1 SUS @ 37.8°C (100°F)

#### SECTION 10 STABILITY AND REACTIVITY

Chemical Stability: This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.

**Incompatibility With Other Materials:** May react with strong oxidizing agents, such as chlorates, nitrates, peroxides, etc.

**Hazardous Decomposition Products:** None known (None expected) **Hazardous Polymerization:** Hazardous polymerization will not occur.

#### SECTION 11 TOXICOLOGICAL INFORMATION

#### **IMMEDIATE HEALTH EFFECTS**

**Eye Irritation:** The Draize eye irritation mean score in rabbits for a 24-hour exposure was: 0/110. **Skin Irritation:** For a 4-hour exposure, the Primary Irritation Index (PII) in rabbits is: 4.8/8.0.

Skin Sensitization: This material did not cause sensitization reactions in a Modified Buehler guinea pig test.

Acute Dermal Toxicity: 24 hour(s) LD50: >3.75g/kg (rabbit).

Acute Oral Toxicity: LD50: >5 ml/kg (rat)

Acute Inhalation Toxicity: 4 hour(s) LD50: >2000ppm (rat).

#### ADDITIONAL TOXICOLOGY INFORMATION:

Gasolines are highly volatile and can produce significant concentrations of vapor at ambient temperatures. Gasoline vapor is heavier than air and at high concentrations may accumulate in confined spaces to present both safety and heath hazards. When vapor exposures are low, or short duration and infrequent, such as during refuelling and tanker loading/unloading, neither total hydrocarbon nor components such as benzene are likely to result in any adverse health effects. In situations such as accidents or spills where exposure to gasoline vapor is potentially high, attention should be paid to potential toxic effects of specific components. Information about specific components in gasoline can be found in Sections 2, 8 and 15 of this MSDS. More detailed information on the health hazard of specific gasoline components can be obtained calling the Chevron Emergency Information Center (see Section 1 for phone numbers).

NEUROTOXICITY: Pathological misuse of solvents and gasoline, involving repeated and prolonged exposure to high concentrations of vapor is a significant exposure on which there are many reports in the medical literature. As with other solvents, persistent abuse involving repeated and prolonged exposures to high concentrations of vapor has been reported to result in central nervous system damage and eventually, death. In a study in which ten human volunteers were exposed for 30 minutes to approximately 200, 500 or 1000 ppm concentrations of gasoline vapor, irritation of the eyes was the only significant effect observed, based on both subjective and objective assessments. In an inhalation study, groups of 6 Fischer rats (3 male. 3 female) were exposed to 2056 ppm of wholy vaporized unleaded gasoline for 6 hours perday, 5 day per week for up to 18 months. Histopathology of the peripheral nervous system and spinal cord revealed no distal axonal neuropthy of the type associated with exposure to n-hexane even though gasoline contained 1.9% n-hexane. The authors concluded that gasoline treatment may have amplified the

incidence and prominence of some naturally occurring age-related (subclinical) in the nervous system. BIRTH DEFECTS AND REPRODUCTIVE TOXICITY: An inhalation study with rats exposed to 0, 400 and 1600 ppm of wholly vaporized unleaded gasoline, 6 hours per day on day 6 through 16 of gestation, showed no teratogenic effects nor indication of toxicity to either the mother or the fetus. Another inhalation study in rats exposed to 3000, 6000, or 9000 ppm of gasoline vapor, 6 hours per day on day 6 through 20 of gestation, also showed no teratogenic effects nor indications of toxicity to either the mother or the fetus.

CHRONIC TOXICITY/CANCER: Wholly vaporized unleaded gasoline was used in a 3 month inhalation study. Groups of 40 rats (20 males, 20 female) and 8 squirrel monkeys (4 male, 4 female) were exposed 6 hours per day and 5 days per week for 13 weeks to 384 or 1552 ppm gasoline. One group of each species served as unexposed controls. The initial conclusion of this study was that inhalation of gasoline at airborne concentrations of up to 1522 ppm caused no toxicity in rats or monkeys. However, further histopathological examination of male rat kidneys on the highest dose group revealed an increased incidence and severity of regenerative epithelium and dilated tubules containing proteinaceous deposits. Lifetime inhalation of wholly vaporized unleaded gasoline at 2056 ppm has caused increased liver tumors in female mice. The mechanism of this response is still being investigated but it is thought to be an epigenetic process unique to the female mouse.

This exposure also caused kidney damage and eventually kidney cancer in male rats. No other animal model studied has shown these adverse kidney effects and there is no physiological reason to believe that they would occur in man. EPA has concluded that mechanism by which wholly vaporzied unleaded gasoline causes kidney damage is unque to the male rat. The effects in that species (kidney damage and cancer) should not be used in human risk assessment. In their 1988 review of carcinogenic risk from gasoline, The International Agency for Research on Cancer (IARC) noted that, because published epidemiology studies did not include any exposure data, only occupations where gasoline exposure may have ocurred were reviewed. These included gasoline service station attendants and automobile mechanics. IARC also noted that there was no opportunity to separate effects of combustion products from those of gasoline itself. Although IARC allocated gasoline a final overall classification of Group 2B, i.e. possibly carcinogenic to humans, this was based on limited evidence in experimental animals plus supporting evidence including the presence in gasoline of benzene and 1, 3-butadiene. The actual evidence for carcinogenicity in humans was considered inadequate.

MUTAGENICITY: Gasoline was not mutagenic, with or without activation, in the Ames assay (Salmonella typhimurium), Saccharamyces cerevisesae, or mouse lymphoma assays. In addition, point mutations were not induced in human lymphocytes. Gasoline was not mutagenic when tested in the mouse dominant lethal assay. Administration of gasoline to rats did not cause chomosomal aberrations in their bone marrow cells. EPIDEMIOLOGY: To explore the health effects of workers potentially exposed to gasoline vapors in the marketing and distribution sectors of the petroleum industry, the American Petroleum Institute sponsored a cohort mortality study (Publication 4555), a nested case-control study (Publication 4551), and an exposure assessment study (Publication 4552). Histories of exposure to gasoline were reconstructed for cohort of more than 18,000 employees from four companies for the time period between 1946 and 1985. The results of the cohort mortality study indicated that there was no increased mortality from either kidney cancer or leukemia among marketing and marine distribution employees who were exposed to gasoline in the petroleum industry, when compared to the general population. More importantly, based on internal comparisons, there was no association between mortality from kidney cancer or leukemia and various indices of gasoline exposure. In particular, neither duration of employment, duration of exposure, age at first exposure, year of first exposure, job category, cumulative exposure, frequency of peak exposure, nor average intensity of exposure had any effect on kidney cancer or leukemia mortality. The results of the nested case-control study confirmed

the findings of the original cohort study. That is, exposure to gasoline at the levels experienced by this cohort of distribution workers is not a significant risk factor for leukemia (all cell types), acute myeloid leukemia, kidney cancer or multiple myeloma.

#### SECTION 12 ECOLOGICAL INFORMATION

#### **ECOTOXICITY**

The 96 hour(s) LC50 for rainbow trout (Oncorhynchus mykiss) is 2.7 mg/l.

The 48 hour(s) LC50 for water flea (Daphnia magna) is 3.0 mg/l.

The 96 hour(s) LC50 for sheepshead minnow (Cyprinodon variegatus) is 8.3 mg/l.

The 96 hour(s) LC50 for mysid shrimp (Mysidopsis bahia) is 1.8 mg/l.

This material is expected to be toxic to aquatic organisms. Gasoline studies have been conducted in the laboratory under a variety of test conditions with a range of fish and invertebrate species. An even more extensive database is available on the aquatic toxicity of individual aromatic constituents. The majority of published studies do not identify the type of gasoline evaluated, or even provide distinguishing characteristics such as aromatic content or presence of lead alkyls. As a result, comparison of results among studies using open and closed vessels, different ages and species of test animals and different gasoline types, is difficult.

The bulk of the available literature on gasoline relates to the environmental impact of monoaromatic (BTEX) and diaromatic (naphthalene, methylnaphthalenes) constituents. In general, non-oxygenated gasoline exhibits some short-term toxicity to freshwater and marine organisms, especially under closed vessel or flow-through exposure conditions in the laboratory. The components which are the most prominent in the water soluble fraction and cause aquatic toxicity, are also highly volatile and can be readily biodegraded by microorganisms.

#### **ENVIRONMENTAL FATE**

This material is expected to be readily biodegradable. Following spillage, the more volatile components of gasoline will be rapidly lost, with concurrent dissolution of these and other constituents into the water. Factors such as local environmental conditions (temperature, wind, mixing or wave action, soil type, etc), photo-oxidation, biodegradation and adsorption onto suspended sediments, can contribute to the weathering of spilled gasoline.

The aqueous solubility of non-oxygenated unleaded gasoline, based on analysis of benzene, toluene, ethylbenzene+xylenes and naphthalene, is reported to be 112 mg/l. Solubility data on individual gasoline constituents also available.

#### SECTION 13 DISPOSAL CONSIDERATIONS

Use material for its intended purpose or recycle if possible. This material, if it must be discarded, may meet the criteria of a hazardous waste as defined by US EPA under RCRA (40 CFR 261) or other State and local regulations. Measurement of certain physical properties and analysis for regulated components may be necessary to make a correct determination. If this material is classified as a hazardous waste, federal law requires disposal at a licensed hazardous waste disposal facility.

#### SECTION 14 TRANSPORT INFORMATION

The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate Dangerous Goods Regulations, for additional description requirements (e.g., technical name) and mode-specific or quantity-specific shipping requirements.

**DOT Shipping Name: GASOLINE** 

**DOT Hazard Class:** 3 (Flammable Liquid) **DOT Identification Number:** UN1203

**DOT Packing Group:** ||

#### **SECTION 15 REGULATORY INFORMATION**

SARA 311/312 CATEGORIES: 1. Immediate (Acute) Health Effects: YES

Delayed (Chronic) Health Effects: YES
 Fire Hazard: YES

Sudden Release of Pressure Hazard: NO
 Reactivity Hazard: NO

#### **REGULATORY LISTS SEARCHED:**

4\_I1=IARC Group 1 15=SARA Section 313

4\_I2A=IARC Group 2A 16=CA Proposition 65

16=CA Proposition 65

4\_I2B=IARC Group 2B 17=MA RTK

05=NTP Carcinogen 18=NJ RTK

06=OSHA Carcinogen 19=DOT Marine Pollutant

09=TSCA 12(b) 20=PA RTK

The following components of this material are found on the regulatory lists indicated.

Benzene 15, 16, 17, 18, 20, 4\_I1, 5, 6

Ethanol 17, 18, 20

Ethyl benzene 15, 17, 18, 20, 4\_I2B

Gasoline 17, 18, 20

Methyl tert-butyl ether (MTBE) 15, 17, 18, 20, 9

Naphthalene 15, 16, 17, 18, 20, 4\_I2B

Tertiary amyl methyl ether (TAME) 9

CERCLA REPORTABLE QUANTITIES(RQ)/SARA 302 THRESHOLD PLANNING QUANTITIES(TPQ):

| Component                      | Component RQ | Component TPQ | Product RQ |
|--------------------------------|--------------|---------------|------------|
| Benzene                        | 10 lbs       | None          | 186 lbs    |
| Ethanol                        | 100 lbs      | None          | 1961 lbs   |
| Ethyl benzene                  | 1000 lbs     | None          | 34964 lbs  |
| Methyl tert-butyl ether (MTBE) | 1000 lbs     | None          | 7513 lbs   |
| Naphthalene                    | 100 lbs      | None          | 4000 lbs   |

#### **CHEMICAL INVENTORIES:**

CANADA: All the components of this material are on the Canadian DSL or have been notified under the New Substance Notification Regulations, but have not yet been published in the Canada Gazette.

UNITED STATES: All of the components of this material are on the Toxic Substances Control Act (TSCA) Chemical Inventory.

#### WHMIS CLASSIFICATION:

Class B, Division 2: Flammable Liquids

Class D, Division 2, Subdivision A: Very Toxic Material -

Carcinogenicity

Class D, Division 2, Subdivision B: Toxic Material -

Skin or Eye Irritation

#### **SECTION 16 OTHER INFORMATION**

NFPA RATINGS: Health: 1 Flammability: 3 Reactivity: 0

(0-Least, 1-Slight, 2-Moderate, 3-High, 4-Extreme, PPE:- Personal Protection Equipment Index recommendation, \*- Chronic Effect Indicator). These values are obtained using the guidelines or published evaluations prepared by the National Fire Protection Association (NFPA) or the National Paint and Coating Association (for HMIS ratings).

Additional Product Number(s): CPS201023, CPS201054, CPS201055, CPS201075, CPS201090, CPS201105, CPS201106, CPS201120, CPS201121, CPS201122, CPS201126, CPS201128, CPS201131, CPS201136, CPS201141, CPS201142, CPS201148, CPS201153, CPS201158, CPS201161, CPS201162, CPS201168, CPS201181, CPS201185, CPS201186, CPS201188, CPS201216, CPS201217, CPS201218, CPS201236, CPS201237, CPS201238, CPS201266, CPS201267, CPS201268, CPS201277, CPS201278, CPS201279, CPS201286, CPS201287, CPS201289, CPS201296, CPS201297, CPS201298, CPS201849, CPS201850, CPS201855, CPS201856, CPS201857, CPS204000, CPS204001, CPS204002, CPS204003, CPS204010, CPS204011, CPS204022, CPS204023, CPS204046, CPS204047. CPS204070. CPS204071. CPS204088, CPS204089, CPS204104, CPS204105, CPS204116, CPS204117, CPS204140, CPS204141, CPS204164, CPS204165, CPS204188, CPS204189, CPS204200, CPS204201, CPS204212, CPS204213, CPS204224, CPS204225, CPS204248, CPS204249, CPS204272, CPS204273, CPS204290, CPS204291, CPS204322, CPS204323, CPS204324, CPS204350, CPS204352, CPS204354, CPS204356, CPS204358, CPS204359, CPS204364, CPS204365, CPS204370, CPS204371, CPS204376, CPS204377, CPS204382, CPS204383, CPS204388, CPS204389, CPS204394, CPS204395, CPS204400, CPS204401, CPS204406, CPS204407, CPS204412, CPS204413, CPS204418, CPS204419, CPS204424, CPS204425, CPS204430, CPS204431, CPS204436, CPS204437, CPS204442, CPS204446, CPS204450, CPS204454, CPS204458, CPS204462, CPS204466, CPS204467, CPS204484, CPS204485, CPS204502, CPS204503, CPS204520, CPS204521, CPS204538, CPS204539, CPS204556, CPS204557, CPS204574, CPS204575, CPS204592, CPS204593, CPS204610, CPS204611, CPS204628, CPS204629, CPS204646, CPS204647, CPS204664, CPS204665, CPS204682, CPS204690, CPS204691, CPS204696, CPS204697, CPS204702, CPS204703, CPS204708, CPS204709, CPS204721, CPS204722, CPS204727, CPS204728, CPS241765

**REVISION STATEMENT:** This revision updates the following sections of this Material Safety Data Sheet: Section 1 (Product Codes). This Material Safety Data Sheet has been prepared using the ProSteward MSDS system.

#### ABBREVIATIONS THAT MAY HAVE BEEN USED IN THIS DOCUMENT:

TLV - Threshold Limit Value TWA - Time Weighted Average

STEL - Short-term Exposure Limit PEL - Permissible Exposure Limit

CAS - Chemical Abstract Service Number

NDA - No Data Available NA - Not Applicable

- Less Than or Equal To >= - Greater Than or Equal To

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the ChevronTexaco Energy Research & Technology Company, 100 Chevron Way, Richmond, California 94802.

The above information is based on the data of which we are aware and is believed to be correct as of the date hereof. Since this information may be applied under conditions beyond our control and with which we may be unfamiliar and since data made available subsequent to the date hereof may suggest modifications of the information, we do not assume any responsibility for the results of its use. This information is furnished upon condition that the person receiving it shall make his own determination of the suitability of the material for his particular purpose.





1 - Chemical Product and Company Identification

**Chemical Name: Organic Mixture** Manufacturer: WD-40 Company

Address: 1061 Cudahy Place (92110) **Trade Name: WD-40 Aerosol** 

P.O. Box 80607

San Diego, California, USA

92138 -0607 1-800-448-9340

Telephone: Emergency only: 1-888-324-7596 (PROZAR)

Information: 1-888-324-7596

**Product Use: Cleaner, Lubricant, Penetrant** 

MSDS Date Of Preparation: 5/16/07

#### 2 – Hazards Identification

#### **Emergency Overview:**

DANGER! Harmful or fatal if swallowed. Flammable aerosol. Contents under pressure. Avoid eye contact. Use with adequate ventilation. Keep away from heat, sparks and all other sources of ignition.

#### Symptoms of Overexposure:

Inhalation: High concentrations may cause nasal and respiratory irritation and central nervous system effects such as headache, dizziness and nausea. Intentional abuse may be harmful or fatal.

Skin Contact: Prolonged and/or repeated contact may produce mild irritation and defatting with possible dermatitis.

**Eye Contact:** Contact may be mildly irritating to eyes. May cause redness and tearing. **Ingestion:** This product has low oral toxicity. Swallowing may cause gastrointestinal irritation, nausea, vomiting and diarrhea. The liquid contents are an aspiration hazard. If swallowed, can enter the lungs and may cause chemical pneumonitis.

Chronic Effects: None expected.

Medical Conditions Aggravated by Exposure: Preexisting eye, skin and respiratory conditions may be aggravated by exposure.

#### **Suspected Cancer Agent:**

Yes No X

2 Composition/Information on Ingradients

| 3 - Composition/information on ingredic | ents       |                |
|-----------------------------------------|------------|----------------|
| Ingredient                              | CAS#       | Weight Percent |
| Aliphatic Hydrocarbon                   | 64742-47-8 | 45-50          |
|                                         | 64742-48-9 |                |
|                                         | 64742-88-7 |                |
| Petroleum Base Oil                      | 64742-65-0 | 15-25          |
| LVP Aliphatic Hydrocarbon               | 64742-47-8 | 12-18          |
| Carbon Dioxide                          | 124-38-9   | 2-3            |
| Non-Hazardous Ingredients               | Mixture    | <10            |

#### 4 - First Aid Measures

Ingestion (Swallowed): Aspiration Hazard. DO NOT induce vomiting. Call physician, poison control center or the WD-40 Safety Hotline at 1-888-324-7596 immediately.

**Eve Contact:** Flush thoroughly with water. Get medical attention if irritation persists. Skin Contact: Wash with soap and water. If irritation develops and persists, get medical

attention.

**Inhalation (Breathing):** If irritation is experienced, move to fresh air. Get medical attention if irritation or other symptoms develop and persist.

#### **5 – Fire Fighting Measures**

**Extinguishing Media:** Use water fog, dry chemical, carbon dioxide or foam. Do not use water jet or flooding amounts of water. Burning product will float on the surface and spread fire.

**Special Fire Fighting Procedures**: Firefighters should always wear positive pressure self-contained breathing apparatus and full protective clothing. Cool fire-exposed containers with water. Use shielding to protect against bursting containers.

**Unusual Fire and Explosion Hazards**: Contents under pressure. Aerosol containers may burst under fire conditions. Vapors are heavier than air and may travel along surfaces to remote ignition sources and flash back.

#### 6 - Accidental Release Measures

Wear appropriate protective clothing (see Section 8). Eliminate all sources of ignition and ventilate area. Leaking cans should be placed in a plastic bag or open pail until the pressure has dissipated. Contain and collect liquid with an inert absorbent and place in a container for disposal. Clean spill area thoroughly. Report spills to authorities as required.

#### 7 - Handling and Storage

**Handling:** Avoid contact with eyes. Avoid prolonged contact with skin. Avoid breathing vapors or aerosols. Use with adequate ventilation. Keep away from heat, sparks, hot surfaces and open flames. Wash thoroughly with soap and water after handling. Do not puncture or incinerate containers. Keep can away from electrical current or battery terminals. Electrical arcing can cause burn-through (puncture) which may result in flash fire, causing serious injury. Keep out of the reach of children.

Storage: Do not store above 120°F or in direct sunlight. U.F.C (NFPA 30B) Level 3 Aerosol.

#### 8 - Exposure Controls/Personal Protection

| Chemical                  | Occupational Exposure Limits                                     |
|---------------------------|------------------------------------------------------------------|
| Aliphatic Hydrocarbon     | 100 ppm TWA (ACGIH)<br>1200 mg/m3 TWA (manufacturer recommended) |
| Petroleum Base Oil        | 5 mg/m3 TWA (OSHA/ACGIH)                                         |
| LVP Aliphatic Hydrocarbon | 1200 mg/m3 TWA (manufacturer recommended)                        |
| Carbon Dioxide            | 5000 ppm TWA (OSHA/ACGIH), 30,000 ppm STEL (ACGIH)               |
| Non-Hazardous Ingredients | None Established                                                 |

The Following Controls are Recommended for Normal Consumer Use of this Product

**Engineering Controls:** Use in a well-ventilated area.

**Personal Protection:** 

**Eye Protection:** Avoid eye contact. Safety glasses or goggles recommended.

Skin Protection: Avoid prolonged skin contact. Chemical resistant gloves recommended for

operations where skin contact is likely.

**Respiratory Protection:** None needed for normal use with adequate ventilation.

For Bulk Processing or Workplace Use the Following Controls are Recommended

**Engineering Controls:** Use adequate general and local exhaust ventilation to maintain exposure levels below that occupational exposure limits.

**Personal Protection:** 

**Eye Protection:** Safety goggles recommended where eye contact is possible.

Skin Protection: Wear chemical resistant gloves.

**Respiratory Protection:** None required if ventilation is adequate. If the occupational exposure limits are exceeded, wear a NIOSH approved respirator. Respirator selection and use should be

based on contaminant type, form and concentration. Follow OSHA 1910.134, ANSI Z88.2 and good Industrial Hygiene practice.

Work/Hygiene Practices: Wash with soap and water after handling.

9 – Physical and Chemical Properties

| Boiling Point:          | 323°F (minimum)         | Specific Gravity: | 0.817 @ 72°F            |
|-------------------------|-------------------------|-------------------|-------------------------|
| Solubility in Water:    | Insoluble               | pH:               | Not Applicable          |
| Vapor Pressure:         | 110 PSI @ 70°F          | Vapor Density:    | Greater than 1          |
| Percent Volatile:       | 74%                     | VOC:              | 412 grams/liter (49.5%) |
| Coefficient of          | Not Determined          | Appearance/Odor   | Light amber liquid/mild |
| Water/Oil Distribution: |                         |                   | odor                    |
| Flash Point:            | 131°F (concentrate) Tag | Flammable         | LEL: 1.1% UE:: 8.9%     |
|                         | Closed Cup              | Limits: (Solvent  |                         |
|                         |                         | Portion)          |                         |

#### 10 - Stability and Reactivity

Stability: Stable

Hazardous Polymerization: Will not occur.

Conditions to Avoid: Avoid heat, sparks, flames and other sources of ignition. Do not puncture

or incinerate containers.

**Incompatibilities:** Strong oxidizing agents.

Hazardous Decomposition Products: Carbon monoxide and carbon dioxide.

#### 11 - Toxicological Information

The oral toxicity of this product is estimated to be greater than 5,000 mg/kg based on an assessment of the ingredients. This product is not classified as toxic by established criteria. It is an aspiration hazard.

None of the components of this product is listed as a carcinogen or suspected carcinogen or is considered a reproductive hazard.

#### 12 – Ecological Information

No data is currently available.

#### 13 - Disposal Considerations

If this product becomes a waste, it would be expected to meet the criteria of a RCRA ignitable hazardous waste (D001). However, it is the responsibility of the generator to determine at the time of disposal the proper classification and method of disposal. Dispose in accordance with federal, state, and local regulations.

#### 14 - Transportation Information\_

DOT Surface Shipping Description: Consumer Commodity, ORM-D IMDG Shipping Description: Aerosols, 2, UN1950

#### 15 – Regulatory Information

#### **U.S. Federal Regulations:**

**CERCLA 103 Reportable Quantity:** This product is not subject to CERCLA reporting requirements, however, oil spills are reportable to the National Response Center under the Clean Water Act and many states have more stringent release reporting requirements. Report spills required under federal, state and local regulations.

#### **SARA TITLE III:**

**Hazard Category For Section 311/312:** Acute Health, Fire Hazard, Sudden Release of Pressure

**Section 313 Toxic Chemicals**: This product contains the following chemicals subject to SARA Title III Section 313 Reporting requirements: None

Section 302 Extremely Hazardous Substances (TPQ): None

**EPA Toxic Substances Control Act (TSCA) Status**: All of the components of this product are listed on the TSCA inventory

**Canadian Environmental Protection Act**: All of the ingredients are listed on the Canadian Domestic Substances List or exempt from notification

Canadian WHMIS Classification: Class B-5 (Flammable Aerosol)

This MSDS has been prepared according to the criteria of the Controlled Products Regulation (CPR) and the MSDS contains all of the information required by the CPR.

|   | _    |      |        |              |  |
|---|------|------|--------|--------------|--|
| 1 | 16 _ | Otho | r Into | rmation:     |  |
|   | U –  | Ouie | ı ıııı | i illatioti. |  |

| <b>HMIS</b> | Hazard | Rating: |
|-------------|--------|---------|
|-------------|--------|---------|

Health – 1 (slight hazard), Fire Hazard – 4 (severe hazard), Reactivity – 0 (minimal hazard)

SIGNATURE: \_\_\_\_\_\_ TITLE: \_\_\_\_ Director of Global Quality Assurance

REVISION DATE: Revision Date: May 2007 SUPERSEDES: December 2004



### APPENDIX E

Dust Exposure Calculation Worksheet

| DUST EXPOSURE CALCULATION WORKSHEET        |          |               |                        |               |  |
|--------------------------------------------|----------|---------------|------------------------|---------------|--|
| DustLevel                                  |          | Safety        | Factor for this site = | 4             |  |
|                                            |          |               | Exposure Limit         | Dust Quotient |  |
|                                            | Exposure | Maximum Soil  | Based on               | for           |  |
| Chemical                                   | Limit    | Concentration | Single Compound        | Each Compound |  |
|                                            | (mg/m3)  | (mg/kg)       | (EL Mix, mg/m3)        | (level/limit) |  |
| Aluminum                                   | 5        | 1.E-9         | 1.25E+15               | 2.00E-10      |  |
| Antimony                                   | 0.5      | 1.E-9         | 1.25E+14               | 2.00E-09      |  |
| Arsenic                                    | 0.01     | 1.E-9         | 2.5E+12                | 1.00E-07      |  |
| Barium                                     | 0.5      | 1.E-9         | 1.25E+14               | 2.00E-09      |  |
| Beryllium                                  | 0.002    | 1.E-9         | 5.E+11                 | 5.00E-07      |  |
| Cadmium                                    | 0.005    | 12            | 100.81                 | 2.48E+03      |  |
| Chlordane                                  | 0.5      | 1.E-9         | 1.25E+14               | 2.00E-09      |  |
| Chromium                                   | 0.01     | 340           | 7.35                   | 3.40E+04      |  |
| Chrome (hex)                               | 0.01     | 1.E-9         | 2.5E+12                | 1.00E-07      |  |
| Cobalt                                     | 0.02     | 1.E-9         | 5.E+12                 | 5.00E-08      |  |
| Copper                                     | 1        | 297           | 841.75                 | 2.97E+02      |  |
| Cyanides                                   | 5        | 1.E-9         | 1.25E+15               | 2.00E-10      |  |
| Dioxins                                    | 0.001    | 1.E-9         | 2.5E+11                | 1.00E-06      |  |
| Endosulfan                                 | 0.1      | 1.E-9         | 2.5E+13                | 1.00E-08      |  |
| Fluorides                                  | 2.5      | 1.E-9         | 6.25E+14               | 4.00E-10      |  |
| Lead                                       | 0.05     | 5,590         | 2.24                   | 1.12E+05      |  |
| Manganese                                  | 0.2      | 1.E-9         | 5.E+13                 | 5.00E-09      |  |
| Mercury                                    | 0.025    | 4.6           | 1,358.7                | 1.84E+02      |  |
| Nickel                                     | 1        | 1.E-9         | 2.5E+14                | 1.00E-09      |  |
| Oil Mist                                   | 5        | 1.E-9         | 1.25E+15               | 2.00E-10      |  |
| PCBs                                       | 0.5      | 51,000        | 2.45                   | 1.02E+05      |  |
| PNAs                                       | 0.2      | 13,290        | 3.76                   | 6.65E+04      |  |
| Phthalates                                 | 5        | 15,700        | 79.62                  | 3.14E+03      |  |
| RDX                                        | 1.5      | 1.E-9         | 3.75E+14               | 6.67E-10      |  |
| Selenium                                   | 0.2      | 1.E-9         | 5.E+13                 | 5.00E-09      |  |
| Silica                                     | 0.05     | 1.E-9         | 1.25E+13               | 2.00E-08      |  |
| Silver                                     | 0.01     | 5.7           | 438.6                  | 5.70E+02      |  |
| Thallium                                   | 0.1      | 1.E-9         | 2.5E+13                | 1.00E-08      |  |
| Tin                                        | 2        | 1.E-9         | 5.E+14                 | 5.00E-10      |  |
| Titanium                                   | 10       | 1.E-9         | 2.5E+15                | 1.00E-10      |  |
| Trinitrotoluene                            | 0.5      | 1.E-9         | 1.25E+14               | 2.00E-09      |  |
| Vanadium                                   | 0.05     | 1.E-9         | 1.25E+13               | 2.00E-08      |  |
| Zinc                                       | 10       | 1,740         | 1,436.78               | 1.74E+02      |  |
|                                            |          |               | Sum                    | 3.21E+05      |  |
| Dust Exposure Level at Mixture PEL = 0.779 |          |               |                        |               |  |





## APPENDIX F

**Emergency Summary Information** 

## SITE-SPECIFIC HEALTH AND SAFETY PLAN SUMMARY

| PROJECT INFORMATION                                                                      |                                                   | Approvale             |                                               |
|------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-----------------------------------------------|
| Date(s) of Fieldwork: Not Available                                                      |                                                   | Approvals<br>Initials | Date                                          |
| Project Name: Boeing Isaacson-Thompson Sediment                                          | Prepared                                          | RHG                   | 5/13/11                                       |
| Sampling                                                                                 | By                                                | КПО                   | 3/13/11                                       |
| Project Number: <u>LY11160060</u>                                                        | Approved<br>By                                    |                       |                                               |
| Client: The Boeing Company Site Phone: none                                              |                                                   |                       |                                               |
| Site Address:                                                                            |                                                   |                       |                                               |
| Boeing Isaacson-Thompson Site, S 87 <sup>th</sup> Place and East Mar                     | ginal Way                                         | S, Seattle,           |                                               |
| Washington                                                                               |                                                   |                       |                                               |
| Site Plan Attached     ■                                                                 |                                                   |                       |                                               |
| Scope of Work: Collect and process sediment cores and                                    | grabs                                             |                       |                                               |
|                                                                                          |                                                   |                       |                                               |
| Type of Project: Environmental; Geotechnical; Indust                                     | rial Process                                      | ,                     |                                               |
| HAZWOPER Project: <u>Training &amp; Medical Surveillance must</u>                        | conform to                                        | 29 CFR 1910           | <u>).120 &amp;</u>                            |
| AMEC guidelines.                                                                         |                                                   |                       |                                               |
| Client Specific Requirements (Attached)                                                  |                                                   |                       |                                               |
| VEV CONTACTS                                                                             |                                                   |                       |                                               |
| KEY CONTACTS  Project Manager: Cliff Whitmus Phone: 425-921-4023                         | Coll: 20                                          | ne-300-0520           |                                               |
|                                                                                          |                                                   |                       | _                                             |
| Project H&S Officer: Tim Reinhardt Phone: 206-838-8464                                   |                                                   |                       |                                               |
| Site H&S Officer: Gary Maxwell Phone: 425-921-4027                                       |                                                   |                       |                                               |
| Client Contact: (1) Katie Moxley Phone: 425-237-1905                                     |                                                   |                       |                                               |
| (2) Kris Hendrickson (Landau) Phone: 425-7                                               | <u>78-0907                                   </u> | Cell: <u>206-91</u>   | <u>0-1378</u>                                 |
| Corp. Health & Safety Manager: <u>Don Kubik, Jr.</u> Phone: <u>510-66</u>                | <u>3-4115</u> Ce                                  | ll: <u>510-368-6</u>  | <u>433                                   </u> |
| WorkCare: 1-800-455-6155 (call within 1 hour of injury)                                  |                                                   |                       |                                               |
|                                                                                          |                                                   |                       |                                               |
| Emergency Medical Facility:                                                              |                                                   |                       |                                               |
| Harborview Medical Center, 325 Ninth Avenue, Seattle, Was                                | hington                                           |                       |                                               |
| Phone Number (general): 206-731-3000 Phone Number (en                                    | nergency): _                                      | 206-744-307           | 74                                            |
| $oxed{\boxtimes}$ Emergency Medical Facility Confirmed $oxed{\boxtimes}$ Map to the hosp | ital is attac                                     | hed                   |                                               |
| Police, Fire, Paramedic / Ambulance,                                                     |                                                   |                       |                                               |
| call Boeing Emergency Response 206-655-2222                                              | 2                                                 |                       |                                               |
| Poison Control Center: 1-800-222-1222                                                    |                                                   |                       |                                               |

AMEC Geomatrix, Inc.

#### **EMERGENCY PROCEDURES**

#### **Medical Emergencies**

- 1. Remove injured or exposed person(s) from immediate danger if possible.
- 2. Evacuate other on-site personnel to a safe place in an upwind direction until it is safe for work to resume.
- If serious injury or life-threatening condition exists, call Boeing Emergency
   206-655-2222. Clearly describe location, injury and conditions to dispatcher/hospital.
   Designate a person to direct emergency equipment to the injured person(s).
- 4. Provide first aid if necessary. Remove contaminated clothing only if this can be done without endangering the injured person.
- 5. Call WorkCare within 1 hour of injury for advice.
- 6. Call the Boeing and AMEC Project Managers and/or Project Health & Safety Officer within 1 hour of injury.
- 7. For serious accidents involving a fatality, life threatening injuries, or multiple persons being injured, the accident scene should be persevered for investigators. Equipment involved in the accident should only be moved to the extent necessary to conduct rescue operations and to prevent further injuries.
- 8. Immediately implement steps to prevent recurrence of the accident.
- 9. File an Incident Report within 24 hours.

#### Accidental Release of Hazardous Materials or Wastes

- 1. Evacuate all on-site personnel to a safe place in an upwind direction until the Project Manager or Site Health & Safety Officer determines that it is safe for work to resume.
- 2. Call **Boeing Emergency 206-655-2222**. Clearly describe location and conditions to dispatcher.
- 3. Immediately instruct a designated person to contact the Project Manager or Site Health & Safety Officer.
- 4. Contain spill, if it is possible and it can be done safely.
- 5. Initiate cleanup, if it can be done safely.

#### **General Emergencies**

In the case of fire, flood, explosion, or other hazard, work shall be halted and the local police / fire department shall be notified by calling **Boeing Emergency 206-655-2222**. All on-site personnel will be immediately evacuated to a pre-agreed on safe place.

| personner will be infinediately evacuated to a pre-agreed on safe place. |  |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|--|
| Emergency Equipment On-Site                                              |  |  |  |  |  |
|                                                                          |  |  |  |  |  |
|                                                                          |  |  |  |  |  |

#### **MAJOR CHEMICAL HAZARDS**

See Appendix Tables 1A, 1B, 2A, and 2B.

|                      |          |                             |                 |                       |                      |       | A natio     | inata       | d Ha    |                |                   |                |         |                      |            |                |
|----------------------|----------|-----------------------------|-----------------|-----------------------|----------------------|-------|-------------|-------------|---------|----------------|-------------------|----------------|---------|----------------------|------------|----------------|
|                      |          | Anticipated Hazards Hazards |                 |                       |                      |       |             |             |         |                |                   |                |         |                      |            |                |
|                      |          |                             |                 |                       |                      |       |             |             |         |                |                   |                |         |                      |            |                |
|                      |          |                             | Physical        |                       |                      |       |             |             |         |                |                   |                |         |                      |            |                |
| TASK                 | Chemical | Slip / Trip / Fall          | Heavy Equipment | Underground Utilities | Overhead Power Lines | Noise | Heat Stress | Cold Stress | Sunburn | Sharp/abrasion | Trench/Excavation | Confined Space | Traffic | Insects and Wildlife | Electrical | General Safety |
| Sediment<br>Sampling | ✓        | ✓                           |                 |                       |                      | ✓     | ✓           |             |         | ✓              |                   |                | ✓       |                      |            | ✓              |
| Core<br>Processing   | ✓        | ✓                           | <b>✓</b>        |                       |                      | ✓     | ✓           |             |         | ✓              |                   |                | ✓       |                      | ✓          | ✓              |

SITE CONTROLS: Set up exclusion zone and contamination reduction zone.

**PERSONAL DECONTAMINATION PROCEDURES:** Wash hands and boots before leaving exclusion area.

| exclusion area.                                                                                                                            |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PERSONAL PROTECTIVE EQUIPMENT – R = REQUIRED, A = HAVE AVAILABLE                                                                           |  |  |  |  |  |  |  |
| ⊠ Eye Protection:                                                                                                                          |  |  |  |  |  |  |  |
|                                                                                                                                            |  |  |  |  |  |  |  |
| Traffic Safety Vest                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                            |  |  |  |  |  |  |  |
| ☐ Gloves: ☐ Nitrile; ☐ PVC; ☐ Neoprene; ☐ Cloth/leather; ☐ Other                                                                           |  |  |  |  |  |  |  |
| ☐ Respiratory: ☐ Full-Face APR; ☐ Half-Face APR, have available                                                                            |  |  |  |  |  |  |  |
| ☐ Filter: ☐ Organic Vapor; ☐ Acid Gas; ☐ HEPA; ☐ Other:                                                                                    |  |  |  |  |  |  |  |
| Other:                                                                                                                                     |  |  |  |  |  |  |  |
|                                                                                                                                            |  |  |  |  |  |  |  |
| MONITORING EQUIPMENT                                                                                                                       |  |  |  |  |  |  |  |
| Photo Ionization Detector with 10.6 eV lamp  ☐ Flame Ionization Detector ☐ CHIP™ detector with 0.3 to 10 ppm vinyl chloride sampling tubes |  |  |  |  |  |  |  |
| Frequency of monitoring: Complete an Environmental Health and Safety Meeting Form each day (see Appendix B).                               |  |  |  |  |  |  |  |

# Historical Summary of Contaminants Used at the Site

## TABLE E-1 SUMMARY OF CHEMICALS USED BOEING THOMPSON PROPERTY – TUKWILA, WASHINGTON

#### Chemicals Potentially Used/Stored or Presently/Formerly Present on Subject Property

2-Pentanone

Aliphatic Naphtha

Ammonia

Aromatic Naphtha

Butyl Acetate

Butyl Acetate, n-Butyl Alcohol, n-

Butyl Cellosolve Butyl Xylene

Cellosolve Acetate

Chromate

Chromic acid and chromates (as CRO<sub>3</sub>)

Copper Dust Cyclohexane Cyclohexanone Ethoxy Ethyl Acetate Ethoxyethyl acetate, 2-

Ethyl Acetate Ethyl acrylate

Hexamethylene Diisocyanate

Hydrogen Cyanide Iron Oxide Fumes Isopropanol O Isopropyl Alcohol Lead

Manganese

Methyl Cyclohexane

Methyl Ethyl Ketone (MEK)

Methyl Isobutyl

Methyl Isobutyl Ketone (MIBK) Methylene Bisphenyl Isocyanate

Methylene Chloride

Methylene Diphenyl Diisocyanate (MDI)

Naphtha VM&P n-Butanol n-Butyl Acetate n-Propanol

sec-Butanol Stoddard solvent

Toluene

Toluene diisocyanate (TDI)

Total Aldehydes (as Formaldehyde)

Trimethyl Benzene

Xylen 2-Ethoxy Ethyl Acetate

Xylene

Xylene (mixed isomers)

#### Note:

This list was developed based on Boeing Industrial Hygiene records.

#### ISAACSON CORPORATION

#### STATEMENT OF HAZARDOUS WASTE DISPOSAL

In accordance with the provisions of the purchase agreement, a check of all records and practices related to the storage disposal of hazardous wastes and substances has been conducted. Available data indicates that a very low level of hazardous waste has been generated.

<u>PCB</u> - No fabrication functions or plant operations uses or produces PCB. Seattle City Light's Industrial Advisor Group has indicated that PCB has never been used in their transformers.

OILS - Oils are used for machine lubrication only. Waste oil is deposited in a special container and disposed of by a commercial contractor licensed to handle this type of material. New or unused oil is stored in a central location with drip containers positioned to contain any oil spills.

In 1971, traces of lube oil used with a friction steel cutting saw could have entered the Duwamish Waterway via cooling water flowing into an overflow storm sewer. The overflow was raised and cooling water level reduced to prevent the possibility of pollution. This machine will be removed from plant prior to occupancy by Boeing.

In the painting area, the water air wash system used to prevent paint solids from being exhausted into the atmosphere have been disconnected from the storm sewer so that contaminates cannot be pumped into the storm sewer that empties into the Waterway.

 $\underline{\text{GASOLINE}}$  - Gasoline is stored in 2 - 5,000 gallon underground tanks located in the Southeast corner of the property.

 $\underline{\text{DIESEL}}$  - Diesel is stored in 2 - 5,000 gallon underground tanks located in the same area as the gasoline tanks; also 1 - 500 gallon surface tank as standby fuel for the boiler, located near the maintenance shop.

SOLVENTS - Solvents are used by the Maintenance Department in conjunction with the steam cleaning of equipments. An 8' x 10' cleaning rack is supported by a sand and gravel sump which can be emptied when full of waste sludge. There is no sewer connection to or from this pit. Waste sludge and used solvent from a small parts cleaning tank located in the maintenance area is removed by commercial waste disposal companies.

Metal processing, acids, bases - None are used in structural fabrication.

Asbestos - None used in structural fabrication.

<u>Lead</u> - None used in structural fabrication. Wheelabrator blast machine uses steel shot, blast chamber used ceramic substance.

An interview of several long term employees was used to supplement information contained in company records. No indications of any hazardous waste deposits on the Isaacson property were disclosed.

Reference: Attachment "A" to Boeing Aerospace Company Request for Proposal, Letter 2-4163-2000-97, dated July 28, 1983.

Dames & Moore

## Phase I ESA 2008 Site Reconnaissance

#### SITE RECONNAISSANCE - BOEING THOMPSON PROPERTY

A site reconnaissance of the Boeing Thompson and Isaacson properties was conducted on January 31, 2008 and April 21, 2008 (Landau Associates 2008a,b). The focus of the reconnaissance was to visually identify conditions that have the potential to cause adverse environmental impacts at the subject property that could pose an environmental liability to a property owner or operator.

#### **BOEING ISAACSON PROPERTY**

The results of the site reconnaissance for the Boeing Isaacson property are summarized below and in Table F-1.

- The subject property is 9.84 acres in size. There are no structures located on the subject property. The surface of the subject property is entirely covered by asphalt or concrete. Areas of concrete appear to be associated with old building foundations. An asphalt-paved mound is present in the north-central portion of the subject property, resulting from a soil stabilization project that was completed at the subject property in 1991. The highest point of the mound is approximately 6 to 7 ft higher than the surrounding grade.
- The subject property is currently used by Boeing for limited storage of empty containers and for truck parking.
- A 48-inch storm drain line is located on the subject property and conveys stormwater from a portion of the King County International Airport (KCIA) located east of the subject property, across East Marginal Way South. Five manholes associated with the drain line are visible on the subject property.
- One pole-mounted electrical transformer was observed along the eastern boundary of the subject property. The transformer was in good condition at the time of the site reconnaissance. There were no visible labels regarding PCB content.

#### **BOEING THOMPSON PROPERTY**

The results of the site reconnaissance for the Boeing Thompson property are summarized below and in Table F-2.

- The subject property is approximately 19.35 acres. The subject property is developed with nine buildings, a water tank, a substation, and several hazardous waste accumulation trailers. Areas outside the building footprints are either asphalt-paved or covered in concrete.
- Building 14-01 is a large concrete and steel building, which occupies the eastern two-thirds of the subject property. The northern portion of the building consists of a three-story office area. The southern portion of the building consists of an open manufacturing area and warehouse space. The manufacturing area was not in use at the time of the site reconnaissance.
- An aqueous degreaser is located along the western wall of Building 14-01. The degreaser was not in use at the time of the site reconnaissance. A sign on the degreaser indicates that Daraclean 212, a non-hazardous substance, was used in the cleaning solution. Pumps and

other equipment associated with the degreaser are located in a separate mechanical room to the south of the degreaser. A sump is located within the mechanical room. Liquid was observed in the sump at the time of the site reconnaissance. Labels on piping and equipment within the mechanical room indicate that the sump is associated with a brush plating system, which formerly operated near the current location of the aqueous degreaser. The sump and associated piping may have been converted for use associated with the aqueous degreaser.

- Areas labeled as hazardous materials collection areas were observed within Building 14-01, including in the area of the degreaser, near the center of the building, and along the northern wall of the center of the building. With the exception of the area along the northern wall of the building, no hazardous materials were observed in these areas during the site reconnaissance. Materials observed along the northern wall included batteries, chromate/water-based paint waste, sec-butyl alcohol, toluene, and contaminated debris. These materials were stored in 55-gallon drums and were being consolidated in this area for disposal. Several of the drums were located on secondary containment systems. There was no evidence of releases from any of the containers.
- Ducting associated with a former small paint booth was observed near the southwestern corner of Building 14-01. Limited paint staining was observed on the surface of the concrete floor in this area.
- Four linear patches were observed in the surface of the concrete floor in the southwestern portion of Building 14-01. The patches are oriented north to south and are approximately 4 ft in length and 18 inches in width. Based on available information, the patches are associated with former trenches that were part of a downdraft system.
- Building 14-02 is the boiler house and is located near the northwestern corner of the subject property. The boiler and associated mechanical equipment are located in this building. A natural gas meter is located near the northwestern corner of the building. Electrical transformers are located along the northern exterior wall of the building and are not labeled as to polychlorinated biphenyl (PCB) content.
- Building 14-03 is a concrete block mechanical building and is attached to the eastern side of Building 14-02. Equipment associated with a hydraulic systems test pad located to the east of Building 14-03 is in this building, but was not in use at the time of the site reconnaissance.
- Building 14-14 is a metal and concrete structure located to the west of Building 14-01 that houses condensers and chillers associated with Building 14-01 operations.
- Building 14-13 is a pump house associated with the fire protection system and is located in the southwestern corner of the subject property. A circular wooden water tank is located to the north of the pump house.
- One active and one inactive guard shack (unlabeled structure and Building 14-11), a restroom/shower unit (Building 14-12), cafeteria (Building 14-15), and substation (Building 14-22) are located along the eastern boundary of the subject property. Dark staining was observed on the gravel surface along the northern side of the substation.
- The portions of the subject property that are outside of the building footprints are asphalt-paved or concrete-covered. A parking area is located to the north of Building 14-01 and equipment staging areas are located in the northern and western portions of the subject property. Stormwater catch basins located in the parking area are connected to oil/water separators that discharge to the Duwamish Waterway via two outfalls along the western subject property boundary.

- Four aboveground storage tanks (ASTs) were observed on the subject property. A 5,000-gallon AST was observed in the western yard of Building 14-01. The AST is labeled "overflow for the aqueous degreaser" and is located within a covered concrete containment structure, which is closed on two sides. A 550-gallon AST containing diesel fuel was observed on the western side of Building 14-02. This AST is associated with an emergency generator. A 240-gallon AST containing diesel fuel was observed on the northern side of Building 14-13 and is associated with an emergency generator for the fire protection system. The diesel ASTs are located within covered concrete containment structures. A propane AST was observed along the western subject property boundary. Evidence of releases from the ASTs was not observed during site reconnaissance.
- A patch was observed in the asphalt on the western side of Building 14-02. Based on available information, a 20,000-gallon underground storage tank (UST) was abandoned in place in this area, and a 1,000-gallon leaded gasoline UST and 500-gallon diesel fuel UST were removed from this area.
- The subject property is located in an area of industrial properties. It is bordered on the north by the Boeing Isaacson property followed by Jorgensen Forge Corp.; on the south by Insurance Auto Auctions (formerly Kenworth Truck Company and Paccar); on the east by East Marginal Way South followed by North Boeing Field; and on the west by the Duwamish Waterway.

#### REFERENCES

Landau Associates. 2008a. Report: Environment, Health, and Safety Assessment/Phase I Environmental Site Assessment, Boeing Isaacson Property, Tukwila, Washington. September 15.

Landau Associates. 2008b. Report: Environment, Health, and Safety Assessment/Phase I Environmental Site Assessment, Boeing Thompson Property, Tukwila, Washington. August 11.

#### **TABLE F-1** SUBJECT PROPERTY CHECKLIST ISAACSON PROPERTY - TUKWILA, WASHINGTON

| Checklist Item                       | Present      | Not<br>Observed | Remarks                                                                                                                                                                                                                                                                    |
|--------------------------------------|--------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Storage Areas               |              | V               |                                                                                                                                                                                                                                                                            |
| Solid Waste                          |              | $\checkmark$    |                                                                                                                                                                                                                                                                            |
| Hazardous Waste                      |              | $\checkmark$    |                                                                                                                                                                                                                                                                            |
| Evidence of Dumping                  |              | $\checkmark$    |                                                                                                                                                                                                                                                                            |
| Use of Fill Material                 | V            |                 | Fill material was not observed at the time of the site reconnaissance; however, a slip of the Duwamish Waterway was formerly located on the subject property and is known to have been filled in the late 1950s and 1960s.                                                 |
| Soil or Groundwater<br>Contamination | $\checkmark$ |                 | Based on the findings of previous investigations at the subject property, soil and groundwater are known to be contaminated with metals, specifically arsenic.                                                                                                             |
| Underground Storage Tanks (USTs)     |              | $\checkmark$    | Five USTs have been removed from the subject property. There are no known USTs on the subject property at this time.                                                                                                                                                       |
| Aboveground Storage Tanks (ASTs)     |              | $\checkmark$    |                                                                                                                                                                                                                                                                            |
| Electrical Transformers              | V            |                 | A pole-mounted electrical transformer is located along the eastern boundary of the subject property. The transformer appeared to be in good condition at the time of the site reconnaissance. There were no visible labels identifying the PCB content of the transformer. |
| Septic Tanks                         |              | $\checkmark$    |                                                                                                                                                                                                                                                                            |
| Pits, Ponds, and Lagoons             |              | $\checkmark$    |                                                                                                                                                                                                                                                                            |

#### TABLE F-2 SUBJECT PROPERTY CHECKLIST BOEING THOMPSON PROPERTY – TUKWILA, WASHINGTON

| Checklist Item                       | Present      | Not<br>Observed | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Storage Areas               | V            |                 | Several 55-gallon drums were observed in a hazardous waste accumulation area in the north-central portion of Building 14-01. The drums were observed to be in good condition with no apparent leaks and are temporarily stored in this area awaiting disposal. Hazardous materials storage sheds are located west of Building 14-01 (south of Building 14-03). The sheds that were accessible at the time of the site reconnaissance were empty; however, not all of the sheds were accessible. |
| Solid Waste                          |              | $\checkmark$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hazardous Waste                      | $\checkmark$ |                 | Several 55-gallon drums were observed in a hazardous waste accumulation area in the north-central portion of Building 14-01. The drums were observed to be in good condition with no apparent leaks and are temporarily stored in this area awaiting disposal.                                                                                                                                                                                                                                  |
| Evidence of Dumping                  |              | $\checkmark$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Use of Fill Material                 | V            |                 | Fill material was not observed at the time of the site reconnaissance; however, a slip of the Duwamish Waterway was formerly located on the subject property and is known to have been filled in the late 1950s and 1960s.                                                                                                                                                                                                                                                                      |
| Soil or Groundwater<br>Contamination | $\sqrt{}$    |                 | Based on the findings of previous investigations at the subject property, soil and groundwater are known to be contaminated with metals.                                                                                                                                                                                                                                                                                                                                                        |
| Underground Storage Tanks<br>(USTs)  | $\checkmark$ |                 | Three USTs were formerly located in the western yard of Building 14-02. One 20,000-gallon UST was closed-in-place and two USTs were removed. A patch in the asphalt was observed in this area at the time of the site reconnaissance.                                                                                                                                                                                                                                                           |
| Aboveground Storage Tanks<br>(ASTs)  | V            |                 | Four ASTs were observed on the subject property. An approximately 500-gallon AST containing diesel fuel is located on the western side of Building 14-02. An approximately 200-gallon diesel AST is located on the northern side of Building 14-13. A 5,000-gallon AST is located in the western yard of Building 14-01 and contains overflow from the aqueous degreaser on the interior of Building 14-01. A propane AST is located along the western property boundary.                       |
| Electrical Transformers              | $\checkmark$ |                 | An electrical substation is located within a fenced area in the southeastern corner of the subject property. Electrical transformers are located on the northern side of Building 14-02. The transformers are not labeled as containing PCBs.                                                                                                                                                                                                                                                   |
| Septic Tanks                         |              | $\checkmark$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pits, Ponds, and Lagoons             |              | $\checkmark$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### **Previous Investigation Results for Soil at the Site**

| Sample ID | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|-----------|-------------|--------------|--------------------|
| 1         | 8/1/83      | 5.5          | 3.4                |
| 2         | 8/1/83      | 2.5          | 8.7                |
| 4         | 8/1/83      | 2.5          | 270.5              |
| 4         | 8/1/83      | 2.5          | 124                |
| 4         | 8/1/83      | 6.5          | 551                |
| 4         | 8/1/83      | 10.5         | 15                 |
| 10        | 8/1/83      | 6            | 20                 |
| 10        | 8/1/83      | 11           | 4.7                |
| 10-Dup    | 8/1/83      | 11           | 8.8                |
| 10        | 8/1/83      | 13.5         | 7.1                |
| 13        | 8/1/83      | 9            | 7.2                |
| 13        | 8/1/83      | 13.5         | 4.5                |
| 14        | 8/1/83      | 2            | 41                 |
| 18        | 8/1/83      | 2            | 11                 |
| 18        | 8/1/83      | 6.5          | 4.2                |
| 210       | 1/13/88     | 13.5-14      | 48                 |
| 211       | 1/12/88     | 3.5-4        | 4                  |
| 211       |             |              | 2 U                |
|           | 1/12/88     | 8.5-9        |                    |
| 211       | 1/12/88     | 13.5-14      | 2                  |
| 213       | 1/11/88     | 2.5-3        | 3                  |
| 213       | 1/11/88     | 7.5-9        | 3                  |
| 213       | 1/11/88     | 12.5-13      | 3 U                |
| 213       | 1/11/88     | 17.5-18      | 2 U                |
| 214       | 1/13/88     | 13.5-14      | 4                  |
| 216       | 1/12/88     | 2.5-3        | 4                  |
| 216       | 1/12/88     | 7.5-8        | 133                |
| 216       | 1/12/88     | 12.5-13      | 2                  |
| 217       | 1/12/88     | 2.5-3        | 4                  |
| 217       | 1/12/88     | 7.5-8        | 331                |
| 217       | 1/12/88     | 12.5-13      | 4.5                |
| 217       | 1/12/88     | 17.5-18      | 7                  |
|           |             | 17.5-10      |                    |
| 218       | 1/25/88     | 3-3.5        | 2                  |
| 218       | 1/25/88     | 8-8.5        | 2                  |
| 218       | 1/25/88     | 13-13.5      | 3                  |
| 218       | 1/25/88     | 18-18.5      | 5                  |
| 219       | 1/13/88     | 2.5-3        | 3                  |
| 219       | 1/13/88     | 7.5-9        | 46                 |
| 219       | 1/13/88     | 12.5-13      | 33                 |
| 220       | 1/13/88     | 13.5-14      | 3                  |
| 221       | 1/13/88     | 2.5-3        | 8                  |
| 221       | 1/13/88     | 7.5-8        | 7                  |
| 221       | 1/13/88     | 12.5-13      | 3                  |
| 222       | 1/13/88     | 12.5-13      | 46                 |
| 223       | 1/13/88     | 12.5-13      | 6                  |
| 225       | 1/13/88     | 3-3.5        | 153                |
| 225       | 1/13/88     | 7.5-8        | 30                 |
| 225       | 1/13/88     | 12.5-13      | 6                  |
| -         |             |              |                    |

| Sample ID  | Sample Date        | Sample Depth     | Arsenic<br>(mg/kg) |
|------------|--------------------|------------------|--------------------|
| 226        | 1/22/88            | 13.5-14          | 90                 |
| 227        | 1/13/88            | 13.5-14          | 3                  |
| 229        | 1/14/88            | 3.5-4            | 37                 |
| 229<br>229 | 1/14/88<br>1/14/88 | 8.5-9<br>13.5-14 | 384<br>1           |
| 231        | 1/22/88            | 13.5-14          | 60                 |
| 235        | 1/14/88            | 3.5              | 59                 |
| 235        | 1/14/88            | 8.5              | 40                 |
| 235        | 1/14/88            | 13.5             | 51                 |
| 238        | 1/22/88            | 13.5             | 242                |
| 239        | 1/22/88            | 3.5              | 34                 |
| 239        | 1/22/88            | 8.5              | 3500               |
| 239        | 1/22/88            | 13.5             | 511                |
| 241        | 1/14/88            | 3.5              | 43                 |
| 241        | 1/14/88            | 8.5              | 10                 |
| 241        | 1/14/88            | 13.5             | 63                 |
| 242        | 1/25/88            | 13               | 113                |
| 243        | 1/25/88            | 3                | 61                 |
| 243        | 1/25/88            | 8                | 51                 |
| 243        | 1/25/88            | 13               | 7                  |
| 313        | 6/22/92            | 0-2.5            | 47.6               |
| 313        | 6/22/92            | 2.5-6.5          | 15.8               |
| 313        | 6/22/92            | 6.5-9.5          | 6.4 U              |
| 317        | 6/22/92            | 0-2.5            | 13.1               |
| 317        | 6/22/92            | 2.5-6.5          | 49                 |
| 317        | 6/22/92            | 6.5-9.5          | 59                 |
| 318        | 6/22/92            | 0-2.5            | 5.6 U              |
| 318        | 6/22/92            | 2.5-6.5          | 98.4               |
| 318        | 6/22/92            | 6.5-9.5          | 69.8               |
| 328        | 6/22/92            | 0-2.5            | 187                |
| 328        | 6/22/92            | 2.5-6.5          | 166                |
| 328        | 6/22/92            | 6.5-9.5          | 124                |
| 330        | 6/22/92            | 0-2.5            | 5.9 U              |
| 330        | 6/22/92            | 2.5-6.5          | 6.3 U              |
| 330        | 6/22/92            | 6.5-9.5          | 5.2 U              |
| 416        | 8/31/92            | 0-2.5            | 240                |
| 416        | 8/31/92            | 2.5-6.5          | 547                |
| 416        | 8/31/92            | 6.5-10.5         | 37                 |
|            |                    |                  |                    |
| 417<br>417 | 8/31/92            | 0-2.5<br>2.5-6   | 215                |
| 417<br>417 | 8/31/92<br>8/31/92 | 2.5-6<br>6-10.5  | 523<br>486         |
|            |                    |                  |                    |
| I-2        | 10/14/83           | 14.5             | 1200               |
| I-3        | 10/21/83           | 10.5             | 11                 |
| I-4        | 10/20/83           | 3                | 510                |

| Sample ID | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|-----------|-------------|--------------|--------------------|
| I-8       | 1/19/88     | 12.5         | 262                |
| I-8       | 1/19/88     | 17.5         | 53                 |
| I-8       | 1/19/88     | 27.5         | 5                  |
| I-8       | 1/19/88     | 37.5         | 3                  |
| I-8       | 1/19/88     | 47.5         | 3                  |
| I-200s    | 1/14/88     | 2.5          | 3                  |
| I-200s    | 1/14/88     | 7.5          | 4                  |
| I-200s    | 1/14/88     | 12.5         | 2                  |
| I-200s    | 1/14/88     | 22.5         | 4                  |
| I-201s    | 1/22/88     | 2.5          | 10                 |
| I-201s    | 1/22/88     | 7.5          | 136                |
| I-201s    | 1/22/88     | 12.5         | 176                |
| I-201s    | 1/22/88     | 17.5         | 15                 |
| I-201s    | 1/22/88     | 27.5         | 3                  |
| IDP-1     | 2/2/09      | 4            | 60                 |
| IDP-1A    | 2/2/09      | 9            | 186                |
| IDP-1A    | 2/2/09      | 14           | 9                  |
| IDP-2     | 39846       | 4            | 180                |
| IDP-2     | 2/2/09      | 8            | 6 U                |
| IDP-2     | 2/2/09      | 11           | 6 U                |
| IDP-3     | 2/2/09      | 4            | 34                 |
| IDP-3     | 2/2/09      | 8            | 48                 |
| IDP-3     | 2/2/09      | 11           | 6 U                |
| IDP-4     | 2/2/09      | 4            | 15                 |
| IDP-4     | 2/2/09      | 8            | 17                 |
| IDP-4     | 2/2/09      | 11           | 6 U                |
| IDP-5     | 2/2/09      | 4            | 60 U               |
| IDP-5     | 2/2/09      | 8            | 333                |
| IDP-5     | 2/2/09      | 11           | 5 U                |
| IDP-6     | 2/2/09      | 4            | 10 U               |
| IDP-6     | 2/2/09      | 8            | 71                 |
| IDP-6     | 2/2/09      | 12           | 5 U                |
| IDP-6A    | 2/3/09      | 3            | 14                 |
| IDP-7     | 2/3/09      | 3            | 50 U               |
| IDP-8     | 2/3/09      | 3            | 32                 |
|           |             |              |                    |
| IDP-9     | 2/3/09      | 3            | 30                 |
| IDP-10    | 2/3/09      | 2            | 23                 |
| IDP-11    | 2/3/09      | 11           | 6 U                |
| IDP-12    | 2/3/09      | 12           | 204                |
| IDP-13    | 2/3/09      | 12           | 18                 |
| IDP-14    | 2/3/09      | 11           | 220                |
| IDP-15    | 2/3/09      | 12           | 274                |
| IMR-2     | 10/17/08    |              | 5 U                |
| IMR-3     | 11/13/08    |              | 294                |
|           |             |              |                    |

| Sample ID      | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|----------------|-------------|--------------|--------------------|
| IMD 4          | 40/47/00    |              | 4400               |
| IMR-4          | 10/17/08    |              | 1120               |
| IMR-5          | 10/17/08    |              | 8                  |
| IMR-6          | 10/17/08    |              | 2440               |
| IMR-7          | 10/27/08    |              | 5 U                |
| IMR-8          | 10/17/08    |              | 253                |
| IMR-10         | 11/4/08     |              | 38                 |
| IMR-11         | 10/27/08    |              | 524                |
| IMR-11         | 11/4/08     |              | 439                |
| IMR-12         | 10/27/08    |              | 1780               |
| IMR-12         | 11/4/08     |              | 485                |
| IMR-14         | 11/4/08     |              | 70                 |
| IMR-15         | 11/4/08     |              | 919                |
| IMR-16         | 11/4/08     |              | 30                 |
| IMR-18         | 11/13/08    |              | 397                |
| IMR-19         | 11/13/08    |              | 383                |
| IssacEx-01-5   | 11/30/06    |              | 18.1               |
| IssacEx-02-1.5 | 11/30/06    |              | 25.1               |
| IssacEx-03-2   | 11/30/06    |              | 6.6                |
| PBI-1          | 7/27/09     | 2            | 28.9 J             |
| PBI-1          | 7/27/09     | 5            | 5.8                |
| PBI-1          | 7/27/09     | 8            | 14.7               |
| PBI-2          | 7/27/09     | 2            | 23.5               |
| PBI-2A         | 7/27/09     | 5            | 329                |
| PBI-2A         | 7/27/09     | 8            | 58.2               |
| PBI-3          | 7/27/09     | 2            | 8.4                |
| PBI-3          | 7/27/09     | 5            | 754                |
| PBI-3          | 7/27/09     | 8            | 4.8                |
| T-1            | 8/1/84      | 8-9          | 26                 |
| T-4            | 8/1/84      | 8-9          | 10                 |
| M23-1-N        | 10/17/91    |              | 460                |
| M23-1-S        | 10/18/91    |              | 30                 |
| M23-2-E2       | 10/17/91    |              | 46                 |
| M23-2-E3       | 10/18/91    |              | 62                 |
| M23-2-E4       | 10/18/91    |              | 59                 |
| M23-2-E5       | 10/18/91    |              | 6                  |
|                |             |              |                    |

| Sample ID                | Sample Date         | Sample Depth | Arsenic<br>(mg/kg) |
|--------------------------|---------------------|--------------|--------------------|
| M23-2-N                  | 10/17/91            |              | 424                |
| M23-2-S                  | 10/18/91            |              | 86                 |
| M23-3E1-E                | 10/22/91            |              | 77                 |
| M23-3E1-N                | 10/22/91            |              | 64                 |
| M23-3E1-S                | 10/22/91            |              | 150                |
|                          |                     |              |                    |
| M2W-1-N                  | 9/25/91             |              | 586                |
| M2W-1-S                  | 9/25/91             |              | 5 U                |
| M2W-2-N                  | 9/25/91             |              | 649                |
| M2W-2-S                  | 9/25/91             |              | 74                 |
| M2W-3-N                  | 9/25/91             |              | 601                |
| M2W-3-S<br>M2W-4AS-E     | 9/25/91<br>10/18/91 |              | 69<br>11           |
| M2W-4AS-S                | 10/18/91            |              | 33                 |
| M2W-4AS-W                | 10/18/91            |              | 33                 |
| M2W-4-N                  | 9/26/91             |              | 396                |
| M2W-5-N                  | 9/26/91             |              | 94                 |
| M2W-5-S                  | 9/26/91             |              | 110                |
| M2W-6AS-E                | 10/18/91            |              | 45                 |
| M2W-6AS-S                | 10/18/91            |              | 43                 |
| M2W-6AS-W                | 10/18/91            |              | 78                 |
| M2W-6-N                  | 9/26/91             |              | 140                |
| M2W-7-N                  | 9/26/91             |              | 120                |
| M2W-7-S                  | 9/26/91             |              | 73                 |
| M2W-8-N                  | 9/30/91             |              | 663                |
| M2W-8-S                  | 9/26/91             |              | 20                 |
| M2W-9-N                  | 10/1/91             |              | 229                |
| M2W-9-S                  | 9/30/91             |              | 26                 |
| M2W-10-N<br>M2W-10-S     | 10/1/91<br>9/30/91  |              | 655<br>17          |
| M2W-11-N                 | 10/1/91             |              | 10                 |
| M2W-11-S                 | 10/1/91             |              | 7                  |
| M2W-12-N                 | 10/1/91             |              | 621                |
| M2W-12-S                 | 10/1/91             |              | 26                 |
| M2W-13A-S                | 10/18/91            |              | 79                 |
| M2W-13AS-E               | 10/18/91            |              | 60                 |
| M2W-13-AS-W              | 10/18/91            |              | 46                 |
| M2W-13-N                 | 10/2/91             |              | 980                |
| M2W-14-N                 | 10/2/91             |              | 858                |
| M2W-14-S                 | 10/1/91             |              | 16                 |
| M2W-15-N                 | 10/2/91             |              | 604                |
| M2W-15-S                 | 10/2/91             |              | 16<br>200          |
| M2W-16-N<br>M2W-16-S     | 10/2/91<br>10/2/91  |              | 54                 |
| M2W-17AS-E               | 10/18/91            |              | 47                 |
| M2W-17A3-E<br>M2W-17AS-S | 10/18/91            |              | 41                 |
| M2W-17-N                 | 10/3/91             |              | 1760               |
| M2W-17-W1                | 10/3/91             |              | 65                 |
| M2W-17-W2                | 10/3/91             |              | 130                |
| M2W-17-W3                | 10/3/91             |              | 214                |
| M2W-18A-S                | 10/14/91            |              | 110                |
| M2W-18-N                 | 10/10/91            |              | 92                 |
| M2W-19B-E                | 11/7/91             |              | 22                 |
| M2W-19B-S                | 11/7/91             |              | 22                 |
| M2W-19-N                 | 10/14/91            |              | 160                |
| M2W-20B-S                | 11/7/91             |              | 28                 |
| M2W-20B-W                | 11/7/91             |              | 26                 |
| M34-1B-S                 | 10/21/91            |              | 44                 |
| M34-1-E4                 | 10/15/91            |              | 97                 |
| M34-1-N                  | 10/15/91            |              | 249                |
| M34-2A-E                 | 10/18/91            |              | 160                |
| M34-2AS-N                | 10/18/91            |              | 36                 |
| M34-2B-E                 | 10/21/91            |              | 130                |
| M34-2B-S                 | 10/21/91            |              | 17                 |
| M34-2-E2                 | 10/15/91            |              | 120                |
|                          |                     |              |                    |

| Sample ID            | Sample Date        | Sample Depth | Arsenic<br>(mg/kg) |
|----------------------|--------------------|--------------|--------------------|
| M34-2-E3             | 10/16/91           |              | 90                 |
| M34-2E3-N            | 10/16/91           |              | 150                |
| M34-2E3-S            | 10/16/91           |              | 110                |
| M34-2-N              | 10/15/91           |              | 200                |
| M34-3E1-E2           | 11/4/91            |              | 110                |
| M34-3E1-N            | 10/22/91           |              | 399                |
| M34-3E1-N2           | 11/4/91            |              | 230                |
| M34-3E1-S2           | 11/4/91            |              | 140                |
| M34-8A-S             | 10/22/91           |              | 170                |
| M34-8A-W             | 10/22/91           |              | 150                |
| M34-8B-N             | 11/5/91            |              | 96                 |
| M34-8B-W             | 11/5/91            |              | 150                |
| M3W-0B-S             | 10/18/91           |              | 190                |
| M3W-0-NW             | 10/4/91            |              | 259                |
| M3W-1-NW             | 10/4/91            |              | 204                |
| M3W-2B-S             | 10/21/91           |              | 71                 |
| M3W-2B-W             | 10/21/91           |              | 276                |
| M3W-2NW              | 10/4/91            |              | 851                |
| M3W-3A-NW            | 9/30/91            |              | 210                |
| M3W-4A-NW            | 9/30/91            |              | 200                |
| M3W-5A-NW            | 9/27/91            |              | 120                |
| M3W-6A-NW            | 9/27/91            |              | 66                 |
| M3W-7B-NW            | 9/24/91            |              | 140                |
| M3W-8B-NW            | 9/24/91            |              | 216                |
| M3W-9B-NW            | 9/24/91            |              | 200                |
| M3W-10B-NW           | 9/24/91            |              | 639                |
| M3W-11B-NW           | 9/24/91            |              | 210                |
| M3W-11-S             | 9/19/91            |              | 49                 |
| M3W-12-N             | 9/20/91            |              | 200                |
| M3W-12-S<br>M3W-13-N | 9/19/91<br>9/18/91 |              | 110<br>1380        |
| M3W-13-N             | 9/18/91            |              | 94                 |
| M3W-13-3<br>M3W-14-N | 9/18/91            |              | 659                |
| M3W-14-S             | 9/18/91            |              | 91                 |
| M3W-15-N             | 9/17/91            |              | 1380               |
| M3W-15-S             | 9/18/91            |              | 150                |
| M3W-16-N             | 9/17/91            |              | 514                |
| M3W-16-S             | 9/17/91            |              | 81                 |
| M4W-1-N              | 9/16/91            |              | 1270               |
| M4W-1-S              | 9/17/91            |              | 160                |
| M4W-2-N              | 9/16/91            |              | 66                 |
| M4W-2-S              | 9/16/91            |              | 15                 |
| M4W-3-N              | 9/16/91            |              | 56                 |
| M4W-3-S              | 9/16/91            |              | 160                |
| M4W-4-N              | 9/13/91            |              | 29                 |
| M4W-4-S              | 9/16/91            |              | 27                 |
| M4W-5-N              | 9/13/91            |              | 50                 |
| M4W-6-N              | 9/13/91            |              | 1740               |
| M4W-7-N              | 9/12/91            |              | 1920               |
| M4W-8-N              | 9/12/91            |              | 1850               |
| M4W-9-N              | 9/11/91            |              | 1620               |
| M4W-10-N             | 9/11/91            |              | 264                |
| M4W-11-N             | 9/10/91            |              | 2150               |
| M4W-12A-S            | 10/25/91           |              | 53                 |
| M4W-12-N             | 9/10/91            |              | 992                |
| M4W-12-S             | 9/10/91            |              | 510                |
| M4W-13-N             | 9/10/91            |              | 1650               |
| M4W-13-S             | 9/10/91            |              | 73                 |
| M4W-14-N             | 9/10/91            |              | 1420               |
| M4W-14-S             | 9/10/91            |              | 160<br>1540        |
| M4W-15-N<br>M4W-15-S | 9/9/91<br>9/9/91   |              | 1540               |
| M4W-16-N             | 9/9/91             |              | 150<br>1520        |
| M4W-16-N             | 9/9/91             |              | 92                 |
| 14144-10-0           | <i>। ।</i> ।       |              | 32                 |

| Carrala ID              | Carrala Data       | Consulta Donath | Arsenic    |
|-------------------------|--------------------|-----------------|------------|
| Sample ID               | Sample Date        | Sample Depth    | (mg/kg)    |
| M4W-17-N                | 9/6/91             |                 | 1530       |
| M4W-17-S                | 9/6/91             |                 | 41         |
| M4W-18-N                | 9/5/91             |                 | 1230       |
| M4W-18-S                | 9/6/91             |                 | 78         |
| M4W-19-N<br>M4W-19-S    | 9/5/91<br>9/6/91   |                 | 2460       |
| M4W-19-5<br>M4W-20-N    | 9/4/91             |                 | 63<br>1100 |
| M4W-20-S                | 9/5/91             |                 | 47         |
| M4W-21-N                | 9/4/91             |                 | 1210       |
| M4W-21-S                | 9/5/91             |                 | 11         |
| M4W-22A-S               | 10/25/91           |                 | 45         |
| M4W-22-N                | 9/4/91             |                 | 58         |
| M4W-23-N                | 9/4/91             |                 | 1440       |
| M4W-23-S                | 9/4/91             |                 | 20         |
| M4W-24-N                | 9/3/91             |                 | 1940       |
| M4W-24-S                | 9/4/91             |                 | 24         |
| M4W-25-N                | 9/3/91             |                 | 1900       |
| M4W-25-S                | 9/3/91             |                 | 49         |
| M5W-1-S                 | 9/3/91             |                 | 24         |
| M5W-2-S                 | 8/29/91            |                 | 60         |
| M5W-3A-N                | 10/9/91            |                 | 53         |
| M5W-3AN-E               | 10/9/91            |                 | 62         |
| M5W-4A-N                | 10/9/91            |                 | 120        |
| M5W-5A-N<br>M5W-6A-N    | 10/9/91            |                 | 23         |
| M5W-7A-N                | 10/9/91<br>10/8/91 |                 | 200<br>51  |
| M5W-7A-N<br>M5W-7A-S    | 10/25/91           |                 | 110        |
| M5W-7A-3<br>M5W-8A-N    | 10/8/91            |                 | 52         |
| M5W-8A-N                | 8/26/91            |                 | 150        |
| M5W-9A-N                | 10/8/91            |                 | 40         |
| M5W-9-S                 | 8/23/91            |                 | 140        |
| M5W-10A-N               | 10/7/91            |                 | 100        |
| M5W-10A-S               | 10/24/91           |                 | 62         |
| M5W-11A-N               | 10/9/91            |                 | 44         |
| M5W-11A-S               | 10/24/91           |                 | 90         |
| M5W-12A-N               | 10/15/91           |                 | 44         |
| M5W-12-S                | 8/21/91            |                 | 62         |
| M5W-13A-N               | 10/15/91           |                 | 12         |
| M5W-14A-N               | 10/15/91           |                 | 28         |
| M5W-14-S                | 8/19/91            |                 | 110        |
| TM3W-3A-S               | 10/28/91           |                 | 180        |
| TM3W-4A-S               | 10/28/91           |                 | 120        |
| TM3W-5A-S               | 10/28/91           |                 | 288        |
| TM3W-5A-S2              | 10/31/91           |                 | 44         |
| TM3W-6A-S2<br>TM3W-7B-E | 10/31/91           |                 | 94<br>130  |
| TM3W-7B-E<br>TM3W-7B-S  | 11/8/91<br>11/8/91 |                 | 91         |
| TM3W-7B-3               | 11/8/91            |                 | 73         |
| TM3W-9B-S               | 11/8/91            |                 | 67         |
| TM3W-9B-W               | 11/8/91            |                 | 22         |
| TM3W-10A-S2             | 11/1/91            |                 | 190        |
| TM4W-1C-E               | 11/21/91           |                 | 140        |
| TM4W-1C-N               | 11/21/91           |                 | 130        |
| TM4W-1C-S               | 11/21/91           |                 | 170        |
| TM4W-2.5D-E             | 11/25/91           |                 | 140        |
| TM4W-2C-N               | 11/20/91           |                 | 200        |
| TM4W-2D-S               | 11/14/91           |                 | 213        |
| TM4W-3C2-E              | 11/20/91           |                 | 54         |
| TM4W-3C2-N              | 11/20/91           |                 | 42         |
| TM4W-3E1-S              | 11/25/91           |                 | 180        |
| TM4W-3E-E               | 11/14/91           |                 | 11         |
| TM4W-3E-S               | 11/14/91           |                 | 18         |
| TM4W-4E-S               | 11/6/91            |                 | 5          |

| Sample ID       | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|-----------------|-------------|--------------|--------------------|
| TM4W-5F-E       | 11/4/91     |              | 11                 |
| TM4W-13.5E-W    | 11/25/91    |              | 37                 |
| TM4W-13.5F-W    | 11/25/91    |              | 170                |
| TM4W-13.5J      | 11/18/91    |              | 83                 |
| TM4W-13.5K-W    | 11/18/91    |              | 58                 |
| TM4W-14G-N      | 11/25/91    |              | 17                 |
| TM4W-14H-S      | 11/25/91    |              | 200                |
| TM4W-14H-W      | 11/25/91    |              | 160                |
| TM4W-14.5G-N    | 11/26/91    |              | 32                 |
| TM4W-14.5G-S    | 11/26/91    |              | 120                |
| TM4W-14.5G-W    | 11/26/91    |              | 77                 |
| M-45-1-E        | 6/21/91     |              | 35                 |
| M-45-2-E        | 6/21/91     |              | 7                  |
| M-45-8-S        | 6/21/91     |              | 5 U                |
| M-45-9-S        | 6/21/91     |              | 7                  |
| M-45-10B-S      | 6/25/91     |              | 23 U               |
| M-45-11B-S      | 6/25/91     |              | 25 U               |
| M-45-12B-S      | 6/25/91     |              | 160                |
| M-45-13B-S      | 6/25/91     |              | 110                |
| M-45-(-1B)-W    | 7/5/91      |              | 130                |
| N-01 (CY)       | 4/27/89     | 0-12         | 350                |
| N-02 (CY)       | 3/31/89     | 0-12         | 270                |
| N-03 (CY)       | 4/4/89      | 0-12         | 170                |
| N-04 (CY)       | 4/21/89     | 0-12         | 200                |
| N-05-A1 (CY)    | 4/27/89     | 0-12         | 32 U               |
| S-01-B1 (CY)    | 4/19/89     | 0-12         | 180                |
| S-02 (CY)       | 3/31/89     | 0-12         | 97                 |
| S-03 (CY)       | 4/10/89     | 0-12         | 35 U               |
| S-04 (CY)       | 4/21/89     | 0-12         | 130                |
| S-05 (CY)       | 4/27/89     | 0-12         | 33 U               |
| N-01 (BAY13)    | 5/16/89     | 0-12         | 420                |
| N-02 (BAY13)    | 5/16/89     | 0-12         | 130                |
| N-03 (BAY13)    | 5/16/89     | 0-12         | 110                |
| S-01 (BAY13)    | 5/17/89     | 0-12         | 83                 |
| S-02-A1 (BAY13) | 5/18/89     | 0-12         | 180                |
| S-03-A1 (BAY13  | 5/18/89     | 0-12         | 170                |
| E-01-C1 (BAY13) | 5/24/89     | 0-12         | 250                |
| PZFA            | 8/28/84     | 11           | 530                |
| PZFC            | 8/28/84     | 12           | 290                |
| SW1             | 11/12/89    |              | 20 (a)             |
| SW2             | 11/12/89    |              | 20 (a)             |
| SW3             | 11/12/89    |              | 3,300              |
| SW4             | 11/12/89    |              | 4,000              |
| SW5             | 11/12/89    |              | 80 (a)             |
| SW6             | 11/12/89    |              | 100 (a)            |
| SW7             | 11/12/89    |              | 40 (a)             |
| SW8             | 11/12/89    |              | 80 (a)             |
| SW9             | 11/12/89    |              | 30 (a)             |
| SW10            | 11/12/89    |              | 3,000              |

| Sample ID | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|-----------|-------------|--------------|--------------------|
| SW11      | 11/12/89    |              | 20 (a)             |
| SW12      | 11/12/89    |              | 20 (a)             |
| SW13      | 11/12/89    |              | 10 (a)             |
| SW14      | 11/12/89    |              | 40 (a)             |
| SW15      | 11/12/89    |              | 20 (a)             |
| SW16      | 11/12/89    |              | 20 (a)             |
| SW17      | 11/12/89    |              | 270                |
| SW18      | 11/12/89    |              | 70 (a)             |
| SW19      | 11/12/89    |              | 10 (a)             |
| SW20      | 11/12/89    |              | 10 (a)             |
| SW21      | 11/12/89    |              | 10 (a)             |
| SW22      | 11/12/89    |              | 10 (a)             |
| SW23      | 11/12/89    |              | 10 U(a)            |
| SW24      | 11/12/89    |              | 10 U(a)            |
| SW25      | 11/12/89    |              | 90 (a)             |
| SW26      | 11/12/89    |              | 90 (a)             |
| SW27      | 11/12/89    |              | 20 (a)             |
| SW28      | 11/12/89    |              | 140 (a)            |
| SW33      | 11/12/89    |              | 400 (a)            |
| SW34      | 11/12/89    |              | 100 (a)            |
| SW35      | 11/12/89    |              | 150 (a)            |
| SW36      | 11/12/89    |              | 225 (a)            |
| SW37      | 11/12/89    |              | 150 (a)            |
| SW38      | 11/12/89    |              | 3500 (a)           |
| SW39      | 11/12/89    |              | 2250 (a)           |
| SW40      | 11/12/89    |              | 1500 (a)           |
| SW44      | 11/12/89    |              | 170 (a)            |
| SW45      | 11/12/89    |              | 200 (a)            |
| SW46      | 11/12/89    |              | 20 (a)             |
| SW50      | 11/12/89    |              | 40 (a)             |
| SW54      | 11/12/89    |              | 20 (a)             |
| SW55      | 11/12/89    |              | 30 (a)             |
| SW56      | 11/12/89    |              | 30 (a)             |

| Sample ID  | Sample Date  | Sample Depth | Arsenic<br>(mg/kg)   |
|------------|--------------|--------------|----------------------|
|            |              |              |                      |
| SW57       | 11/12/89     |              | 10 (a)               |
| SW58       | 11/12/89     |              | 20 (a)               |
| SW59       | 11/12/89     |              | 10 (a)               |
| SW60       | 11/12/89     |              | 80 (a)               |
| 31         | 1991         | 1-3          | 30 (a)               |
| 3I<br>3I   | 1991<br>1991 | 3-5<br>5-9   | 20 (a)<br>60         |
| 6J         | 1991         | 1-3          | 20 U (a)             |
| 6J         | 1991         | 3-5          | 120 (a)              |
| 6J         | 1991         | 5-9          | 4000 (a)             |
| 6K         | 1991         | 1-3          | 10 U (a)             |
| 6K<br>6K   | 1991<br>1991 | 3-5<br>5-9   | 10 U (a)<br>60 U     |
| 8J         | 1991         | 1-3          | 20 U (a)             |
| 8J         | 1991         | 3-5          | 20 U (a)             |
| 8J         | 1991         | 5-9          | 20 (a)               |
| 101        | 1991         | 1-3          | 30 (a)               |
| 10J        | 1991         | 1-3          | 20 U (a)             |
| 10J        | 1991         | 3-5          | 20 U (a)             |
| 10J        | 1991         | 5-9          | 20 U (a)             |
| 18E<br>18E | 1991         | 1-3          | 10 (a)               |
| 18E        | 1991<br>1991 | 3-5<br>5-9   | 20 (a)<br>200        |
| 18N        | 1991         | 1-3          | 10 U (a)             |
| 18N        | 1991         | 3-5          | 30 (a)               |
| 18N        | 1991         | 5-9          | 310                  |
| 22N        | 1991         | 1-3          | 10 U (a)             |
| 22N<br>22N | 1991<br>1991 | 3-5<br>5-9   | 40 (a)<br>150        |
|            |              |              |                      |
| 24B<br>24B | 1991<br>1991 | 1-3<br>3-5   | 10 (a)<br>50 (a)     |
| 24B        | 1991         | 5-9          | 2250 (a)             |
| 25A        | 1991         | 1-3          | 10 U (a)             |
| 25A        | 1991         | 3-5          | 10 U (a)             |
| 25A        | 1991         | 5-9          | 460                  |
| 25B        | 1991         | 1-3          | 10 U (a)             |
| 25B<br>25B | 1991<br>1991 | 3-5<br>5-9   | 10 (a)<br>950        |
|            |              |              |                      |
| 25C<br>25C | 1991<br>1991 | 1-3<br>3-5   | 10 U (a)<br>10 U (a) |
| 25C        | 1991         | 5-9          | 1500 (a)             |
| 25D        | 1991         | 1-3          | 10 U (a)             |
| 25D        | 1991         | 3-5          | 10 U (a)             |
| 25D        | 1991         | 5-9          | 410                  |

| Sample ID | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|-----------|-------------|--------------|--------------------|
| 25N       | 1991        | 1-3          | 50 (a)             |
| 25N       | 1991        | 3-5          | 10 U (a)           |
| 25N       | 1991        | 5-9          | 30 (a)             |
| 26B       | 1991        | 1-3          | 10 U (a)           |
| 26B       | 1991        | 3-5          | 10 U (a)           |
| 26B       | 1991        | 5-9          | 2500 (a)           |
| 27B       | 1991        | 1-3          | 10 U (a)           |
| 27B       | 1991        | 3-5          | 90                 |
| 27B       | 1991        | 5-9          | 2000 (a)           |
| 28A       | 1991        | 1-3          | 10 (a)             |
| 28A       | 1991        | 3-5          | 40 (a)             |
| 28A       | 1991        | 5-9          | 280                |
| 28B       | 1991        | 1-3          | 10 U (a)           |
| 28B       | 1991        | 3-5          | 10 U (a)           |
| 28B       | 1991        | 5-9          | 100 (a)            |
| 28D       | 1991        | 1-3          | 20 (a)             |
| 28D       | 1991        | 3-5          | 10 (a)             |
| 28D       | 1991        | 5-9          | 200                |
| 29B       | 1991        | 1-3          | 10 U (a)           |
| 29B       | 1991        | 3-5          | 10 U (a)           |
| 29B       | 1991        | 5-9          | 3500 (a)           |
| 30B       | 1991        | 1-3          | 10 U (a)           |
| 30B       | 1991        | 3-5          | 270                |
| 30B       | 1991        | 5-9          | 400                |
| 31A       | 1991        | 1-3          | 10 (a)             |
| 31A       | 1991        | 3-5          | 10 (a)             |
| 31A       | 1991        | 5-9          | 140                |
| 31B       | 1991        | 1-3          | 10 U (a)           |
| 31B       | 1991        | 3-5          | 270                |
| 31B       | 1991        | 5-9          | 330                |
| 31D       | 1991        | 1-3          | 10 (a)             |
| 31D       | 1991        | 3-5          | 20 (a)             |
| 31D       | 1991        | 5-9          | 170 (a)            |
|           |             |              | 4000               |

U = Indicates the compound was undetected at the reported concentration

J = Laboratory flag indicating the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

<sup>(</sup>a) = Field sample results

| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l 1                  | 2          | Ī           | 4                  |             | I        |          | 10                  |          | Ī        | 13       | 14             | I 4            | 18             | l-2        | I-3        | I-4        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------|--------------------|-------------|----------|----------|---------------------|----------|----------|----------|----------------|----------------|----------------|------------|------------|------------|
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 2          | 4           | 4                  | 4           | 10       | 10       | Dup of 10<br>10-Dup | 10       | 13       | 13       | 14             | 18             | 18             | I-2        | I-3        | 1-4        |
| Laboratory ID:<br>Sample Depth (ft BGS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 2.5        | 2.5         | 6.5                | 10.5        | 6        | 11       | 11                  | 13.5     | 9        | 13.5     | 2              | 2              | 6.5            | 14.5       | 10.5       | 3          |
| Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/1/1983             | 8/1/1983   | 8/1/1983    | 8/1/1983           | 8/1/1983    | 8/1/1983 | 8/1/1983 | 8/1/1983            | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983       | 8/1/1983       | 8/1/1983       | 10/14/1983 | 10/21/1983 | 10/20/1983 |
| TOTAL METALS (mg/kg)<br>EPA 200.8/SW6010B/SW7470A (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |            |             |                    |             |          |          |                     |          |          |          |                |                |                |            |            |            |
| Barium<br>Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26<br>0.03           | 44<br>0.12 |             | 33<br>0.06         |             |          |          |                     |          |          |          | 33<br>0.78     | 30<br>0.6      | 25<br>0.31     |            |            | 1          |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                   | 20         |             | 11                 |             |          |          |                     |          |          |          | 16             | 16             | 11.5           | 9.3        | 47         | 16         |
| Copper<br>Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3                  | 11         |             | 2.4                |             |          |          |                     |          |          |          | 69             | 73             | 5.5            | 420<br>4.5 | 45<br>36   | 280<br>150 |
| Mercury<br>Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03 U<br><b>9.5</b> | 0.08<br>16 |             | 0.04<br>9.2        |             |          |          |                     |          |          |          | 0.03<br>14     | 0.03<br>20     | 0.04<br>8.5    |            |            | 1          |
| Selenium<br>Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3 U                | 0.3 U      |             | 0.3 U              |             |          |          |                     |          |          |          | 0.2 U<br>0.3 U | 0.2 U<br>0.3 U | 0.2 U<br>0.3 U |            |            | 1          |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                   | 37         | 124         | 40                 | 132         | 59.5     | 31.8     | 31.8                | 27.2     | 25       | 102.5    | 73.9           | 81             | 33.7           | 220        | 50         | 430        |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 U                |            |             | 0.2 U              |             |          |          |                     |          |          |          |                |                |                |            |            |            |
| CONVENTIONALS (mg/kg) Cyanide Oil and Grease Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 U                  | 3 U        | 350<br>2400 | 3 ∪<br><b>1800</b> | 130<br>1500 | 130      | 100 U    | 69 U                | 92       | 110      | 53       | 210            | 107            | 57 U           |            |            |            |
| PETROLEUM HYDROCARBONS (mg/kg)<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |             |                    |             |          |          |                     |          |          |          |                |                |                |            |            |            |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |            |             |                    |             |          |          |                     |          |          |          |                |                |                |            |            |            |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3-Trimethylbenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Eutanone 2-Chloroethylvinylether 2-Chlorotoluene |                      |            |             |                    |             |          |          |                     |          |          |          |                |                |                |            |            |            |

|                                                    |                                        | Ι.              | _               | Ι.              |                 |                  | l             |                | Dup of 10      |                  | l             |                  | l             | l             |                 | 1                  | 1                  | 1 1             |
|----------------------------------------------------|----------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------|---------------|----------------|----------------|------------------|---------------|------------------|---------------|---------------|-----------------|--------------------|--------------------|-----------------|
|                                                    | Sample ID:<br>Laboratory ID:           |                 | 2               | 4               | 4               | 4                | 10            | 10             | 10-Dup         | 10               | 13            | 13               | 14            | 18            | 18              | I-2                | I-3                | 1-4             |
|                                                    | Sample Depth (ft BGS):<br>Sample Date: | 5.5<br>8/1/1983 | 2.5<br>8/1/1983 | 2.5<br>8/1/1983 | 6.5<br>8/1/1983 | 10.5<br>8/1/1983 | 6<br>8/1/1983 | 11<br>8/1/1983 | 11<br>8/1/1983 | 13.5<br>8/1/1983 | 9<br>8/1/1983 | 13.5<br>8/1/1983 | 2<br>8/1/1983 | 2<br>8/1/1983 | 6.5<br>8/1/1983 | 14.5<br>10/14/1983 | 10.5<br>10/21/1983 | 3<br>10/20/1983 |
| 2-Hexanone<br>4-Chlorotoluene                      |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 4-Isopropyltoluene                                 |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 4-Methyl-2-Pentanone (MIB                          | K)                                     |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Acetone<br>Acrolein                                |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Acrylonitrile                                      |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Benzene                                            |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Bromobenzene<br>Bromochloromethane                 |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Bromodichloromethane                               |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Bromoethane                                        |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| Bromoform<br>Bromomethane                          |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Carbon Disulfide                                   |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| Carbon Tetrachloride                               |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Chlorobenzene<br>Chloroethane                      |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Chloroform                                         |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Chloromethane                                      |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene  |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| Dibromochloromethane                               |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Dibromomethane                                     |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Ethylbenzene<br>Ethylene Dibromide                 |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Hexachlorobutadiene                                |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Isopropylbenzene                                   |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| m, p-Xylene<br>Methyl Iodide                       |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| Methylene Chloride                                 |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| Naphthalene                                        |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| n-Butylbenzene<br>n-Propylbenzene                  |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    | 1               |
| o-Xylene                                           |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| sec-Butylbenzene                                   |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Styrene tert-Butylbenzene                          |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Tetrachloroethene                                  |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Toluene                                            |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| trans-1,2-Dichloroethene trans-1,3-Dichloropropene |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| trans-1,4-Dichloro-2-butene                        |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Trichloroethene                                    |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Trichlorofluoromethane<br>Vinyl Acetate            |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| Vinyl Chloride                                     |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| SEMIVOLATILES (mg/kg)                              |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| EPA SW8270D (a)                                    |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 1,2,4-Trichlorobenzene                             |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene         |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 1,4-Dichlorobenzene                                |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 1-Methylnaphthalene                                |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 2,2'-Oxybis(1-Chloropropan 2,4,5-Trichlorophenol   | e)                                     |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 2,4,6-Trichlorophenol                              |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 2,4-Dichlorophenol                                 |                                        |                 |                 |                 |                 |                  |               |                |                |                  |               |                  |               |               |                 |                    |                    |                 |
| 2,4-Dimethylphenol                                 |                                        | I               | I               | I               |                 |                  | I             |                |                |                  | I             |                  | I             | I             |                 | I                  | I                  | 1               |

| Company (Company (C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample ID:                             | 1               | 2 |                 | 4               | 4                | 10 | 10 | Dup of 10<br>10-Dup | 10 | 13 | 13               | 14 | 18 | 18 | I-2 | I-3 | I-4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|---|-----------------|-----------------|------------------|----|----|---------------------|----|----|------------------|----|----|----|-----|-----|-----|
| 2 - A - Chiverophares 2 - Chickopia price 3 - Chickopia price 4 - Chickopia price 4 - Chickopia price 4 - Chickopia price 4 - Chickopia price 5 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Laboratory ID:                         |                 |   |                 |                 |                  |    |    |                     |    |    |                  |    |    |    |     |     |     |
| 2.4 - Contropalated 2.4 - Contropalated 2.5 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Depth (ft BGS):<br>Sample Date: | 5.5<br>8/1/1983 |   | 2.5<br>8/1/1983 | 6.5<br>8/1/1983 | 10.5<br>8/1/1983 |    |    |                     |    |    | 13.5<br>8/1/1983 |    |    |    |     |     |     |
| Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylethe 4-Chloro-3-methylphenol 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenylethe 4-Methylphenol 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzoic Acid Benzyl Alcohol bis(2-Chloroethoxy) Methal Bis-(2-Chloroethoxy) Methal Bis-(2-Chloroethoxy) Methal Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzofuran Diethylphthalate Din-Butylphthalate Din-Butylphthalate Din-Butylphthalate Din-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorocyclopentadiene | er<br>er                               | 5.5<br>8/1/1983 |   | 2.5 8/1/1983    | 6.5<br>8/1/1983 | 10.5 8/1/1983    |    |    |                     |    |    | 13.5 8/1/1983    |    |    |    |     |     |     |
| Phonol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phenol<br>Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                 |   |                 |                 |                  |    |    |                     |    |    |                  |    |    |    |     |     |     |

| Location                                                       | n: ID                | P-6                | IDP-6A                 | IDP-7                      | IDP-8                | IDP-9                | IDP-10                 | IDP-11               | IDP-12               | IDP-13               | IDP-14               | IDP-15               | IMR-2                | IMR-3          | IMR-4          | IMR-5          | IMR-6          | IMR-7                |
|----------------------------------------------------------------|----------------------|--------------------|------------------------|----------------------------|----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|----------------------|
| Sample II<br>Laboratory II                                     |                      | IDP-6<br>OK85AC    | IDP-6A                 | IDP-7<br>OL03A             | IDP-8<br>OL03B       | IDP-9<br>OL03C       | IDP-10                 | IDP-11<br>OL03E      | IDP-12<br>OL03F      | IDP-13<br>OL03G      | IDP-14<br>OL03H      | IDP-15<br>OL03I      | IMR-2<br>NV07A       | IMR-3<br>OA02A | IMR-4<br>NV07B | IMR-5<br>NV07C | IMR-6<br>NV07D | IMR-7<br>NW45A       |
| Sample Depth (ft BGS<br>Sample Datu                            | 5): 8                | 12<br>2/2/2009     | OL03J<br>3<br>2/3/2009 | 3<br>2/3/2009              | 3<br>2/3/2009        | 3<br>2/3/2009        | OL03D<br>2<br>2/3/2009 | 11<br>2/3/2009       | 12<br>2/3/2009       | 12<br>2/3/2009       | 11<br>2/3/2009       | 12<br>2/3/2009       | 10/17/2008           | 11/13/2008     | 10/17/2008     | 10/17/2008     | 10/17/2008     | 10/27/2008           |
| TOTAL METALS (mg/kg)                                           | 0. <i>LILI</i> 2000  | 2/2/2000           | Z/G/ZGGG               | Z/G/ZGGG                   | 2/0/2000             | 2/0/2000             | 2/0/2000               | ZiGiZGG              | Z/G/ZGGG             | 2/0/2000             | 2/0/2000             | Z/G/ZGGG             | 10/11/2000           | 11/10/2000     | 10/11/2000     | 10/11/2000     | 10/11/2000     | 10/21/2000           |
| <b>EPA 200.8/SW6010B/SW7470A (a)</b><br>Barium                 |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      | 48                   | 95.5           | 153            | 61.5           | 78.6           | 31.4                 |
| Cadmium<br>Chromium                                            | 0.3 U<br><b>19.2</b> | 0.2 U<br><b>9</b>  | 0.2 U<br><b>52</b>     | 4<br>262                   | 0.4<br>36.9          | 0.6<br>58            | 0.6<br>16.2            | 0.2 U<br><b>11.8</b> | 0.3 U<br><b>16.3</b> | 0.3 U<br><b>23.5</b> | 0.2 U<br><b>15.4</b> | 0.3 U<br><b>17.3</b> | 0.2 U<br><b>19.5</b> | 1.6<br>65.8    | 3.1<br>55      | 0.6<br>41.2    | 5.6<br>19.7    | 0.2 U<br><b>21.3</b> |
| Copper<br>Lead                                                 | 26.9<br>3            | <b>9.1</b><br>2 U  | 20.8<br>27             | <b>177</b> J<br><b>420</b> | 27.4<br>27           | 93.2<br>112          | 55.6<br>59             | <b>13.5</b><br>2 U   | 163<br>4             | 131<br>4             | 624<br>6             | 47.2<br>5            | 2 U                  | 126            | 136            | 56             | 26             | 2 U                  |
| Mercury<br>Nickel                                              | 0.06                 | 0.05 U             | 0.05 U                 | <b>0.52</b> J              | 0.08                 | 0.18                 | 0.15                   | 0.05 U               | 0.06                 | 0.08                 | 0.21                 | 0.06                 | 0.04 U               | 1.44           | 0.46           | 0.1            | 0.68           | 0.05 U               |
| Selenium<br>Silver                                             |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      | 5 U<br>0.3 U         | 6 U<br>0.4 U   | 20 U<br>0.9 U  | 5 U<br>0.3 U   | 6 U<br>0.4 U   | 5 U<br>0.3 U         |
| Zinc                                                           | 153                  | 20                 | 68                     | <b>1390</b> J              | 89                   | 267                  | 220                    | 35                   | 354                  | 97                   | 77                   | 96                   |                      |                |                |                |                |                      |
| PCBs (mg/kg)<br>EPA SW8082 (a)                                 |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                |                |                      |
| Aroclor 1016<br>Aroclor 1221                                   | 0.032 U<br>0.032 U   | 0.031 U<br>0.031 U | 0.031 U<br>0.031 U     |                            | 0.032 U<br>0.032 U   | 0.032 U<br>0.032 U   |                        |                      | 0.031 U<br>0.031 U   |                      | 0.031 U<br>0.031 U   |                      |                      |                |                |                |                |                      |
| Aroclor 1232<br>Aroclor 1242                                   | 0.032 U<br>0.032 U   | 0.031 U<br>0.031 U | 0.031 U<br>0.031 U     |                            | 0.032 U<br>0.032 U   | 0.032 U<br>0.032 U   |                        |                      | 0.031 U<br>0.031 U   |                      | 0.031 U<br>0.031 U   |                      |                      |                |                |                |                |                      |
| Aroclor 1254                                                   | 0.032 U<br>0.032 U   | 0.031 U<br>0.031 U | 0.031 U<br>0.031 U     |                            | 0.032 U<br>0.032 U   | 0.032 U<br>0.032 U   |                        |                      | 0.031 U<br>0.031 U   |                      | 0.031 U<br>0.031 U   |                      |                      |                |                |                |                |                      |
| Aroclor 1260<br>Total PCBs                                     | 0.032 U<br>0.032 U   | 0.031 U<br>0.031 U | 0.031 U<br>0.031 U     |                            | 0.032 U<br>0.032 U   | 0.032 U<br>0.032 U   |                        |                      | 0.031 U<br>0.031 U   |                      | 0.031 U<br>0.031 U   |                      |                      |                |                |                |                |                      |
| CONVENTIONALS (mg/kg)                                          | 0.002 0              | 0.001              | 0.001                  |                            | 0.002                | 0.002                |                        |                      | 0.001                |                      | 0.00                 |                      |                      |                |                |                |                |                      |
| Cyanide Oil and Grease                                         |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                |                |                      |
| Total Organic Carbon                                           |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                |                |                      |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID                      |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                |                |                      |
| Diesel Range Organics<br>Gasoline Range Organics               |                      |                    |                        | 50 U<br>20 U               | 50 U<br>20 U         | 50 U<br>20 U         | 50 U<br>20 U           | 50 U<br>20 U         | 50 U<br>20 U         | 50 U<br>20 U         | 50 U<br>20 U         | 50 U<br>20 U         |                      |                |                |                |                |                      |
| Lube Oil                                                       |                      |                    |                        | 100 U                      | 100 U                | 100 U                | 100                    | 100 U                |                      |                |                |                |                |                      |
| NWTPH-Dx Diesel Range Organics                                 |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                | 17             |                      |
| Lube Oil                                                       |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                | 61             |                      |
| VOLATILES (mg/kg)<br>EPA SW8260B/C (a)                         |                      |                    |                        |                            |                      |                      |                        |                      |                      |                      |                      |                      |                      |                |                |                |                |                      |
| 1,1,1,2-Tetrachloroethane                                      |                      |                    |                        | 0.0011 U                   | 0.0006 U             | 0.0013 U             | 0.0008 U               | 0.0008 U             | 0.0006 U             | 0.0008 U             | 0.0009 U             | 0.0006 U             |                      |                |                |                |                |                      |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane             |                      |                    |                        | 0.0011 U<br>0.0011 U       | 0.0006 U<br>0.0006 U | 0.0013 U<br>0.0013 U | 0.0008 U<br>0.0008 U   | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0008 U<br>0.0008 U | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U |                      |                |                |                |                |                      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>1,1,2-Trichloroethane |                      |                    |                        | 0.0023 U<br>0.0011 U       | 0.0013 U<br>0.0006 U | 0.0027 U<br>0.0013 U | 0.0016 U<br>0.0008 U   | 0.0016 U<br>0.0008 U | 0.0012 U<br>0.0006 U | 0.0015 U<br>0.0008 U | 0.0017 U<br>0.0009 U | 0.0013 U<br>0.0006 U |                      |                |                |                |                |                      |
| 1,1-Dichloroethane<br>1,1-Dichloroethene                       |                      |                    |                        | 0.0011 U<br>0.0011 U       | 0.0006 U<br>0.0006 U | 0.0013 U<br>0.0013 U | 0.0008 U<br>0.0008 U   | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0008 U<br>0.0008 U | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U |                      |                |                |                |                |                      |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene                     |                      |                    |                        | 0.0011 U<br>0.0057 U       | 0.0006 U<br>0.0032 U | 0.0013 U<br>0.0066 U | 0.0008 U<br>0.0039 U   | 0.0008 U<br>0.004 U  | 0.0006 U<br>0.003 U  | 0.0008 U<br>0.0038 U | 0.0009 U<br>0.0043 U | 0.0006 U<br>0.0032 U |                      |                |                |                |                |                      |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene               |                      |                    |                        | 0.0023 U<br>0.0057 U       | 0.0013 U<br>0.0032 U | 0.0027 U<br>0.0066 U | 0.0016 U<br>0.0039 U   | 0.0016 U<br>0.004 U  | 0.0012 U<br>0.003 U  | 0.0015 U<br>0.0038 U | 0.0017 U<br>0.0043 U | 0.0013 U<br>0.0032 U |                      |                |                |                |                |                      |
| 1,2,4-Trimethylbenzene                                         |                      |                    |                        | 0.0011 U                   | 0.0006 U             | 0.0013 U             | 0.0008 U               | 0.0008 U             | 0.0006 U             | 0.0008 U             | 0.0009 U             | 0.0006 U             |                      |                |                |                |                |                      |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dichlorobenzene             |                      |                    |                        | 0.0057 U<br>0.0011 U       | 0.0032 U<br>0.0006 U | 0.0066 U<br>0.0013 U | 0.0039 U<br>0.0008 U   | 0.004 U<br>0.0008 U  | 0.003 U<br>0.0006 U  | 0.0038 U<br>0.0008 U | 0.0043 U<br>0.0009 U | 0.0032 U<br>0.0006 U |                      |                |                |                |                |                      |
| 1,2-Dichloroethane<br>1,2-Dichloropropane                      |                      |                    |                        | 0.0011 U<br>0.0011 U       | 0.0006 U<br>0.0006 U | 0.0013 U<br>0.0013 U | 0.0008 U<br>0.0008 U   | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0008 U<br>0.0008 U | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U |                      |                |                |                |                |                      |
| 1,3,5-Trimethylbenzene                                         |                      |                    |                        | 0.0011 U                   | 0.0006 U             | 0.0013 U             | 0.0008 U               | 0.0008 U             | 0.0006 U             | 0.0008 U             | 0.0009 U             | 0.0006 U             |                      |                |                |                |                |                      |
| 1,3-Dichlorobenzene<br>1,3-Dichloropropane                     |                      |                    |                        | 0.0011 U<br>0.0011 U       | 0.0006 U<br>0.0006 U | 0.0013 U<br>0.0013 U | 0.0008 U<br>0.0008 U   | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0008 U<br>0.0008 U | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U |                      |                |                |                |                |                      |
| 1,4-Dichlorobenzene<br>2,2-Dichloropropane                     |                      |                    |                        | 0.0011 U<br>0.0011 U       | 0.0006 U<br>0.0006 U | 0.0013 U<br>0.0013 U | 0.0008 U<br>0.0008 U   | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0008 U<br>0.0008 U | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U |                      |                |                |                |                |                      |
| 2-Butanone                                                     |                      |                    |                        | 0.013                      | 0.0032 U             | 0.0066 U             | 0.0039 U               | 0.004 U              | 0.003 U              | 0.0038 U             | 0.0043 U             | 0.0074               |                      |                |                |                |                |                      |
| 2-Chloroethylvinylether<br>2-Chlorotoluene                     |                      |                    |                        | 0.0057 U<br>0.0011 U       | 0.0032 U<br>0.0006 U | 0.0066 U<br>0.0013 U | 0.0039 U<br>0.0008 U   | 0.004 U<br>0.0008 U  | 0.003 U<br>0.0006 U  | 0.0038 U<br>0.0008 U | 0.0043 U<br>0.0009 U | 0.0032 U<br>0.0006 U |                      |                |                |                |                |                      |

|                                                | Sample ID:                             | IDP-6              | IDP-6              | IDP-6A             | IDP-7                     | IDP-8                   | IDP-9                    | IDP-10                  | IDP-11                  | IDP-12                  | IDP-13                  | IDP-14                  | IDP-15                  | IMR-2      | IMR-3      | IMR-4      | IMR-5      | IMR-6      | IMR-7      |
|------------------------------------------------|----------------------------------------|--------------------|--------------------|--------------------|---------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------|------------|------------|------------|------------|------------|
|                                                | Laboratory ID:                         | OK85AB             | OK85AC             | OL03J              | OL03A                     | OL03B                   | OL03C                    | OL03D                   | OL03E                   | OL03F                   | OL03G                   | OL03H                   | OL03I                   | NV07A      | OA02A      | NV07B      | NV07C      | NV07D      | NW45A      |
| ,                                              | Sample Depth (ft BGS):<br>Sample Date: | 8<br>2/2/2009      | 12<br>2/2/2009     | 3<br>2/3/2009      | 3<br>2/3/2009             | 3<br>2/3/2009           | 3<br>2/3/2009            | 2<br>2/3/2009           | 11<br>2/3/2009          | 12<br>2/3/2009          | 12<br>2/3/2009          | 11<br>2/3/2009          | 12<br>2/3/2009          | 10/17/2008 | 11/13/2008 | 10/17/2008 | 10/17/2008 | 10/17/2008 | 10/27/2008 |
| 2-Hexanone                                     |                                        |                    |                    |                    | 0.0057 U                  | 0.0032 U                | 0.0066 U                 | 0.0039 U                | 0.004 U                 | 0.003 U                 | 0.0038 U                | 0.0043 U                | 0.0032 U                |            |            |            |            |            |            |
| 4-Chlorotoluene                                |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| 4-Isopropyltoluene                             |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| 4-Methyl-2-Pentanone (MIBK)                    |                                        |                    |                    |                    | 0.0057 U                  | 0.0032 U                | 0.0066 U                 | 0.0039 U                | 0.004 U                 | 0.003 U                 | 0.0038 U                | 0.0043 U                | 0.0032 U                |            |            |            |            |            |            |
| Acetone<br>Acrolein                            |                                        |                    |                    |                    | <b>0.150</b><br>0.057 U   | <b>0.015</b><br>0.032 U | <b>0.057</b><br>0.066 U  | <b>0.039</b><br>0.039 U | <b>0.031</b><br>0.040 U | <b>0.021</b><br>0.030 U | <b>0.038</b><br>0.038 U | <b>0.030</b><br>0.043 U | <b>0.058</b><br>0.032 U |            |            |            |            |            |            |
| Acrylonitrile                                  |                                        |                    |                    |                    | 0.0057 U                  | 0.0032 U                | 0.006 U                  | 0.0039 U                | 0.040 U                 | 0.003 U                 | 0.0038 U                | 0.043 U                 | 0.0032 U                |            |            |            |            |            |            |
| Benzene                                        |                                        |                    |                    |                    | 0.0027                    | 0.0006 U                | 0.0098                   | 0.0008 U                | 0.009                   | 0.0006 U                | 0.0008 U                | 0.0009                  | 0.0007                  |            |            |            |            |            |            |
| Bromobenzene                                   |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Bromochloromethane                             |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Bromodichloromethane                           |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Bromoethane<br>Bromoform                       |                                        |                    |                    |                    | 0.0023 U<br>0.0011 U      | 0.0013 U<br>0.0006 U    | 0.0027 U<br>0.0013 U     | 0.0016 U<br>0.0008 U    | 0.0016 U<br>0.0008 U    | 0.0012 U<br>0.0006 U    | 0.0015 U<br>0.0008 U    | 0.0017 U<br>0.0009 U    | 0.0013 U<br>0.0006 U    |            |            |            |            |            |            |
| Bromomethane                                   |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Carbon Disulfide                               |                                        |                    |                    |                    | 0.0011 0                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0026                  |            |            |            |            |            |            |
| Carbon Tetrachloride                           |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Chlorobenzene                                  |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Chloroethane                                   |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Chloroform                                     |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Chloromethane cis-1,2-Dichloroethene           |                                        |                    |                    |                    | 0.0011 U<br>0.0011 U      | 0.0006 U<br>0.0006 U    | 0.0013 U<br>0.0013 U     | 0.0008 U<br>0.0008 U    | 0.0008 U<br>0.0008 U    | 0.0006 U<br>0.0006 U    | 0.0008 U<br>0.0008 U    | 0.0009 U<br>0.0009 U    | 0.0006 U<br>0.0006 U    |            |            |            |            |            |            |
| cis-1,3-Dichloropropene                        |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Dibromochloromethane                           |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Dibromomethane                                 |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Ethylbenzene                                   |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Ethylene Dibromide                             |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Hexachlorobutadiene                            |                                        |                    |                    |                    | 0.0057 U                  | 0.0032 U                | 0.0066 U                 | 0.0039 U                | 0.004 U                 | 0.003 U                 | 0.0038 U                | 0.0043 U                | 0.0032 U                |            |            |            |            |            |            |
| Isopropylbenzene                               |                                        |                    |                    |                    | 0.0011 U<br>0.0011 U      | 0.0006 U<br>0.0006 U    | 0.0013 U<br><b>0.015</b> | 0.0008 U<br>0.0008 U    | 0.0008 U<br>0.0008 U    | 0.0006 U<br>0.0006 U    | 0.0008 U<br>0.0008 U    | 0.0009 U<br>0.0009 U    | 0.0006 U<br>0.0006 U    |            |            |            |            |            |            |
| m, p-Xylene<br>Methyl lodide                   |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.013<br>0.0013 U        | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 0                | 0.0006 U                |            |            |            |            |            |            |
| Methylene Chloride                             |                                        |                    |                    |                    | 0.0043                    | 0.0000 U                | 0.0018                   | 0.0017                  | 0.002                   | 0.0017                  | 0.0005 U                | 0.0034                  | 0.0022                  |            |            |            |            |            |            |
| Naphthalene                                    |                                        |                    |                    |                    | 0.0057 U                  | 0.0032 U                | 0.0066 U                 | 0.0039 U                | 0.004 U                 | 0.003 U                 | 0.0038 U                | 0.0043 U                | 0.0032 U                |            |            |            |            |            |            |
| n-Butylbenzene                                 |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| n-Propylbenzene                                |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| o-Xylene                                       |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0077                   | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| sec-Butylbenzene<br>Styrene                    |                                        |                    |                    |                    | 0.0011 U<br>0.0011 U      | 0.0006 U<br>0.0006 U    | 0.0013 U<br>0.0013 U     | 0.0008 U<br>0.0008 U    | 0.0008 U<br>0.0008 U    | 0.0006 U<br>0.0006 U    | 0.0008 U<br>0.0008 U    | 0.0009 U<br>0.0009 U    | 0.0006 U<br>0.0006 U    |            |            |            |            |            |            |
| tert-Butylbenzene                              |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Tetrachloroethene                              |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| Toluene                                        |                                        |                    |                    |                    | 0.0017                    | 0.0006 U                | 0.017                    | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| trans-1,2-Dichloroethene                       |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| trans-1,3-Dichloropropene                      |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            | 1          |            |
| trans-1,4-Dichloro-2-butene                    |                                        |                    |                    |                    | 0.0057 U                  | 0.0032 U                | 0.0066 U                 | 0.0039 U                | 0.004 U                 | 0.003 U                 | 0.0038 U                | 0.0043 U                | 0.0032 U                |            |            |            |            |            |            |
| Trichloroethene Trichlorofluoromethane         |                                        |                    |                    |                    | <b>0.0016</b><br>0.0011 U | 0.0006 U<br>0.0006 U    | 0.0013 U<br>0.0013 U     | 0.0008 U<br>0.0008 U    | 0.0008 U<br>0.0008 U    | 0.0006 U<br>0.0006 U    | 0.0008 U<br>0.0008 U    | 0.0009 U<br>0.0009 U    | 0.0006 U<br>0.0006 U    |            |            |            |            | 1          |            |
| Vinyl Acetate                                  |                                        |                    |                    |                    | 0.0011 U<br>0.0057 U      | 0.0006 U<br>0.0032 U    | 0.0013 U<br>0.0066 U     | 0.0008 U                | 0.0008 U<br>0.004 U     | 0.000 U                 | 0.0008 U                | 0.0009 U<br>0.0043 U    | 0.0006 U<br>0.0032 U    |            |            |            |            |            |            |
| Vinyl Chloride                                 |                                        |                    |                    |                    | 0.0011 U                  | 0.0006 U                | 0.0013 U                 | 0.0008 U                | 0.0008 U                | 0.0006 U                | 0.0008 U                | 0.0009 U                | 0.0006 U                |            |            |            |            |            |            |
| SEMIVOLATILES (mg/kg)                          |                                        |                    |                    |                    |                           |                         |                          |                         |                         |                         |                         |                         |                         |            |            |            |            |            |            |
| EPA SW8270D (a)                                |                                        |                    |                    |                    |                           |                         |                          |                         |                         |                         |                         |                         |                         | 1          |            |            |            | 1          | 1          |
| 1,2,4-Trichlorobenzene                         |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         |            |            |            |            | 1          |            |
| 1,2-Dichlorobenzene                            |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         |            |            |            |            | 1          |            |
| 1,3-Dichlorobenzene                            |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         |            |            |            |            | 1          |            |
| 1,4-Dichlorobenzene                            |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         |            |            |            |            | 1          |            |
| 1-Methylnaphthalene                            |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         |            |            |            |            |            |            |
| 2,2'-Oxybis(1-Chloropropane)                   |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         |            |            |            |            | 1          |            |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol |                                        | 0.310 U<br>0.310 U | 0.330 U<br>0.330 U | 0.290 U<br>0.290 U |                           | 0.320 U<br>0.320 U      | 0.310 U<br>0.310 U       |                         |                         | 0.320 U<br>0.320 U      |                         | 0.290 U<br>0.290 U      |                         |            |            |            |            | 1          |            |
| 2,4-Dichlorophenol                             |                                        | 0.310 U            | 0.330 U            | 0.290 U            |                           | 0.320 U                 | 0.310 U                  |                         |                         | 0.320 U                 |                         | 0.290 U                 |                         |            |            |            |            | 1          |            |
| -, . Diomorophonon                             |                                        | 0.061 U            | 0.065 U            | 0.058 U            |                           | 0.064 U                 | 0.061 U                  |                         |                         | 0.064 U                 |                         | 0.058 U                 |                         | 1          |            |            |            |            | 1          |

|                                                   | Sample ID:             | IDP-6              | IDP-6              | IDP-6A             | IDP-7    | IDP-8              | IDP-9              | IDP-10   | IDP-11   | IDP-12             | IDP-13   | IDP-14             | IDP-15   | IMR-2      | IMR-3      | IMR-4      | IMR-5      | IMR-6      | IMR-7      |
|---------------------------------------------------|------------------------|--------------------|--------------------|--------------------|----------|--------------------|--------------------|----------|----------|--------------------|----------|--------------------|----------|------------|------------|------------|------------|------------|------------|
|                                                   | Laboratory ID:         |                    | OK85AC             | OL03J              | OL03A    | OL03B              | OL03C              | OL03D    | OL03E    | OL03F              | OL03G    | OL03H              | OL03I    | NV07A      | OA02A      | NV07B      | NV07C      | NV07D      | NW45A      |
|                                                   | Sample Depth (ft BGS): | 8                  | 12                 | 3                  | 3        | 3                  | 3                  | 2        | 11       | 12                 | 12       | 11                 | 12       |            |            |            |            |            |            |
|                                                   | Sample Date:           | 2/2/2009           | 2/2/2009           | 2/3/2009           | 2/3/2009 | 2/3/2009           | 2/3/2009           | 2/3/2009 | 2/3/2009 | 2/3/2009           | 2/3/2009 | 2/3/2009           | 2/3/2009 | 10/17/2008 | 11/13/2008 | 10/17/2008 | 10/17/2008 | 10/17/2008 | 10/27/2008 |
| 2,4-Dinitrophenol                                 |                        | 0.610 U            | 0.650 U            | 0.580 U            |          | 0.640 U            | 0.610 U            |          |          | 0.640 U            |          | 0.580 U            |          |            |            |            |            |            |            |
| 2,4-Dinitrotoluene                                |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| 2,6-Dinitrotoluene                                |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| 2-Chloronaphthalene<br>2-Chlorophenol             |                        | 0.061 U<br>0.061 U | 0.065 U<br>0.065 U | 0.058 U<br>0.058 U |          | 0.064 U<br>0.064 U | 0.061 U<br>0.061 U |          |          | 0.064 U<br>0.064 U |          | 0.058 U<br>0.058 U |          |            |            |            |            |            |            |
| 2-Methylnaphthalene                               |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| 2-Methylphenol                                    |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| 2-Nitroaniline                                    |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| 2-Nitrophenol                                     |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| 3,3'-Dichlorobenzidine                            |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| 3-Nitroaniline                                    |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| 4,6-Dinitro-2-Methylphenol                        | <b>.</b>               | 0.610 U<br>0.061 U | 0.650 U<br>0.065 U | 0.580 U<br>0.058 U |          | 0.640 U<br>0.064 U | 0.610 U<br>0.061 U |          |          | 0.640 U<br>0.064 U |          | 0.580 U<br>0.058 U |          |            |            |            |            |            |            |
| 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol | !                      | 0.310 U            | 0.330 U            | 0.036 U<br>0.290 U |          | 0.320 U            | 0.310 U            |          |          | 0.064 U<br>0.320 U |          | 0.290 U            |          |            |            |            |            |            |            |
| 4-Chloroaniline                                   |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            | 1          |            |            | 1          |
| 4-Chlorophenyl-phenylether                        | r                      | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| 4-Methylphenol                                    |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| 4-Nitroaniline                                    |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| 4-Nitrophenol                                     |                        | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            | 1          |            |            | 1          |
| Acenaphthene                                      |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Acenaphthylene Anthracene                         |                        | 0.061 U<br>0.061 U | 0.065 U<br>0.065 U | 0.058 U<br>0.058 U |          | 0.064 U<br>0.064 U | 0.061 U<br>0.061 U |          |          | 0.064 U<br>0.064 U |          | 0.058 U<br>0.058 U |          |            |            |            |            |            |            |
| Benzo(a)anthracene                                |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Benzo(a)pyrene                                    |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Benzo(b)fluoranthene                              |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Benzo(g,h,i)perylene                              |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Benzo(k)fluoranthene                              |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Benzoic Acid                                      |                        | 0.610 UJ           | 0.650 UJ           | 0.580 U            |          | 0.640 U            | 0.610 U            |          |          | 0.640 U            |          | 0.580 U            |          |            |            |            |            |            |            |
| Benzyl Alcohol<br>bis(2-Chloroethoxy) Methar      |                        | 0.061 U<br>0.061 U | 0.065 U<br>0.065 U | 0.058 U<br>0.058 U |          | 0.064 U<br>0.064 U | 0.061 U<br>0.061 U |          |          | 0.064 U<br>0.064 U |          | 0.058 U<br>0.058 U |          |            |            |            |            |            |            |
| Bis-(2-Chloroethyl) Ether                         | ie .                   | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| bis(2-Ethylhexyl)phthalate                        |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Butylbenzylphthalate                              |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Carbazole                                         |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Chrysene                                          |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Dibenz(a,h)anthracene                             |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Dibenzofuran<br>Diethylphthalate                  |                        | 0.061 U<br>0.061 U | 0.065 U<br>0.065 U | 0.058 U<br>0.058 U |          | 0.064 U<br>0.064 U | 0.061 U<br>0.061 U |          |          | 0.064 U<br>0.064 U |          | 0.058 U<br>0.058 U |          |            |            |            |            |            |            |
| Dimethylphthalate                                 |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Di-n-Butylphthalate                               |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Di-n-Octyl phthalate                              |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Fluoranthene                                      |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Fluorene                                          |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Hexachlorobenzene                                 |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Hexachlorobutadiene Hexachlorocyclopentadiene     | <u>,</u>               | 0.061 U<br>0.310 U | 0.065 U<br>0.330 U | 0.058 U<br>0.290 U |          | 0.064 U<br>0.320 U | 0.061 U<br>0.310 U |          |          | 0.064 U<br>0.320 U |          | 0.058 U<br>0.290 U |          |            |            | 1          |            |            | 1          |
| Hexachloroethane                                  | •                      | 0.061 U            | 0.065 U            | 0.250 U            |          | 0.320 U            | 0.061 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            |            |            |            |            |
| Indeno(1,2,3-cd)pyrene                            |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Isophorone                                        |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Naphthalene                                       |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            |            |            |            |            |
| Nitrobenzene                                      |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| N-Nitroso-Di-N-Propylamine                        | e                      | 0.310 U            | 0.330 U            | 0.290 U            |          | 0.320 U            | 0.310 U            |          |          | 0.320 U            |          | 0.290 U            |          |            |            | 1          |            |            | 1          |
| N-Nitrosodiphenylamine                            |                        | 0.061 U<br>0.310 U | 0.065 U<br>0.330 U | 0.058 U<br>0.290 U |          | 0.064 U<br>0.320 U | 0.061 U<br>0.310 U |          |          | 0.064 U<br>0.320 U |          | 0.058 U<br>0.290 U |          |            |            | 1          |            |            | 1          |
| Pentachlorophenol Phenanthrene                    |                        | 0.310 U<br>0.061 U | 0.330 U<br>0.065 U | 0.290 U<br>0.058 U |          | 0.320 U<br>0.064 U | 0.310 U<br>0.061 U |          |          | 0.320 U<br>0.064 U |          | 0.290 U<br>0.058 U |          |            |            | 1          |            |            | 1          |
| Phenol                                            |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            | 1          |
| Pyrene                                            |                        | 0.061 U            | 0.065 U            | 0.058 U            |          | 0.064 U            | 0.061 U            |          |          | 0.064 U            |          | 0.058 U            |          |            |            | 1          |            |            |            |

| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IMR-8          | IMR-10          | IMF             | R-11            | IMF             | R-12            | IMR-14          | IMR-15          | IMR-16          | IMR-18          | IMR-19          | IssacEx-01                                                                                                                                                                                                                                                                                                                 | IssacEx-02                                                                                                                                                                                                                                                                                                                                                                                        | IssacEx-03                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID:<br>Laboratory ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IMR-8<br>NV07E | IMR-10<br>NY11A | IMR-11<br>NW45B | IMR-11<br>NY11B | IMR-12<br>NW45C | IMR-12<br>NY11C | IMR-14<br>NY11E | IMR-15<br>NY11F | IMR-16<br>NY11G | IMR-18<br>OA02B | IMR-19<br>OA02C | IssacEx-01<br>KH07A                                                                                                                                                                                                                                                                                                        | IssacEx-02<br>KH07B                                                                                                                                                                                                                                                                                                                                                                               | IssacEx-03<br>KH07C                                                                                                                                                                                                                                                                                                                                                       |
| Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/17/2008     | 11/4/2008       | 10/27/2008      | 11/4/2008       | 10/27/2008      | 11/4/2008       | 11/4/2008       | 11/4/2008       | 11/4/2008       | 11/13/2008      | 11/13/2008      | 5<br>11/30/2006                                                                                                                                                                                                                                                                                                            | 1.5<br>11/30/2006                                                                                                                                                                                                                                                                                                                                                                                 | 11/30/2006                                                                                                                                                                                                                                                                                                                                                                |
| TOTAL METALS (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                           |
| <b>EPA 200.8/SW6010B/SW7470A (a)</b><br>Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57.8           | 30.1            | 85              | 46.6            | 93              | 61.4            | 157             | 84.2            | 253             | 40.8            | 78.5            | 46.1                                                                                                                                                                                                                                                                                                                       | 51.4                                                                                                                                                                                                                                                                                                                                                                                              | 61.6                                                                                                                                                                                                                                                                                                                                                                      |
| Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>26.4      | 0.3<br>24.4     | 1.4<br>38.6     | 1.6<br>22.9     | 3.1<br>116      | 1.6<br>25.1     | 1.9<br>109      | 3<br>19.5       | 15<br>536       | 1.5<br>14.6     | 1.8<br>30.9     | 0.2 U<br><b>11.2</b>                                                                                                                                                                                                                                                                                                       | 0.4<br>23.5                                                                                                                                                                                                                                                                                                                                                                                       | 0.3<br>12.1                                                                                                                                                                                                                                                                                                                                                               |
| Copper<br>Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44             | 2 U             | 114             | 40              | 46              | 36              | 273             | 51              | 1210            | 24              | 87              | 4                                                                                                                                                                                                                                                                                                                          | 85                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                        |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81           | 0.04 U          | 1.82            | 1.12            | 0.7             | 0.12            | 0.33            | 0.8             | 0.06            | 0.16            | 0.69            | 0.04 U                                                                                                                                                                                                                                                                                                                     | 0.05 U                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                      |
| Nickel<br>Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 U            | 5 U             | 6 U             | 6 U             | 20 U            | 6 U             | 10 U            | 7 U             | 30 U            | 6 U             | 6 U             | 0.6 U                                                                                                                                                                                                                                                                                                                      | 0.6 U                                                                                                                                                                                                                                                                                                                                                                                             | 0.5 U                                                                                                                                                                                                                                                                                                                                                                     |
| Silver<br>Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3 U          | 0.3 U           | 0.3 U           | 0.3 U           | 1 U             | 0.4 U           | 0.9 U           | 0.4 U           | 2               | 0.3 U           | 0.4 U           | 0.2 U                                                                                                                                                                                                                                                                                                                      | 0.2 U                                                                                                                                                                                                                                                                                                                                                                                             | 0.2 U                                                                                                                                                                                                                                                                                                                                                                     |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U                                                                                                                                                                                                                                                  | 0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.041                                                                                                                                                                                                                                                                                                                           | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U                                                                                                                                                                                                                                                                                      |
| CONVENTIONALS (mg/kg) Cyanide Oil and Grease Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                           |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                           |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 6.2 U<br>12 U                                                                                                                                                                                                                                                                                                              | 7.3<br>65                                                                                                                                                                                                                                                                                                                                                                                         | 5.7 U<br><b>11</b>                                                                                                                                                                                                                                                                                                                                                        |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 2-Chloroethylvinylether 2-Chlorotoluene |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 0.0008 U 0.0004 U 0.0016 U 0.0008 U | 0.0006 U 0.0006 U 0.0006 U 0.0012 U 0.0006 U 0.0006 U 0.0006 U 0.0006 U 0.0003 U 0.0012 U 0.003 U 0.0006 U 0.0003 U 0.0003 U 0.0003 U 0.0003 U | 0.0006 U 0.0032 U 0.0032 U 0.0006 U 0.00032 U 0.00032 U |

|                                          |            |           |            |           | Ī          |           |           |           |            | •          | i          |                      |                      |                      |
|------------------------------------------|------------|-----------|------------|-----------|------------|-----------|-----------|-----------|------------|------------|------------|----------------------|----------------------|----------------------|
| Sample ID:                               | IMR-8      | IMR-10    | IMR-11     | IMR-11    | IMR-12     | IMR-12    | IMR-14    | IMR-15    | IMR-16     | IMR-18     | IMR-19     | IssacEx-01           | IssacEx-02           | IssacEx-03           |
| Laboratory ID:                           | NV07E      | NY11A     | NW45B      | NY11B     | NW45C      | NY11C     | NY11E     | NY11F     | NY11G      | OA02B      | OA02C      | KH07A                | KH07B                | KH07C                |
| Sample Depth (ft BGS):<br>Sample Date:   | 10/17/2008 | 11/4/2008 | 10/27/2008 | 11/4/2008 | 10/27/2008 | 11/4/2008 | 11/4/2008 | 11/4/2008 | 11/4/2008  | 11/13/2008 | 11/13/2008 | 5<br>11/30/2006      | 1.5<br>11/30/2006    | 11/30/2006           |
| <u> </u>                                 | 10/11/2000 | 11/1/2000 | 10/2//2000 | 11/4/2000 | 10/21/2000 | 11/1/2000 | 11/4/2000 | 11/1/2000 | 11/-1/2000 | 11/10/2000 | 11/10/2000 |                      |                      |                      |
| 2-Hexanone<br>4-Chlorotoluene            |            |           |            |           |            |           |           |           |            |            |            | 0.004 U<br>0.0008 U  | 0.003 U<br>0.0006 U  | 0.0032 U<br>0.0006 U |
| 4-Isopropyltoluene                       |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| 4-Methyl-2-Pentanone (MIBK)              |            |           |            |           |            |           |           |           |            |            |            | 0.004 U              | 0.003 U              | 0.0032 U             |
| Acetone                                  |            |           |            |           |            |           |           |           |            |            |            | 0.026                | 0.016                | 0.018                |
| Acrolein                                 |            |           |            |           |            |           |           |           |            |            |            | 0.040 U              | 0.030 U              | 0.032 U              |
| Acrylonitrile                            |            |           |            |           |            |           |           |           |            |            |            | 0.004 U              | 0.003 U              | 0.0032 U             |
| Benzene                                  |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Bromobenzene                             |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Bromochloromethane                       |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Bromodichloromethane                     |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Bromoethane                              |            |           |            |           |            |           |           |           |            |            |            | 0.0016 U             | 0.0012 U             | 0.0013 U             |
| Bromoform<br>Bromomethane                |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0006 U<br>0.0006 U |
| Carbon Disulfide                         |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Carbon Tetrachloride                     |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Chlorobenzene                            |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Chloroethane                             |            |           |            |           |            |           |           |           | 1          |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Chloroform                               |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Chloromethane                            |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| cis-1,2-Dichloroethene                   |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| cis-1,3-Dichloropropene                  |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Dibromochloromethane                     |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Dibromomethane                           |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Ethylbenzene                             |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Ethylene Dibromide                       |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Hexachlorobutadiene<br>Isopropylbenzene  |            |           |            |           |            |           |           |           |            |            |            | 0.004 U<br>0.0008 U  | 0.003 U<br>0.0006 U  | 0.0032 U<br>0.0006 U |
| m, p-Xylene                              |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Methyl lodide                            |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Methylene Chloride                       |            |           |            |           |            |           |           |           |            |            |            | 0.0016 U             | 0.0012 U             | 0.0013 U             |
| Naphthalene                              |            |           |            |           |            |           |           |           |            |            |            | 0.004 U              | 0.003 U              | 0.0032 U             |
| n-Butylbenzene                           |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| n-Propylbenzene                          |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| o-Xylene                                 |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| sec-Butylbenzene                         |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Styrene                                  |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| tert-Butylbenzene                        |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Tetrachloroethene<br>Toluene             |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U<br>0.0008 U | 0.0006 U<br>0.0006 U | 0.0006 U<br>0.0006 U |
| trans-1,2-Dichloroethene                 |            |           |            |           |            |           |           |           | 1          |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| trans-1,3-Dichloropropene                |            |           |            |           |            |           |           |           | 1          |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| trans-1,4-Dichloro-2-butene              |            |           |            |           |            |           |           |           | 1          |            |            | 0.004 U              | 0.003 U              | 0.0032 U             |
| Trichloroethene                          |            |           |            |           |            |           |           |           | 1          |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Trichlorofluoromethane                   |            |           |            |           |            |           |           |           |            |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| Vinyl Acetate                            |            |           |            |           |            |           |           |           |            |            |            | 0.004 U              | 0.003 U              | 0.0032 U             |
| Vinyl Chloride                           |            |           |            |           |            |           |           |           | 1          |            |            | 0.0008 U             | 0.0006 U             | 0.0006 U             |
| OFMINOLATH FO (marks)                    |            |           |            |           |            |           |           |           | 1          |            |            |                      |                      |                      |
| SEMIVOLATILES (mg/kg)<br>EPA SW8270D (a) |            |           |            |           |            |           |           |           |            |            |            |                      |                      |                      |
| 1,2,4-Trichlorobenzene                   |            |           |            |           |            |           |           |           | 1          |            |            | 0.065 U              | 0.064 U              | 0.063 U              |
| 1,2-Dichlorobenzene                      |            |           |            |           |            |           |           |           | 1          |            |            | 0.065 U              | 0.064 U              | 0.063 U              |
| 1,3-Dichlorobenzene                      |            |           |            |           |            |           |           |           | 1          |            |            | 0.065 U              | 0.064 U              | 0.063 U              |
| 1,4-Dichlorobenzene                      |            |           |            |           |            |           |           |           |            |            |            | 0.065 U              | 0.064 U              | 0.063 U              |
| 1-Methylnaphthalene                      |            |           |            |           |            |           |           |           |            |            |            |                      |                      |                      |
| 2,2'-Oxybis(1-Chloropropane)             |            |           |            |           |            |           |           |           | 1          |            |            | 0.065 U              | 0.064 U              | 0.063 U              |
| 2,4,5-Trichlorophenol                    |            |           |            |           |            |           |           |           | 1          |            |            | 0.330 U              | 0.320 U              | 0.320 U              |
| 2,4,6-Trichlorophenol                    |            |           |            |           |            |           |           |           | 1          |            |            | 0.330 U              | 0.320 U              | 0.320 U              |
| 2,4-Dichlorophenol                       |            |           |            |           |            |           |           |           | 1          |            |            | 0.330 U              | 0.320 U              | 0.320 U              |
| 2,4-Dimethylphenol                       |            | 1         |            |           |            |           |           |           | 1          |            |            | 0.065 U              | 0.064 U              | 0.063 U              |

|                                                      |                        | •          |           |            |           |            |           |           |           |           |            |            |                    | •                       |                    |
|------------------------------------------------------|------------------------|------------|-----------|------------|-----------|------------|-----------|-----------|-----------|-----------|------------|------------|--------------------|-------------------------|--------------------|
|                                                      | Sample ID:             | IMR-8      | IMR-10    | IMR-11     | IMR-11    | IMR-12     | IMR-12    | IMR-14    | IMR-15    | IMR-16    | IMR-18     | IMR-19     | IssacEx-01         | IssacEx-02              | IssacEx-03         |
|                                                      | Laboratory ID:         | NV07E      | NY11A     | NW45B      | NY11B     | NW45C      | NY11C     | NY11E     | NY11F     | NY11G     | OA02B      | OA02C      | KH07A              | KH07B                   | KH07C              |
|                                                      | Sample Depth (ft BGS): |            |           |            |           |            |           |           |           |           |            |            | 5                  | 1.5                     |                    |
|                                                      | Sample Date:           | 10/17/2008 | 11/4/2008 | 10/27/2008 | 11/4/2008 | 10/27/2008 | 11/4/2008 | 11/4/2008 | 11/4/2008 | 11/4/2008 | 11/13/2008 | 11/13/2008 | 11/30/2006         | 11/30/2006              | 11/30/2006         |
| 2,4-Dinitrophenol                                    |                        |            |           |            |           |            |           |           |           |           |            |            | 0.650 U            | 0.640 U                 | 0.630 U            |
| 2,4-Dinitrotoluene                                   |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 2,6-Dinitrotoluene                                   |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 2-Chloronaphthalene                                  |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| 2-Chlorophenol 2-Methylnaphthalene                   |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U<br>0.065 U | 0.064 U<br>0.064 U      | 0.063 U<br>0.063 U |
| 2-Methylphenol                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| 2-Nitroaniline                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 2-Nitrophenol                                        |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 3,3'-Dichlorobenzidine                               |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 3-Nitroaniline                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 4,6-Dinitro-2-Methylphenol                           |                        |            |           |            |           |            |           |           |           |           |            |            | 0.650 U            | 0.640 U                 | 0.630 U            |
| 4-Bromophenyl-phenylether                            |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| 4-Chloro-3-methylphenol 4-Chloroaniline              |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U<br>0.330 U | 0.320 U<br>0.320 U      | 0.320 U<br>0.320 U |
| 4-Chlorophenyl-phenylether                           |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| 4-Methylphenol                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| 4-Nitroaniline                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| 4-Nitrophenol                                        |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| Acenaphthene                                         |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Acenaphthylene                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Anthracene<br>Benzo(a)anthracene                     |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U<br>0.065 U | 0.064 U<br>0.064 U      | 0.063 U<br>0.063 U |
| Benzo(a)pyrene                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Benzo(b)fluoranthene                                 |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Benzo(g,h,i)perylene                                 |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Benzo(k)fluoranthene                                 |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Benzoic Acid                                         |                        |            |           |            |           |            |           |           |           |           |            |            | 0.650 U            | 0.640 U                 | 0.630 U            |
| Benzyl Alcohol                                       |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 UJ           | 0.320 UJ                | 0.320 UJ           |
| bis(2-Chloroethoxy) Methan                           | e                      |            |           |            |           |            |           |           |           |           |            |            | 0.065 U<br>0.065 U | 0.064 U                 | 0.063 U            |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U<br><b>0.520</b> | 0.063 U<br>0.063 U |
| Butylbenzylphthalate                                 |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Carbazole                                            |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Chrysene                                             |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.078                   | 0.063 U            |
| Dibenz(a,h)anthracene                                |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Dibenzofuran                                         |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Diethylphthalate                                     |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Dimethylphthalate<br>Di-n-Butylphthalate             |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U<br>0.065 U | 0.064 U<br>0.064 U      | 0.063 U<br>0.063 U |
| Di-n-Octyl phthalate                                 |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Fluoranthene                                         |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.065 U            | 0.075                   | 0.066              |
| Fluorene                                             |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Hexachlorobenzene                                    |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Hexachlorobutadiene                                  |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Hexachlorocyclopentadiene<br>Hexachloroethane        |                        |            |           |            |           |            |           |           |           |           |            |            | 0.330 U<br>0.065 U | 0.320 U<br>0.064 U      | 0.320 U<br>0.063 U |
| Indeno(1,2,3-cd)pyrene                               |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.065 U<br>0.065 U | 0.064 U<br>0.064 U      | 0.063 U<br>0.063 U |
| Isophorone                                           |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Naphthalene                                          |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Nitrobenzene                                         |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| N-Nitroso-Di-N-Propylamine                           | 1                      |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.330 U            | 0.320 U                 | 0.320 U            |
| N-Nitrosodiphenylamine                               |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Pentachlorophenol Phenanthrene                       |                        |            |           | 1          |           |            |           | 1         |           | 1         |            |            | 0.330 U<br>0.065 U | 0.320 U<br>0.064 U      | 0.320 U<br>0.063 U |
| Phenol                                               |                        |            |           |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.064 U                 | 0.063 U            |
| Pyrene                                               |                        |            | 1         |            |           |            |           |           |           |           |            |            | 0.065 U            | 0.096                   | 0.067              |

| Location:                                                                                                                                                                                                      |                              | PBI-1                  |                          | PBI-2                     | P                      | BI-2A                    |                           | PBI-3                    |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--------------------------|---------------------------|------------------------|--------------------------|---------------------------|--------------------------|-------------------------|
| Sample ID:<br>Laboratory ID:                                                                                                                                                                                   | PBI-1<br>PI24A               | PBI-1<br>PI24B         | PBI-1<br>PI24C           | PBI-2<br>PI24D            | PBI-2A<br>PI24E        | PBI-2A<br>PI24F          | PBI-3<br>PI24G            | PBI-3<br>PI24H           | PBI-3<br>PI24I          |
| Sample Depth (ft BGS):                                                                                                                                                                                         | 2                            | 5                      | 8                        | 2                         | 5                      | 8                        | 2                         | 5                        | 8                       |
| Sample Date:  TOTAL METALS (mg/kg)  EPA 200.8/SW6010B/SW7470A (a)  Barium                                                                                                                                      | 7/27/2009                    | 7/27/2009              | 7/27/2009                | 7/27/2009                 | 7/27/2009              | 7/27/2009                | 7/27/2009                 | 7/27/2009                | 7/27/2009               |
| Cadmium<br>Chromium<br>Copper<br>Lead                                                                                                                                                                          | 1.3<br>561 J<br>107 J<br>141 | 0.7<br>299<br>46<br>86 | 1.1<br>486<br>128<br>113 | 9.1<br>652<br>394<br>1200 | 0.8<br>54<br>152<br>29 | 2.1<br>117<br>136<br>164 | 5.7<br>621<br>1300<br>768 | 0.6 U<br>16<br>526<br>37 | 0.6 U<br>33<br>21<br>29 |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                                                                                | <b>0.05</b><br>380 J         | 0.02 U<br><b>190</b>   | 0.02 U<br><b>270</b>     | 0.39<br>3030              | 0.07<br>170            | 0.09<br>560              | 2<br>2520                 | 0.19<br>210              | 0.07<br>120             |
| PCBs (mg/kg)                                                                                                                                                                                                   | 360 3                        | 130                    | 210                      | 3030                      | 170                    | 300                      | 2320                      | 210                      | 120                     |
| PCBs (iligrag) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                            |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| CONVENTIONALS (mg/kg) Cyanide Oil and Grease Total Organic Carbon                                                                                                                                              |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil                                                                                                               |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                  |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1,0-Trichloroethane 1,1-Dichloroethane |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene                                                                             |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dichlorobenzene<br>1,2-Dichloroethane<br>1,2-Dichloropropane<br>1,3,5-Trimethylbenzene                                                                                      |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| 1,3-Dichlorobenzene<br>1,3-Dichloropropane<br>1,4-Dichlorobenzene<br>2,2-Dichloropropane<br>2-Butanone                                                                                                         |                              |                        |                          |                           |                        |                          |                           |                          |                         |
| 2-Chloroethylvinylether<br>2-Chlorotoluene                                                                                                                                                                     |                              |                        |                          |                           |                        |                          |                           |                          |                         |

|                             | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | PBI-1<br>PI24A<br>2<br>7/27/2009 | PBI-1<br>PI24B<br>5<br>7/27/2009 | PBI-1<br>PI24C<br>8<br>7/27/2009 | PBI-2<br>PI24D<br>2<br>7/27/2009 | PBI-2A<br>PI24E<br>5<br>7/27/2009 | PBI-2A<br>PI24F<br>8<br>7/27/2009 | PBI-3<br>PI24G<br>2<br>7/27/2009 | PBI-3<br>PI24H<br>5<br>7/27/2009 | PBI-3<br>PI24I<br>8<br>7/27/2009 |
|-----------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 2-Hexanone                  | . ,                                                                    |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 4-Chlorotoluene             |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 4-Isopropyltoluene          |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 4-Methyl-2-Pentanone (MIBK  | )                                                                      |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Acetone                     |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Acrolein                    |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Acrylonitrile               |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Benzene                     |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Bromobenzene                |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Bromochloromethane          |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Bromodichloromethane        |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Bromoethane                 |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Bromoform                   |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Bromomethane                |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Carbon Disulfide            |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Carbon Tetrachloride        |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Chlorobenzene               |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Chloroethane                |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Chloroform                  |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Chloromethane               |                                                                        |                                  |                                  |                                  | 1                                |                                   |                                   |                                  |                                  |                                  |
| cis-1,2-Dichloroethene      |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| cis-1,3-Dichloropropene     |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Dibromochloromethane        |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Dibromomethane              |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Ethylbenzene                |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Ethylene Dibromide          |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Hexachlorobutadiene         |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Isopropylbenzene            |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| m, p-Xylene                 |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Methyl Iodide               |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Methylene Chloride          |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Naphthalene                 |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| n-Butylbenzene              |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| n-Propylbenzene             |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| o-Xylene                    |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| sec-Butylbenzene            |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Styrene                     |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| tert-Butylbenzene           |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Tetrachloroethene           |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Toluene                     |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| trans-1,2-Dichloroethene    |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| trans-1,3-Dichloropropene   |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| trans-1,4-Dichloro-2-butene |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Trichloroethene             |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Trichlorofluoromethane      |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Vinyl Acetate               |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| Vinyl Chloride              |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| SEMIVOLATILES (mg/kg)       |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| EPA SW8270D (a)             |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 1,2,4-Trichlorobenzene      |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 1,2-Dichlorobenzene         |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 1,3-Dichlorobenzene         |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 1,4-Dichlorobenzene         |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 1-Methylnaphthalene         |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 2,2'-Oxybis(1-Chloropropane | ١                                                                      |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 2,4,5-Trichlorophenol       | ,                                                                      |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 2,4,6-Trichlorophenol       |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 2,4-Dichlorophenol          |                                                                        |                                  |                                  |                                  |                                  |                                   |                                   |                                  |                                  |                                  |
| 2,4-Dimethylphenol          |                                                                        |                                  |                                  |                                  | 1                                |                                   |                                   | 1                                |                                  |                                  |

|                                      | Sample ID:                                               | PBI-1                   | PBI-1                   | PBI-1                   | PBI-2                   | PBI-2A                  | PBI-2A                  | PBI-3                   | PBI-3                   | PBI-3                   |
|--------------------------------------|----------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                      | Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | PI24A<br>2<br>7/27/2009 | PI24B<br>5<br>7/27/2009 | PI24C<br>8<br>7/27/2009 | PI24D<br>2<br>7/27/2009 | PI24E<br>5<br>7/27/2009 | PI24F<br>8<br>7/27/2009 | Pl24G<br>2<br>7/27/2009 | PI24H<br>5<br>7/27/2009 | Pl24l<br>8<br>7/27/2009 |
| 2,4-Dinitrophenol                    | Sample Date:                                             | 112112009               | 7/27/2009               | 112112009               | 112112008               | 112112009               | 112112009               | 112112009               | 7/27/2009               | 112112009               |
| 2,4-Dinitrotoluene                   |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2,6-Dinitrotoluene                   |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2-Chloronaphthalene                  |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2-Chlorophenol                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2-Methylnaphthalene                  |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2-Methylphenol                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2-Nitroaniline                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 2-Nitrophenol 3,3'-Dichlorobenzidine |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 3-Nitroaniline                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 4,6-Dinitro-2-Methylphenol           |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 4-Bromophenyl-phenylether            |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 4-Chloro-3-methylphenol              |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 4-Chloroaniline                      |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 4-Chlorophenyl-phenylether           |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| 4-Methylphenol                       |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| 4-Nitroaniline 4-Nitrophenol         |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Acenaphthene                         |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Acenaphthylene                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Anthracene                           |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Benzo(a)anthracene                   |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Benzo(a)pyrene                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Benzo(b)fluoranthene                 |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Benzo(g,h,i)perylene                 |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Benzo(k)fluoranthene<br>Benzoic Acid |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Benzyl Alcohol                       |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| bis(2-Chloroethoxy) Methane          | <b>)</b>                                                 |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Bis-(2-Chloroethyl) Ether            |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| bis(2-Ethylhexyl)phthalate           |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Butylbenzylphthalate                 |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Carbazole                            |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Chrysene<br>Dibenz(a,h)anthracene    |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Dibenzofuran                         |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Diethylphthalate                     |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Dimethylphthalate                    |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Di-n-Butylphthalate                  |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Di-n-Octyl phthalate                 |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Fluoranthene                         |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Fluorene<br>Hexachlorobenzene        |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         | ]                       |
| Hexachlorobutadiene                  |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Hexachlorocyclopentadiene            |                                                          |                         |                         |                         |                         |                         |                         |                         |                         | ]                       |
| Hexachloroethane                     |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Indeno(1,2,3-cd)pyrene               |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Isophorone                           |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Naphthalene<br>Nitrobenzene          |                                                          |                         |                         |                         |                         |                         |                         |                         |                         | ]                       |
| N-Nitroso-Di-N-Propylamine           |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| N-Nitrosodiphenylamine               |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Pentachlorophenol                    |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         |                         |
| Phenanthrene                         |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         | ]                       |
| Phenol                               |                                                          |                         |                         |                         |                         | 1                       |                         | 1                       |                         | ]                       |
| Pyrene                               |                                                          |                         |                         |                         | I                       | I                       |                         | I                       |                         | l                       |

U = Indicates the compound was undetected at the reported concentration.
 J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 Bold = Detected compound.

<sup>(</sup>a) = Analytical method was not always listed with historical sample results.

Results listed account for all historical analyses completed in site area as discussed in report text.

# TABLE G-3 HISTORICAL ARSENIC SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Sample ID | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|-----------|-------------|--------------|--------------------|
| 5         | 8/1/83      | 2.5          | 33                 |
| 6-3       | 8/1/83      | 1            | 18                 |
| 7-1       | 8/1/83      | 2.5          | 12                 |
| 7-5       | 8/1/83      | 8.5          | 10                 |
| 7-5       | 8/1/83      | 13.5         | 7                  |
| 7-5       | 8/1/83      | 18.5         | 25                 |
| 15        | 8/1/83      | 2.5          | 15                 |
| 15-Dup    | 8/1/83      | 2            | 11                 |
| 16        | 8/1/83      | 2.5          | 9.5                |
| 16        | 8/1/83      | 6.5          | 5.3                |
| 17        | 8/1/83      | 2.5          | 16                 |
| 17-Dup    | 8/1/83      | 2.5          | 19                 |
| 17        | 8/1/83      | 6.5          | 7.4                |
| 19        | 8/1/83      | 1.5          | 8.9                |
| 19        | 8/1/83      | 3.5          | 17                 |
| 19        | 8/1/83      | 9            | 36                 |
| 20        | 8/1/83      | 4            | 5.3                |
| 20        | 8/1/83      | 10.5         | 9.2                |
| 20        | 8/1/83      | 14           | 18                 |
| 22        | 8/1/83      | 4            | 3.8                |
| 22-Dup    | 8/1/83      | 4            | 6.7                |
| 22        | 8/1/83      | 6.5          | 8.7                |
| 215       | 1/15/88     | 3.5-4        | 5                  |
| 215       | 1/15/88     | 8.5-9        | 1                  |
| 215       | 1/15/88     | 13.5-14      | 1                  |
| 224       | 1/20/88     | 2.5-3        | 7                  |
| 224       | 1/20/88     | 7.5-8        | 12                 |
| 224       | 1/20/88     | 12.5-13      | 44                 |
| 224       | 1/20/88     | 17.5-18      | 39<br>2            |
| 224       | 1/20/88     | 18-18.5      | 2                  |
| 228       | 1/19/88     | 3.5-4        | 37                 |
| 228       | 1/19/88     | 8.5-9        | 12                 |
| 228       | 1/19/88     | 13-13.5      | 11                 |
| 228       | 1/19/88     | 17-17.5      | 12                 |
| 230       | 1/21/88     | 2.5-3        | 3                  |
| 230       | 1/21/88     | 7.5-8        | 2                  |
| 230       | 1/21/88     | 12.5-13      | 33                 |
| 230       | 1/21/88     | 15-15.5      | 17                 |
| 232       | 1/19/88     | 3.5-4        | 44                 |
| 232       | 1/19/88     | 8.5-9        | 47                 |
| 232       | 1/19/88     | 13.5-14      | 92                 |
| 233       | 1/21/88     | 3.5-4        | 2                  |
| 233       | 1/21/88     | 8.5-9        | 82                 |
| 233       | 1/28/88     | 10-10.5      | 46                 |
| 236       | 1/20/88     | 3.5          | 13                 |
| 236       | 1/20/88     | 8.5          | 48                 |
| 236       | 1/20/88     | 13.5         | 41                 |
| 236       | 1/20/88     | 18.5         | 24                 |

# TABLE G-3 HISTORICAL ARSENIC SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Sample ID  | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|------------|-------------|--------------|--------------------|
| 237        | 1/21/88     | 3.5          | 5                  |
| 237        | 1/29/88     | 8.5          | 4                  |
| 237        | 1/29/88     | 15           | 3                  |
| 244        | 1/21/88     | 3.5          | 25                 |
| 244        | 1/21/88     | 8.5          | 4                  |
| 244        | 1/21/88     | 13.5         | 5                  |
| I-6        | 10/19/83    | 10           | 79                 |
| I-7        | 10/20/83    | 3            | 30                 |
| I-7        | 10/20/83    | 5            | 2.3                |
| I-202s     | 1/14/88     | 2.5          | 5                  |
| I-202s     | 1/14/88     | 7.5          | 33                 |
| I-202s     | 1/14/88     | 12.5         | 54                 |
| I-202s     | 1/14/88     | 17.5         | 191                |
| I-202s     | 1/14/88     | 27.5         | 27                 |
| I-203i     | 1/15/88     | 2.5          | 17                 |
| I-203i     | 1/15/88     | 7.5          | 26                 |
| I-203i     | 1/28/88     | 10           | 27                 |
| I-203i     | 1/15/88     | 12.5         | 22                 |
| I-203i     | 1/28/88     | 15           | 47                 |
| I-203i     | 1/28/88     | 18           | 10                 |
| I-203i     | 1/28/88     | 23           | 59                 |
| I-203i     | 1/28/88     | 33           | 11                 |
| I-203i     | 1/28/88     | 43           | 2                  |
| I-203i     | 1/28/88     | 48           | 2                  |
| I-205s     | 1/19/88     | 2.5          | 3                  |
| I-205s     | 1/19/88     | 12.5         | 9                  |
| I-205s-Dup | 1/19/88     | 12.5         | 3                  |
| I-205s     | 1/19/88     | 17.5         | 6                  |
| I-205s     | 1/19/88     | 27.5         | 393                |
| IMR-13     | 11/4/08     |              | 77                 |
| PBI-4      | 7/27/09     | 2            | 6.2                |
| PBI-4      | 7/27/09     | 5            | 6.9                |
| PBI-4      | 7/27/09     | 8            | 75.4               |
| F DI-4     | 1/21/09     | O            | 75.4               |
| PBI-5      | 7/27/09     | 2            | 9.3                |
| PBI-5      | 7/27/09     | 5            | 6.4                |
| PBI-5      | 7/27/09     | 8            | 6.7                |
| PBI-6      | 7/27/09     | 2            | 2.7                |
|            | 7/27/09     | 5            |                    |
| PBI-6      |             |              | 185                |
| PBI-6      | 7/27/09     | 8            | 74                 |
| PBI-7      | 7/27/09     | 2            | 6.2                |
| PBI-7      | 7/27/09     | 5            | 14.7               |
| PBI-7      | 7/27/09     | 8            | 0.5 J              |
| חחם        | 7/07/00     | 0            | 22.4               |
| PBI-8      | 7/27/09     | 2            | 23.4               |
| PBI-8      | 7/27/09     | 5            | 4.8                |
| PBI-8      | 7/27/09     | 8            | 7                  |
| PBI-9      | 7/27/09     | 2            | 1.4                |
| PBI-9      | 7/27/09     | 5            | 8.6                |
|            |             |              |                    |
| PBI-9      | 7/27/09     | 8            | 6.3                |

# TABLE G-3 HISTORICAL ARSENIC SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Sample ID                        | Sample Date | Sample Depth | Arsenic<br>(mg/kg) |
|----------------------------------|-------------|--------------|--------------------|
|                                  |             |              |                    |
| PBI-10                           | 7/27/09     | 2            | 4.7                |
| PBI-10                           | 7/27/09     | 5            | 6.3                |
| PBI-10                           | 7/27/09     | 8            | 32.7               |
| Transformers North of 14-02      |             |              |                    |
| TDP22                            | 11/5/08     | 3            | 5 U                |
| TDP23                            | 11/5/08     | 3            | 5 U                |
| Hazardous Materials Storage Shed | S           |              |                    |
| TDP27                            | 11/6/08     | 11           | 6                  |
| TDP28                            | 11/6/08     | 11           | 6                  |
| TDP29                            | 11/6/08     | 11           | 8                  |
| TDP30                            | 11/6/08     | 11           | 13                 |
| Hydraulic Test Pad Area          |             |              |                    |
| TDP31                            | 11/6/08     | 12           | 9                  |
| TDP32                            | 11/6/08     | 11           | 5 U                |
|                                  |             |              | 393                |

U = Indicates the compound was undetected at the reported concentration

J = Laboratory flag indicating the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Location:                                                                                                    | 5               | Ī             | 6-3           | 7-1             | ĺ               | 7-5              |                     | Ī             | 15                  |                 | I                   | 16              | Ī               | 17                  |                 |
|--------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------|-----------------|-----------------|------------------|---------------------|---------------|---------------------|-----------------|---------------------|-----------------|-----------------|---------------------|-----------------|
| Sample ID:                                                                                                   | 5               | 6-3           | 6-3           | 7-1             | 7-5             | 7-5              | 7-5                 | 15            | Dup of 15<br>15-Dup | 15              | 16                  | 16              | 17              | Dup of 17<br>17-Dup | 17              |
| Laboratory ID:                                                                                               |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Sample Depth (ft BGS): Sample Date:                                                                          | 2.5<br>8/1/1983 | 1<br>8/1/1983 | 2<br>8/1/1983 | 2.5<br>8/1/1983 | 8.5<br>8/1/1983 | 13.5<br>8/1/1983 | 18.5<br>8/1/1983    | 2<br>8/1/1983 | 2<br>8/1/1983       | 2.5<br>8/1/1983 | 2.5<br>8/1/1983     | 6.5<br>8/1/1983 | 2.5<br>8/1/1983 | 2.5<br>8/1/1983     | 6.5<br>8/1/1983 |
| TOTAL METALS (mg/kg)                                                                                         |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| EPA 200.8/SW6010B/SW7470A (a) Barium                                                                         | 650             | 520           |               | 59              | 42              | 51               | 60                  |               | 135                 | 200             | 83                  | 24              | 70              | 70                  | 149             |
| Cadmium                                                                                                      | 16              | 7.7           |               | 1.9             | 0.76            | 0.26             | 1.1                 |               | 1.9                 | 1.6             | 1.9                 | 0.69            | 2.4             | 3.8                 | 5.1             |
| Chromium                                                                                                     | 1130            | 466           |               | 44              | 15              | 21               | 32                  |               | 33                  | 44              | 45                  | 40              | 270             | 541                 | 62              |
| Copper<br>Lead                                                                                               | 1170            | 580           |               | 230             | 100             | 49               | 24                  |               | 200                 | 490             | 111<br>170          | 36              | 280             | 230                 | 396             |
| Mercury                                                                                                      | 0.13            | 0.19          |               | 0.14            | 0.12            | 0.05             | 0.24                |               | 0.18                | 0.84            | 0.04                | 0.03 U          | 0.05 U          | 0.17                | 0.05            |
| Nickel                                                                                                       | 82              | 76            |               | 56              | 34              | 17               | 25                  |               | 21                  | 35              | 88                  | 20              | 180             | 146                 | 108             |
| Selenium<br>Silver                                                                                           | 2.5             | 2.5           |               | 1.2             | 0.73<br>0.9     | 0.3 U            | 0.2 U<br><b>0.8</b> |               | 0.24<br>0.54        | 0.6<br>0.24     | 0.68<br>0.54        | 0.2 U<br>0.3 U  | 0.6<br>0.36     | 0.22<br>0.83        | 0.96<br>3       |
| Zinc                                                                                                         | 2.5<br>2270     | 2320          |               | 1640            | 877             | 77               | 194                 |               | 272                 | 440             | 556                 | 88.8            | 390             | 511                 | 3640            |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242                              |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Aroclor 1248                                                                                                 |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Aroclor 1254<br>Aroclor 1260                                                                                 |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Total PCBs                                                                                                   | 9.7             |               | 1.2           | 0.7             |                 | 0.2 U            |                     | 0.4           | 0.13                |                 | 0.1 U               |                 |                 | 0.1 U               |                 |
| CONVENTIONALS (mg/kg) Cyanide                                                                                | 3 U             |               | 3 U           | 3 U             |                 | 3 U              |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Oil and Grease                                                                                               |                 |               |               |                 |                 |                  |                     | 900           | 2020                |                 |                     |                 | 1500            |                     |                 |
| PETROLEUM HYDROCARBONS (mg/kg)<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| C19 Branched Hydrocarbon<br>C11 Hydrocarbon<br>C18-C25 Hydrocarbons (total)                                  |                 |               |               |                 |                 |                  |                     |               |                     |                 | 0.77<br>0.19<br>3.7 |                 |                 |                     |                 |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane                          |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 1,1,2-Trichloroethane                                                                                        |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 1,1-Dichloroethane<br>1,1-Dichloroethene                                                                     |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 1,2-Dichloroethene (total)                                                                                   |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 1,2-Dichloropropane                                                                                          |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 2-Butanone<br>2-Chloroethylvinylether                                                                        |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 2-Hexanone                                                                                                   |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| 4-Methyl-2-Pentanone (MIBK)                                                                                  |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Acetone<br>Benzene                                                                                           |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Bromodichloromethane                                                                                         |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Bromoform                                                                                                    |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Bromomethane<br>Carbon Disulfide                                                                             |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Carbon Tetrachloride                                                                                         |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Chlorobenzene                                                                                                |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |
| Chloroethane<br>Chloroform                                                                                   |                 |               |               |                 |                 |                  |                     |               |                     |                 | 0.012               |                 |                 |                     |                 |
| Chloromethane                                                                                                |                 |               |               |                 |                 |                  |                     |               |                     |                 | 0.012               |                 |                 |                     |                 |
| cis-1,2-Dichloroethene                                                                                       |                 |               |               |                 |                 |                  |                     |               |                     |                 |                     |                 |                 |                     |                 |

#### HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                                     | Location:                                | 5        | I        | 6-3      | 7-1      | Ī        | 7-5      |          | Í        | 15                  |          | 1            | 16       | Ī        | 17                  |          |
|---------------------------------------------------------------------|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------|----------|--------------|----------|----------|---------------------|----------|
|                                                                     | Sample ID:                               | 5        | 6-3      | 6-3      | 7-1      | 7-5      | 7-5      | 7-5      | 15       | Dup of 15<br>15-Dup | 15       | 16           | 16       | 17       | Dup of 17<br>17-Dup | 17       |
|                                                                     | Laboratory ID:<br>Sample Depth (ft BGS): | 2.5      | 1        | 2        | 2.5      | 8.5      | 13.5     | 18.5     | 2        | 2                   | 2.5      | 2.5          | 6.5      | 2.5      | 2.5                 | 6.5      |
|                                                                     | Sample Date:                             | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983 | 8/1/1983            | 8/1/1983 | 8/1/1983     | 8/1/1983 | 8/1/1983 | 8/1/1983            | 8/1/1983 |
| cis-1,3-Dichloropropene<br>Dibromochloromethane                     |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Ethylbenzene<br>m, p-Xylene                                         |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Methylene Chloride<br>o-Xylene                                      |                                          |          |          |          |          |          |          |          |          |                     |          | 0.0095       |          |          |                     |          |
| Styrene<br>Tetrachloroethene                                        |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Toluene<br>Total Xylenes                                            |                                          |          |          |          |          |          |          |          |          |                     |          | 0.0041       |          |          |                     |          |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene               |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Trichloroethene Trichlorofluoromethane                              |                                          |          |          |          |          |          |          |          |          |                     |          | 0.0009       |          |          |                     |          |
| Vinyl Acetate Vinyl Chloride                                        |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 1,2,3-Propanetriol, Triaceta                                        | te                                       |          |          |          |          |          |          |          |          |                     |          | 0.31         |          |          |                     |          |
| Hexadecane<br>Heptadecane                                           |                                          |          |          |          |          |          |          |          |          |                     |          | 0.19<br>0.39 |          |          |                     |          |
| SEMIVOLATILES (mg/kg)                                               |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| EPA SW8270D (a)<br>1,2,4-Trichlorobenzene                           |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                          |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 1,4-Dichlorobenzene 1-Methylnaphthalene                             |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2,2'-Oxybis(1-Chloropropar<br>2,4,5-Trichlorophenol                 | e)                                       |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol                         |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2,4-Dinitrophenol 2,4-Dinitrophenol                                 |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene                            |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2-Chloronaphthalene                                                 |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2-Chlorophenol 2-Methylnaphthalene                                  |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2-Methylphenol 2-Nitroaniline                                       |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 2-Nitrophenol 3,3'-Dichlorobenzidine                                |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 3-Nitroaniline<br>4,6-Dinitro-2-Methylphenol                        |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 4-Bromophenyl-phenylethe 4-Chloro-3-methylphenol                    | •                                        |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| <ul><li>4-Chloroaniline</li><li>4-Chlorophenyl-phenylethe</li></ul> |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 4-Methylphenol 4-Nitroaniline                                       |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| 4-Nitrophenol<br>Acenaphthene                                       |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Acenaphthylene<br>Anthracene                                        |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Benzo(a)anthracene<br>Benzo(a)pyrene                                |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene                        |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Benzo(k)fluoranthene                                                |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Benzoic Acid<br>Benzyl Alcohol                                      |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| bis(2-Chloroethoxy) Methar<br>Bis-(2-Chloroethyl) Ether             | ie                                       |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate                  |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |
| Carbazole<br>Chrysene                                               |                                          |          |          |          |          |          |          |          |          |                     |          |              |          |          |                     |          |

#### **TABLE G-4** HISTORICAL SOIL ANALYTICAL RESULTS **FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE**

**TUKWILA, WASHINGTON** 

|                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |                                    | -                      |                         |                         | -                   |                                      |                       | •                     |                       | Ē                     |                                        |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------------------------------|------------------------|-------------------------|-------------------------|---------------------|--------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------------------|-----------------------|
| Location:                                                                                                                                                                                                                                                                                                                                                                                                   | 5   | 6-3 | 7-1                                |                        | 7-5                     |                         |                     | 15                                   |                       |                       | 16                    |                       | 17                                     |                       |
| Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                                                      | 2.5 | 1   | 5-3 7-1<br>2 2.5<br>/1983 8/1/1983 | 7-5<br>8.5<br>8/1/1983 | 7-5<br>13.5<br>8/1/1983 | 7-5<br>18.5<br>8/1/1983 | 15<br>2<br>8/1/1983 | Dup of 15<br>15-Dup<br>2<br>8/1/1983 | 15<br>2.5<br>8/1/1983 | 16<br>2.5<br>8/1/1983 | 16<br>6.5<br>8/1/1983 | 17<br>2.5<br>8/1/1983 | Dup of 17<br>17-Dup<br>2.5<br>8/1/1983 | 17<br>6.5<br>8/1/1983 |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene, 3,4,5,6-Tetraethyl Phenanthrene |     |     |                                    |                        |                         |                         |                     |                                      |                       | 1.4                   |                       |                       |                                        |                       |

Phenol Pyrene

### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                 |                 |               |               |                  |                |               | TORWILA,                 |                 | <b></b>            |                    |                      |                    |                    |                      |                      |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|-----------------|---------------|---------------|------------------|----------------|---------------|--------------------------|-----------------|--------------------|--------------------|----------------------|--------------------|--------------------|----------------------|----------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location:                                                               |                 | 19              |               |               | 20               |                |               | 22                       |                 | ļ                  | 215                |                      |                    |                    | 224                  |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample ID:                                                              | 19              | 19              | 19            | 20            | 20               | 20             | 22            | 22-Dup                   | 22              | 215                | 215                | 215                  | 224                | 224                | 224                  | 224                  | 224                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Depth (ft BGS):<br>Sample Date:                                  | 1.5<br>8/1/1983 | 3.5<br>8/1/1983 | 9<br>8/1/1983 | 4<br>8/1/1983 | 10.5<br>8/1/1983 | 14<br>8/1/1983 | 4<br>8/1/1983 | 4<br>8/1/1983            | 6.5<br>8/1/1983 | 3.5-4<br>1/15/1988 | 8.5-9<br>1/15/1988 | 13.5-14<br>1/15/1988 | 2.5-3<br>1/20/1988 | 7.5-8<br>1/20/1988 | 12.5-13<br>1/20/1988 | 17.5-18<br>1/20/1988 | 18-18.5<br>1/20/1988 |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7 Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc  PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1221 Aroclor 1224 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs  CONVENTIONALS (mg/kg Cyanide Oil and Grease  PETROLEUM HYDROCAR NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  NWTPH-Dx Diesel Range Organics Lube Oil  C19 Branched Hydrocarbor C11 Hydrocarbon C18-C25 Hydrocarbons (tot  VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 2-Chloroethylvinylether 2-Hexanone | Sample ID: Laboratory ID: Sample Depth (ft BGS): Sample Date: 2470A (a) | 19<br>1.5       | 19<br>3.5       | 9             | 4             | 20<br>10.5       | 14             | 4             | Dup of 22<br>22-Dup<br>4 | 6.5             | 3.5-4              | 215<br>8.5-9       | 13.5-14              | 2.5-3              | 7.5-8              | 224<br>12.5-13       | 17.5-18              | 18-18.5              |
| 4-Methyl-2-Pentanone (MIB Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3K)                                                                     |                 |                 |               |               |                  |                |               |                          |                 |                    |                    |                      |                    |                    |                      |                      |                      |
| Chloromethane<br>cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                 |                 |               |               |                  |                |               |                          |                 |                    |                    |                      |                    |                    |                      |                      |                      |

#### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS

#### FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

#### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS

#### FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Lagaria                                                                                                                                                                                                                                                                                                                                                                                      | 1          | 40        |          |          | 20         |          | ī        | 22                       |           | ı            | 245          |                | ı            |              | 224            |                |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|----------|------------|----------|----------|--------------------------|-----------|--------------|--------------|----------------|--------------|--------------|----------------|----------------|----------------|
| Location                                                                                                                                                                                                                                                                                                                                                                                     | 1:         | 19        |          | <b>.</b> | 20         |          |          | 22                       |           |              | 215          |                | <b>.</b>     |              | 224            |                |                |
| Sample ID<br>Laboratory ID<br>Sample Depth (ft BGS)                                                                                                                                                                                                                                                                                                                                          | ):<br>1.5  | 19<br>3.5 | 19<br>9  | 20       | 20<br>10.5 | 20<br>14 | 22       | Dup of 22<br>22-Dup<br>4 | 22<br>6.5 | 215<br>3.5-4 | 215<br>8.5-9 | 215<br>13.5-14 | 224<br>2.5-3 | 224<br>7.5-8 | 224<br>12.5-13 | 224<br>17.5-18 | 224<br>18-18.5 |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                  | : 8/1/1983 | 8/1/1983  | 8/1/1983 | 8/1/1983 | 8/1/1983   | 8/1/1983 | 8/1/1983 | 8/1/1983                 | 8/1/1983  | 1/15/1988    | 1/15/1988    | 1/15/1988      | 1/20/1988    | 1/20/1988    | 1/20/1988      | 1/20/1988      | 1/20/1988      |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorobentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene, 3,4,5,6-Tetraethyl Phenol Pyrene |            |           |          |          |            |          |          |                          |           |              |              |                |              |              |                |                |                |

### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                         |                         |                                        |                       |                       | ī                       | TORWILLA, T                                |                          |                          |                          |                       |                                              |                          |                         |                             |                            |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|-------------------------|----------------------------------------|-----------------------|-----------------------|-------------------------|--------------------------------------------|--------------------------|--------------------------|--------------------------|-----------------------|----------------------------------------------|--------------------------|-------------------------|-----------------------------|----------------------------|----------------------|
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                         | n:                       |                         | 228                     |                                        | 1                     | 230                   |                         | 230                                        |                          | 232                      |                          | <b>_</b>              | 233                                          |                          |                         |                             | 236                        |                      |
| Sample II<br>Laboratory II                                                                                                                                                                                                                                                                                                                                                                                                                       | ):                       | 228                     | 228                     | 228                                    | 230                   | 230                   | 230                     | 230                                        | 232                      | 232                      | 232                      | 233                   | 233                                          | 233                      | 236                     | 236                         | 236                        | 236                  |
| Sample Depth (ft BGS<br>Sample Date                                                                                                                                                                                                                                                                                                                                                                                                              | ): 3.5-4<br>e: 1/19/1988 | 8.5-9<br>1/19/1988      | 13-13.5<br>1/19/1988    | 17-17.5<br>1/19/1988                   | 2.5-3<br>1/21/1988    | 7.5-8<br>1/21/1988    | 12.5-13<br>1/21/1988    | 15-15.5<br>1/21/1988                       | 3.5-4<br>1/19/1988       | 8.5<br>1/19/1988         | 13.5<br>1/19/1988        | 3.5-4<br>1/21/1988    | 8.5-9<br>1/21/1988                           | 10-10.5<br>1/28/1988     | 3.5<br>1/20/1988        | 8.5<br>1/20/1988            | 13.5<br>1/20/1988          | 18.5<br>1/20/1988    |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7470A (a) Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver                                                                                                                                                                                                                                                                                                                            | 229<br>175<br>362<br>481 | 311<br>66<br>152<br>241 | 142<br>87<br>392<br>151 | 0.5 U<br>13<br>11<br>5<br>0.01 U<br>10 | 33<br>14<br>4 U<br>34 | 32<br>11<br>4 U<br>38 | 81<br>227<br>239<br>125 | 0.6<br>1490<br>108<br>274<br>0.01 U<br>470 | 242<br>273<br>552<br>362 | 158<br>350<br>103<br>734 | 194<br>188<br>109<br>390 | 37<br>11<br>4 U<br>42 | 0.4<br>1750<br>846<br>1110<br>0.01 U<br>1427 | 591<br>591<br>55<br>2460 | 853<br>151<br>953<br>97 | 1380<br>539<br>1690<br>1684 | 4180<br>311<br>462<br>2197 | 49<br>49<br>20<br>24 |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5770                     | 3030                    | 1130                    | 44.1                                   | 34.2                  | 31.3                  | 672                     | 154                                        | 385                      | 291                      | 542                      | 32.2                  | 351                                          | 42.6                     | 621                     | 801                         | 737                        | 138                  |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                |                          |                         |                         |                                        |                       |                       |                         |                                            |                          |                          |                          |                       |                                              |                          |                         |                             |                            |                      |
| CONVENTIONALS (mg/kg) Cyanide Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                         |                         | 1.2 U                                  |                       |                       |                         | 0.5 U                                      |                          |                          |                          |                       | 1 U                                          |                          |                         |                             |                            |                      |
| PETROLEUM HYDROCARBONS (mg/kg)<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                     |                          |                         |                         |                                        |                       |                       |                         |                                            |                          |                          |                          |                       |                                              |                          |                         |                             |                            |                      |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                         |                         |                                        |                       |                       |                         |                                            |                          |                          |                          |                       |                                              |                          |                         |                             |                            |                      |
| C19 Branched Hydrocarbon<br>C11 Hydrocarbon<br>C18-C25 Hydrocarbons (total)                                                                                                                                                                                                                                                                                                                                                                      |                          |                         |                         |                                        |                       |                       |                         |                                            |                          |                          |                          |                       |                                              |                          |                         |                             |                            |                      |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (total) 1,2-Dichloropropane 2-Butanone 2-Chloroethylinylether 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane |                          |                         |                         |                                        |                       |                       |                         |                                            |                          |                          |                          |                       |                                              |                          |                         |                             |                            |                      |

### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                    | Location                                 | 1         |           | 228       |           | I         | 230       |           | 230       | I         | 232       |           | I         | 233       |           | 1         |           | 236       | 1         |
|----------------------------------------------------|------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                    | Sample ID:                               |           | 228       | 228       | 228       | 230       | 230       | 230       | 230       | 232       | 232       | 232       | 233       | 233       | 233       | 236       | 236       | 236       | 236       |
|                                                    | Laboratory ID:<br>Sample Depth (ft BGS): |           | 8.5-9     | 13-13.5   | 17-17.5   | 2.5-3     | 7.5-8     | 12.5-13   | 15-15.5   | 3.5-4     | 8.5       | 13.5      | 3.5-4     | 8.5-9     | 10-10.5   | 3.5       | 8.5       | 13.5      | 18.5      |
|                                                    | Sample Date:                             | 1/19/1988 | 1/19/1988 | 1/19/1988 | 1/19/1988 | 1/21/1988 | 1/21/1988 | 1/21/1988 | 1/21/1988 | 1/19/1988 | 1/19/1988 | 1/19/1988 | 1/21/1988 | 1/21/1988 | 1/28/1988 | 1/20/1988 | 1/20/1988 | 1/20/1988 | 1/20/1988 |
| cis-1,3-Dichloropropene<br>Dibromochloromethane    |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Ethylbenzene                                       |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| m, p-Xylene<br>Methylene Chloride                  |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| o-Xylene                                           |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Styrene<br>Tetrachloroethene                       |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Toluene                                            |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Total Xylenes trans-1,2-Dichloroethene             |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| trans-1,3-Dichloropropene                          |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Trichloroethene Trichlorofluoromethane             |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Vinyl Acetate                                      |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Vinyl Chloride<br>1,2,3-Propanetriol, Triacetate   |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Hexadecane                                         | <del>-</del>                             |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Heptadecane                                        |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| SEMIVOLATILES (mg/kg)                              |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| EPA SW8270D (a)<br>1,2,4-Trichlorobenzene          |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 1,2-Dichlorobenzene                                |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene         |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 1-Methylnaphthalene                                |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2,2'-Oxybis(1-Chloropropane 2,4,5-Trichlorophenol  | 2)                                       |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2,4,6-Trichlorophenol                              |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2,4-Dichlorophenol 2,4-Dimethylphenol              |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2,4-Dinitrophenol                                  |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene           |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2-Chloronaphthalene                                |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2-Chlorophenol 2-Methylnaphthalene                 |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2-Methylphenol                                     |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 2-Nitroaniline<br>2-Nitrophenol                    |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 3,3'-Dichlorobenzidine                             |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 3-Nitroaniline<br>4,6-Dinitro-2-Methylphenol       |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 4-Bromophenyl-phenylether                          |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 4-Chloro-3-methylphenol 4-Chloroaniline            |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 4-Chlorophenyl-phenylether                         |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 4-Methylphenol 4-Nitroaniline                      |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 4-Nitrophenol                                      |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Acenaphthene<br>Acenaphthylene                     |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Anthracene                                         |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Benzo(a)anthracene<br>Benzo(a)pyrene               |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Benzo(b)fluoranthene                               |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene       |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Benzoic Acid                                       |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Benzyl Alcohol bis(2-Chloroethoxy) Methane         | •                                        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Bis-(2-Chloroethyl) Ether                          |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Carbazole                                          |                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Chrysene                                           |                                          | I         |           |           |           |           |           |           |           |           |           |           |           |           |           | 1         |           |           |           |

|                                                                                                                                                                                                                                                                                                                                                                                                            | Location:                                                              | :     |                           | 228                         |                             | 1                         | 230                       |                             | 230                         | I                         | 232                     |                          | I                         | 233                       |                             | ı                       |                         | 236                      |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|---------------------------|-----------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|-------------------------|--------------------------|---------------------------|---------------------------|-----------------------------|-------------------------|-------------------------|--------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                            | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | 3.5-4 | 228<br>8.5-9<br>1/19/1988 | 228<br>13-13.5<br>1/19/1988 | 228<br>17-17.5<br>1/19/1988 | 230<br>2.5-3<br>1/21/1988 | 230<br>7.5-8<br>1/21/1988 | 230<br>12.5-13<br>1/21/1988 | 230<br>15-15.5<br>1/21/1988 | 232<br>3.5-4<br>1/19/1988 | 232<br>8.5<br>1/19/1988 | 232<br>13.5<br>1/19/1988 | 233<br>3.5-4<br>1/21/1988 | 233<br>8.5-9<br>1/21/1988 | 233<br>10-10.5<br>1/28/1988 | 236<br>3.5<br>1/20/1988 | 236<br>8.5<br>1/20/1988 | 236<br>13.5<br>1/20/1988 | 236<br>18.5<br>1/20/1988 |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamin N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene, 3,4,5,6-Tet Phennol Pyrene | ne                                                                     |       |                           |                             |                             |                           |                           |                             |                             |                           |                         |                          |                           |                           |                             |                         |                         |                          |                          |

LANDAU ASSOCIATES

### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                                                                                                                                                                | Location:                                                | I                | 237              |                  | I                | 244              |                   | I-6              |                 | I-7             |                  |                  | I-202s                     |                   |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|-----------------|-----------------|------------------|------------------|----------------------------|-------------------|-------------------|
|                                                                                                                                                                                                | Sample ID:                                               | 237              | 237              | 237              | 244              | 244              | 244               | I-6              | I-7             | I-7             | I-202s           | I-202s           | I-202s                     | I-202s            | I-202s            |
|                                                                                                                                                                                                | Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | 3.5<br>1/21/1988 | 8.5<br>1/29/1988 | 15<br>1/29/1988  | 3.5<br>1/21/1988 | 8.5<br>1/21/1988 | 13.5<br>1/21/1988 | 10<br>10/19/1983 | 3<br>10/20/1983 | 5<br>10/20/1983 | 2.5<br>1/14/1988 | 7.5<br>1/14/1988 | 12.5<br>1/14/1988          | 17.5<br>1/14/1988 | 27.5<br>1/14/1988 |
| TOTAL METALS (mg/kg)                                                                                                                                                                           | ·                                                        |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  |                            |                   |                   |
| EPA 200.8/SW6010B/SW74 Barium                                                                                                                                                                  | 470A (a)                                                 |                  |                  |                  |                  |                  |                   |                  | 89              |                 |                  |                  |                            |                   |                   |
| Cadmium                                                                                                                                                                                        |                                                          |                  |                  |                  |                  |                  |                   |                  | 1               |                 |                  |                  | 2.6                        |                   |                   |
| Chromium                                                                                                                                                                                       |                                                          | 22               | 16               | 16               | 78               | 17               | 18                | 540              | 580             | 740             | 24               | 2960             | 2230                       | 47                | 899               |
| Copper<br>Lead                                                                                                                                                                                 |                                                          | 29<br>4          | <b>15</b><br>4 U | <b>10</b><br>5 U | 100<br>234       | <b>22</b><br>5 U | 39<br>25          | 390<br>150       | 360<br>3900     | 340<br>630      | 58<br>44         | 274<br>503       | 398<br>191                 | 58<br>36          | 23<br>301         |
| Mercury                                                                                                                                                                                        |                                                          | 1                |                  | 0 0              | 204              | 0.0              | 20                |                  | 0000            | 000             | "                | 000              | 0.1                        | 00                | 001               |
| Nickel                                                                                                                                                                                         |                                                          | 13               | 11               | 8                | 36               | 14               | 18                |                  |                 |                 | 22               | 627              | 921                        | 19                | 19                |
| Selenium<br>Silver                                                                                                                                                                             |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  | 1.1                        |                   |                   |
| Zinc                                                                                                                                                                                           |                                                          | 40.3             | 30.1             | 27.6             | 521              | 46.8             | 84.2              | 390              | 1500            | 310             | 447              | 2800             | 734                        | 445               | 325               |
| PCBs (mg/kg)<br>EPA SW8082 (a)<br>Aroclor 1016<br>Aroclor 1221<br>Aroclor 1232                                                                                                                 |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  |                            |                   |                   |
| Aroclor 1242                                                                                                                                                                                   |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 | ND               | ND               | ND                         | ND                | 0.06              |
| Aroclor 1248<br>Aroclor 1254                                                                                                                                                                   |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 | ND               | 0.08             | 0.17                       | <b>0.03</b> J     | 0.37              |
| Aroclor 1260                                                                                                                                                                                   |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 | 0.25             | ND               | 0.15                       | <b>0.055</b> J    | ND                |
| Total PCBs                                                                                                                                                                                     |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 | 0.25             | 80.0             | 0.32                       | 0.085             | 0.43              |
| CONVENTIONALS (mg/kg)<br>Cyanide                                                                                                                                                               | )                                                        |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  | 1.4                        |                   |                   |
| Oil and Grease                                                                                                                                                                                 |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  |                            |                   |                   |
| PETROLEUM HYDROCAR<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                               | BONS (mg/kg)                                             |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  |                            |                   |                   |
| <b>NWTPH-Dx</b> Diesel Range Organics Lube Oil                                                                                                                                                 |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  |                            |                   |                   |
| C19 Branched Hydrocarbon<br>C11 Hydrocarbon<br>C18-C25 Hydrocarbons (total                                                                                                                     |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  |                            |                   |                   |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (total) 1,2-Dichloropropane |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  | ND<br>ND<br>ND<br>ND<br>ND |                   |                   |
| 2-Butanone 2-Chloroethylvinylether 2-Hexanone 4-Methyl-2-Pentanone (MIB Acetone Benzene                                                                                                        | K)                                                       |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  | <b>0.0038</b><br>ND        |                   |                   |
| Bromodichloromethane<br>Bromoform<br>Bromomethane                                                                                                                                              |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  | 2                          |                   |                   |
| Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane                                                                                                      |                                                          |                  |                  |                  |                  |                  |                   |                  |                 |                 |                  |                  | ND                         |                   |                   |

cis-1,2-Dichloroethene

#### TUKWILA, WASHINGTON

|                                                          |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 | i                |                  |                   |                   |                   |
|----------------------------------------------------------|----------------------------------------|------------------|------------------|-----------------|------------------|------------------|-------------------|------------------|-----------------|-----------------|------------------|------------------|-------------------|-------------------|-------------------|
|                                                          | Location:                              |                  | 237              |                 | ]                | 244              |                   | I-6              |                 | I-7             |                  |                  | I-202s            |                   |                   |
|                                                          | Sample ID:                             | 237              | 237              | 237             | 244              | 244              | 244               | I-6              | I-7             | I-7             | I-202s           | I-202s           | I-202s            | I-202s            | I-202s            |
|                                                          | Laboratory ID:                         |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
|                                                          | Sample Depth (ft BGS):<br>Sample Date: | 3.5<br>1/21/1988 | 8.5<br>1/29/1988 | 15<br>1/29/1988 | 3.5<br>1/21/1988 | 8.5<br>1/21/1988 | 13.5<br>1/21/1988 | 10<br>10/19/1983 | 3<br>10/20/1983 | 5<br>10/20/1983 | 2.5<br>1/14/1988 | 7.5<br>1/14/1988 | 12.5<br>1/14/1988 | 17.5<br>1/14/1988 | 27.5<br>1/14/1988 |
| cis-1,3-Dichloropropene                                  | Campic Date.                           | 1/2 1/ 1300      | 1/23/1300        | 1/23/1300       | 1/21/1300        | 1/21/1300        | 1/21/1300         | 10/13/1303       | 10/20/1303      | 10/20/1000      | 1/14/1300        | 1714/1300        | 1714/1300         | 1/14/1300         | 1/14/1300         |
| Dibromochloromethane                                     |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Ethylbenzene                                             |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | ND                |                   |                   |
| m, p-Xylene<br>Methylene Chloride                        |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | <b>0.0044</b> B   |                   |                   |
| o-Xylene                                                 |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Styrene<br>Tetrachloroethene                             |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | ND                |                   |                   |
| Toluene                                                  |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | 0.0014            |                   |                   |
| Total Xylenes trans-1,2-Dichloroethene                   |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | 0.0047            |                   |                   |
| trans-1,3-Dichloropropene                                |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Trichloroethene Trichlorofluoromethane                   |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | ND                |                   |                   |
| Vinyl Acetate                                            |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Vinyl Chloride<br>1,2,3-Propanetriol, Triacetate         |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Hexadecane                                               | •                                      |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Heptadecane                                              |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| SEMIVOLATILES (mg/kg)                                    |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| EPA SW8270D (a)                                          |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 1,2,4-Trichlorobenzene<br>1,2-Dichlorobenzene            |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 1,3-Dichlorobenzene                                      |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 1,4-Dichlorobenzene<br>1-Methylnaphthalene               |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2,2'-Oxybis(1-Chloropropane)                             | )                                      |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2,4,5-Trichlorophenol                                    |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2,4,6-Trichlorophenol 2,4-Dichlorophenol                 |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2,4-Dimethylphenol                                       |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene                     |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2,6-Dinitrotoluene                                       |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2-Chloronaphthalene<br>2-Chlorophenol                    |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2-Methylnaphthalene                                      |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | ND                |                   |                   |
| 2-Methylphenol 2-Nitroaniline                            |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 2-Nitrophenol                                            |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 3,3'-Dichlorobenzidine 3-Nitroaniline                    |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 4,6-Dinitro-2-Methylphenol                               |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 4-Bromophenyl-phenylether                                |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 4-Chloro-3-methylphenol 4-Chloroaniline                  |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 4-Chlorophenyl-phenylether                               |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 4-Methylphenol 4-Nitroaniline                            |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| 4-Nitrophenol                                            |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Acenaphthene<br>Acenaphthylene                           |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Anthracene                                               |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | 0.033             |                   |                   |
| Benzo(a)anthracene<br>Benzo(a)pyrene                     |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | 0.11              |                   |                   |
| Benzo(b)fluoranthene                                     |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Benzo(g,h,i)perylene                                     |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Benzo(k)fluoranthene<br>Benzoic Acid                     |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Benzyl Alcohol                                           |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| bis(2-Chloroethoxy) Methane<br>Bis-(2-Chloroethyl) Ether | •                                      |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| bis(2-Ethylhexyl)phthalate                               |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | 0.11              |                   |                   |
| Butylbenzylphthalate<br>Carbazole                        |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  |                   |                   |                   |
| Chrysene                                                 |                                        |                  |                  |                 |                  |                  |                   |                  |                 |                 |                  |                  | 0.11              |                   |                   |
| -                                                        |                                        | -                |                  |                 | •                |                  |                   | •                | -               |                 | •                |                  |                   |                   |                   |

#### **TUKWILA, WASHINGTON**

|                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location:                                                              |     | 237                     |                        | I                       | 244                     |                          | I-6                     |                        | I-7                    |                            |                            | I-202s                      |                             |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|-------------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------------------|------------------------|------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | 3.5 | 237<br>8.5<br>1/29/1988 | 237<br>15<br>1/29/1988 | 244<br>3.5<br>1/21/1988 | 244<br>8.5<br>1/21/1988 | 244<br>13.5<br>1/21/1988 | I-6<br>10<br>10/19/1983 | I-7<br>3<br>10/20/1983 | I-7<br>5<br>10/20/1983 | I-202s<br>2.5<br>1/14/1988 | I-202s<br>7.5<br>1/14/1988 | I-202s<br>12.5<br>1/14/1988 | I-202s<br>17.5<br>1/14/1988 | I-202s<br>27.5<br>1/14/1988 |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Din-Butylphthalate Din-Butylphthalate Din-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitroso-Di-N-Propylamine Pentachlorophenol Phenanthrene, 3,4,5,6-Tetra Phenanthrene Phenol Pyrene |                                                                        |     |                         |                        |                         |                         |                          |                         |                        |                        |                            |                            | 0.2<br>0.16<br>0.18         |                             |                             |

|                                                              |        |                |                  |                 |                   |                 |                 |                 | TUKWILA, I        |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
|--------------------------------------------------------------|--------|----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------|------------------|-------------------|-----------------------------|-------------------|-------------------|-----------------|----------------|----------------|----------------|
| Loc                                                          | ation: |                |                  |                 |                   | Į.              | -203i           |                 |                   |                 |                 | Ī                |                   | I-205s                      |                   |                   | IMR-13          | Ī              | PBI-4          | Ī              |
| Samp<br>Laborato                                             | ry ID: | I-203i         | I-203i           | I-203i          | I-203i            | I-203i          | I-203i          | I-203i          | I-203i            | I-203i          | I-203i          | I-205s           | I-205s            | Dup of I-205s<br>I-205s-Dup | I-205s            | I-205s            | IMR-13<br>NY11D | PBI-4<br>PI24J | PBI-4<br>PI24K | PBI-4<br>PI24L |
| Sample Depth (ft E<br>Sample                                 |        | 2.5<br>15/1988 | 7.5<br>1/15/1988 | 10<br>1/28/1988 | 12.5<br>1/15/1988 | 15<br>1/28/1988 | 18<br>1/28/1988 | 23<br>1/28/1988 | 33<br>1/28/1988   | 43<br>1/28/1988 | 48<br>1/28/1988 | 2.5<br>1/19/1988 | 12.5<br>1/19/1988 | 12.5<br>1/19/1988           | 17.5<br>1/19/1988 | 27.5<br>1/19/1988 | 11/4/2008       | 2<br>7/27/2009 | 5<br>7/27/2009 | 8<br>7/27/2009 |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7470A (a)           |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   | 75.4            |                |                |                |
| Barium<br>Cadmium                                            |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   | 75.1<br>1.3     | 2.6            | 11.1           | 1.4            |
| Chromium<br>Copper                                           |        | 133<br>107     | 3990<br>252      | 760<br>188      | 2460<br>174       | 3100<br>580     | 27<br>29        | 23<br>26        | 18<br>18          | 13<br>19        | 11<br>12        | 20<br>19         | 25<br>15          | 18<br>10                    | 23<br>18          | 42<br>71          | 52              | 564<br>103     | 940<br>190     | 359<br>60      |
| Lead                                                         |        | 284            | 250              | 349             | 349               | 36              | 11              | 7               | 6 U               |                 | 5 U             | 6                | 4 U               |                             | 6                 | 49                | 86              | 209            | 796            | 114            |
| Mercury<br>Nickel                                            |        | 53             | 149              | 165             | 101               | 1795            | 18              | 17              | 10                | 10              | 8               | 10               | 13                | 10                          | 15                | 20                | 0.21            | 0.12           | 0.22           | 0.06           |
| Selenium                                                     |        | 33             | 143              | 103             | 101               | 1793            | 10              | .,,             | 10                | 10              | ŭ               | 10               | 13                | 10                          | 13                | 20                | 6 U             |                |                |                |
| Silver<br>Zinc                                               |        | 686            | 579              | 862             | 1210              | 138             | 75.3            | 40.8            | 25.7              | 26.4            | 20.7            | 33.2             | 47.8              | 34.9                        | 53                | 122               | 0.3 U           | 650            | 3290           | 500            |
| PCBs (mg/kg)<br>EPA SW8082 (a)                               |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Aroclor 1016<br>Aroclor 1221                                 |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Aroclor 1232                                                 |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Aroclor 1242<br>Aroclor 1248                                 |        | ND             | ND               |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Aroclor 1254                                                 |        | 0.06           | 0.08             |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Aroclor 1260<br>Total PCBs                                   |        | 0.08<br>0.14   | 0.1<br>0.18      |                 |                   |                 |                 |                 | ND<br>ND          |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| CONVENTIONALS (mg/kg) Cyanide                                |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Oil and Grease                                               |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID                    |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| NWTPH-Dx Diesel Range Organics                               |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Lube Oil                                                     |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| C19 Branched Hydrocarbon                                     |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| C11 Hydrocarbon<br>C18-C25 Hydrocarbons (total)              |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| VOLATILES (mg/kg)<br>EPA SW8260B/C (a)                       |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 1,1,1,2-Tetrachloroethane                                    |        |                |                  |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 1,1,1-Trichloroethane                                        |        |                |                  |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane                  |        |                |                  |                 |                   |                 |                 |                 | ND<br>ND          |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 1,1-Dichloroethene                                           |        |                |                  |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 1,2-Dichloroethene (total) 1,2-Dichloropropane               |        |                |                  |                 |                   |                 |                 |                 | <b>0.009</b> J    |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 2-Butanone                                                   |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 2-Chloroethylvinylether                                      |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| 2-Hexanone<br>4-Methyl-2-Pentanone (MIBK)                    |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Acetone                                                      |        |                |                  |                 |                   |                 |                 |                 | <b>0.05</b><br>ND |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Benzene<br>Bromodichloromethane                              |        |                |                  |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Bromoform                                                    |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Bromomethane<br>Carbon Disulfide                             |        |                |                  |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Carbon Tetrachloride                                         |        |                |                  |                 |                   |                 |                 |                 | ND                |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Chlorobenzene                                                |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Chloroethane<br>Chloroform                                   |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |
| Chloromethane                                                |        |                |                  |                 |                   |                 |                 |                 |                   |                 |                 |                  |                   |                             |                   |                   |                 |                |                |                |

cis-1,2-Dichloroethene

#### HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE

| T111/\A/11 | A 14/A | CHING | IAOT. |
|------------|--------|-------|-------|
| TUKWIL     | M. VVA | ОПІИС |       |

|                                                                      |                                          | •         |           |           |           |           |           |           |                 |           |           | •         |           |                         |           |           | Ī         |            |            | -          |
|----------------------------------------------------------------------|------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-------------------------|-----------|-----------|-----------|------------|------------|------------|
|                                                                      | Location:                                |           |           |           |           | l-:       | 203i      |           |                 |           |           |           |           | I-205s<br>Dup of I-205s |           |           | IMR-13    |            | PBI-4      |            |
|                                                                      | Sample ID:                               |           | I-203i          | I-203i    | I-203i    | I-205s    | I-205s    | I-205s-Dup              | I-205s    | I-205s    | IMR-13    | PBI-4      | PBI-4      | PBI-4      |
|                                                                      | Laboratory ID:<br>Sample Depth (ft BGS): |           | 7.5       | 10        | 12.5      | 15        | 18        | 23        | 33              | 43        | 48        | 2.5       | 12.5      | 12.5                    | 17.5      | 27.5      | NY11D     | Pl24J<br>2 | PI24K<br>5 | PI24L<br>8 |
|                                                                      | Sample Date:                             | 1/15/1988 | 1/15/1988 | 1/28/1988 | 1/15/1988 | 1/28/1988 | 1/28/1988 | 1/28/1988 | 1/28/1988       | 1/28/1988 | 1/28/1988 | 1/19/1988 | 1/19/1988 | 1/19/1988               | 1/19/1988 | 1/19/1988 | 11/4/2008 | 7/27/2009  | 7/27/2009  | 7/27/2009  |
| cis-1,3-Dichloropropene                                              |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Dibromochloromethane<br>Ethylbenzene                                 |                                          |           |           |           |           |           |           |           | ND              |           |           |           |           |                         |           |           |           |            |            |            |
| m, p-Xylene                                                          |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Methylene Chloride<br>o-Xylene                                       |                                          |           |           |           |           |           |           |           | <b>0.0053</b> B |           |           |           |           |                         |           |           |           |            |            |            |
| Styrene                                                              |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Tetrachloroethene<br>Toluene                                         |                                          |           |           |           |           |           |           |           | ND<br>ND        |           |           |           |           |                         |           |           |           |            |            |            |
| Total Xylenes                                                        |                                          |           |           |           |           |           |           |           | ND              |           |           |           |           |                         |           |           |           |            |            |            |
| trans-1,2-Dichloroethene trans-1,3-Dichloropropene                   |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Trichloroethene                                                      |                                          |           |           |           |           |           |           |           | ND              |           |           |           |           |                         |           |           |           |            |            |            |
| Trichlorofluoromethane<br>Vinyl Acetate                              |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Vinyl Chloride                                                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 1,2,3-Propanetriol, Triacetate<br>Hexadecane                         | 9                                        |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Heptadecane                                                          |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| SEMIVOLATILES (mg/kg)                                                |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| EPA SW8270D (a)                                                      |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 1,2,4-Trichlorobenzene<br>1,2-Dichlorobenzene                        |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 1,3-Dichlorobenzene                                                  |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 1,4-Dichlorobenzene 1-Methylnaphthalene                              |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2,2'-Oxybis(1-Chloropropane                                          | e)                                       |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2,4-Dichlorophenol                                                   |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2,4-Dimethylphenol 2,4-Dinitrophenol                                 |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2,4-Dinitrotoluene                                                   |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2,6-Dinitrotoluene 2-Chloronaphthalene                               |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2-Chlorophenol                                                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2-Methylnaphthalene<br>2-Methylphenol                                |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2-Nitroaniline                                                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 2-Nitrophenol 3,3'-Dichlorobenzidine                                 |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 3-Nitroaniline                                                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 4,6-Dinitro-2-Methylphenol<br>4-Bromophenyl-phenylether              |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 4-Chloro-3-methylphenol                                              |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| <ul><li>4-Chloroaniline</li><li>4-Chlorophenyl-phenylether</li></ul> |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 4-Methylphenol                                                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| 4-Nitroaniline 4-Nitrophenol                                         |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Acenaphthene                                                         |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Acenaphthylene<br>Anthracene                                         |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Benzo(a)anthracene                                                   |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                               |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Benzo(g,h,i)perylene                                                 |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Benzo(k)fluoranthene<br>Benzoic Acid                                 |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Benzyl Alcohol                                                       |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| bis(2-Chloroethoxy) Methane<br>Bis-(2-Chloroethyl) Ether             | 9                                        |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| bis(2-Ethylhexyl)phthalate                                           |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Butylbenzylphthalate<br>Carbazole                                    |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| Carbazole<br>Chrysene                                                |                                          |           |           |           |           |           |           |           |                 |           |           |           |           |                         |           |           |           |            |            |            |
| ,                                                                    |                                          | •         |           |           |           |           |           |           |                 |           |           | •         |           |                         |           |           | 1         | •          |            |            |

|                                                                                                                                                                                                                                                                                                                                                                                                           | Location:                                                              |     |                            |                           |                             | l-                        | 203i                      |                           |                           |                           |                           | 1                          |                             | I-205s                                           |                             |                             | IMR-13                       | ļ                                | PBI-4                            |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|-----------------------------|--------------------------------------------------|-----------------------------|-----------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                           | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | 2.5 | I-203i<br>7.5<br>1/15/1988 | I-203i<br>10<br>1/28/1988 | I-203i<br>12.5<br>1/15/1988 | I-203i<br>15<br>1/28/1988 | I-203i<br>18<br>1/28/1988 | I-203i<br>23<br>1/28/1988 | I-203i<br>33<br>1/28/1988 | I-203i<br>43<br>1/28/1988 | I-203i<br>48<br>1/28/1988 | I-205s<br>2.5<br>1/19/1988 | I-205s<br>12.5<br>1/19/1988 | Dup of I-205s<br>I-205s-Dup<br>12.5<br>1/19/1988 | I-205s<br>17.5<br>1/19/1988 | I-205s<br>27.5<br>1/19/1988 | IMR-13<br>NY11D<br>11/4/2008 | PBI-4<br>PI24J<br>2<br>7/27/2009 | PBI-4<br>PI24K<br>5<br>7/27/2009 | PBI-4<br>PI24L<br>8<br>7/27/2009 |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene, 3,4,5,6-Tetr Phennthrene Phenol Pyrene | е                                                                      |     |                            |                           |                             |                           |                           |                           |                           |                           |                           |                            |                             |                                                  |                             |                             |                              |                                  |                                  |                                  |

**TUKWILA, WASHINGTON** 

| Location:                                                                   | I          | PBI-5      |            | I          | PBI-6      |            | I          | PBI-7      |              | I          | PBI-8       |             | I          | PBI-9      |             |            | PBI-10      |             |
|-----------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|-------------|-------------|------------|------------|-------------|------------|-------------|-------------|
| Sample ID:                                                                  | PBI-5      | PBI-5      | PBI-5      | PBI-6      | PBI-6      | PBI-6      | PBI-7      | PBI-7      | PBI-7        | PBI-8      | PBI-8       | PBI-8       | PBI-9      | PBI-9      | PBI-9       | PBI-10     | PBI-10      | PBI-10      |
| Laboratory ID:<br>Sample Depth (ft BGS):                                    | PI24M<br>2 | PI24N<br>5 | PI24O<br>8 | PI24P<br>2 | PI24Q<br>5 | PI24R<br>8 | PI24S<br>2 | PI24T<br>5 | PI25A<br>8   | PI25B<br>2 | PI25C<br>5  | PI25D<br>8  | PI25E<br>2 | PI25F<br>5 | PI25G<br>8  | PI25H<br>2 | PI25I<br>5  | PI25J<br>8  |
| Sample Date: TOTAL METALS (mg/kg)                                           | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009    | 7/27/2009  | 7/27/2009   | 7/27/2009   | 7/27/2009  | 7/27/2009  | 7/27/2009   | 7/27/2009  | 7/27/2009   | 7/27/2009   |
| EPA 200.8/SW6010B/SW7470A (a)                                               |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Barium<br>Cadmium                                                           | 3.5        | 1.9        | 2.3        | 0.6        | 0.6 U      | 0.6        | 1.6        | 5.4        | <b>8.3</b> J | 1          | 1.2         | 6.7         | 0.2 U      | 6.5        | 0.6         | 0.3        | 0.3         | 1.5         |
| Chromium                                                                    | 127        | 101        | 47         | 46         | 14         | 26         | 295        | 361        | <b>561</b> J | 30.1       | 57.2        | 123         | 15         | 52.2       | 233         | 26.6       | 51.9        | 790         |
| Copper<br>Lead                                                              | 152<br>138 | 145<br>166 | 56<br>59   | 152<br>55  | 60<br>7    | 62<br>32   | 96<br>200  | 118<br>400 | 281<br>660   | 138<br>205 | 75.2<br>698 | 47.9<br>460 | 82.4<br>3  | 102<br>212 | 62.5<br>189 | 68.7<br>65 | 78.6<br>175 | 301<br>4200 |
| Mercury                                                                     | 0.14       | 0.11       | 0.04       | 0.07       | 0.08       | 0.07       | 0.16       | 0.26       | 0.14         | 0.17       | 0.12        | 0.02 U      | 0.02 U     | 0.12       | 0.03        | 0.03       | 0.03        | 0.02 U      |
| Nickel                                                                      |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Selenium<br>Silver                                                          |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Zinc                                                                        | 430        | 540        | 190        | 230        | 120        | 140        | 360        | 890        | 1420         | 460        | 249         | 530         | 56         | 550        | 180         | 131        | 194         | 630         |
| PCBs (mg/kg)<br>EPA SW8082 (a)                                              |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Aroclor 1016<br>Aroclor 1221                                                |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Aroclor 1221<br>Aroclor 1232                                                |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Aroclor 1242<br>Aroclor 1248                                                |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Aroclor 1254                                                                |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Aroclor 1260<br>Total PCBs                                                  |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| CONVENTIONALS (mg/kg) Cyanide                                               |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Oil and Grease                                                              |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID                                   |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                               |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| C19 Branched Hydrocarbon<br>C11 Hydrocarbon<br>C18-C25 Hydrocarbons (total) |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| VOLATILES (mg/kg)<br>EPA SW8260B/C (a)<br>1,1,1,2-Tetrachloroethane         |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane                              |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| 1,1-Dichloroethane<br>1,1-Dichloroethene                                    |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| 1,2-Dichloroethene (total)                                                  |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| 1,2-Dichloropropane<br>2-Butanone                                           |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| 2-Chloroethylvinylether                                                     |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| 2-Hexanone<br>4-Methyl-2-Pentanone (MIBK)                                   |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Acetone                                                                     |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Benzene                                                                     |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Bromodichloromethane<br>Bromoform                                           |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Bromomethane                                                                |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Carbon Disulfide Carbon Tetrachloride                                       |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Chlorobenzene                                                               |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Chloroethane<br>Chloroform                                                  |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| Chloromethane                                                               |            |            |            |            |            |            |            |            |              |            |             |             |            |            |             |            |             |             |
| cis-1,2-Dichloroethene                                                      | l          |            |            | I          |            |            |            |            |              | I          |             |             |            |            |             |            |             |             |

#### TABLE G-4 HISTORICAL SOIL ANALYTICAL RESULTS

#### FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                     | Location                               | :              | PBI-5      |            | I          | PBI-6      |            | I          | PBI-7      |            | 1          | PBI-8      |            | 1          | PBI-9      |            |            | PBI-10     |            |
|-----------------------------------------------------|----------------------------------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                     | Sample ID                              |                | PBI-5      | PBI-5      | PBI-6      | PBI-6      | PBI-6      | PBI-7      | PBI-7      | PBI-7      | PBI-8      | PBI-8      | PBI-8      | PBI-9      | PBI-9      | PBI-9      | PBI-10     | PBI-10     | PBI-10     |
|                                                     | Laboratory ID<br>Sample Depth (ft BGS) | : PI24M<br>: 2 | PI24N<br>5 | PI24O<br>8 | PI24P<br>2 | PI24Q<br>5 | PI24R<br>8 | Pl24S<br>2 | PI24T<br>5 | PI25A<br>8 | PI25B<br>2 | PI25C<br>5 | PI25D<br>8 | PI25E<br>2 | PI25F<br>5 | PI25G<br>8 | PI25H<br>2 | PI25I<br>5 | PI25J<br>8 |
|                                                     | Sample Date                            | 7/27/2009      | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  | 7/27/2009  |
| cis-1,3-Dichloropropene<br>Dibromochloromethane     |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Ethylbenzene                                        |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| m, p-Xylene<br>Methylene Chloride                   |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| o-Xylene<br>Styrene                                 |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Tetrachloroethene                                   |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Toluene                                             |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Total Xylenes trans-1,2-Dichloroethene              |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| trans-1,3-Dichloropropene                           |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Trichloroethene<br>Trichlorofluoromethane           |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Vinyl Acetate                                       |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Vinyl Chloride<br>1,2,3-Propanetriol, Triaceta      | ate                                    |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Hexadecane                                          |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Heptadecane                                         |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| SEMIVOLATILES (mg/kg)                               | )                                      |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| EPA SW8270D (a)<br>1,2,4-Trichlorobenzene           |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 1,2-Dichlorobenzene                                 |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene          |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 1-Methylnaphthalene                                 |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2,2'-Oxybis(1-Chloropropal<br>2,4,5-Trichlorophenol | ne)                                    |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2,4,6-Trichlorophenol                               |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2,4-Dichlorophenol 2,4-Dimethylphenol               |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2,4-Dinitrophenol                                   |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene            |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2-Chloronaphthalene                                 |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2-Chlorophenol 2-Methylnaphthalene                  |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2-Methylphenol                                      |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2-Nitroaniline<br>2-Nitrophenol                     |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 3,3'-Dichlorobenzidine                              |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 3-Nitroaniline<br>4,6-Dinitro-2-Methylphenol        |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 4-Bromophenyl-phenylethe                            | er                                     |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 4-Chloro-3-methylphenol 4-Chloroaniline             |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 4-Chlorophenyl-phenylethe                           | er                                     |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 4-Methylphenol 4-Nitroaniline                       |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 4-Nitrophenol                                       |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Acenaphthene<br>Acenaphthylene                      |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Anthracene                                          |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Benzo(a)anthracene<br>Benzo(a)pyrene                |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Benzo(b)fluoranthene                                |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene        |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Benzoic Acid                                        |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Benzyl Alcohol<br>bis(2-Chloroethoxy) Metha         | ne                                     |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Bis-(2-Chloroethyl) Ether                           |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate  |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Carbazole                                           |                                        |                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Chrysene                                            |                                        | 1              |            |            | 1          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

|                                                                                                                                                                                                                                                                                                                                                                                               | Location:                                                       |   | PBI-5                            |                                  |                                  | PBI-6                            |                                  | 1                                | PBI-7                            |                                  | ļ                                | PBI-8                            |                                  |                                  | PBI-9                            |                                  |                                   | PBI-10                            |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Sample D                                                                                                                                                                                                                                                                                                                                                                                      | Sample ID:<br>Laboratory ID:<br>Depth (ft BGS):<br>Sample Date: | 2 | PBI-5<br>PI24N<br>5<br>7/27/2009 | PBI-5<br>PI24O<br>8<br>7/27/2009 | PBI-6<br>PI24P<br>2<br>7/27/2009 | PBI-6<br>PI24Q<br>5<br>7/27/2009 | PBI-6<br>PI24R<br>8<br>7/27/2009 | PBI-7<br>PI24S<br>2<br>7/27/2009 | PBI-7<br>PI24T<br>5<br>7/27/2009 | PBI-7<br>PI25A<br>8<br>7/27/2009 | PBI-8<br>PI25B<br>2<br>7/27/2009 | PBI-8<br>PI25C<br>5<br>7/27/2009 | PBI-8<br>PI25D<br>8<br>7/27/2009 | PBI-9<br>PI25E<br>2<br>7/27/2009 | PBI-9<br>PI25F<br>5<br>7/27/2009 | PBI-9<br>PI25G<br>8<br>7/27/2009 | PBI-10<br>PI25H<br>2<br>7/27/2009 | PBI-10<br>PI25I<br>5<br>7/27/2009 | PBI-10<br>PI25J<br>8<br>7/27/2009 |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene, 3,4,5,6-Tetraethyl Phenol Pyrene |                                                                 |   |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                   |                                   |                                   |

#### HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                                                      |                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           | TORWIL                                                                                                                                                                                                                       | A, WASHING                |                                |                         |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transformers  <br>TDP22                                                              | North of 14-02<br>TDP23                                                              | UST W of 14-02<br>TDP24           | TDP27                                                                                                                                                                                                        | Hazardous Materi<br>TDP28                                                                                                                                                                                                                   | als Storage Shed                                                                                                                                                                                                                          | ls<br>TDP30                                                                                                                                                                                                                  | B-1                       | Hy<br>B-2                      | draulic Test Pad<br>B-3 | Area<br>TDP31                                                                                                                                                                                                                  | TDP32                                                                                                                                                                                                                                     |
| Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                               | TDP22<br>NY44G<br>3<br>11/5/2008                                                     | TDP23<br>NY44H<br>3<br>11/5/2008                                                     | TDP24<br>NY44I<br>11<br>11/5/2008 | TDP27<br>NY64B<br>11<br>11/6/2008                                                                                                                                                                            | TDP28<br>NY64C<br>11<br>11/6/2008                                                                                                                                                                                                           | TDP29<br>NY64D<br>11<br>11/6/2008                                                                                                                                                                                                         | TDP30<br>NY64E<br>11<br>11/6/2008                                                                                                                                                                                            | B-1<br>10.5<br>12/17/1993 | B-2<br>10.5<br>12/17/1993      | B-3<br>8<br>12/17/1993  | TDP31<br>NY64F<br>12<br>11/6/2008                                                                                                                                                                                              | TDP32<br>NY64G<br>11<br>11/6/2008                                                                                                                                                                                                         |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7470A (a) Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc                                                                                                                                                                                                                                                                                                                           | 0.2 U<br>24<br>15.6<br>4<br>0.04 U                                                   | 0.2 U<br>24.6<br>17.7<br>11<br>0.11                                                  | 11/0/2000                         | 0.2 U<br>16.4<br>13.7<br>2 U<br>0.05 U                                                                                                                                                                       | 0.3<br>17.8<br>20.5<br>4<br>0.06 U                                                                                                                                                                                                          | 0.7<br>20.4<br>26.2<br>7<br>0.1                                                                                                                                                                                                           | 0.8<br>24.8<br>35.9<br>15<br>0.17                                                                                                                                                                                            | 12 171993                 | 21111993                       | 1211/1995               | 0.2 U<br>14.7<br>15.9<br>2<br>0.05                                                                                                                                                                                             | 0.2 U<br>29.4<br>20.5<br>2 U<br>0.05 U                                                                                                                                                                                                    |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                    | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U |                                   |                                                                                                                                                                                                              | 0.030 U<br>0.030 U<br>0.030 U<br>0.030 U<br>0.030 U<br>0.030 U<br>0.030 U                                                                                                                                                                   | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U                                                                                                                                                      |                                                                                                                                                                                                                              |                           |                                |                         | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U                                                                                                                                           |                                                                                                                                                                                                                                           |
| CONVENTIONALS (mg/kg)<br>Cyanide<br>Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                      |                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                           |                                |                         |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil                                                                                                                                                                                                                                                                                                                                                     | 50 U<br>20 U<br>100 U                                                                | 50 U<br>20 U<br>100 U                                                                | 50 U<br>20 U<br>100 U             | 50 U<br>20 U<br>100 U                                                                                                                                                                                        | 50 U<br>20 U<br>100 U                                                                                                                                                                                                                       | 50 U<br>20 U<br>100 U                                                                                                                                                                                                                     | 50 U<br>20 U<br>100 U                                                                                                                                                                                                        | 25 U<br>20 U<br>50 U      | <b>91</b><br>20 U<br><b>62</b> | 25 U<br>20 U<br>50 U    | <b>50</b><br>20 U<br><b>100</b>                                                                                                                                                                                                | 50 U<br>20 U<br>100 U                                                                                                                                                                                                                     |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |                                                                                      |                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                           |                                |                         | 58<br>400                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |
| C19 Branched Hydrocarbon<br>C11 Hydrocarbon<br>C18-C25 Hydrocarbons (total)                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                      |                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                           |                                |                         |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (total) 1,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene |                                                                                      |                                                                                      |                                   | 0.0009 U 0.0009 U 0.0009 U 0.0009 U 0.0046 U 0.0046 U 0.0046 U 0.0045 0.0009 U | 0.001 U 0.0054 0.001 U 0.0054 0.001 U 0.14 0.0048 U 0.0048 U 0.0072 0.001 U | 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0005 U 0.0035 U 0.0035 U 0.0035 U 0.0095 U 0.0007 U | 0.0011 U 0.0014 0.0011 U 0.0011 U 0.0016 0.0054 U 0.0054 U 0.0054 U 0.0011 U |                           |                                |                         | 0.0009 U 0.0009 U 0.0009 U 0.0009 U 0.0073 0.0043 U 0.0043 U 0.0047 U 0.0009 U | 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0034 U 0.0034 U 0.0034 U 0.0034 U 0.0007 U |

#### HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                               | ,                      |              |           |                |           |                  |           | _         |                    |                    |                  |           |           |
|-------------------------------|------------------------|--------------|-----------|----------------|-----------|------------------|-----------|-----------|--------------------|--------------------|------------------|-----------|-----------|
|                               |                        | Transformers |           | UST W of 14-02 |           | lazardous Materi |           |           |                    |                    | draulic Test Pad |           |           |
|                               | Location:              | TDP22        | TDP23     | TDP24          | TDP27     | TDP28            | TDP29     | TDP30     | B-1                | B-2                | B-3              | TDP31     | TDP32     |
|                               | 0                      | TDDOO        | TDDOO     | TDD04          | TDD07     | TDDOO            | TDDOO     | TDDOO     | D 4                | D 0                | D 0              | TDDO4     | TDDOO     |
|                               | Sample ID:             | TDP22        | TDP23     | TDP24          | TDP27     | TDP28            | TDP29     | TDP30     | B-1                | B-2                | B-3              | TDP31     | TDP32     |
|                               | Laboratory ID:         | NY44G        | NY44H     | NY44I          | NY64B     | NY64C            | NY64D     | NY64E     | 40.5               | 40.5               |                  | NY64F     | NY64G     |
|                               | Sample Depth (ft BGS): | 3            | 3         | 11             | 11        | 11               | 11        | 11        | 10.5<br>12/17/1993 | 10.5<br>12/17/1993 | 8<br>12/17/1993  | 12        | 11        |
|                               | Sample Date:           | 11/5/2008    | 11/5/2008 | 11/5/2008      | 11/6/2008 | 11/6/2008        | 11/6/2008 | 11/6/2008 | 12/11/1993         | 12/17/1993         | 12/17/1993       | 11/6/2008 | 11/6/2008 |
| cis-1,3-Dichloropropene       |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Dibromochloromethane          |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Ethylbenzene                  |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| m, p-Xylene                   |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0016    | 0.0007 U  |
| Methylene Chloride            |                        |              |           |                | 0.0018 U  | 0.0019 U         | 0.0014 U  | 0.0022 U  |                    |                    |                  | 0.0017 U  | 0.0014 U  |
| o-Xylene                      |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.003     | 0.0007 U  |
| Styrene                       |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Tetrachloroethene             |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Toluene                       |                        |              |           |                | 0.0009 U  | 0.0014           | 0.0009    | 0.0011 U  |                    |                    |                  | 0.006     | 0.0007 U  |
| Total Xylenes                 |                        |              |           |                |           |                  |           |           |                    |                    |                  |           |           |
| trans-1,2-Dichloroethene      |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| trans-1,3-Dichloropropene     |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Trichloroethene               |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Trichlorofluoromethane        |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| Vinyl Acetate                 |                        |              |           |                | 0.0046 U  | 0.0048 U         | 0.0035 U  | 0.0054 U  |                    |                    |                  | 0.0043 U  | 0.0034 U  |
| Vinyl Chloride                |                        |              |           |                | 0.0009 U  | 0.001 U          | 0.0007 U  | 0.0011 U  |                    |                    |                  | 0.0009 U  | 0.0007 U  |
| 1,2,3-Propanetriol, Triacetat | e                      |              |           |                |           |                  |           |           |                    |                    |                  |           |           |
| Hexadecane                    |                        |              |           |                |           |                  |           |           |                    | 1                  |                  |           |           |
| Heptadecane                   |                        |              |           |                | 1         |                  |           |           |                    |                    |                  |           |           |
|                               |                        |              |           |                | 1         |                  |           |           |                    |                    |                  |           |           |
| SEMIVOLATILES (mg/kg)         |                        |              |           |                | 1         |                  |           |           |                    |                    |                  |           |           |
| EPA SW8270D (a)               |                        |              |           |                |           |                  |           |           |                    |                    |                  |           |           |
| 1,2,4-Trichlorobenzene        |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 1,2-Dichlorobenzene           |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 1,3-Dichlorobenzene           |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 1,4-Dichlorobenzene           |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 1-Methylnaphthalene           |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2,2'-Oxybis(1-Chloropropane   | e)                     |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2,4,5-Trichlorophenol         |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 2,4,6-Trichlorophenol         |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 2,4-Dichlorophenol            |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 2,4-Dimethylphenol            |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2,4-Dinitrophenol             |                        |              |           |                |           | 0.610 U          | 0.600 U   |           |                    |                    |                  | 0.640 U   |           |
| 2,4-Dinitrotoluene            |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 2,6-Dinitrotoluene            |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 2-Chloronaphthalene           |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2-Chlorophenol                |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2-Methylnaphthalene           |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2-Methylphenol                |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 2-Nitroaniline                |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 2-Nitrophenol                 |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 3,3'-Dichlorobenzidine        |                        |              |           |                | 1         | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 3-Nitroaniline                |                        |              |           |                | 1         | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 4,6-Dinitro-2-Methylphenol    |                        |              |           |                |           | 0.610 U          | 0.600 U   |           |                    | 1                  |                  | 0.640 U   |           |
| 4-Bromophenyl-phenylether     |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 4-Chloro-3-methylphenol       |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 4-Chloroaniline               |                        |              |           |                |           | 0.310 U          | 0.300 U   |           |                    |                    |                  | 0.320 U   |           |
| 4-Chlorophenyl-phenylether    |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 4-Methylphenol                |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| 4-Nitroaniline                |                        |              |           |                |           | 0.310 U          | 0.300 U   | 1         |                    | 1                  |                  | 0.320 U   |           |
| 4-Nitrophenol                 |                        |              |           |                |           | 0.310 U          | 0.300 U   | 1         |                    | 1                  |                  | 0.320 U   |           |
| Acenaphthene                  |                        |              |           |                |           | 0.061 U          | 0.060 U   | 1         |                    | 1                  |                  | 0.064 U   |           |
| Acenaphthylene                |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Anthracene                    |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Benzo(a)anthracene            |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Benzo(a)pyrene                |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Benzo(b)fluoranthene          |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Benzo(g,h,i)perylene          |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Benzo(k)fluoranthene          |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Benzoic Acid                  |                        |              |           |                |           | 0.610 U          | 0.600 U   | 1         |                    | 1                  |                  | 0.640 U   |           |
| Benzyl Alcohol                |                        |              |           |                |           | 0.061 U          | 0.060 U   | 1         |                    | 1                  |                  | 0.064 U   |           |
| bis(2-Chloroethoxy) Methan    | e                      |              |           |                |           | 0.061 U          | 0.060 U   | 1         |                    | 1                  |                  | 0.064 U   |           |
| Bis-(2-Chloroethyl) Ether     |                        |              |           |                |           | 0.061 U          | 0.060 U   | 1         |                    | 1                  |                  | 0.064 U   |           |
| bis(2-Ethylhexyl)phthalate    |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Butylbenzylphthalate          |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Carbazole                     |                        |              |           |                | 1         | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |
| Chrysene                      |                        |              |           |                |           | 0.061 U          | 0.060 U   |           |                    |                    |                  | 0.064 U   |           |

#### HISTORICAL SOIL ANALYTICAL RESULTS FORMER SLIP 5 LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                                                                                                                                                                                                                                                                                                                                                  | Transformers                     | North of 14-02                   | UST W of 14-02                    |                                   | Hazardous Materi                                                                                                                                                                                                                                                                                                                        | als Storage Shed                                                                                                                                                                                                                | ls                                |                           | Н                         | draulic Test Pad       | Area                                                                                                                                                                                                            |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Location:                                                                                                                                                                                                                                                                                                                                                                        | TDP22                            | TDP23                            | TDP24                             | TDP27                             | TDP28                                                                                                                                                                                                                                                                                                                                   | TDP29                                                                                                                                                                                                                           | TDP30                             | B-1                       | B-2                       | B-3                    | TDP31                                                                                                                                                                                                           | TDP32                             |
| Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                           | TDP22<br>NY44G<br>3<br>11/5/2008 | TDP23<br>NY44H<br>3<br>11/5/2008 | TDP24<br>NY44I<br>11<br>11/5/2008 | TDP27<br>NY64B<br>11<br>11/6/2008 | TDP28<br>NY64C<br>11<br>11/6/2008                                                                                                                                                                                                                                                                                                       | TDP29<br>NY64D<br>11<br>11/6/2008                                                                                                                                                                                               | TDP30<br>NY64E<br>11<br>11/6/2008 | B-1<br>10.5<br>12/17/1993 | B-2<br>10.5<br>12/17/1993 | B-3<br>8<br>12/17/1993 | TDP31<br>NY64F<br>12<br>11/6/2008                                                                                                                                                                               | TDP32<br>NY64G<br>11<br>11/6/2008 |
| Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorotethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene |                                  |                                  |                                   |                                   | 0.061 U | 0.060 U |                                   |                           |                           |                        | 0.064 U 0.320 U 0.064 U 0.320 U 0.064 U 0.320 U |                                   |

| Sample ID    | Sample Date        | Sample Depth | Arsenic<br>(mg/kg) |
|--------------|--------------------|--------------|--------------------|
| 21           | 8/1/83             | 1.5          | 6                  |
| 21           | 8/1/83             | 8.5          | 5.2                |
|              |                    |              |                    |
| 212          | 1/14/88            | 3.5-4        | 5                  |
| 212          | 1/14/88            | 8.5-9        | 6                  |
| 212          | 1/14/88            | 13.5-14      | 3                  |
| 234          | 1/22/88            | 2.5          | 5                  |
| 234          | 1/22/88            | 7.5          | 2                  |
| 234          | 1/22/88            | 12.5         | 3                  |
| 234          | 1/22/88            | 17.5         | 2                  |
|              |                    |              |                    |
| 240          | 1/22/88            | 2.5          | 4                  |
| 240          | 1/22/88            | 7.5          | 4                  |
| 240          | 1/22/88            | 12.5         | 3                  |
| 240          | 1/22/88            | 17.5         | 2                  |
| HP-1         | 4/19/00            | 3            | 4                  |
| HP-1         | 4/19/00            | 6            | 3                  |
| HP-1         | 4/19/00            | 10           | 1.8                |
| HP-1         | 4/19/00            | 15           | 0.7                |
| HP-1         | 4/19/00            | 20           | 5.8                |
| LID 0        | 4/40/00            |              | 0.0                |
| HP-2         | 4/19/00            | 1            | 2.9                |
| HP-2<br>HP-2 | 4/19/00<br>4/19/00 | 2<br>3       | 1.2<br>2.5         |
| HP-2         | 4/19/00            | 4            | 1.2                |
| HP-2         | 4/19/00            | 5            | 1.3                |
| HP-2         | 4/19/00            | 6            | 3.3                |
| HP-2         | 4/19/00            | 7            | 12                 |
| HP-2         | 4/19/00            | 8            | 3.7                |
| HP-2         | 4/19/00            | 9            | 2.3                |
| HP-2         | 4/19/00            | 10           | 1.6                |
| HP-2         | 4/19/00            | 11           | 1.6                |
| HP-2         | 4/19/00            | 12           | 1.5                |
| HP-2         | 4/19/00            | 14           | 1.6                |
| HP-2         | 4/19/00            | 15           | 1<br>11            |
| HP-2<br>HP-2 | 4/19/00<br>4/19/00 | 16<br>20     | 7                  |
| 111 -2       | 4/19/00            | 20           | ,                  |
| HP-3         | 4/19/00            | 1            | 4                  |
| HP-3         | 4/19/00            | 2            | 7                  |
| HP-3         | 4/19/00            | 3            | 4.2                |
| HP-3         | 4/19/00            | 4            | 2.6                |
| HP-3         | 4/19/00            | 5            | 7                  |
| HP-3         | 4/19/00            | 6            | 2.5                |
| HP-3<br>HP-3 | 4/19/00<br>4/19/00 | 7<br>8       | 6                  |
| HP-3         | 4/19/00            | 9            | 3.5<br>5           |
| HP-3         | 4/19/00            | 10           | 4                  |
| HP-3         | 4/19/00            | 12           | 1.3                |
| HP-3         | 4/19/00            | 13           | 1.8                |
| HP-3         | 4/19/00            | 14           | 3                  |
| HP-3         | 4/19/00            | 15           | 4                  |
| HP-3         | 4/19/00            | 16           | 43                 |
| HP-3         | 4/19/00            | 20           | 20                 |
| HP-4         | 4/19/00            | 1            | 3                  |
| HP-4         | 4/19/00            | 2            | 3.5                |
| HP-4         | 4/19/00            | 3            | 3.5<br>14          |
| HP-4         | 4/19/00            | 4            | 3                  |
| HP-4         | 4/19/00            | 5            | 4                  |
| HP-4         | 4/19/00            | 6            | 5                  |
| HP-4         | 4/19/00            | 7            | 11                 |
| HP-4         | 4/19/00            | 8            | 3.3                |
| HP-4         | 4/19/00            | 9            | 13                 |
|              |                    |              |                    |

| Sample ID                    | Sample Date      | Sample Depth | Arsenic<br>(mg/kg) |
|------------------------------|------------------|--------------|--------------------|
| HP-4                         | 4/19/00          | 10           | 1.6                |
| HP-4                         | 4/19/00          | 11           | 4.6                |
| HP-4                         | 4/19/00          | 12           | 1.5                |
| HP-4                         | 4/19/00          | 13           | 2.1                |
| HP-4                         | 4/19/00          | 16           | 5                  |
| HP-4                         | 4/19/00          | 17           | 1.6                |
| HP-4                         | 4/19/00          | 20           | 5.2                |
| HP-5                         | 4/19/00          | 2            | 2.3                |
| HP-5                         | 4/19/00          | 5            | 3                  |
| HP-5                         | 4/19/00          | 10           | 1.7                |
| HP-5                         | 4/19/00          | 15           | 1.4                |
| HP-5                         | 4/19/00          | 20           | 2.3                |
| HP-6                         | 4/19/00          | 2            | 2.1                |
| HP-6                         | 4/19/00          | 5            | 2.3                |
| HP-6                         | 4/19/00          | 10           | 3.2                |
| HP-6                         | 4/19/00          | 16           | 3.7                |
| HP-6                         | 4/19/00          | 20           | 4                  |
| I-206s                       | 1/19/88          | 2.5          | 5                  |
| I-206s                       | 1/19/88          | 7.5          | 7                  |
| I-206s                       | 1/19/88          | 12.5         | 2                  |
| I-206s                       | 1/19/88          | 17.5         | 22                 |
| I-206s                       | 1/19/88          | 27.5         | 9                  |
| Former Washdown System Pipir | g South of 14-01 |              |                    |
| TDP1                         | 11/3/08          | 9            | 9                  |
| TDP2                         | 11/3/08          | 5            | 5 U                |
| TDP3                         | 11/3/08          | 5            | 6                  |
| TDP4                         | 11/3/08          | 4            | 18                 |
| TDP25                        | 11/5/08          | 9            | 5 U                |
| TDP26                        | 11/6/08          | 8            | 7                  |
| Former Washdown System Pipir | <u> </u>         |              |                    |
| TDP5                         | 11/3/08          | 5            | 5 U                |
| TDP7                         | 11/4/08          | 8            | 6 U                |
| TDP8                         | 11/4/08          | 8            | 6 U                |
| TDP9                         | 11/4/08          | 8            | 6 U                |
| TDP10                        | 11/4/08          | 8            | 6 U                |
| TDP11                        | 11/4/08          | 9            | 5 U                |
| TDP12                        | 11/4/08          | 7            | 8                  |
| TDP13                        | 11/4/08          | 7            | 10 U               |

| Sample ID                    | Sample Date              | Sample Depth | Arsenic<br>(mg/kg) |
|------------------------------|--------------------------|--------------|--------------------|
| Former Washdown System Pipin | g and ASTs West of 14-01 |              |                    |
| TDP14                        | 11/4/08                  | 4            | 17                 |
| TDP15                        | 11/4/08                  | 4            | 9                  |
| TDP16                        | 11/5/08                  | 3            | 7                  |
| TDP17                        | 11/5/08                  | 4            | 7                  |
| TDP18                        | 11/5/08                  | 4            | 12                 |
| TDP19                        | 11/5/08                  | 4            | 6 U                |
| Substation (Building 14-22)  |                          |              |                    |
| TDP20                        | 11/5/08                  | 3            | 6 U                |
| TDP21                        | 11/5/08                  | 3            | 5 U                |

U = Indicates the compound was undetected at the reported concentration

| Location                                                                                                                                                                                                                                 | n:                   | 21        |            | 212       |           | <u></u>   |           | 234       |           |           | 2         | 40        |           | <u> </u>   | PBI-11     |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| Sample I                                                                                                                                                                                                                                 | D: 21                | 21        | 212        | 212       | 212       | 234       | 234       | 234       | 234       | 240       | 240       | 240       | 240       | PBI-11     | PBI-11     | PBI-11     |
| Laboratory<br>Sample Depth (ft BG                                                                                                                                                                                                        | D:                   | 8.5       | 3.5-4      | 8.5-9     | 13.5-14   | 2.5       | 7.5       | 12.5      | 17.5      | 2.5       | 7.5       | 12.5      | 17.5      | PI42A<br>2 | PI42B<br>5 | PI42C<br>8 |
| Sample Da                                                                                                                                                                                                                                | e: 8/1/1983          | 8/1/1983  | 1/14/1988  | 1/14/1988 | 1/14/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 7/28/2009  | 7/28/2009  | 7/28/2009  |
| TOTAL METALS (mg/kg)<br>EPA 200.8/SW6010B/SW7470A (a)                                                                                                                                                                                    |                      |           |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| Barium<br>Cadmium                                                                                                                                                                                                                        | 31<br>0.41           | 18<br>0.3 |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| Chromium<br>Copper                                                                                                                                                                                                                       | 8.2                  | 8.5       | 1003<br>31 | 23<br>26  | 17<br>12  | 16<br>20  | 13<br>13  | 14<br>11  | 13<br>13  | 17<br>22  | 14<br>19  | 16<br>18  | 15<br>15  |            |            |            |
| Lead                                                                                                                                                                                                                                     | 5.5                  | 4         | 8          | 23        | 7         | 13        | 4         | 7         | 9         | 13        | 7         | 10        | 9         |            |            |            |
| Mercury<br>Nickel                                                                                                                                                                                                                        | 0.03 U<br><b>9.3</b> | 7         | 600        | 15        | 14        | 20        | 9         | 12        | 12        | 16        | 11        | 13        | 13        |            |            |            |
| Selenium<br>Silver                                                                                                                                                                                                                       | 0.2 U<br>0.3 U       |           |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| Zinc                                                                                                                                                                                                                                     | 18                   | 12.5      | 38.8       | 43.4      | 28.2      | 43.2      | 60.6      | 26.8      | 25.8      | 36.6      | 29.6      | 33        | 29        |            |            |            |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs  CONVENTIONALS (mg/kg) Oil and Grease  PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Organics | 0.1 U<br><b>55</b>   | 110       |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| Gasoline Range Organics<br>Lube Oil                                                                                                                                                                                                      |                      |           |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| NWTPH-Dx Diesel Range Organics Lube Oil                                                                                                                                                                                                  |                      |           |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,2-Dichloroethane                                               |                      |           |            |           |           |           |           |           |           |           |           |           |           | 0.0006 U   | 0.001 U    | 0.0009 U   |
| 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether                                                                                                                                             |                      |           |            |           |           |           |           |           |           |           |           |           |           | 0.0006 U   | 0.001 U    | 0.0009 U   |
| 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone Benzene Bromodichloromethane                                                                                                                                                              |                      |           |            |           |           |           |           |           |           |           |           |           |           |            |            |            |
| Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane                                                                                                                                                  |                      |           |            |           |           |           |           |           |           |           |           |           |           |            |            |            |

| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 21       | <u> </u>  | 212       |           |           | ;         | 234       |           |           | 2         | 240       |           |            | PBI-11     |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21       | 21       | 212       | 212       | 212       | 234       | 234       | 234       | 234       | 240       | 240       | 240       | 240       | PBI-11     | PBI-11     | PBI-11     |
| Laboratory ID:<br>Sample Depth (ft BGS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5      | 8.5      | 3.5-4     | 8.5-9     | 13.5-14   | 2.5       | 7.5       | 12.5      | 17.5      | 2.5       | 7.5       | 12.5      | 17.5      | PI42A<br>2 | PI42B<br>5 | PI42C<br>8 |
| Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/1/1983 | 8/1/1983 | 1/14/1988 | 1/14/1988 | 1/14/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 1/22/1988 | 7/28/2009  | 7/28/2009  | 7/28/2009  |
| Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene m, p-Xylene Methylene Chloride o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |           |           |           |           |           |           |           |           |           |           |           | 0.0006 U   | 0.001 U    | 0.0009 U   |
| Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |           |           |           |           |           |           |           |           |           |           |           | 0.0006 U   | 0.0029     | 0.002      |
| Trichloroethene<br>Trichlorofluoromethane<br>Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |           |           |           |           |           |           |           |           |           |           |           | 0.0021     | 0.011      | 0.007      |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |           |           |           |           |           |           |           |           |           |           |           | 0.0006 U   | 0.001 U    | 0.0009 U   |
| SEMIVOLATILES (mg/kg) EPA SW8270D (a)  1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloro-alliline 4-Chloroaniline 4-Chlorophenol 4-Nitroaniline |          |          |           |           |           |           |           |           |           |           |           |           |           |            |            |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location:                                                              |     | 21                    | <u> </u>                  | 212                       |                             |                         |                         | 234                      |                          |                         | 2                       | 240                      |                          | <u> </u>                          | PBI-11                            |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|-----------------------|---------------------------|---------------------------|-----------------------------|-------------------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|--------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | 1.5 | 21<br>8.5<br>8/1/1983 | 212<br>3.5-4<br>1/14/1988 | 212<br>8.5-9<br>1/14/1988 | 212<br>13.5-14<br>1/14/1988 | 234<br>2.5<br>1/22/1988 | 234<br>7.5<br>1/22/1988 | 234<br>12.5<br>1/22/1988 | 234<br>17.5<br>1/22/1988 | 240<br>2.5<br>1/22/1988 | 240<br>7.5<br>1/22/1988 | 240<br>12.5<br>1/22/1988 | 240<br>17.5<br>1/22/1988 | PBI-11<br>PI42A<br>2<br>7/28/2009 | PBI-11<br>PI42B<br>5<br>7/28/2009 | PBI-11<br>PI42C<br>8<br>7/28/2009 |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylnexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Din-n-Octyl phthalate Din-n-Octyl phthalate Din-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene |                                                                        |     |                       |                           |                           |                             |                         |                         |                          |                          |                         |                         |                          |                          |                                   |                                   |                                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          |                                   | _                                 |                                   |                                   |                                   |                                   |                                   |                                   |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                | Washdown Syste                                                                                                                                                                                                              |                                                                                                                                                                                                                              | of 14-01                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | PBI-12                            |                                   |                                   | PBI-13                            |                                   |                                   | PBI-15                            |                                   | TDP1                                                                                                                                                                                                                                                                                                          | TDP2                                                                                                                                                                                                                           | TDP3                                                                                                                                                                                                                        | TDP4                                                                                                                                                                                                                         | TDP25                                                                                                                                                                                                                   | TDP26                                                                                                                                                                                                                                     |
| Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                       | PI42D<br>2 | PBI-12<br>PI42E<br>5<br>7/28/2009 | PBI-12<br>PI42F<br>8<br>7/28/2009 | PBI-13<br>PI42G<br>2<br>7/28/2009 | PBI-13<br>PI42H<br>5<br>7/28/2009 | PBI-13<br>PI42I<br>8<br>7/28/2009 | PBI-15<br>PI42L<br>2<br>7/28/2009 | PBI-15<br>PI42M<br>5<br>7/28/2009 | PBI-15<br>PI42N<br>8<br>7/28/2009 | TDP1<br>NX93A<br>9<br>11/3/2008                                                                                                                                                                                                                                                                               | TDP2<br>NX93B<br>5<br>11/3/2008                                                                                                                                                                                                | TDP3<br>NX93C<br>5<br>11/3/2008                                                                                                                                                                                             | TDP4<br>NX93D<br>4<br>11/3/2008                                                                                                                                                                                              | TDP25<br>NY44J<br>9<br>11/5/2008                                                                                                                                                                                        | TDP26<br>NY64A<br>8<br>11/6/2008                                                                                                                                                                                                          |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7470A (a) Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc                                                                                                                                                                                                                                                                                                                                                   |            |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   | 0.4<br>12.3<br>31.6<br>17<br>0.06                                                                                                                                                                                                                                                                             | 0.2 U<br>21.8<br>23.2<br>2<br>0.05 U                                                                                                                                                                                           | 0.2<br>21.2<br>24.8<br>139<br>0.06                                                                                                                                                                                          | 1<br>29<br>67.1<br>106<br>0.2                                                                                                                                                                                                | 0.2 U<br>35.8<br>14.3<br>2<br>0.04 U                                                                                                                                                                                    | 0.4<br>20.8<br>36.6<br>12<br>0.06 U                                                                                                                                                                                                       |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                                            |            |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   | 0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U<br>0.033 U                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U                                                                                                                                    | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U                                                                                                                                           |
| CONVENTIONALS (mg/kg) Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |
| PETROLEUM HYDROCARBONS (mg/kg)<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                 |            |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   | 50 U<br>20 U<br><b>100</b>                                                                                                                                                                                                                                                                                    | 50 U<br>20 U<br>100 U                                                                                                                                                                                                          | <b>57</b><br>23 ∪<br><b>110</b>                                                                                                                                                                                             | <b>53</b><br>21 U<br><b>110</b>                                                                                                                                                                                              | 50 U<br>20 U<br>1 <b>00</b>                                                                                                                                                                                             | 50 U<br>20 U<br><b>100</b>                                                                                                                                                                                                                |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   | 16<br>99                                                                                                                                                                                                                                                                                                      | 19<br>95                                                                                                                                                                                                                       | 110<br>740                                                                                                                                                                                                                  | 78<br>640                                                                                                                                                                                                                    | 61<br>340                                                                                                                                                                                                               | 6.5<br>24                                                                                                                                                                                                                                 |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane | 0.001 U    | 0.0009 U                          | 0.0011 U                          | 0.0009 U                          | 0.0009 U                          | 0.001 U                           | 0.0009 U                          | 0.001 U                           | 0.0008 U                          | 0.0012 U 0.0053 0.0059 U 0.0059 U 0.0059 U 0.0015 0.0012 U | 0.0008 U 0.0008 U 0.0016 U 0.0008 U 0.0008 U 0.0008 U 0.0008 U 0.0008 U 0.0041 U 0.0041 U 0.0041 U 0.0041 U 0.0092 0.0008 U | 0.001 U 0.0048 U 0.0048 U 0.0048 U 0.0048 U 0.001 U | 0.001 U 0.001 U 0.002 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0051 U 0.0051 U 0.0051 U 0.0051 U 0.0051 U 0.001 U | 0.0007 U 0.0007 U 0.0013 U 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0033 U 0.0033 U 0.0033 U 0.0033 U 0.0007 U | 0.0007 U 0.0007 U 0.0014 U 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0036 U 0.0036 U 0.0036 U 0.0030 U 0.0007 U |

| Sample   S   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |          |          |          |          |         |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Former                                       | Washdown Syste                            | em Piping South                          | of 14-01                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------|----------|----------|----------|---------|----------|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professional Control Professional Professional Control Professional Co   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location:      |         | PBI-12   |          |          | PBI-13   |         |          | PBI-15  |          | TDP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TDP2                                         | TDP3                                      | TDP4                                     | TDP25                                                                                                                                                                                                                                                                                                                                                                                                                                           | TDP26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Charleston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory ID: | PI42D   | PI42E    | PI42F    | PI42G    | PI42H    | PI42I   | PI42L    | PI42M   | PI42N    | NX93A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NX93B                                        | NX93C                                     | NX93D                                    | NY44J                                                                                                                                                                                                                                                                                                                                                                                                                                           | NY64A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Changemanus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |          |          |          |          | •       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Empleonaries p. Sylene p.  | Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 0.001 U | 0.0009 U | 0.0011 U | 0.0009 U | 0.0009 U | 0.001 U | 0.0009 U | 0.001 U | 0.0008 U | 0.0012 U<br><b>0.074</b><br>0.0012 U                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0008 U<br>0.0008 U<br>0.0008 U             | 0.001 U<br>0.001 U<br>0.001 U             | 0.001 U<br>0.001 U<br>0.001 U            | 0.0007 U<br>0.0007 U<br>0.0007 U                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0007 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Telestrophene Training Control of the Control of Contro | Ethylbenzene<br>m, p-Xylene<br>Methylene Chloride<br>o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |         |          |          |          |          |         |          |         |          | 0.0012 U<br>0.0012 U<br><b>0.0077</b><br>0.0012 U                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0008 U<br>0.0008 U<br>0.0016 U<br>0.0008 U | 0.001 U<br>0.001 U<br>0.0019 U<br>0.001 U | 0.001 U<br>0.001 U<br>0.002 U<br>0.001 U | 0.0007 U<br>0.0007 U<br>0.0013 U<br>0.0007 U                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0007 U<br>0.0007 U<br>0.0014 U<br>0.0007 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Trichorduscremathane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |         |          |          |          |          |         |          |         |          | 0.0012 U<br>0.0012 U<br><b>0.0026</b><br>0.0012 U                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0008 U<br>0.0008 U<br>0.0008 U<br>0.0008 U | 0.001 U<br>0.001 U<br>0.001 U<br>0.001 U  | 0.001 U<br>0.001 U<br>0.001 U<br>0.001 U | 0.0007 U<br>0.0007 U<br>0.0007 U<br>0.0007 U                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001<br>0.0007 U<br>0.0007 U<br>0.0007 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SEMIVOLATILES (right)   CPA SW2700 (a)   CPA SW2700 (b)   CPA SW2700 (c)   | Trichlorofluoromethane Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |         |          |          |          |          |         |          |         |          | 0.0012 U<br>0.0059 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0008 U<br>0.0041 U                         | 0.001 U<br>0.0048 U                       | 0.001 U<br>0.0051 U                      | 0.0007 U<br>0.0033 U                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0007 U<br>0.0036 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzo(a)pyrene       0.062 U       0.064 U       0.059         Benzo(b)fluoranthene       0.062 U       0.064 U       0.059         Benzo(g,h,i)perylene       0.062 U       0.064 U       0.059         Benzo(k)fluoranthene       0.062 U       0.064 U       0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEMIVOLATILES (mg/kg) EPA SW8270D (a) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Chlorophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Chloro-3-methylphenol 4-Chloro-3-methylphenol 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene |                |         |          |          |          |          |         |          |         |          | 0.062 U 0.062 U 0.062 U 0.062 U 0.062 U 0.062 U 0.310 U 0.310 U 0.310 U 0.310 U 0.310 U 0.062 U 0.062 U 0.062 U 0.062 U 0.062 U 0.062 U 0.310 U 0.062 U 0.310 U 0.062 U 0.310 U 0.062 U 0.310 U 0.310 U 0.062 U 0.310 U 0.310 U 0.310 U 0.310 U 0.062 U 0.310 U 0.062 U 0.310 U 0.062 U 0.310 U 0.062 U |                                              |                                           |                                          | 0.064 U 0.064 U 0.064 U 0.064 U 0.064 U 0.320 U 0.320 U 0.320 U 0.320 U 0.320 U 0.320 U 0.064 U 0.064 U 0.064 U 0.064 U 0.064 U 0.064 U 0.320 U 0.320 U 0.064 U | 0.059 U<br>0.059 U<br>0.059 U<br>0.059 U<br>0.059 U<br>0.300 U<br>0.300 U<br>0.300 U<br>0.300 U<br>0.300 U<br>0.300 U<br>0.059 U<br>0.059 U<br>0.059 U<br>0.300 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                                                                                                                                                                                                                                                                                                                                                         | Former                          | Washdown Syste                  | m Piping South                  | of 14-01                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location:                                                              |   | PBI-12                            |                                   |                                   | PBI-13                            |                                   |                                   | PBI-15                            |                                   | TDP1                                                                                                                                                                                                                                                                                                                                                                    | TDP2                            | TDP3                            | TDP4                            | TDP25                                                                                                                                                                                                                                                                                                                                                   | TDP26                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | 2 | PBI-12<br>PI42E<br>5<br>7/28/2009 | PBI-12<br>PI42F<br>8<br>7/28/2009 | PBI-13<br>PI42G<br>2<br>7/28/2009 | PBI-13<br>PI42H<br>5<br>7/28/2009 | PBI-13<br>PI42I<br>8<br>7/28/2009 | PBI-15<br>PI42L<br>2<br>7/28/2009 | PBI-15<br>PI42M<br>5<br>7/28/2009 | PBI-15<br>PI42N<br>8<br>7/28/2009 | TDP1<br>NX93A<br>9<br>11/3/2008                                                                                                                                                                                                                                                                                                                                         | TDP2<br>NX93B<br>5<br>11/3/2008 | TDP3<br>NX93C<br>5<br>11/3/2008 | TDP4<br>NX93D<br>4<br>11/3/2008 | TDP25<br>NY44J<br>9<br>11/5/2008                                                                                                                                                                                                                                                                                                                        | TDP26<br>NY64A<br>8<br>11/6/2008                                                                                                                                                                                                                                                                                                                                |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Din-n-Butylphthalate Din-n-Octyl phthalate Din-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine Pentachlorophenol Phenol Pyrene |                                                                        |   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   | 0.062 U |                                 |                                 |                                 | 0.064 U | 0.059 U |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | Forme                                                                                                                                                                                                                   | r Washdown Syst                                                                                                                                                                                                                                                                        | tem Piping Inside                                                                                                                                                                                                                                           | e 14-01                                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 | Former Wasl                                                                                                                                                                                                               | hdown System P                                                                                                                                                                                                                            | iping and ASTs V                                                                                                                                                                                                                | Vest of 14-01                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDP5                                                                                                                                                                                                                           | TDP7                                                                                                                                                                                                                           | TDP8                                                                                                                                                                                                                           | TDP9                                                                                                                                                                                                                    | TDF                                                                                                                                                                                                                                                                                    | P10                                                                                                                                                                                                                                                         | TD                                                                                                                                                                                                                             | P11                                                                                                                                                                                                                     | TDP12                                                                                                                                                                                                                                                                                           | TDP13                                                                                                                                                                                                                                                                                                  | TDP14                                                                                                                                                                                                                                                                                           | TDP15                                                                                                                                                                                                                     | TDP16                                                                                                                                                                                                                                     | TDP17                                                                                                                                                                                                                           | TDP18                                                                                                                                                                                                                                     | TDP19                                                                                                                                                                                                                            |
| Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                                             | TDP5<br>NX93E<br>5<br>11/3/2008                                                                                                                                                                                                | TDP7<br>NY07B<br>8<br>11/4/2008                                                                                                                                                                                                | TDP8<br>NY07C<br>8<br>11/4/2008                                                                                                                                                                                                | TDP9<br>NY07D<br>8<br>11/4/2008                                                                                                                                                                                         | TDP10<br>NY07P<br>7<br>11/4/2008                                                                                                                                                                                                                                                       | TDP10<br>NY07E<br>8<br>11/4/2008                                                                                                                                                                                                                            | TDP11<br>NY07F<br>7<br>11/4/2008                                                                                                                                                                                               | TDP11<br>NY07G<br>9<br>11/4/2008                                                                                                                                                                                        | TDP12<br>NY07H<br>7<br>11/4/2008                                                                                                                                                                                                                                                                | TDP13<br>NY07J<br>7<br>11/4/2008                                                                                                                                                                                                                                                                       | TDP14<br>NY07K<br>4<br>11/4/2008                                                                                                                                                                                                                                                                | TDP15<br>NY07L<br>4<br>11/4/2008                                                                                                                                                                                          | TDP16<br>NY44A<br>3<br>11/5/2008                                                                                                                                                                                                          | TDP17<br>NY44B<br>4<br>11/5/2008                                                                                                                                                                                                | TDP18<br>NY44C<br>4<br>11/5/2008                                                                                                                                                                                                          | TDP19<br>NY44D<br>4<br>11/5/2008                                                                                                                                                                                                 |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7470A (a) Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc                                                                                                                                                                                                                                                                                                                                         | 0.2 U<br>8.8<br>10.8<br>2 U<br>0.04 U                                                                                                                                                                                          | 0.2 U<br>16.5<br>20.2<br>2<br>0.05 U                                                                                                                                                                                           | 0.2<br>13.8<br>21.6<br>7<br>0.05 U                                                                                                                                                                                             | 0.2 U<br>15.1<br>17.7<br>2 U<br>0.05 U                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        | 0.2 U<br><b>20.7</b><br><b>18.9</b><br>2 U<br>0.06 U                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 0.2 U<br>17.1<br>24.8<br>3<br>0.04 U                                                                                                                                                                                    | 0.8<br>20<br>31.3<br>13<br>0.19                                                                                                                                                                                                                                                                 | 0.6 U<br>17<br>97.1<br>6 U<br>0.06 U                                                                                                                                                                                                                                                                   | 0.6<br>24.6<br>36.6<br>18<br>0.13                                                                                                                                                                                                                                                               | 0.2 U<br>17.3<br>25.7<br>3<br>0.06 U                                                                                                                                                                                      | 0.3 U<br>18.1<br>28.8<br>4<br>0.05                                                                                                                                                                                                        | 0.3 U<br>21.3<br>34.3<br>5<br>0.11                                                                                                                                                                                              | 0.6<br>26.1<br>28<br>0.23                                                                                                                                                                                                                 | 0.3 U<br>12.9<br>16.4<br>30<br>0.07                                                                                                                                                                                              |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U                                                                                                                                           | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U                                                                                                                                                      |                                                                                                                                                                                                                                 | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U                                                                                                                                                      |                                                                                                                                                                                                                                  |
| CONVENTIONALS (mg/kg) Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                  |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil                                                                                                                                                                                                                                                                                                                                                                   | 50 U<br>20 U<br>100 U                                                                                                                                                                                                          | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                                     | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                                     | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                | 50 U<br><b>20</b><br>100                                                                                                                                                                                                | 170 U<br>67 U<br><b>330</b>                                                                                                                                                                                                                                                                     | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                                                                                                             | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                                                                                                      | 50 U<br><b>20</b><br>100 U                                                                                                                                                                                                | 50 U<br>20 U<br>100 U                                                                                                                                                                                                                     | 50 U<br>20 U<br>100 U                                                                                                                                                                                                           | 50 U<br>20 U<br>100 U                                                                                                                                                                                                                     | 50 U<br>20 U<br><b>100</b>                                                                                                                                                                                                       |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                | 20<br>130                                                                                                                                                                                                               | 140<br>990                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           | 23<br>110                                                                                                                                                                                                                        |
| VOLATILES (mg/kg) EPA SW8260B/C (a)  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone Benzene Bromodichloromethane Bromomethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chloroethane | 0.0011 U 0.0011 U 0.0021 U 0.0021 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0076 0.0053 U 0.0053 U 0.0053 U 0.0053 U 0.0011 U | 0.0008 U 0.0008 U 0.0016 U 0.0008 U 0.0008 U 0.0008 U 0.0008 U 0.0008 U 0.0041 U 0.0041 U 0.0041 U 0.0044 0.0008 U | 0.0011 U 0.0011 U 0.0023 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0057 U 0.0057 U 0.0057 U 0.0057 U 0.0044 0.0011 U | 0.0006 U 0.0006 U 0.0013 U 0.0006 U 0.0006 U 0.0006 U 0.0006 U 0.0009 U 0.0032 U 0.0032 U 0.0032 U 0.0032 U 0.0006 U | 0.0012 U 0.0012 U 0.0025 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0062 U 0.0062 U 0.0062 U 0.0012 U | 0.0007 U 0.0007 U 0.0001 U 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0007 U 0.0003 U 0.0033 U 0.0033 U 0.0033 U 0.0007 U | 0.0009 U 0.0009 U 0.0018 U 0.0009 U 0.0009 U 0.0009 U 0.0009 U 0.0009 U 0.0044 U 0.0044 U 0.0044 U 0.0097 0.0009 U | 0.0006 U 0.0006 U 0.0013 U 0.0006 U 0.0006 U 0.0006 U 0.0006 U 0.0006 U 0.0032 U 0.0032 U 0.0032 U 0.0032 U 0.0006 U | 0.0012 U 0.0012 U 0.0025 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0062 U 0.0062 U 0.0062 U 0.0062 U 0.0012 U | 0.0011 U 0.0011 U 0.0022 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0079 0.0055 U 0.0055 U 0.0055 U 0.0051 U 0.0011 U | 0.0011 U 0.0011 U 0.0022 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0011 U | 0.0008 U 0.0008 U 0.0016 U 0.0008 U 0.0008 U 0.0008 U 0.0008 U 0.0004 U 0.004 U 0.004 U 0.004 U 0.004 U 0.008 U 0.008 U 0.008 U 0.0008 U | 0.0012 U 0.0012 U 0.0023 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0012 U 0.0058 U 0.0058 U 0.0058 U 0.0058 U 0.0012 U | 0.001 U 0.001 U 0.002 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U | 0.0011 U 0.0011 U 0.0021 U 0.0021 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0053 U 0.0053 U 0.0053 U 0.0053 U 0.0051 U 0.0011 U | 0.001 U 0.001 U 0.002 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0052 0.0049 U 0.0049 U 0.0049 U 0.0013 0.001 U |

|                                                                     |                                        |                      |                      |                         | Earma                | r Washdown Sw        | stem Piping Insid        | a 1/1-01             |                      |                      |                      |                      | Former Week          | hdown System P       | ining and ASTa     | Vest of 14-01           |                     |
|---------------------------------------------------------------------|----------------------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|-------------------------|---------------------|
|                                                                     | Location:                              | TDP5                 | TDP7                 | TDP8                    | TDP9                 |                      | stem Piping insid<br>P10 |                      | P11                  | TDP12                | TDP13                | TDP14                | TDP15                | TDP16                | TDP17              | TDP18                   | TDP19               |
|                                                                     | 200410                                 |                      |                      |                         |                      |                      |                          |                      |                      |                      |                      |                      |                      | 121.10               |                    |                         |                     |
|                                                                     | Sample ID:                             | TDP5                 | TDP7                 | TDP8                    | TDP9                 | TDP10                | TDP10                    | TDP11                | TDP11                | TDP12                | TDP13                | TDP14                | TDP15                | TDP16                | TDP17              | TDP18                   | TDP19               |
|                                                                     | Laboratory ID:                         | NX93E                | NY07B                | NY07C                   | NY07D                | NY07P                | NY07E                    | NY07F                | NY07G                | NY07H                | NY07J                | NY07K                | NY07L                | NY44A                | NY44B              | NY44C                   | NY44D               |
|                                                                     | Sample Depth (ft BGS):<br>Sample Date: | 5<br>11/3/2008       | 8<br>11/4/2008       | 8<br>11/4/2008          | 8<br>11/4/2008       | 7<br>11/4/2008       | 8<br>11/4/2008           | 7<br>11/4/2008       | 9<br>11/4/2008       | 11/4/2008            | 7<br>11/4/2008       | 4<br>11/4/2008       | 4<br>11/4/2008       | 3<br>11/5/2008       | 4<br>11/5/2008     | 4<br>11/5/2008          | 4<br>11/5/2008      |
| 011                                                                 | Campic Date.                           |                      |                      |                         |                      |                      |                          |                      |                      |                      |                      |                      |                      |                      |                    |                         |                     |
| Chloroform<br>Chloromethane                                         |                                        | 0.0011 U<br>0.0011 U | 0.0008 U<br>0.0008 U | 0.0011 U<br>0.0011 U    | 0.0006 U<br>0.0006 U | 0.0012 U<br>0.0012 U | 0.0007 U<br>0.0007 U     | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U | 0.0012 U<br>0.0012 U | 0.0011 U<br>0.0011 U | 0.0011 U<br>0.0011 U | 0.0008 U<br>0.0008 U | 0.0012 U<br>0.0012 U | 0.001 U<br>0.001 U | 0.0011 U<br>0.0011 U    | 0.001 U<br>0.001 U  |
| cis-1,2-Dichloroethene                                              |                                        | 0.0011 U             | 0.0008 U             | 0.0011                  | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| cis-1,3-Dichloropropene                                             |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| Dibromochloromethane                                                |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| Ethylbenzene                                                        |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| m, p-Xylene                                                         |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| Methylene Chloride<br>o-Xylene                                      |                                        | 0.0021 U<br>0.0011 U | 0.0016 U<br>0.0008 U | 0.0023 U<br>0.0011 U    | 0.0013 U<br>0.0006 U | 0.0025 U<br>0.0012 U | 0.0013 U<br>0.0007 U     | 0.0018 U<br>0.0009 U | 0.0013 U<br>0.0006 U | 0.0025 U<br>0.0012 U | 0.0022 U<br>0.0011 U | 0.0022 U<br>0.0011 U | 0.0016 U<br>0.0008 U | 0.0023 U<br>0.0012 U | 0.002 U<br>0.001 U | 0.0021 U<br>0.0011 U    | 0.002 U<br>0.001 U  |
| Styrene                                                             |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| Tetrachloroethene                                                   |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0015               | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| Toluene                                                             |                                        | 0.0011 U             | 0.0008 U             | 0.002                   | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| trans-1,2-Dichloroethene                                            |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| trans-1,3-Dichloropropene                                           |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| Trichloroethene Trichlorofluoromethane                              |                                        | 0.0011 U<br>0.0011 U | 0.0008 U<br>0.0008 U | 0.0011 U<br>0.0011 U    | 0.0006 U<br>0.0006 U | 0.0012 U<br>0.0012 U | 0.0007 U<br>0.0007 U     | 0.0009 U<br>0.0009 U | 0.0006 U<br>0.0006 U | 0.0012 U<br>0.0012 U | 0.0011 U<br>0.0011 U | 0.0011 U<br>0.0011 U | 0.0008 U<br>0.0008 U | 0.0012 U<br>0.0012 U | 0.001 U<br>0.001 U | 0.0011 U<br>0.0011 U    | 0.001 U<br>0.001 U  |
| Vinyl Acetate                                                       |                                        | 0.0011 U             | 0.0008 U<br>0.0041 U | 0.0011 U<br>0.0057 U    | 0.0008 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U<br>0.0044 U | 0.0006 U             | 0.0012 U             | 0.0011 U<br>0.0055 U | 0.0011 U<br>0.0055 U | 0.0008 U<br>0.004 U  | 0.0012 U<br>0.0058 U | 0.001 U            | 0.0011 U<br>0.0053 U    | 0.001 U<br>0.0049 U |
| Vinyl Chloride                                                      |                                        | 0.0011 U             | 0.0008 U             | 0.0011 U                | 0.0006 U             | 0.0012 U             | 0.0007 U                 | 0.0009 U             | 0.0006 U             | 0.0012 U             | 0.0011 U             | 0.0011 U             | 0.0008 U             | 0.0012 U             | 0.001 U            | 0.0011 U                | 0.001 U             |
| OF 1411/OL ATH FO ( /L.)                                            |                                        |                      |                      |                         |                      |                      |                          |                      |                      |                      |                      |                      |                      |                      |                    |                         |                     |
| SEMIVOLATILES (mg/kg)<br>EPA SW8270D (a)                            |                                        |                      |                      |                         |                      |                      |                          |                      |                      |                      |                      |                      |                      |                      |                    |                         |                     |
| 1,2,4-Trichlorobenzene                                              |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 1,2-Dichlorobenzene                                                 |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 1,3-Dichlorobenzene                                                 |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 1,4-Dichlorobenzene                                                 |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 1-Methylnaphthalene                                                 | ۵)                                     |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 2,2'-Oxybis(1-Chloropropan 2,4,5-Trichlorophenol                    | e)                                     |                      | 0.063 U<br>0.310 U   | 0.061 U<br>0.300 U      |                      |                      |                          |                      | 0.060 U<br>0.300 U   |                      |                      |                      |                      | 0.062 U<br>0.310 U   |                    | 0.062 U<br>0.310 U      |                     |
| 2,4,6-Trichlorophenol                                               |                                        |                      | 0.310 U              | 0.300 U                 |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U                 |                     |
| 2,4-Dichlorophenol                                                  |                                        |                      | 0.310 U              | 0.300 U                 |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U                 |                     |
| 2,4-Dimethylphenol                                                  |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 2,4-Dinitrophenol                                                   |                                        |                      | 0.630 U              | 0.610 U                 |                      |                      |                          |                      | 0.600 U              |                      |                      |                      |                      | 0.620 U              |                    | 0.620 U                 |                     |
| 2,4-Dinitrotoluene                                                  |                                        |                      | 0.310 U              | 0.300 U<br>0.300 U      |                      |                      |                          |                      | 0.300 U<br>0.300 U   |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U<br>0.310 U      |                     |
| 2,6-Dinitrotoluene 2-Chloronaphthalene                              |                                        |                      | 0.310 U<br>0.063 U   | 0.300 U<br>0.061 U      |                      |                      |                          |                      | 0.300 U<br>0.060 U   |                      |                      |                      |                      | 0.310 U<br>0.062 U   |                    | 0.310 U<br>0.062 U      |                     |
| 2-Chlorophenol                                                      |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 2-Methylnaphthalene                                                 |                                        |                      | 0.063 U              | 0.064                   |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 2-Methylphenol                                                      |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 2-Nitroaniline                                                      |                                        |                      | 0.310 U              | 0.300 U                 |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U                 |                     |
| 2-Nitrophenol 3.3'-Dichlorobenzidine                                |                                        |                      | 0.063 U<br>0.310 U   | 0.061 U<br>0.300 U      |                      |                      |                          |                      | 0.060 U<br>0.300 U   |                      |                      |                      |                      | 0.062 U<br>0.310 U   |                    | 0.062 U<br>0.310 U      |                     |
| 3,3 -Dichioropenziaine<br>3-Nitroaniline                            |                                        |                      | 0.310 U              | 0.300 U<br>0.300 U      |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U<br>0.310 U   |                    | 0.310 U<br>0.310 U      |                     |
| 4,6-Dinitro-2-Methylphenol                                          |                                        |                      | 0.630 U              | 0.610 U                 |                      |                      |                          |                      | 0.600 U              |                      |                      |                      |                      | 0.620 U              |                    | 0.620 U                 |                     |
| 4-Bromophenyl-phenylether                                           | 1                                      |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| 4-Chloro-3-methylphenol                                             |                                        |                      | 0.310 U              | 0.300 U                 |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U                 |                     |
| 4-Chloroaniline                                                     |                                        |                      | 0.310 U              | 0.300 U                 |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U                 |                     |
| <ul><li>4-Chlorophenyl-phenylether</li><li>4-Methylphenol</li></ul> |                                        |                      | 0.063 U<br>0.063 U   | 0.061 U<br><b>0.170</b> |                      |                      |                          |                      | 0.060 U<br>0.060 U   |                      |                      |                      |                      | 0.062 U<br>0.062 U   |                    | 0.062 U<br>0.062 U      |                     |
| 4-Methylphenol<br>4-Nitroaniline                                    |                                        |                      | 0.063 U<br>0.310 U   | 0.170<br>0.300 U        |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.062 U<br>0.310 U   |                    | 0.062 U<br>0.310 U      |                     |
| 4-Nitrophenol                                                       |                                        |                      | 0.310 U              | 0.300 U                 |                      |                      |                          |                      | 0.300 U              |                      |                      |                      |                      | 0.310 U              |                    | 0.310 U                 |                     |
| Acenaphthene                                                        |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| Acenaphthylene                                                      |                                        |                      | 0.063 U              | 0.071                   |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| Anthracene                                                          |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| Benzo(a)anthracene                                                  |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                              |                                        |                      | 0.063 U<br>0.063 U   | 0.061 U<br>0.061 U      |                      |                      |                          |                      | 0.060 U<br>0.060 U   |                      |                      |                      |                      | 0.062 U<br>0.062 U   |                    | 0.062 U<br><b>0.076</b> |                     |
| Benzo(g,h,i)perylene                                                |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.076<br>0.062 U        |                     |
| Benzo(k)fluoranthene                                                |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| Benzoic Acid                                                        |                                        |                      | 0.630 U              | 0.610 U                 |                      |                      |                          |                      | 0.600 U              |                      |                      |                      |                      | 0.620 U              |                    | 0.620 U                 |                     |
| Benzyl Alcohol                                                      |                                        |                      | 0.063 U              | 0.061 U                 |                      |                      |                          |                      | 0.060 U              |                      |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
| bis(2-Chloroethoxy) Methan                                          | ie                                     |                      | 0.063 U              | 0.061 U                 | I                    |                      |                          |                      | 0.060 U              | 1                    |                      |                      |                      | 0.062 U              |                    | 0.062 U                 |                     |
|                                                                     |                                        |                      |                      |                         |                      |                      |                          |                      |                      |                      |                      |                      |                      |                      |                    |                         |                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                       | Forme                           | er Washdown Sy                   | stem Piping Insid                | de 14-01                         |                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                  |                                  | Former Was                       | hdown System P                                                                                                                                                                                                                                                                                                                                                                                  | iping and ASTs \                 | West of 14-01                                                                                                                                                                                                                                                                                                                                                                |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location:                                                              | TDP5                            | TDP7                                                                                                                                                                                                                                                                 | TDP8                                                                                                                                                                                                                                                                                  | TDP9                            | Τĺ                               | DP10                             | 7                                | TDP11                                                                                                                                                                                                                                                                                                                                                                   | TDP12                            | TDP13                            | TDP14                            | TDP15                            | TDP16                                                                                                                                                                                                                                                                                                                                                                                           | TDP17                            | TDP18                                                                                                                                                                                                                                                                                                                                                                        | TDP19                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date: | TDP5<br>NX93E<br>5<br>11/3/2008 | TDP7<br>NY07B<br>8<br>11/4/2008                                                                                                                                                                                                                                      | TDP8<br>NY07C<br>8<br>11/4/2008                                                                                                                                                                                                                                                       | TDP9<br>NY07D<br>8<br>11/4/2008 | TDP10<br>NY07P<br>7<br>11/4/2008 | TDP10<br>NY07E<br>8<br>11/4/2008 | TDP11<br>NY07F<br>7<br>11/4/2008 | TDP11<br>NY07G<br>9<br>11/4/2008                                                                                                                                                                                                                                                                                                                                        | TDP12<br>NY07H<br>7<br>11/4/2008 | TDP13<br>NY07J<br>7<br>11/4/2008 | TDP14<br>NY07K<br>4<br>11/4/2008 | TDP15<br>NY07L<br>4<br>11/4/2008 | TDP16<br>NY44A<br>3<br>11/5/2008                                                                                                                                                                                                                                                                                                                                                                | TDP17<br>NY44B<br>4<br>11/5/2008 | TDP18<br>NY44C<br>4<br>11/5/2008                                                                                                                                                                                                                                                                                                                                             | TDP19<br>NY44D<br>4<br>11/5/2008 |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Dimethylphthalate Din-n-Butylphthalate Di-n-Butylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitroso-Di-N-Propylamine N-Nitroso-Di-N-Propylamine Pentachlorophenol Phenanthrene |                                                                        |                                 | 0.063 U<br>0.063 U | 0.061 U 0.300 U 0.061 U 0.300 U 0.160 |                                 |                                  |                                  |                                  | 0.060 U |                                  |                                  |                                  |                                  | 0.062 U |                                  | 0.062 U 0.110 0.062 U 0.310 U 0.0120 |                                  |
| Phenol<br>Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                 | 0.063 U<br>0.063 U                                                                                                                                                                                                                                                   | 0.061 U<br><b>0.110</b>                                                                                                                                                                                                                                                               |                                 |                                  |                                  |                                  | 60 U<br>60 U                                                                                                                                                                                                                                                                                                                                                            |                                  |                                  |                                  |                                  | 0.062 U<br>0.062 U                                                                                                                                                                                                                                                                                                                                                                              |                                  | 0.062 U<br><b>0.120</b>                                                                                                                                                                                                                                                                                                                                                      |                                  |

#### Page 10 of 12

| ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Substation (B                                                                        | uilding 14-22)                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDP20                                                                                | TDP21                                                                                |
| Sample ID:<br>Laboratory ID:<br>Sample Depth (ft BGS):<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                             | TDP20<br>NY44E<br>3<br>11/5/2008                                                     | TDP21<br>NY44F<br>3<br>11/5/2008                                                     |
| TOTAL METALS (mg/kg) EPA 200.8/SW6010B/SW7470A (a) Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc                                                                                                                                                                                                                                                                                                                                                         | 0.3 U<br>14.5<br>3<br>0.05 U                                                         | 0.3<br>15.1<br>13.3<br>2 U<br>0.05 U                                                 |
| PCBs (mg/kg) EPA SW8082 (a) Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                                                  | 0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U<br>0.032 U | 0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U<br>0.031 U |
| CONVENTIONALS (mg/kg) Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                                                                                      |
| PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  NWTPH-Dx Diesel Range Organics Lube Oil                                                                                                                                                                                                                                                                                                                                          | 50 U<br>20 U<br>100 U                                                                | 50 U<br>20 U<br>100 U                                                                |
| VOLATILES (mg/kg) EPA SW8260B/C (a) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropthane 1,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane |                                                                                      |                                                                                      |

|                                              |                                        | Substation (B  |                |
|----------------------------------------------|----------------------------------------|----------------|----------------|
|                                              | Location:                              | TDP20          | TDP21          |
|                                              | Sample ID:<br>Laboratory ID:           | TDP20<br>NY44E | TDP21<br>NY44F |
|                                              | Sample Depth (ft BGS):<br>Sample Date: | 3<br>11/5/2008 | 3<br>11/5/2008 |
| Chloroform                                   |                                        |                |                |
| Chloromethane                                |                                        |                |                |
| cis-1,2-Dichloroethene                       |                                        |                |                |
| cis-1,3-Dichloropropene                      |                                        |                |                |
| Dibromochloromethane<br>Ethylbenzene         |                                        |                |                |
| m, p-Xylene                                  |                                        |                |                |
| Methylene Chloride                           |                                        |                |                |
| o-Xylene                                     |                                        |                |                |
| Styrene                                      |                                        |                |                |
| Tetrachloroethene Toluene                    |                                        |                |                |
| trans-1,2-Dichloroethene                     |                                        |                |                |
| trans-1,3-Dichloropropene                    |                                        |                |                |
| Trichloroethene                              |                                        |                |                |
| Trichlorofluoromethane                       |                                        |                |                |
| Vinyl Acetate                                |                                        |                |                |
| Vinyl Chloride                               |                                        |                |                |
| SEMIVOLATILES (mg/kg)                        |                                        |                |                |
| EPA SW8270D (a)                              |                                        |                |                |
| 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene   |                                        |                |                |
| 1,3-Dichlorobenzene                          |                                        |                |                |
| 1,4-Dichlorobenzene                          |                                        |                |                |
| 1-Methylnaphthalene                          |                                        |                |                |
| 2,2'-Oxybis(1-Chloropropane)                 |                                        |                |                |
| 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol  |                                        |                |                |
| 2,4-Dichlorophenol                           |                                        |                |                |
| 2,4-Dimethylphenol                           |                                        |                |                |
| 2,4-Dinitrophenol                            |                                        |                |                |
| 2,4-Dinitrotoluene                           |                                        |                |                |
| 2,6-Dinitrotoluene 2-Chloronaphthalene       |                                        |                |                |
| 2-Chlorophenol                               |                                        |                |                |
| 2-Methylnaphthalene                          |                                        |                |                |
| 2-Methylphenol                               |                                        |                |                |
| 2-Nitroaniline<br>2-Nitrophenol              |                                        |                |                |
| 3,3'-Dichlorobenzidine                       |                                        |                |                |
| 3-Nitroaniline                               |                                        |                |                |
| 4,6-Dinitro-2-Methylphenol                   |                                        |                |                |
| 4-Bromophenyl-phenylether                    |                                        |                |                |
| 4-Chloro-3-methylphenol 4-Chloroaniline      |                                        |                |                |
| 4-Chlorophenyl-phenylether                   |                                        |                |                |
| 4-Methylphenol                               |                                        |                |                |
| 4-Nitroaniline                               |                                        |                |                |
| 4-Nitrophenol                                |                                        |                |                |
| Acenaphthene Acenaphthylene                  |                                        |                |                |
| Anthracene                                   |                                        |                |                |
| Benzo(a)anthracene                           |                                        |                |                |
| Benzo(a)pyrene                               |                                        |                |                |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene |                                        |                |                |
| Benzo(g,n,i)perylene<br>Benzo(k)fluoranthene |                                        |                |                |
| Benzoic Acid                                 |                                        |                |                |
| Benzyl Alcohol                               |                                        |                |                |
| bis(2-Chloroethoxy) Methane                  |                                        |                |                |

|                            |                        | Substation (B | uilding 14-22) |
|----------------------------|------------------------|---------------|----------------|
|                            | Location:              | TDP20         | TDP21          |
|                            | 2004                   |               |                |
|                            | Sample ID:             | TDP20         | TDP21          |
|                            | Laboratory ID:         | NY44E         | NY44F          |
|                            | Sample Depth (ft BGS): | 3             | 3              |
|                            | Sample Date:           | 11/5/2008     | 11/5/2008      |
| Bis-(2-Chloroethyl) Ether  |                        |               | _              |
| bis(2-Ethylhexyl)phthalate |                        |               |                |
| Butylbenzylphthalate       |                        |               |                |
| Carbazole                  |                        |               |                |
| Chrysene                   |                        |               |                |
| Dibenz(a,h)anthracene      |                        |               |                |
| Dibenzofuran               |                        |               |                |
| Diethylphthalate           |                        |               |                |
| Dimethylphthalate          |                        |               |                |
| Di-n-Butylphthalate        |                        |               |                |
| Di-n-Octyl phthalate       |                        |               |                |
| Fluoranthene               |                        |               |                |
| Fluorene                   |                        |               |                |
| Hexachlorobenzene          |                        |               |                |
| Hexachlorobutadiene        |                        |               |                |
| Hexachlorocyclopentadiene  |                        |               |                |
| Hexachloroethane           |                        |               |                |
| Indeno(1,2,3-cd)pyrene     |                        |               |                |
| Isophorone                 |                        |               |                |
| Naphthalene                |                        |               |                |
| Nitrobenzene               |                        |               |                |
| N-Nitroso-Di-N-Propylamine |                        |               |                |
| N-Nitrosodiphenylamine     |                        |               |                |
| Pentachlorophenol          |                        |               |                |
| Phenanthrene               |                        |               |                |
| Phenol                     |                        |               |                |
| Pyrene                     |                        |               |                |

U = Indicates the compound was undetected at the reported concentration

Bold = Detected compound.

(a) = Analytical method was not always listed with historical sample results

Note: Results listed account for all historical analyses completed in site area as discussed in report text

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

#### **Previous Groundwater Sample Results**

| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |                                          |                                       |          | B-12      |          |          |                                                                               |                         | I                                      | I-1                   |                                      | ı                                    | I-2                               |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|---------------------------------------|----------|-----------|----------|----------|-------------------------------------------------------------------------------|-------------------------|----------------------------------------|-----------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B-12                                                      | B-12                                     | B-12                                  | B-12     | B-12      | B-12     | B-12     | B-12                                                                          | Dup of B-12<br>B-12-Dup | I-1                                    | Dup of I-1<br>I-1-Dup | I-1                                  | I-2                                  | I-2                               | Dup of I-2<br>I-2-Dup               |
| Laboratory ID:<br>Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           | 10/1/1983                                | 12/1/1983                             | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988                                                                      | 2/1/1988                | 10/1/1983                              | 10/1/1983             | 12/1/1983                            | 10/1/1983                            | 12/1/1983                         | 12/1/1983                           |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium Chromium Iron Lead Mercury Selenium Silver Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19<br>260<br>250 U<br>0.4<br>20<br>1<br>0.2 U<br>3<br>1.9 |                                          |                                       | 620      | 1200      | 1000     | 640      |                                                                               |                         |                                        |                       |                                      |                                      |                                   |                                     |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Zinc  PETROLEUM HYDROCARBONS (ug/L) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs  VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Trichloropene 1,2,3-Trichlorobenzene |                                                           | 360<br>5 U<br>700<br>1 U<br>60<br>14,000 | 340<br>8 U<br>470<br>5 U<br>40<br>800 | 310      | 22        | 510      | 270      | 500<br>2<br>500<br>1 U<br>0.1 U<br>25<br>9090<br>110<br>ND<br>15<br>13<br>2 J |                         | 270<br>5 U<br>49<br>1 U<br>10 U<br>270 | 235 4.3 62 3 5 333    | 310<br>8 U<br>27<br>5 U<br>10<br>520 | 9200<br>10<br>16<br>1 U<br>30<br>800 | 4400<br>8 U<br>8 5 U<br>20<br>180 | 3000<br>10.9<br>8<br>4<br>44<br>505 |

|                                              | Location:                    |          |           |           |          | B-12      |          |          |                         |              | <u>L</u>  | I-1        |           | 1         | I-2       |            |
|----------------------------------------------|------------------------------|----------|-----------|-----------|----------|-----------|----------|----------|-------------------------|--------------|-----------|------------|-----------|-----------|-----------|------------|
|                                              |                              | D 12     | D 10      | B-12      | B-12     |           | D 10     | B-12     | D 10                    | Dup of B-12  | 1.1       | Dup of I-1 | 1.4       | 1.0       | I-2       | Dup of I-2 |
|                                              | Sample ID:<br>Laboratory ID: | B-12     | B-12      |           |          | B-12      | B-12     |          | B-12                    | B-12-Dup     | I-1       | I-1-Dup    | I-1       | I-2       |           | I-2-Dup    |
|                                              | Sample Date:                 | 8/1/1983 | 10/1/1983 | 12/1/1983 | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988                | 2/1/1988     | 10/1/1983 | 10/1/1983  | 12/1/1983 | 10/1/1983 | 12/1/1983 | 12/1/1983  |
| 1,2-Dichlorobenzene                          |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 1,2-Dichloroethane 1,2-Dichloropropane       |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 1,3,5-Trimethylbenzene                       |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 1,3-Dichlorobenzene                          |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 1,3-Dichloropropane                          |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 1,4-Dichlorobenzene                          |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 2,2-Dichloropropane 2-Butanone               |                              |          |           |           |          |           |          |          | 21                      | ND           |           |            |           |           |           |            |
| 2-Chloroethylvinylether                      |                              |          |           |           |          |           |          |          | 21                      | ND           |           |            |           |           |           |            |
| 2-Chlorotoluene                              |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 2-Hexanone                                   |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 4-Chlorotoluene                              |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 4-Isopropyltoluene                           |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| 4-Methyl-2-Pentanone (MIBK) Acetone          |                              |          |           |           |          |           |          |          | <b>9</b> J              | ND           |           |            |           |           |           |            |
| Acrolein                                     |                              |          |           |           |          |           |          |          | 3 0                     | ND           |           |            |           |           |           |            |
| Acrylonitrile                                |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Benzene                                      |                              |          |           |           |          |           |          |          | <b>0.9</b> M            | <b>1</b> M   |           |            |           |           |           |            |
| Bromobenzene<br>Bromochloromethane           |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Bromodichloromethane                         |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Bromoethane                                  |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Bromoform                                    |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Bromomethane                                 |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Carbon Disulfide                             |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Carbon Tetrachloride<br>Chlorobenzene        |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Chloroethane                                 |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Chloroform                                   |                              |          |           |           |          |           |          |          | ND                      | ND           |           |            |           |           |           |            |
| Chloromethane                                |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| cis-1,2-Dichloroethene                       |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| cis-1,3-Dichloropropene Dibromochloromethane |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Dibromomethane                               |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Ethylbenzene                                 |                              |          |           |           |          |           |          |          | ND                      | <b>0.8</b> J |           |            |           |           |           |            |
| Ethylene Dibromide                           |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Hexachlorobutadiene                          |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Isopropylbenzene<br>m, p-Xylene              |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Methyl Iodide                                |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Methylene Chloride                           |                              |          |           |           |          |           |          |          | <b>6</b> B              | <b>9</b> B   |           |            |           |           |           |            |
| Naphthalene                                  |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| n-Butylbenzene                               |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| n-Propylbenzene<br>o-Xylene                  |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| sec-Butylbenzene                             |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Styrene                                      |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| tert-Butylbenzene                            |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Tetrachloroethene                            |                              |          |           |           |          |           |          |          | <b>41</b><br><b>1</b> J | 38           |           |            |           |           |           |            |
| Toluene trans-1,2-Dichloroethene             |                              |          |           |           |          |           |          |          | 1 J                     | <b>2</b> J   |           |            |           |           |           |            |
| trans-1,3-Dichloropropene                    |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| trans-1,4-Dichloro-2-butene                  |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Total Xylenes                                |                              |          |           |           |          |           |          |          | 320                     | 370          |           |            |           |           |           |            |
| Trichloroethene                              |                              |          |           |           |          |           |          |          | 18                      | 18           |           |            |           |           |           |            |
| Trichlorofluoromethane<br>Vinyl Acetate      |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
| Vinyl Acetate Vinyl Chloride                 |                              |          |           |           |          |           |          |          | ND                      | ND           |           |            |           |           |           |            |
| <b>,</b>                                     |                              |          |           |           |          |           |          |          |                         |              |           |            |           |           |           |            |
|                                              |                              |          |           |           |          |           |          |          |                         |              | -         |            |           |           |           |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location:      |          |           |           |          | B-12      |          |          |          |                         | <u> </u>  | I-1                   |           |           | I-2       |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-----------|-----------|----------|-----------|----------|----------|----------|-------------------------|-----------|-----------------------|-----------|-----------|-----------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID:     | B-12     | B-12      | B-12      | B-12     | B-12      | B-12     | B-12     | B-12     | Dup of B-12<br>B-12-Dup | I-1       | Dup of I-1<br>I-1-Dup | I-1       | I-2       | I-2       | Dup of I-2<br>I-2-Dup |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory ID: | 8/1/1983 | 10/1/1983 | 12/1/1983 | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988                | 10/1/1983 | 10/1/1983             | 12/1/1983 | 10/1/1983 | 12/1/1983 | 12/1/1983             |
| SEMIVOLATILES (ug/L) EPA SW8270D (b) 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline 4-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Spenson 4-Methylphenol 4-Nitroaniline 4-Chloroaniline 6-Chloroethylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 5-Chloroethylphenol 4-Nitroaniline 6-Diphenylphenol 4-Nitroaniline 6-Diphenylphenol 6-Di |                |          |           |           |          |           |          |          |          |                         |           |                       |           |           |           |                       |

|                                                                                                                                                                                                                                                    | Location:                                    |                   |                   |                   |                  | B-12              |                  |                  |                  |                                     |                  | I-1                                |                  | [                | I-2              |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|------------------|------------------|-------------------------------------|------------------|------------------------------------|------------------|------------------|------------------|------------------------------------|
|                                                                                                                                                                                                                                                    | Sample ID:<br>Laboratory ID:<br>Sample Date: |                   | B-12<br>10/1/1983 | B-12<br>12/1/1983 | B-12<br>6/1/1985 | B-12<br>12/1/1985 | B-12<br>7/1/1986 | B-12<br>1/1/1987 | B-12<br>2/1/1988 | Dup of B-12<br>B-12-Dup<br>2/1/1988 | I-1<br>10/1/1983 | Dup of I-1<br>I-1-Dup<br>10/1/1983 | I-1<br>12/1/1983 | I-2<br>10/1/1983 | I-2<br>12/1/1983 | Dup of I-2<br>I-2-Dup<br>12/1/1983 |
| N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene  PAHS (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene TEQ |                                              | 25                |                   |                   |                  |                   |                  |                  |                  |                                     |                  |                                    |                  |                  |                  |                                    |
| CONVENTIONALS (ug/L) Total Cyanide Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 Ferrous Iron (SM3500FeD)                                                                                                                                | (b))                                         | 3 U<br><b>240</b> |                   |                   |                  |                   |                  |                  |                  |                                     |                  |                                    |                  |                  |                  |                                    |

| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                             |                 | I-3              |          |                       | Ī                                    | I-4                                                  |                                              | Ĺ                                          | I-5                                          |     |          | I-8                   |                      | I-008i                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|-----------------|------------------|----------|-----------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|-----|----------|-----------------------|----------------------|-------------------------------------|
| Company   Comp   | Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I-3                                 | I-3                         | I-3             | I-3              | I-3      | I-3                   | 1-4                                  |                                                      | 1-4                                          | I-5                                        | I-5                                          | I-8 | I-8      | I-8                   | I-8                  | I-008i                              |
| TOTAL METALS (ugs) PR 2008/SW090RW47470A (b) Animory Animory Animory Animory Animory Animory Cicromium Cicromium Cicromium Cicromium Disol. VED METALS (ugs). Selevium Seleviu | Laboratory ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                             |                 |                  |          | 1/1/1987              |                                      |                                                      | 12/1/1983                                    | 10/1/1983                                  |                                              |     |          |                       |                      |                                     |
| Aroclor 1248 Aroclor 1250 Total PCBs  VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample ID: Laboratory ID: Sample Date:  TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium Chromium Iron Lead Mercury Selenium Silver Zinc  DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Zinc  PETROLEUM HYDROCARBONS (ug/L) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  PCBs (ug/L) EPA SW8082 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1256 Total PCBs  VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane | 10/1/1983<br>5 U<br>5 U<br>4<br>1 U | 12/1/1983  10 U  10 4 U 5 U | I-3<br>6/1/1985 | I-3<br>12/1/1985 | 7/1/1986 | 1/1/1987<br><b>27</b> | 10/1/1983<br>41<br>5 U<br>4 U<br>1 U | Dup of I-4<br>I-4-Dup<br>10/1/1983<br>49<br>4.1<br>3 | 12/1/1983<br>42<br>8 U<br>4 U<br>5 U<br>10 U | I-5<br>10/1/1983<br>360<br>5 U<br>4<br>1 U | I-5<br>12/1/1983<br>590<br>8 U<br>4 U<br>5 U | 210 | 7/1/1986 | I-8<br>1/1/1987<br>50 | 2/1/1988<br>40<br>ND | I-008i 2/1/1988  14  1 U 6  1 U 1 U |

|                                                                                                                                                                              | Location:                      |           |           |          | I-3       |          |          |           | I-4                   |           |           | I-5       | 1         |          | I-8      |               | I-008i   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-----------|----------|-----------|----------|----------|-----------|-----------------------|-----------|-----------|-----------|-----------|----------|----------|---------------|----------|
|                                                                                                                                                                              | Sample ID:                     | I-3       | I-3       | I-3      | I-3       | I-3      | I-3      | I-4       | Dup of I-4<br>I-4-Dup | I-4       | I-5       | I-5       | I-8       | I-8      | I-8      | I-8           | I-008i   |
|                                                                                                                                                                              | Laboratory ID:<br>Sample Date: | 10/1/1983 | 12/1/1983 | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 10/1/1983 | 10/1/1983             | 12/1/1983 | 10/1/1983 | 12/1/1983 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988      | 2/1/1988 |
| 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND            |          |
| 2-Chloroethylvinylether 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-Pentanone (MIBK) Acetone                                                    |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND            |          |
| Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane                                                                                          |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND            |          |
| Bromoethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene                                                                                       |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          |               |          |
| Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane                                                                    |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND            |          |
| Dibromomethane Ethylbenzene Ethylene Dibromide Hexachlorobutadiene Isopropylbenzene m, p-Xylene                                                                              |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND            |          |
| Methyl Iodide Methylene Chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene                                                                |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | <b>0.5</b> BJ |          |
| tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene                                                   |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND<br>ND      |          |
| Total Xylenes Trichloroethene Trichlorofluoromethane Vinyl Acetate                                                                                                           |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND<br>ND      |          |
| Vinyl Chloride                                                                                                                                                               |                                |           |           |          |           |          |          |           |                       |           |           |           |           |          |          | ND            |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location:                      |     |           |          | I-3       |          |          |           | I-4                   |           |           | I-5       |           |          | I-8      |          | I-008i   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|-----------|----------|-----------|----------|----------|-----------|-----------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID:                     | I-3 | I-3       | I-3      | I-3       | I-3      | I-3      | I-4       | Dup of I-4<br>I-4-Dup | I-4       | I-5       | I-5       | I-8       | I-8      | I-8      | I-8      | I-008i   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Laboratory ID:<br>Sample Date: |     | 12/1/1983 | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 10/1/1983 | 10/1/1983             | 12/1/1983 | 10/1/1983 | 12/1/1983 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 |
| SEMIVOLATILES (ug/L) EPA SW8270D (b)  1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Nitroanphthalene 2-Chlorophenol 2-Nitroaniline 2-Nitroaniline 3-Nitroaniline 4-Chloro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chloroaniline 4-Chlorophenol 4-Nitroaniline 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(c) Acid Benzyl Alcohol bis(2-Chloroethoxy) Methane Bis-(2-Chloroethoxy) Methane |                                |     |           |          |           |          |          |           |                       |           |           |           |           |          |          |          |          |

|                                                                                                                                                                   | Location:                                    |                  |                 | I-3              |                 |                 |                  | I-4                                |                  |                  | I-5              |                  |                 | I-8             |                 | I-008i             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-----------------|------------------|-----------------|-----------------|------------------|------------------------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|--------------------|
|                                                                                                                                                                   | Sample ID:<br>Laboratory ID:<br>Sample Date: | I-3<br>12/1/1983 | I-3<br>6/1/1985 | I-3<br>12/1/1985 | I-3<br>7/1/1986 | I-3<br>1/1/1987 | I-4<br>10/1/1983 | Dup of I-4<br>I-4-Dup<br>10/1/1983 | I-4<br>12/1/1983 | I-5<br>10/1/1983 | I-5<br>12/1/1983 | I-8<br>12/1/1985 | I-8<br>7/1/1986 | I-8<br>1/1/1987 | I-8<br>2/1/1988 | I-008i<br>2/1/1988 |
| N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene                                                                    |                                              |                  |                 |                  |                 |                 |                  |                                    |                  |                  |                  |                  |                 |                 |                 |                    |
| PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene TEQ |                                              |                  |                 |                  |                 |                 |                  |                                    |                  |                  |                  |                  |                 |                 |                 |                    |
| CONVENTIONALS (ug/L) Total Cyanide Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 Ferrous Iron (SM3500FeD)                                               | (b))                                         |                  |                 |                  |                 |                 |                  |                                    |                  |                  |                  |                  |                 |                 |                 |                    |

|                                                                                                                                                                                                                                                                                                                                                                  |                              |           |          |          |          |          |           |           | ,,       |           |           |           |           |           |           |           |           |          |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                  | Location:                    |           |          |          |          |          |           |           |          | 1         | I-104     |           |           |           |           |           |           |          |            |
|                                                                                                                                                                                                                                                                                                                                                                  | Sample ID:<br>Laboratory ID: | I-104     | I-104    | I-104    | I-104    | I-104s   | I-104s    | I-104s    | I-104s   | I-104s    | I-104      I-104      |
|                                                                                                                                                                                                                                                                                                                                                                  | Sample Date:                 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992  |
| TOTAL METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (b                                                                                                                                                                                                                                                                                                              | )                            |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Antimony<br>Arsenic                                                                                                                                                                                                                                                                                                                                              |                              | 18        | 5 U      | 6        |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Barium                                                                                                                                                                                                                                                                                                                                                           |                              |           | 3.0      | v        |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                              |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Iron                                                                                                                                                                                                                                                                                                                                                             |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Lead<br>Mercury                                                                                                                                                                                                                                                                                                                                                  |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Selenium                                                                                                                                                                                                                                                                                                                                                         |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Silver                                                                                                                                                                                                                                                                                                                                                           |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Zinc                                                                                                                                                                                                                                                                                                                                                             |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (b                                                                                                                                                                                                                                                                                                          | )                            |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Antimony<br>Arsenic                                                                                                                                                                                                                                                                                                                                              |                              | 5         | 5U       | 5U       | 12       | 12       | 25        | 17        | 19       | 17        | 12        | 15        | 15        | 29        | 2 U       | 10        | 10        | 9        | <b>8</b> J |
| Barium                                                                                                                                                                                                                                                                                                                                                           |                              |           | 30       | 30       | 12       | 12       | 25        | .,,       | 19       | 17        | 12        | 13        | 13        | 23        | 2 0       | 10        | 10        | 9        | 8 3        |
| Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                              |                              |           |          |          |          | 2        |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Copper                                                                                                                                                                                                                                                                                                                                                           |                              |           |          |          |          | 2<br>3   |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Iron                                                                                                                                                                                                                                                                                                                                                             |                              |           |          |          |          | 4.11     |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Lead<br>Manganese                                                                                                                                                                                                                                                                                                                                                |                              |           |          |          |          | 1 U      |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Mercury                                                                                                                                                                                                                                                                                                                                                          |                              |           |          |          |          | 4.11     |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Nickel<br>Selenium                                                                                                                                                                                                                                                                                                                                               |                              |           |          |          |          | 1 U      |           |           |          |           |           |           |           |           |           |           |           |          |            |
| Zinc                                                                                                                                                                                                                                                                                                                                                             |                              |           |          |          |          | 2 U      |           |           |          |           |           |           |           |           |           |           |           |          |            |
| PETROLEUM HYDROCARBONS (<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                                                                                                                                                                                           | (ug/L)                       |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                     |                              |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |
| VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene (total) 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene | Э                            |           |          |          |          |          |           |           |          |           |           |           |           |           |           |           |           |          |            |

1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location                                  | :l      |                   |                   |                   |                    |                     |                     |                    |                     | -104               |                    |                    |                    |                    |                    |                    |                   |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|-------------------|-------------------|-------------------|--------------------|---------------------|---------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample ID<br>Laboratory ID<br>Sample Date | : I-104 | I-104<br>7/1/1986 | I-104<br>1/1/1987 | I-104<br>2/1/1988 | I-104s<br>2/1/1988 | I-104s<br>3/21/1991 | I-104s<br>3/28/1991 | I-104s<br>4/4/1991 | I-104s<br>4/11/1991 | I-104<br>9/12/1991 | I-104<br>9/19/1991 | I-104<br>9/26/1991 | I-104<br>10/3/1991 | I-104<br>4/16/1992 | I-104<br>4/23/1992 | I-104<br>4/30/1992 | I-104<br>5/7/1992 | I-104<br>9/24/1992 |
| 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Methyl-2-Pentanone (MIBK) Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Bibromomethane Ethylbenzene Ethylene Dibromide Hexachlorobutadiene Isopropylbenzene n, p-Xylene Methyl Iodide Methylene Chloride Naphthalene n-Butylbenzene n-Propylbenzene n-Propylbenzene sec-Butylbenzene tetras-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Toluene sec-Butylbenzene Tetrachloroethene Toluene Tetrachloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane Vinyl Acetate Vinyl Chloride |                                           |         |                   |                   |                   |                    |                     |                     |                    |                     |                    |                    |                    |                    |                    |                    |                    |                   |                    |

| Location:                      |           |          |          |          |          |           |           |          |           | l-104     |           |           |           |           |           |           |          |           |
|--------------------------------|-----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| Sample ID:                     | I-104     | I-104    | I-104    | I-104    | I-104s   | I-104s    | I-104s    | I-104s   | I-104s    | I-104      I-104     |
| Laboratory ID:<br>Sample Date: | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 |

#### SEMIVOLATILES (ug/L)

- EPA SW8270D (b) 1,2,4-Trichlorobenzene
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene
- 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane)
- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol 2,4-Dimethylphenol
- 2,4-Dinitrophenol 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Chloronaphthalene
- 2-Chlorophenol 2-Methylnaphthalene
- 2-Methylphenol
- 2-Nitroaniline
- 2-Nitrophenol 3,3'-Dichlorobenzidine
- 3-Nitroaniline 4,6-Dinitro-2-Methylphenol
- 4-Bromophenyl-phenylether
- 4-Chloro-3-methylphenol 4-Chloroaniline
- 4-Chlorophenyl-phenylether 4-Methylphenol
- 4-Nitroaniline
- 4-Nitrophenol
- Acenaphthene Acenaphthylene
- Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Benzoic Acid

Benzyl Alcohol

bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether

bis(2-Ethylhexyl)phthalate

Butylbenzylphthalate

Carbazole Chrysene

Dibenz(a,h)anthracene

Dibenzofuran Diethylphthalate

Dimethylphthalate Di-n-Butylphthalate

Di-n-Octyl phthalate

Fluoranthene

Fluorene Hexachlorobenzene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane

Indeno(1,2,3-cd)pyrene

Isophorone

Naphthalene Nitrobenzene

| Location:                   |           |          |          |          |          |           |           |          |           | I-104     |           |           |           |           |           |           |          |           |
|-----------------------------|-----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| Sample ID:<br>Laboratory ID | I-104     | I-104    | I-104    | I-104    | I-104s   | I-104s    | I-104s    | I-104s   | I-104s    | I-104      I-104     |
| Sample Date:                | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 |

N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene

PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene

CONVENTIONALS (ug/L)
Total Cyanide
Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 (b)) Ferrous Iron (SM3500FeD)

|                                                                                                                                                                                                                                                                                                                                                                          | Location                                  | v.I            |                    |                     |                   |                    |                    |                    |                     | I-104               |                     |                    |                    |                    |                    |                   |                     |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|--------------------|---------------------|-------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|-------------------|---------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                          | Sample IE<br>Laboratory IE<br>Sample Date | ): I-104<br>): | I-104<br>10/8/1992 | I-104<br>10/15/1992 | I-104<br>4/8/1993 | I-104<br>4/15/1993 | I-104<br>4/22/1993 | I-104<br>4/29/1993 | I-104<br>10/15/1993 | I-104<br>10/22/1993 | I-104<br>10/29/1993 | I-104<br>11/5/1993 | I-104<br>4/14/1994 | I-104<br>4/21/1994 | I-104<br>4/28/1994 | I-104<br>5/5/1994 | I-104<br>12/28/1995 | I-104s<br>12/28/1995 |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (I Antimony Arsenic Barium Cadmium Chromium Iron Lead Mercury Selenium Silver Zinc                                                                                                                                                                                                                                         | ·                                         |                |                    |                     |                   |                    |                    |                    |                     |                     |                     |                    |                    |                    |                    |                   | 360                 | 360                  |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (I Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Zinc                                                                                                                                                                                                                    | <b>b</b> )                                | 6              | 7                  | 5                   | 10                | 8                  | 11                 | 7                  | 14                  | 16                  | 17                  | 15                 | 35                 | 38                 | 30                 | 40                | 380                 | 380                  |
| PETROLEUM HYDROCARBONS NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                   | (ug/L)                                    |                |                    |                     |                   |                    |                    |                    |                     |                     |                     |                    |                    |                    |                    |                   |                     |                      |
| VOLATILES (ug/L) EPA SW8260B (b)  1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane | ne                                        |                |                    |                     |                   |                    |                    |                    |                     |                     |                     |                    |                    |                    |                    |                   |                     |                      |

| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                     |                   |                    |                    |                    |                     | I-104               |                     |                    |                    |                    |                    |                   |                     |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|-------------------|---------------------|---------------------|
| Sample ID<br>Laboratory ID<br>Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I-104<br>10/8/1992 | I-104<br>10/15/1992 | I-104<br>4/8/1993 | I-104<br>4/15/1993 | I-104<br>4/22/1993 | I-104<br>4/29/1993 | I-104<br>10/15/1993 | I-104<br>10/22/1993 | I-104<br>10/29/1993 | I-104<br>11/5/1993 | I-104<br>4/14/1994 | I-104<br>4/21/1994 | I-104<br>4/28/1994 | I-104<br>5/5/1994 | I-104<br>12/28/1995 | I-104s<br>12/28/199 |
| 2-Dichlorobenzene 2-Dichloropethane 2-Dichloropropane 3,5-Trimethylbenzene 3-Dichloropropane 3-Dichloropropane 4-Dichloropropane 4-Dichloropropane Butanone -Chloroethylvinylether -Chlorotoluene -Hexanone -Chlorotoluene -Isopropyltoluene -Methyl-2-Pentanone (MIBK) cetone crolein crylonitrile enzene romochloromethane romochloromethane romodichloromethane romoethane arbon Disulfide arbon Tetrachloride hloroform hloromethane s-1,2-Dichloropene ibromochloromethane ibromomethane thylbenzene thylene Dibromide exachlorobutadiene opropylbenzene t,p-Xylene lethyl lodide lethylene Chloride |                    |                     |                   |                    |                    |                    |                     |                     |                     |                    |                    |                    |                    |                   |                     |                     |

n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Toluene

Total Xylenes
Trichloroethene
Trichlorofluoromethane

Vinyl Acetate Vinyl Chloride

trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

| Location                    |           |            |          |           |           |           |            | I-104      |            |           |           |           |           |          |            |            |
|-----------------------------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|------------|
| Sample ID:<br>Laboratory ID | I-104     | I-104      | I-104    | I-104     | I-104     | I-104     | I-104      | I-104      | I-104      | I-104     | I-104     | I-104     | I-104     | I-104    | I-104      | I-104s     |
| Sample Date:                | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 12/28/1995 |

#### SEMIVOLATILES (ug/L) EPA SW8270D (b) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Benzyl Alcohol bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate

Dimethylphthalate
Di-n-Butylphthalate
Di-n-Octyl phthalate
Fluoranthene
Fluorene
Hexachlorobenzene
Hexachlorobutadiene
Hexachlorocyclopentadiene
Hexachloroethane
Indeno(1,2,3-cd)pyrene

Isophorone Naphthalene Nitrobenzene

| Location                    |           |            |          |           |           |           |            | I-104      |            |           |           |           |           |          |            |            |
|-----------------------------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|------------|
| Sample ID:<br>Laboratory ID | I-104     | I-104      | I-104    | I-104     | I-104     | I-104     | I-104      | I-104      | I-104      | I-104     | I-104     | I-104     | I-104     | I-104    | I-104      | I-104s     |
| Sample Date:                | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 12/28/1995 |

N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene

#### PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene

Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene

CONVENTIONALS (ug/L)
Total Cyanide
Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 (b)) Ferrous Iron (SM3500FeD)

| Location:                                                                                                                                                                |           |           |           |           | I-104      |                          |                                                    |                                                    |                          | <u> </u>      |          | I-105        |          |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|------------|--------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------|---------------|----------|--------------|----------|------------------------------------------|
| Sample ID:                                                                                                                                                               | I-104     | I-104s    | I-104     | I-104     | I-104      | I-104                    | I-104                                              | Dup of I-104<br>I-1044                             | I-104                    | I-105         | I-105    | I-105        | I-105    | I-105s                                   |
| Laboratory ID:<br>Sample Date:                                                                                                                                           | 4/19/1996 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | NB06A/NB06H<br>6/16/2008 | OK85B<br>2/2/2009                                  | OK85D<br>2/2/2009                                  | PC88B/PC88I<br>6/16/2009 | 12/1/1985     | 7/1/1986 | 8/1/1986     | 1/1/1987 | 2/1/1988                                 |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium                                                                                        | 330       | 330       |           | 1600      | 810        |                          |                                                    |                                                    |                          | 2400          | 1500     |              | 4300     |                                          |
| Chromium Iron Lead Mercury Selenium Silver Zinc                                                                                                                          |           |           |           |           |            | 17,300                   |                                                    |                                                    | 14,700                   |               |          |              |          |                                          |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony                                                                                                           | 220       | 220       | 160       | 1600      | 940        | 2640                     | 2420                                               | 2270                                               | 4020                     | 1200/2400 (a) | 490      | 1500/480 (a) | 4200     | 700                                      |
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper                                                                                                                       | 330       | 330       | 160       | 1600      | 810        | 3640                     | <b>2130</b><br>2 U<br>5 U<br><b>13</b> J           | 2270<br>2 U<br>5 U<br><b>7</b> J                   | 1920                     | 1200/2400 (a) | 480      | 1300/400 (d) | 4300     | 700<br>6<br>2 U<br>1 U<br>1 U            |
| Iron<br>Lead<br>Manganese<br>Mercury<br>Nickel<br>Selenium                                                                                                               |           |           |           |           |            |                          | 1 U<br>0.1 U                                       | 1 U<br>0.1 U                                       |                          |               |          |              |          | 3690<br>1 U<br>490<br>0.1<br>1 U<br>10 U |
| Zinc  PETROLEUM HYDROCARBONS (ug/L)  NWTPH-HCID  Diesel Range Organics  Gasoline Range Organics                                                                          |           |           |           |           |            |                          | <b>20</b> J<br>630 U<br>250 U                      | <b>10</b> UJ<br>630 U<br>250 U                     |                          |               |          |              |          | 3                                        |
| Lube Oil  PCBs (ug/L) EPA SW8082                                                                                                                                         |           |           |           |           |            |                          | 630 U                                              | 630 U                                              |                          |               |          |              |          |                                          |
| Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260                                                                               |           |           |           |           |            |                          | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U             | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U             |                          |               |          |              |          |                                          |
| Total PCBs  VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane                                                                             |           |           |           |           |            |                          | 1 U<br>0.2 U<br>0.2 U                              | 0.2 U<br>0.2 U                                     |                          |               |          |              |          | ND                                       |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (total)                   |           |           |           |           |            |                          | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U          |                          |               |          |              |          | 0.5 J<br>ND<br>ND<br>0.8 J               |
| 1,2-Dichlorobetherie (total) 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane |           |           |           |           |            |                          | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U |                          |               |          |              |          | <b>U.O</b> J                             |

|                                         | Location:      |           |           |           |           | I-104      |             |                |                        |             | I         |          | I-105    |          |               |
|-----------------------------------------|----------------|-----------|-----------|-----------|-----------|------------|-------------|----------------|------------------------|-------------|-----------|----------|----------|----------|---------------|
|                                         | Sample ID:     | I-104     | I-104s    | I-104     | I-104     | I-104      | I-104       | I-104          | Dup of I-104<br>I-1044 | I-104       | I-105     | I-105    | I-105    | I-105    | I-105s        |
|                                         | Laboratory ID: |           |           |           |           |            | NB06A/NB06H | OK85B          | OK85D                  | PC88B/PC88I |           |          |          |          |               |
| 4.0 P: 11 1                             | Sample Date:   | 4/19/1996 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008   | 2/2/2009       | 2/2/2009               | 6/16/2009   | 12/1/1985 | 7/1/1986 | 8/1/1986 | 1/1/1987 | 2/1/1988      |
| 1,2-Dichlorobenzene 1,2-Dichloroethane  |                |           |           |           |           |            |             | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U         |             |           |          |          |          |               |
| 1,2-Dichloropropane                     |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 1,3,5-Trimethylbenzene                  |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 1,3-Dichlorobenzene                     |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 1,3-Dichloropropane                     |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 1,4-Dichlorobenzene                     |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 2,2-Dichloropropane                     |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          | ND            |
| 2-Butanone 2-Chloroethylvinylether      |                |           |           |           |           |            |             | 2.5 U<br>1 U   | 2.5 U<br>1 U           |             |           |          |          |          | טא            |
| 2-Chlorotoluene                         |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 2-Hexanone                              |                |           |           |           |           |            |             | 2.5 U          | 2.5 U                  |             |           |          |          |          |               |
| 4-Chlorotoluene                         |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 4-Isopropyltoluene                      |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| 4-Methyl-2-Pentanone (MIBK)             |                |           |           |           |           |            |             | 2.5 U          | 2.5 U                  |             |           |          |          |          |               |
| Acetone                                 |                |           |           |           |           |            |             | 3.7            | 3.4                    |             |           |          |          |          | ND            |
| Acrolein                                |                |           |           |           |           |            |             | 5 U            | 5 U                    |             |           |          |          |          |               |
| Acrylonitrile<br>Benzene                |                |           |           |           |           |            |             | 1 U<br>0.2 U   | 1 U<br>0.2 U           |             |           |          |          |          | ND            |
| Bromobenzene                            |                |           |           |           |           |            |             | 0.2 U<br>0.2 U | 0.2 U                  |             |           |          |          |          | טא            |
| Bromochloromethane                      |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Bromodichloromethane                    |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Bromoethane                             |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Bromoform                               |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Bromomethane                            |                |           |           |           |           |            |             | 0.5 U          | 0.5 U                  |             |           |          |          |          |               |
| Carbon Disulfide                        |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Carbon Tetrachloride                    |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Chlorobenzene                           |                |           |           |           |           |            |             | 0.2 U          | 0.2 U<br>0.2 U         |             |           |          |          |          |               |
| Chloroethane<br>Chloroform              |                |           |           |           |           |            |             | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U         |             |           |          |          |          | ND            |
| Chloromethane                           |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          | ND            |
| cis-1,2-Dichloroethene                  |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| cis-1,3-Dichloropropene                 |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Dibromochloromethane                    |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Dibromomethane                          |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Ethylbenzene                            |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          | ND            |
| Ethylene Dibromide                      |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Hexachlorobutadiene<br>Isopropylbenzene |                |           |           |           |           |            |             | 0.5 U          | 0.5 U<br>0.2 U         |             |           |          |          |          |               |
| m, p-Xylene                             |                |           |           |           |           |            |             | 0.2 U<br>0.4 U | 0.2 U<br>0.4 U         |             |           |          |          |          |               |
| Methyl Iodide                           |                |           |           |           |           |            |             | 0.4 U          | 0.4 U                  |             |           |          |          |          |               |
| Methylene Chloride                      |                |           |           |           |           |            |             | 0.5 U          | 0.5 U                  |             |           |          |          |          | <b>0.6</b> BJ |
| Naphthalene                             |                | ]         |           |           |           |            |             | 0.5 U          | 0.5 U                  |             |           |          |          |          |               |
| n-Butylbenzene                          |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| n-Propylbenzene                         |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| o-Xylene                                |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| sec-Butylbenzene                        |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Styrene                                 |                |           |           |           |           |            |             | 0.2 U<br>0.2 U | 0.2 U                  |             |           |          |          |          |               |
| tert-Butylbenzene<br>Tetrachloroethene  |                |           |           |           |           |            |             | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U         |             |           |          |          |          | ND            |
| Toluene                                 |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          | ND<br>ND      |
| trans-1,2-Dichloroethene                |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          | 1,5           |
| trans-1,3-Dichloropropene               |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| trans-1,4-Dichloro-2-butene             |                |           |           |           |           |            |             | 1 U            | 1 U                    |             |           |          |          |          |               |
| Total Xylenes                           |                |           |           |           |           |            |             |                |                        |             |           |          |          |          | ND            |
| Trichloroethene                         |                | ]         |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          | ND            |
| Trichlorofluoromethane                  |                |           |           |           |           |            |             | 0.2 U          | 0.2 U                  |             |           |          |          |          |               |
| Vinyl Chlorida                          |                |           |           |           |           |            |             | 1 U            | 1 U                    |             |           |          |          |          | ND            |
| Vinyl Chloride                          |                |           |           |           |           |            |             | 0.2            | 0.2 U                  |             |           |          |          |          | ND            |
|                                         |                | I         |           |           |           |            |             |                |                        |             | I         |          |          |          |               |

|                                               | Location:      |           |           |           |           | I-104      |             |             |                        |             |           |          | I-105    |          |          |
|-----------------------------------------------|----------------|-----------|-----------|-----------|-----------|------------|-------------|-------------|------------------------|-------------|-----------|----------|----------|----------|----------|
|                                               | Sample ID:     | I-104     | I-104s    | I-104     | I-104     | I-104      | I-104       | I-104       | Dup of I-104<br>I-1044 | I-104       | I-105     | I-105    | I-105    | I-105    | I-105s   |
|                                               | Laboratory ID: |           |           |           |           |            | NB06A/NB06H | OK85B       | OK85D                  | PC88B/PC88I |           |          |          |          |          |
|                                               | Sample Date:   | 4/19/1996 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008   | 2/2/2009    | 2/2/2009               | 6/16/2009   | 12/1/1985 | 7/1/1986 | 8/1/1986 | 1/1/1987 | 2/1/1988 |
| SEMIVOLATILES (ug/L)<br>EPA SW8270D (b)       |                |           |           |           |           |            |             |             |                        |             |           |          |          |          |          |
| 1,2,4-Trichlorobenzene                        |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 1,2-Dichlorobenzene                           |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 1,3-Dichlorobenzene                           |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 1,4-Dichlorobenzene 1-Methylnaphthalene       |                |           |           |           |           |            |             | 1 U<br>1 U  | 1 U<br>1 U             |             |           |          |          |          |          |
| 2,2'-Oxybis(1-Chloropropane)                  |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 2,4,5-Trichlorophenol                         |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 2,4,6-Trichlorophenol                         |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 2,4-Dichlorophenol                            |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 2,4-Dimethylphenol 2,4-Dinitrophenol          |                |           |           |           |           |            |             | 1 U<br>10 U | 1 U<br>10 U            |             |           |          |          |          |          |
| 2,4-Dinitropriendi<br>2,4-Dinitrotoluene      |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 2,6-Dinitrotoluene                            |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 2-Chloronaphthalene                           |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 2-Chlorophenol                                |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 2-Methylnaphthalene                           |                |           |           |           |           |            |             | 1 U         | 1 U<br>1 U             |             |           |          |          |          |          |
| 2-Methylphenol 2-Nitroaniline                 |                |           |           |           |           |            |             | 1 U<br>5 U  | 1 U<br>5 U             |             |           |          |          |          |          |
| 2-Nitrophenol                                 |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 3,3'-Dichlorobenzidine                        |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 3-Nitroaniline                                |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 4,6-Dinitro-2-Methylphenol                    |                |           |           |           |           |            |             | 10 U        | 10 U                   |             |           |          |          |          |          |
| 4-Bromophenyl-phenylether                     |                |           |           |           |           |            |             | 1 U<br>5 U  | 1 U<br>5 U             |             |           |          |          |          |          |
| 4-Chloro-3-methylphenol 4-Chloroaniline       |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 4-Chlorophenyl-phenylether                    |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 4-Methylphenol                                |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| 4-Nitroaniline                                |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| 4-Nitrophenol                                 |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| Acenaphthene                                  |                |           |           |           |           |            |             | 1 U<br>1 U  | 1 U<br>1 U             |             |           |          |          |          |          |
| Acenaphthylene<br>Anthracene                  |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Benzo(a)anthracene                            |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Benzo(a)pyrene                                |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Benzo(b)fluoranthene                          |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Benzo(g,h,i)perylene                          |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Benzo(k)fluoranthene<br>Benzoic Acid          |                |           |           |           |           |            |             | 1 U<br>10 U | 1 U<br>10 U            |             |           |          |          |          |          |
| Benzyl Alcohol                                |                |           |           |           |           |            |             | 5 U         | 5 U                    |             |           |          |          |          |          |
| bis(2-Chloroethoxy) Methane                   |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Bis-(2-Chloroethyl) Ether                     |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| bis(2-Ethylhexyl)phthalate                    |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Butylbenzylphthalate                          |                |           |           |           |           |            |             | 1 U<br>1 U  | 1 U<br>1 U             |             |           |          |          |          |          |
| Carbazole<br>Chrysene                         |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Dibenz(a,h)anthracene                         |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Dibenzofuran                                  |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Diethylphthalate                              |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Dimethylphthalate                             |                |           |           |           |           |            |             | 1 U         | 1 U<br>1 U             |             |           |          |          |          |          |
| Di-n-Butylphthalate<br>Di-n-Octyl phthalate   |                |           |           |           |           |            |             | 1 U<br>1 U  | 1 U                    |             |           |          |          |          |          |
| Fluoranthene                                  |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Fluorene                                      |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Hexachlorobenzene                             |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Hexachlorobutadiene                           |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Hexachlorocyclopentadiene<br>Hexachloroethane |                |           |           |           |           |            |             | 5 U<br>1 U  | 5 U<br>1 U             |             |           |          |          |          |          |
| Indeno(1,2,3-cd)pyrene                        |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Isophorone                                    |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Naphthalene Naphthalene                       |                |           |           |           |           |            |             | 1 U         | 1 U                    |             |           |          |          |          |          |
| Nitrobenzene                                  |                |           |           |           |           |            |             | 1 U         | 1 U                    |             | 1         |          |          |          |          |

|                                                                                                                                                                   | Location:                                    |                     |                    |                    | I-104               |                                   |                                                                   |                                                                   |                                   |                    |                   | I-105             |                   |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|--------------------|--------------------|---------------------|-----------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--------------------|-------------------|-------------------|-------------------|--------------------|
|                                                                                                                                                                   | Sample ID:<br>Laboratory ID:<br>Sample Date: | I-104s<br>4/19/1996 | I-104<br>12/1/1999 | I-104<br>8/24/2000 | I-104<br>10/25/2000 | I-104<br>NB06A/NB06H<br>6/16/2008 | I-104<br>OK85B<br>2/2/2009                                        | Dup of I-104<br>I-1044<br>OK85D<br>2/2/2009                       | I-104<br>PC88B/PC88I<br>6/16/2009 | I-105<br>12/1/1985 | I-105<br>7/1/1986 | I-105<br>8/1/1986 | I-105<br>1/1/1987 | I-105s<br>2/1/1988 |
| N-Nitroso-Di-N-Propylamine<br>N-Nitrosodiphenylamine<br>Pentachlorophenol<br>Phenanthrene<br>Phenol<br>Pyrene                                                     | cumple Sate.                                 | <br>                |                    | S. Z. 1. Z. S. O   | . 0. 20. 2000       | V. 10.200                         | 5 U<br>1 U<br>5 U<br>1 U<br>1 U<br>1 U                            | 5 U<br>1 U<br>5 U<br>1 U<br>1 U<br>1 U                            |                                   | ,                  |                   | S                 |                   | 2                  |
| PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene TEQ |                                              |                     |                    |                    |                     |                                   | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA |                                   |                    |                   |                   |                   |                    |
| CONVENTIONALS (ug/L) Total Cyanide Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 Ferrous Iron (SM3500FeD)                                               | (b))                                         |                     |                    |                    |                     | 16,300<br>16,200                  |                                                                   |                                                                   | 12,400<br>14,800                  |                    |                   |                   |                   | 36,290<br>11,600   |

|                                                                                                                                                                                                                                                                                                                      |                                             |                                   |                     |                     |                    |                     |                     | TUK                 | WILA, WASI          | HINGTON             |                     |                     |                     |                    |                     |                     |                     |                      |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|----------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                      | Location:                                   |                                   |                     |                     |                    |                     |                     |                     |                     |                     | I-200               |                     |                     |                    |                     |                     |                     |                      |                    |
| Ļ                                                                                                                                                                                                                                                                                                                    | Sample ID:<br>aboratory ID:<br>Sample Date: | I-200s                            | I-200s<br>3/21/1991 | I-200s<br>3/28/1991 | I-200s<br>4/4/1991 | I-200s<br>4/11/1991 | I-200s<br>9/12/1991 | I-200s<br>9/19/1991 | I-200s<br>9/26/1991 | I-200s<br>10/3/1991 | I-200s<br>4/16/1992 | I-200s<br>4/23/1992 | I-200s<br>4/30/1992 | I-200s<br>5/7/1992 | I-200s<br>9/24/1992 | I-200s<br>10/1/1992 | I-200s<br>10/8/1992 | I-200s<br>10/15/1992 | I-200s<br>4/8/1993 |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium Chromium Iron Lead Mercury Selenium Silver Zinc                                                                                                                                                                                    |                                             |                                   |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      | 70.000             |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (b) Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Zinc  PETROLEUM HYDROCARBONS (ug. NWTPH-HCID                                                                                                                       | ŋ/ <b>L</b> )                               | 10<br>1 U<br>2<br>1 U<br>1 U<br>2 |                     | 3                   | 2                  | 3                   | 3                   | 2                   | 2                   | 3                   | 1 U                 | 1 U                 | 1 U                 | 1 U                | <b>1</b> J          | 1                   | 1                   | 1                    | 2                  |
| Diesel Range Organics Gasoline Range Organics Lube Oil  PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                    |                                             |                                   |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |
| VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene |                                             |                                   |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |

1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane

| Location:                  |                              |                                                            |                                            |                                 |                                                |                                                      |                                                             |                                                                    |                                                                           | I-200                                                                            |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory ID:             |                              | I-200s                                                     | I-200s                                     | I-200s                          | I-200s                                         | I-200s                                               | I-200s                                                      | I-200s                                                             | I-200s                                                                    | I-200s                                                                           | I-200s                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-200s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Laboratory ID Sample Date: | 2/1/1988                     | 3/21/1991                                                  | 3/28/1991                                  | 4/4/1991                        | 4/11/1991                                      | 9/12/1991                                            | 9/19/1991                                                   | 9/26/1991                                                          | 10/3/1991                                                                 | 4/16/1992                                                                        | 4/23/1992                                                                                      | 4/30/1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/7/1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/24/1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/1/1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/8/1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/15/1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/8/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            |                              |                                                            |                                            |                                 |                                                |                                                      |                                                             |                                                                    |                                                                           |                                                                                  |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | Sample ID:<br>Laboratory ID: | Location: Sample ID: Laboratory ID: Sample Date:  2/1/1988 | Sample ID: I-200s I-200s<br>Laboratory ID: | Sample ID: I-200s I-200s I-200s | Sample ID: I-200s I-200s I-200s Laboratory ID: | Sample ID: I-200s I-200s I-200s I-200s I-200s I-200s | Sample ID: I-200s I-200s I-200s I-200s I-200s I-200s I-200s | Sample ID: I-200s I-200s I-200s I-200s I-200s I-200s I-200s I-200s | Sample ID: I-200s I-200s I-200s I-200s I-200s I-200s I-200s I-200s I-200s | Sample ID: I-200s | Sample ID: I-200s | Sample ID: I-200s I-200 |

|                     | Location:                      |           |           |          |           |           |           |           |           | I-200     |           |           |          |           |           |           |            |          |
|---------------------|--------------------------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|------------|----------|
|                     | Sample ID:                     | I-200s    | I-200s    | I-200s   | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s   | I-200s    | I-200s    | I-200s    | I-200s     | I-200s   |
|                     | Laboratory ID:<br>Sample Date: | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 |
| CEMINOL ATH EC (/L) |                                |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           | •          |          |

#### SEMIVOLATILES (ug/L)

- EPA SW8270D (b) 1,2,4-Trichlorobenzene
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene
- 1-Methylnaphthalene
- 2,2'-Oxybis(1-Chloropropane)
- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol 2,4-Dimethylphenol
- 2,4-Dinitrophenol 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Chloronaphthalene
- 2-Chlorophenol
- 2-Methylnaphthalene 2-Methylphenol
- 2-Nitroaniline
- 2-Nitrophenol
- 3,3'-Dichlorobenzidine 3-Nitroaniline
- 4,6-Dinitro-2-Methylphenol
- 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol
- 4-Chloroaniline
- 4-Chlorophenyl-phenylether
- 4-Methylphenol
- 4-Nitroaniline 4-Nitrophenol
- Acenaphthene
- Acenaphthylene

Anthracene Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Benzoic Acid

Benzyl Alcohol

bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether

bis(2-Ethylhexyl)phthalate

Butylbenzylphthalate

Carbazole Chrysene

Dibenz(a,h)anthracene

Dibenzofuran Diethylphthalate

Dimethylphthalate

Di-n-Butylphthalate

Di-n-Octyl phthalate

Fluoranthene Fluorene

Hexachlorobenzene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane Indeno(1,2,3-cd)pyrene

Isophorone

Naphthalene Nitrobenzene

| Location                     |          |           |           |          |           |           |           |           |           | I-200     |           |           |          |           |           |           |            |          |
|------------------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|------------|----------|
| Sample ID                    | I-200s   | I-200s    | I-200s    | I-200s   | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s    | I-200s   | I-200s    | I-200s    | I-200s    | I-200s     | I-200s   |
| Laboratory ID<br>Sample Date | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 |

N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene

PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene

CONVENTIONALS (ug/L)
Total Cyanide
Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 (b)) Ferrous Iron (SM3500FeD)

|                                                                                                                                                                                                                                                                                       |                                           |        |                     |                     |                      |                      |                      | IUKW                | ILA, WASHI          | NGION               |                     |                    |                      |                     |                     |                     |                      |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|---------------------|---------------------|----------------------|----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|--------------------|----------------------|---------------------|---------------------|---------------------|----------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                       | Location                                  |        |                     |                     |                      |                      |                      |                     |                     | I-200               |                     |                    |                      |                     |                     |                     |                      |                                   |
|                                                                                                                                                                                                                                                                                       | Sample ID<br>Laboratory ID<br>Sample Date | I-200s | I-200s<br>4/22/1993 | I-200s<br>4/29/1993 | I-200s<br>10/15/1993 | I-200s<br>10/22/1993 | I-200s<br>10/29/1993 | I-200s<br>11/5/1993 | I-200s<br>4/14/1994 | I-200s<br>4/21/1994 | I-200s<br>4/28/1994 | I-200s<br>5/5/1994 | I-200s<br>12/28/1995 | I-200s<br>4/19/1996 | I-200s<br>12/1/1999 | I-200s<br>8/24/2000 | I-200s<br>10/25/2000 | I-200<br>NB15A/NB15C<br>6/17/2008 |
| OTAL METALS (ug/L) PA 200.8/SW6010B/SW7470A (b) ntimony rsenic arium admium hromium on ead ercury elenium                                                                                                                                                                             |                                           |        | 7 main 1000         | ., 400              | 18.18.1800           | 100 mm 1000          | 10.201               |                     |                     |                     | W. 2011001          | 3, 3, 100 (        | 15                   | 13                  |                     | 3                   | 2.7                  | 6630                              |
| ver<br>nc<br>SSOLVED METALS (ug/L)<br>PA 200.8/SW6010B/SW7470A (b)<br>ntimony                                                                                                                                                                                                         |                                           |        |                     |                     |                      |                      |                      |                     |                     |                     |                     |                    |                      |                     |                     |                     | -                    | -                                 |
| rsenic arium admium chromium dopper on ead langanese lercury lickel elenium inc                                                                                                                                                                                                       |                                           | 1      | 2                   | 1                   | 2                    | 1                    | 1 U                  | 1 L                 | J 1 U               | 1                   | 1                   | 1 U                | 2                    | 2                   | 2                   | 3                   | 2.7                  | 0.7                               |
| ETROLEUM HYDROCARBONS (u<br>WTPH-HCID<br>iesel Range Organics<br>asoline Range Organics<br>ube Oil                                                                                                                                                                                    | ug/L)                                     |        |                     |                     |                      |                      |                      |                     |                     |                     |                     |                    |                      |                     |                     |                     |                      |                                   |
| CBs (ug/L) PA SW8082 roclor 1016 roclor 1221 roclor 1232 roclor 1242 roclor 1248 roclor 1254 roclor 1260 otal PCBs                                                                                                                                                                    |                                           |        |                     |                     |                      |                      |                      |                     |                     |                     |                     |                    |                      |                     |                     |                     |                      |                                   |
| OLATILES (ug/L) PA SW8260B (b) 1,2,2-Tetrachloroethane 1,1-Trichloroethane 1,2,2-Tetrachloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichloroethene (total) 1-Dichloropropene 2,3-Trichlorobenzene 2,4-Trichlorobenzene |                                           |        |                     |                     |                      |                      |                      |                     |                     |                     |                     |                    |                      |                     |                     |                     |                      |                                   |

1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane

|                                            | Location                      | : |           |           |            |            |            |           |           | I-200     |           |          |            |           |           |           |            |                          |
|--------------------------------------------|-------------------------------|---|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|--------------------------|
|                                            | Sample ID:                    |   | I-200s    | I-200s    | I-200s     | I-200s     | I-200s     | I-200s    | I-200s    | I-200s    | I-200s    | I-200s   | I-200s     | I-200s    | I-200s    | I-200s    | I-200s     | I-200                    |
|                                            | Laboratory ID<br>Sample Date: |   | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | NB15A/NB15C<br>6/17/2008 |
| 1,2-Dichlorobenzene                        |                               |   |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                          |
| 1,2-Dichloroethane                         |                               |   |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                          |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene |                               |   |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                          |
| 1,3-Dichlorobenzene                        |                               |   |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                          |
| 1,3-Dichloropropane                        |                               |   |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                          |
| 1,4-Dichlorobenzene                        |                               |   |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                          |

2,2-Dichloropropane
2-Butanone
2-Chloroethylvinylether
2-Chlorotoluene
2-Hexanone
4-Chlorotoluene
4-Isopropyltoluene
4-Methyl-2-Pentanone (MIBK)

trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

Total Xylenes Trichloroethene Trichlorofluoromethane Vinyl Acetate Vinyl Chloride

Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Ethylbenzene Ethylene Dibromide Hexachlorobutadiene Isopropylbenzene m, p-Xylene Methyl Iodide Methylene Chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Toluene

| Location:                      |           |           |           |            |            |            |           |           | I-200     |           |          |            |           |           |           |            |                          |
|--------------------------------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|--------------------------|
| Sample ID:                     | I-200s    | I-200s    | I-200s    | I-200s     | I-200s     | I-200s     | I-200s    | I-200s    | I-200s    | I-200s    | I-200s   | I-200s     | I-200s    | I-200s    | I-200s    | I-200s     | I-200                    |
| Laboratory ID:<br>Sample Date: | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | NB15A/NB15C<br>6/17/2008 |

#### SEMIVOLATILES (ug/L) EPA SW8270D (b) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Benzyl Alcohol bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran

Diethylphthalate
Dimethylphthalate
Di-n-Butylphthalate
Di-n-Octyl phthalate
Fluoranthene
Fluorene
Hexachlorobenzene
Hexachlorobutadiene
Hexachlorocyclopentadiene
Hexachloroethane
Indeno(1,2,3-cd)pyrene

Isophorone Naphthalene Nitrobenzene

| Location:                     |           |           |           |            |            |            |           |           | I-200     |           |          |            |           |           |           |            |                          |
|-------------------------------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|--------------------------|
| Sample ID:                    |           | I-200s    | I-200s    | I-200s     | I-200s     | I-200s     | I-200s    | I-200s    | I-200s    | I-200s    | I-200s   | I-200s     | I-200s    | I-200s    | I-200s    | I-200s     | I-200                    |
| Laboratory ID<br>Sample Date: | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | NB15A/NB15C<br>6/17/2008 |

N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene

PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene

#### CONVENTIONALS (ug/L)

Total Cyanide Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 (b)) Ferrous Iron (SM3500FeD)

1500 U 4930

|                                                                                                                                                                                                                                  | Location:                                    |                                                    | I-200                             | I-201s             | IDP-9                                              | IDP-1A                         | IDP-2                         | IDP-3                         | IDP-4                         | IDP-5                         | IDP-6                         | IDP-8                                                       | IDP-12                                             | IDP-14                                                      | PZ-1                                               | PZ-3                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------|----------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                  | Sample ID:<br>Laboratory ID:<br>Sample Date: | I-200<br>OL24C<br>2/4/2009                         | I-200<br>PC88A/PC88H<br>6/16/2009 | I-201s<br>2/1/1988 | IDP-9-GW<br>OL03L<br>2/3/2009                      | IDP-1A-GW<br>OK85E<br>2/2/2009 | IDP-2-GW<br>OK85F<br>2/2/2009 | IDP-3-GW<br>OK85G<br>2/2/2009 | IDP-4-GW<br>OK85H<br>2/2/2009 | IDP-5-GW<br>OK85I<br>2/2/2009 | IDP-6-GW<br>OK85J<br>2/2/2009 | IDP-8-GW<br>OL03K<br>2/3/2009                               | IDP-12-GW<br>OL03M<br>2/3/2009                     | IDP-14-GW<br>OL03N<br>2/3/2009                              | PZ-1<br>OK85C<br>2/2/2009                          | PZ-3<br>OL24B<br>2/4/2009                                   |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (the Antimony Arsenic Barium Cadmium Chromium Iron Lead Mercury Selenium Silver Zinc                                                                                               | ))                                           |                                                    | 5890                              |                    |                                                    |                                |                               |                               |                               |                               |                               |                                                             |                                                    |                                                             |                                                    |                                                             |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (t<br>Antimony                                                                                                                                                              | <b>)</b>                                     |                                                    |                                   |                    |                                                    |                                |                               |                               |                               |                               |                               |                                                             |                                                    |                                                             |                                                    |                                                             |
| Arsenic<br>Barium                                                                                                                                                                                                                |                                              | 0.8                                                | 0.5                               | 15,000             | 0.5 U                                              | 77.7                           | 24.4                          | 12                            | 2360                          | 1610                          | 346                           | 13,600                                                      | 13                                                 | 16,600                                                      | 7.1                                                | 11.7                                                        |
| Cadmium<br>Chromium<br>Copper                                                                                                                                                                                                    |                                              | 2 U<br>5 U<br>2 U                                  |                                   | 2<br>25            | 2 U<br>5 U<br><b>6</b>                             |                                |                               |                               |                               |                               |                               | 10 U<br>20 U<br>10 U                                        | 2 U<br>5 U<br><b>6</b>                             | 10 U<br>20 U<br><b>20</b>                                   | 2 U<br>5 U<br><b>17</b>                            | 2 U<br>5 U<br>2 U                                           |
| Iron<br>Lead                                                                                                                                                                                                                     |                                              | 1 U                                                | l                                 | 1 U                | 1 U                                                |                                |                               |                               |                               |                               |                               | 1                                                           | 1 U                                                | 1 U                                                         | 1 U                                                | 1 U                                                         |
| Manganese<br>Mercury<br>Nickel                                                                                                                                                                                                   |                                              | 0.1 U                                              |                                   | 1 U                | 0.1 U                                              |                                |                               |                               |                               |                               |                               | 0.1 U                                                       | 0.1 U                                              | 0.1 U                                                       | 0.1 U                                              | 0.1 U                                                       |
| Selenium<br>Zinc                                                                                                                                                                                                                 |                                              | 10 U                                               | ı                                 | 52                 | 10 U                                               |                                |                               |                               |                               |                               |                               | 50 U                                                        | 40                                                 | 50 U                                                        | 240                                                | 10                                                          |
| PETROLEUM HYDROCARBONS<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                                                             | (ug/L)                                       | 630 U<br>250 U<br>630 U                            |                                   |                    | 630 U<br>250 U<br>630 U                            |                                |                               |                               |                               |                               |                               | 630 U<br>250 U<br>630 U                                     | 630 U<br>250 U<br>630 U                            | 630 U<br>250 U<br>630 U                                     | 630 U<br>250 U<br>630 U                            | 630 U<br>250 U<br>630 U                                     |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                     |                                              | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U             |                                   |                    | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U      |                                |                               |                               |                               |                               |                               | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U               | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U      | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U               | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U      | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U               |
| VOLATILES (ug/L) EPA SW8260B (b) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene (total) | е                                            | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U |                                   |                    | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane                                                                                      |                                              | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U | <br> -<br> -                      |                    | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U          | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U          | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U | 0.2 U<br>0.5 U<br>0.5 U<br>0.5 U<br>0.2 U<br>0.5 U          |

|                                            | Location:                                    |                            | I-200                             | I-201s             | IDP-9                         | IDP-1A                         | IDP-2                         | IDP-3                         | IDP-4                         | IDP-5                         | IDP-6                         | IDP-8                         | IDP-12                         | IDP-14                         | PZ-1                      | PZ-3                      |
|--------------------------------------------|----------------------------------------------|----------------------------|-----------------------------------|--------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------|---------------------------|
|                                            | Sample ID:<br>Laboratory ID:<br>Sample Date: | I-200<br>OL24C<br>2/4/2009 | I-200<br>PC88A/PC88H<br>6/16/2009 | I-201s<br>2/1/1988 | IDP-9-GW<br>OL03L<br>2/3/2009 | IDP-1A-GW<br>OK85E<br>2/2/2009 | IDP-2-GW<br>OK85F<br>2/2/2009 | IDP-3-GW<br>OK85G<br>2/2/2009 | IDP-4-GW<br>OK85H<br>2/2/2009 | IDP-5-GW<br>OK85I<br>2/2/2009 | IDP-6-GW<br>OK85J<br>2/2/2009 | IDP-8-GW<br>OL03K<br>2/3/2009 | IDP-12-GW<br>OL03M<br>2/3/2009 | IDP-14-GW<br>OL03N<br>2/3/2009 | PZ-1<br>OK85C<br>2/2/2009 | PZ-3<br>OL24B<br>2/4/2009 |
| 1,2-Dichlorobenzene                        |                                              | 0.2 L                      | J                                 |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 1,2-Dichloroethane                         |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 1,2-Dichloropropane                        |                                              | 0.2 \                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene |                                              | 0.2 U<br>0.2 U             |                                   |                    | 0.2 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| 1,3-Dichloropropane                        |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 1,4-Dichlorobenzene                        |                                              | 0.2 (                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 2,2-Dichloropropane                        |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 2-Butanone                                 |                                              | 2.5 L                      |                                   |                    | 2.5 U                         |                                |                               |                               |                               |                               |                               | 2.5 U                         | 2.5 U                          | 2.5 U                          | 2.5 U                     | 2.5 U                     |
| 2-Chloroethylvinylether                    |                                              | 1 L                        |                                   |                    | 1 U                           |                                |                               |                               |                               |                               |                               | 1 U                           | 1 U                            | 1 U                            | 1 U                       | 1 U                       |
| 2-Chlorotoluene                            |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 2-Hexanone<br>4-Chlorotoluene              |                                              | 2.5 U<br>0.2 U             |                                   |                    | 2.5 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 2.5 U<br>0.2 U                | 2.5 U<br>0.2 U                 | 2.5 U<br>0.2 U                 | 2.5 U<br>0.2 U            | 2.5 U<br>0.2 U            |
| 4-Isopropyltoluene                         |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| 4-Methyl-2-Pentanone (MIBK)                |                                              | 2.5 (                      |                                   |                    | 2.5 U                         |                                |                               |                               |                               |                               |                               | 2.5 U                         | 2.5 U                          | 2.5 U                          | 2.5 U                     | 2.5 U                     |
| Acetone                                    |                                              | 11                         |                                   |                    | 2.5 U                         |                                |                               |                               |                               |                               |                               | 2.5 U                         | 2.5 U                          | 2.5 U                          | 3 U                       | 7.1                       |
| Acrolein                                   |                                              | 5 L                        |                                   |                    | 5 U                           |                                |                               |                               |                               |                               |                               | 5 U                           | 5 U                            | 5 U                            | 5 U                       | 5 U                       |
| Acrylonitrile                              |                                              | 1 L                        |                                   |                    | 1 U                           |                                |                               |                               |                               |                               |                               | 1 U                           | 1 U                            | 1 U                            | 1 U                       | 1 U                       |
| Benzene                                    |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Bromobenzene<br>Bromochloromethane         |                                              | 0.2 U<br>0.2 U             |                                   |                    | 0.2 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Bromodichloromethane                       |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Bromoethane                                |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Bromoform                                  |                                              | 0.2 (                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Bromomethane                               |                                              | 0.5 ل                      | J                                 |                    | 0.5 U                         |                                |                               |                               |                               |                               |                               | 0.5 U                         | 0.5 U                          | 0.5 U                          | 0.5 U                     | 0.5 U                     |
| Carbon Disulfide                           |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Carbon Tetrachloride                       |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Chlorobenzene<br>Chloroethane              |                                              | 0.2 \                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Chloroform                                 |                                              | 0.2 U<br>0.2 U             |                                   |                    | 0.2 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U<br>0.2 U            |
| Chloromethane                              |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| cis-1,2-Dichloroethene                     |                                              | 0.2 (                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.5                           | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| cis-1,3-Dichloropropene                    |                                              | 0.2 ل                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Dibromochloromethane                       |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Dibromomethane                             |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Ethylbenzene<br>Ethylene Dibromide         |                                              | 0.2 U<br>0.2 U             |                                   |                    | 0.2 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Hexachlorobutadiene                        |                                              | 0.2 C                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Isopropylbenzene                           |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| m, p-Xylene                                |                                              | 0.4 L                      | J                                 |                    | 0.4 U                         |                                |                               |                               |                               |                               |                               | 0.4 U                         | 0.4 U                          | 0.4 U                          | 0.4 U                     | 0.4 U                     |
| Methyl Iodide                              |                                              | 1 L                        |                                   |                    | 1 U                           |                                |                               |                               |                               |                               |                               | 1 U                           | 1 U                            | 1 U                            | 1 U                       | 1 U                       |
| Methylene Chloride                         |                                              | 0.5 L                      |                                   |                    | 0.5 U                         |                                |                               |                               |                               |                               |                               | 0.5 U                         | 0.5 U                          | 0.5 U                          | 0.5 U                     | 0.5 U                     |
| Naphthalene                                |                                              | 0.5 L                      |                                   |                    | 0.5 U                         |                                |                               |                               |                               |                               |                               | 0.5 U                         | 0.5 U                          | 0.5 U                          | 0.5 U                     | 0.5 U                     |
| n-Butylbenzene<br>n-Propylbenzene          |                                              | 0.2 U<br>0.2 U             |                                   |                    | 0.2 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| o-Xylene                                   |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| sec-Butylbenzene                           |                                              | 0.2 \                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Styrene                                    |                                              | 0.2 ل                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| tert-Butylbenzene                          |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Tetrachloroethene                          |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Toluene trans-1,2-Dichloroethene           |                                              | 0.2 U<br>0.2 U             |                                   |                    | 0.2 U<br>0.2 U                |                                |                               |                               |                               |                               |                               | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| trans-1,3-Dichloropropene                  |                                              | 0.2 t                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| trans-1.4-Dichloro-2-butene                |                                              | 0.2 C                      |                                   |                    | 1 U                           |                                |                               |                               |                               |                               |                               | 0.2 U                         | 1 U                            | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Total Xylenes                              |                                              |                            |                                   |                    |                               |                                |                               |                               |                               |                               |                               |                               |                                |                                |                           |                           |
| Trichloroethene                            |                                              | 0.2 ل                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Trichlorofluoromethane                     |                                              | 0.2 L                      |                                   |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
| Vinyl Acetate                              |                                              | 1 L                        |                                   |                    | 1 U                           |                                |                               |                               |                               |                               |                               | 1 U                           | 1 U                            | 1 U                            | 1 U                       | 1 U                       |
| Vinyl Chloride                             |                                              | 0.2 L                      | J                                 |                    | 0.2 U                         |                                |                               |                               |                               |                               |                               | 0.2                           | 0.2 U                          | 0.2 U                          | 0.2 U                     | 0.2 U                     |
|                                            |                                              | J                          |                                   | I                  | I                             | ]                              | ]                             | I                             |                               | ]                             | ]                             | 1                             | I                              | 1                              | J                         | í l                       |

|                                                                                                                                                                   | Location:                                    |                                                                   | I-200                             | I-201s             | IDP-9                                                             | IDP-1A                         | IDP-2                         | IDP-3                         | IDP-4                         | IDP-5                         | IDP-6                         | IDP-8                                                             | IDP-12                                                            | IDP-14                                                            | PZ-1                                                              | PZ-3                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--------------------|-------------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                                   | Sample ID:<br>Laboratory ID:<br>Sample Date: | I-200<br>OL24C<br>2/4/2009                                        | I-200<br>PC88A/PC88H<br>6/16/2009 | I-201s<br>2/1/1988 | IDP-9-GW<br>OL03L<br>2/3/2009                                     | IDP-1A-GW<br>OK85E<br>2/2/2009 | IDP-2-GW<br>OK85F<br>2/2/2009 | IDP-3-GW<br>OK85G<br>2/2/2009 | IDP-4-GW<br>OK85H<br>2/2/2009 | IDP-5-GW<br>OK85I<br>2/2/2009 | IDP-6-GW<br>OK85J<br>2/2/2009 | IDP-8-GW<br>OL03K<br>2/3/2009                                     | IDP-12-GW<br>OL03M<br>2/3/2009                                    | IDP-14-GW<br>OL03N<br>2/3/2009                                    | PZ-1<br>OK85C<br>2/2/2009                                         | PZ-3<br>OL24B<br>2/4/2009                                         |
| N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene                                                                    |                                              | 5  <br>1  <br>5  <br>1  <br>1                                     | ]]<br>]<br>]<br>]                 |                    | 5 U<br>1 U<br>5 UJ<br>1 U<br>1 UJ<br>1 U                          |                                |                               |                               |                               |                               |                               | 5 UJ<br>1 UJ<br>5 UJ<br>1 UJ<br>1 UJ                              | 5 UJ<br>1 UJ<br>5 UJ<br>1 UJ<br>1 UJ                              | 5 U<br>1 U<br>5 UJ<br>1 U<br>1 UJ<br>1 U                          | 5 U<br>1 U<br>5 U<br>1 U<br>1 U<br>1 U                            | 5 U<br>1 U<br>5 U<br>1 UJ<br>1 UJ                                 |
| PAHs (ug/L) EPA SW8270D-SIM Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene TEQ |                                              | 0.1 I<br>0.1 I<br>0.1 I<br>0.1 I<br>0.1 I<br>0.1 I<br>0.1 I<br>NA | )<br>)<br>)<br>)                  |                    | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA |                                |                               |                               |                               |                               |                               | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>NA |
| CONVENTIONALS (ug/L) Total Cyanide Fluoride Oil and Grease Total Organic Carbon (EPA 415.1 (Ferrous Iron (SM3500FeD)                                              | (b))                                         |                                                                   | 1500 U<br><b>4180</b>             |                    |                                                                   |                                |                               |                               |                               |                               |                               |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |

B = Method blank contamination.

Bold = Detected compound.

Note: Results listed account for all historical analyses completed in site area as discussed in report text

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match ND = Not detected.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate

U = Indicates the compound was undetected at the reported concentration

<sup>(</sup>a) = Historical sample appears to have been analyzed multiple times.

<sup>(</sup>b) = Analytical method was not always listed with historical sample results

|                                                                                                                                                                                           | Location:                  |                                 | B-7       |                  |                         | Dup of B-20            | B-        | Dup of B-20 |                  |                  | HP-1      | HP-2      | HP-3      | HP-4      | HP-5      | HP-6      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|-----------|------------------|-------------------------|------------------------|-----------|-------------|------------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Lat                                                                                                                                                                                       | Sample ID:<br>boratory ID: | B-7                             | B-7       | B-7              | B-20                    | B-20-Dup               | B-20      | B-20-Dup    | B-20             | B-20             | HP-1      | HP-2      | HP-3      | HP-4      | HP-5      | HP-6      |
| TOTAL METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (a)                                                                                                                                      | ample Date:                | 8/1/1983                        | 10/1/1983 | 12/1/1983        | 8/1/1983                | 8/1/1983               | 10/1/1983 | 10/1/1983   | 12/1/1983        | 2/1/1988         | 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 |
| Antimony<br>Arsenic<br>Barium<br>Cadmium                                                                                                                                                  |                            | <b>28</b><br><b>390</b><br>2 U  |           |                  | 41<br>300<br>360<br>3.6 | 8<br>310<br>260<br>2 U |           |             |                  |                  | 120       | 370       | 570       | 510       | 130       | 110       |
| Chromium<br>Copper<br>Iron                                                                                                                                                                |                            | 20                              |           |                  | 130                     | 31                     |           |             |                  |                  |           |           |           |           |           |           |
| Lead<br>Manganese<br>Mercury                                                                                                                                                              |                            | 95<br>1 U                       |           |                  | <b>17</b><br>0.2 U      | <b>38</b><br>1 U       |           |             |                  |                  |           |           |           |           |           |           |
| Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                                                                      |                            | <b>10</b><br>10 U<br><b>110</b> |           |                  | 4<br>8.1                | 5 U<br><b>2</b>        |           |             |                  |                  |           |           |           |           |           |           |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Arsenic                                                                                                                             |                            |                                 | 53        | 20               |                         |                        | 56        | 81          | 140              | 100              | 71        | 650       | 660       | 390       | 70        | 66        |
| Barium<br>Cadmium<br>Chromium                                                                                                                                                             |                            |                                 | 5 U       | 29               |                         |                        | 5 U       | 41.6        | 30               | 2 U<br><b>3</b>  | ,,        | 030       | 000       | 330       | ,,        | 00        |
| Copper<br>Iron<br>Lead                                                                                                                                                                    |                            |                                 | 5<br>2    | <b>11</b><br>5 U |                         |                        | 60<br>30  | 34<br>2     | <b>13</b><br>5 U | 7<br>3           |           |           |           |           |           |           |
| Manganese<br>Mercury<br>Nickel<br>Selenium                                                                                                                                                |                            |                                 | 10 U      | 40               |                         |                        | 30 U      | 5           | 40               | 0.1 U<br>40 U    |           |           |           |           |           |           |
| Silver<br>Zinc                                                                                                                                                                            | ,                          |                                 | 27        | 26               |                         |                        | 30 U      | 27          | 25               | 2 U<br><b>17</b> |           |           |           |           |           |           |
| PETROLEUM HYDROCARBONS (ug/L<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                | -)                         |                                 |           |                  |                         |                        |           |             |                  |                  |           |           |           |           |           |           |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                             |                            |                                 |           |                  |                         |                        |           |             |                  |                  |           |           |           |           |           |           |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                              |                            |                                 |           |                  |                         |                        |           |             |                  |                  |           |           |           |           |           |           |
| VOLATILES (ug/L) EPA SW8260B (a) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane |                            |                                 |           |                  |                         |                        |           |             |                  | ND<br>ND<br>ND   |           |           |           |           |           |           |

|                                                                                                                                                        | Location:                    |          | B-7       |           |          | Dup of B-20 |           | B-20<br>Dup of B-20 |           |               | HP-1      | HP-2      | HP-3      | HP-4      | HP-5      | HP-6      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|-----------|-----------|----------|-------------|-----------|---------------------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                                                                                                                        | Sample ID:<br>Laboratory ID: |          | B-7       | B-7       | B-20     | B-20-Dup    | B-20      | B-20-Dup            | B-20      | B-20          | HP-1      | HP-2      | HP-3      | HP-4      | HP-5      | HP-6      |
| 4.4.001.11                                                                                                                                             | Sample Date:                 | 8/1/1983 | 10/1/1983 | 12/1/1983 | 8/1/1983 | 8/1/1983    | 10/1/1983 | 10/1/1983           | 12/1/1983 | 2/1/1988      | 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 |
| 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene (total) 1,1-Dichloropropene 1,2-Dichloropropane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane |                              |          |           |           |          |             |           |                     |           | ND<br>ND      |           |           |           |           |           |           |
| 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane                                       |                              |          |           |           |          |             |           |                     |           |               |           |           |           |           |           |           |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene                                                 |                              |          |           |           |          |             |           |                     |           |               |           |           |           |           |           |           |
| 2,2-Dichloropropane 2-Butanone 2-Chloroethylvinylether 2-Chlorotoluene                                                                                 |                              |          |           |           |          |             |           |                     |           | ND            |           |           |           |           |           |           |
| 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-Pentanone (MIBK) Acetone                                                                      |                              |          |           |           |          |             |           |                     |           | <b>2</b> BJ   |           |           |           |           |           |           |
| Acrolein<br>Acrylonitrile<br>Benzene                                                                                                                   |                              |          |           |           |          |             |           |                     |           | ND            |           |           |           |           |           |           |
| Bromobenzene<br>Bromochloromethane<br>Bromodichloromethane                                                                                             |                              |          |           |           |          |             |           |                     |           | ND            |           |           |           |           |           |           |
| Bromoethane<br>Bromoform<br>Bromomethane<br>Carbon Disulfide                                                                                           |                              |          |           |           |          |             |           |                     |           |               |           |           |           |           |           |           |
| Carbon Tetrachloride<br>Chlorobenzene<br>Chloroethane<br>Chloroform                                                                                    |                              |          |           |           |          |             |           |                     |           | ND            |           |           |           |           |           |           |
| Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane                                                             |                              |          |           |           |          |             |           |                     |           | ND            |           |           |           |           |           |           |
| Dibromomethane Ethylbenzene Ethylene Dibromide Hexachlorobutadiene Isopropylbenzene                                                                    |                              |          |           |           |          |             |           |                     |           | ND            |           |           |           |           |           |           |
| m, p-Xylene Methyl Iodide Methylene Chloride Naphthalene                                                                                               |                              |          |           |           |          |             |           |                     |           | <b>0.4</b> BJ |           |           |           |           |           |           |
| n-Butylbenzene<br>n-Propylbenzene<br>o-Xylene<br>sec-Butylbenzene                                                                                      |                              |          |           |           |          |             |           |                     |           |               |           |           |           |           |           |           |
| Styrene<br>tert-Butylbenzene<br>Tetrachloroethene<br>Toluene<br>trans-1,2-Dichloroethene                                                               |                              |          |           |           |          |             |           |                     |           | ND<br>ND      |           |           |           |           |           |           |

|                                                                                                                                                           | Location:                                    |          | B-7              |                  |                  |                                     |                   | B-20                                 |                   |                  | HP-1              | HP-2              | HP-3              | HP-4              | HP-5              | HP-6              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|------------------|------------------|------------------|-------------------------------------|-------------------|--------------------------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                                                                                                                           | Sample ID:<br>Laboratory ID:<br>Sample Date: |          | B-7<br>10/1/1983 | B-7<br>12/1/1983 | B-20<br>8/1/1983 | Dup of B-20<br>B-20-Dup<br>8/1/1983 | B-20<br>10/1/1983 | Dup of B-20<br>B-20-Dup<br>10/1/1983 | B-20<br>12/1/1983 | B-20<br>2/1/1988 | HP-1<br>4/19/1996 | HP-2<br>4/19/1996 | HP-3<br>4/19/1996 | HP-4<br>4/19/1996 | HP-5<br>4/19/1996 | HP-6<br>4/19/1996 |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene<br>Total Xylenes<br>Trichloroethene<br>Trichlorofluoromethane<br>Vinyl Acetate<br>Vinyl Chloride | eumple Bute.                                 | 0,111000 | 10, 17, 1000     | 12 11 1000       | W. 1.000         | G 11 1000                           | 10, 171000        | 101171000                            | 12.171000         | ND<br>ND         | 110,1000          | 11011000          |                   | W 100 1000        |                   | 0.101.1000        |
| EPA SW8260C-SIM  1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride                     |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| SEMIVOLATILES (ug/L) EPA SW8270D (a) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene                                                       |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol                       |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol                                             |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine                                                                    |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline                                               |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene                                                                       |                                              |          |                  |                  |                  |                                     |                   |                                      |                   | <b>2</b> M       |                   |                   |                   |                   |                   |                   |
| Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene                                                                          |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>Benzoic Acid<br>Benzyl Alcohol<br>bis(2-Chloroethoxy) Methane                                             |                                              |          |                  |                  |                  |                                     |                   |                                      |                   |                  |                   |                   |                   |                   |                   |                   |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate                                                                                 |                                              |          |                  |                  |                  |                                     |                   |                                      |                   | 6                |                   |                   |                   |                   |                   |                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |          |           |           | •                 |                   |           |                     |           |                | 1         |           |             | 1         |           | 1 1       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|-----------|-----------|-------------------|-------------------|-----------|---------------------|-----------|----------------|-----------|-----------|-------------|-----------|-----------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location:                    |          | B-7       |           |                   | Dup of B-20       |           | B-20<br>Dup of B-20 |           |                | HP-1      | HP-2      | HP-3        | HP-4      | HP-5      | HP-6      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample ID:<br>Laboratory ID: | B-7      | B-7       | B-7       | B-20              | B-20-Dup          | B-20      | B-20-Dup            | B-20      | B-20           | HP-1      | HP-2      | HP-3        | HP-4      | HP-5      | HP-6      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Date:                 | 8/1/1983 | 10/1/1983 | 12/1/1983 | 8/1/1983          | 8/1/1983          | 10/1/1983 | 10/1/1983           | 12/1/1983 | 2/1/1988       | 4/19/1996 | 4/19/1996 | 4/19/1996   | 4/19/1996 | 4/19/1996 | 4/19/1996 |
| Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hoeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitroso-Di-N-Propylamine Pentachlorophenol Phenanthrene Phenol Pyrene  PAHS (ug/L) EPA SW8270D-SIM 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Dibenzofuran Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TEQ | Sample Date:                 | 8/1/1983 | 10/1/1983 | 12/1/1983 | 16                | 8/1/1983          | 10/1/1983 | 10/1/1983           | 12/1/1983 | 2/1/1988<br>ND | 4/19/1996 | 4/19/1996 | 1 4/19/1996 | 4/19/1996 | 4/19/1996 | 4/19/1996 |
| CONVENTIONALS (ug/L)<br>Chloride<br>Total Cyanide<br>Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 13       |           |           | 3 U<br><b>540</b> | 5 U<br><b>400</b> | 6,600,000 |                     |           |                |           |           |             |           |           |           |
| Oil and Grease<br>Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( ) )                        |          |           |           | 340               | 400               | 120,000   |                     |           |                |           |           |             |           |           |           |
| Total Organic Carbon (EPA 415.1 Ferrous Iron (SM3500FeD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a))                         | 400      |           |           |                   |                   |           |                     |           |                |           |           |             |           |           |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | I                       |                |                 |                |                       |                                                                                    |                |                        |                          |                      |          |                  |                 |                |                                            |                |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|----------------|-----------------|----------------|-----------------------|------------------------------------------------------------------------------------|----------------|------------------------|--------------------------|----------------------|----------|------------------|-----------------|----------------|--------------------------------------------|----------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location                   | :                       |                |                 | I-6            |                       |                                                                                    |                | +                      |                          | Dup of I-7           |          | I-7              |                 |                |                                            |                | I-202s                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID<br>Laboratory ID | :                       | I-6            | I-6             | I-6            | I-6                   | I-006s                                                                             | I-6            | 1-7                    | 1-7                      | I-7-Dup              | 1-7      | 1-7              | I-7             | 1-7            | I-007s                                     | I-7s           | I-202s                                         |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Date                | : 10/1/1983             | 12/1/1983      | 12/1/1985<br>48 | 7/1/1986<br>87 | 1/1/1987<br><b>24</b> | 2/1/1988                                                                           | 2/1/1988       | 10/1/1983              | 12/1/1983                | 12/1/1983            | 6/1/1985 | 12/1/1985<br>110 | 7/1/1986<br>150 | 1/1/1987<br>80 | 2/1/1988                                   | 2/1/1988       | 2/1/1988                                       |
| Zinc  DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (section of the content o | (a)                        | 14<br>5 t<br>4 t<br>1 t | J 4 U<br>J 5 U |                 | 87             | 6                     | 20<br>22<br>2<br>1 U<br>1 U<br>33,100<br>1 U<br>1010<br>0.1 U<br>1 U<br>2 U<br>2 U | 20             | 96<br>5 U<br>26<br>1 U | 110<br>8 U<br>4 U<br>5 U | 8.5<br>8.1<br>4<br>3 | 80       | 25               | 50              | 45             | 50<br>4<br>4<br>1 U<br>1 U<br>0.1 U<br>1 U | 50             | 1,300<br>2 U<br>1 U<br>12<br>1 U<br>0.1 U<br>2 |
| Zinc  PETROLEUM HYDROCARBONS NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  NWTPH-Dx Diesel Range Organics Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s (ug/L)                   | 36                      | 18             |                 |                |                       | 2                                                                                  |                | 380                    | 100                      | 58                   |          |                  |                 |                | 15                                         |                | 2 U                                            |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                         |                |                 |                |                       |                                                                                    |                |                        |                          |                      |          |                  |                 |                |                                            |                |                                                |
| VOLATILES (ug/L) EPA SW8260B (a) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethan 1,1,2-Trichloroethane 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne                         |                         |                |                 |                |                       |                                                                                    | ND<br>ND<br>ND |                        |                          |                      |          |                  |                 |                |                                            | ND<br>ND<br>ND | ND<br>ND<br>ND                                 |

|                                                       | Logation                    | .]        |           |           | I-6      |          |          |                | ı         |           |            |          | I-7       |          |          |          |                | I-202s         |
|-------------------------------------------------------|-----------------------------|-----------|-----------|-----------|----------|----------|----------|----------------|-----------|-----------|------------|----------|-----------|----------|----------|----------|----------------|----------------|
|                                                       | Location                    |           |           |           |          |          |          |                |           |           | Dup of I-7 |          |           |          |          |          |                |                |
|                                                       | Sample ID:<br>Laboratory ID | :         | I-6       | 1-6       | I-6      | I-6      | I-006s   | I-6            | 1-7       | 1-7       | I-7-Dup    | I-7      | 1-7       | 1-7      | 1-7      | I-007s   | I-7s           | I-202s         |
| 1,1-Dichloroethene                                    | Sample Date:                | 10/1/1983 | 12/1/1983 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988<br>ND | 10/1/1983 | 12/1/1983 | 12/1/1983  | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988<br>ND | 2/1/1988<br>ND |
| 1,2-Dichloroethane                                    |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2-Dichloroethene (total) 1,1-Dichloropropene        |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | <b>2</b> J     |
| 1,2-Dichloropropane                                   |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2,3-Trichlorobenzene<br>1,2,3-Trichloropropane      |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2,4-Trichlorobenzene                                |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2-Dibromo-3-chioropropane 1,2-Dichlorobenzene       |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2-Dichloroethane                                    |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,2-Dichloropropane                                   |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene         |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,3-Dichloropropane                                   |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 1,4-Dichlorobenzene                                   |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 2,2-Dichloropropane 2-Butanone                        |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| 2-Chloroethylvinylether                               |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| 2-Chlorotoluene                                       |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 2-Hexanone                                            |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 4-Chlorotoluene<br>4-Isopropyltoluene                 |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| 4-Methyl-2-Pentanone (MIBK)                           |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Acetone                                               |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | <b>19</b> B    |
| Acrolein<br>Acrylonitrile                             |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Benzene                                               |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| Bromobenzene                                          |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Bromochloromethane Bromodichloromethane               |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Bromoethane                                           |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Bromoform                                             |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Bromomethane Carbon Disulfide                         |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Carbon Distillide Carbon Tetrachloride                |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Chlorobenzene                                         |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Chloroethane<br>Chloroform                            |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| Chloromethane                                         |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| cis-1,2-Dichloroethene                                |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| cis-1,3-Dichloropropene Dibromochloromethane          |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Dibromochloromethane<br>Dibromomethane                |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Ethylbenzene                                          |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| Ethylene Dibromide                                    |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Hexachlorobutadiene<br>Isopropylbenzene               |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| m, p-Xylene                                           |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Methyl Iodide                                         |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Methylene Chloride<br>Naphthalene                     |                             |           |           |           |          |          |          | 11             |           |           |            |          |           |          |          |          | <b>11</b> B    | <b>10</b> B    |
| n-Butylbenzene                                        |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| n-Propylbenzene                                       |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| o-Xylene                                              |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| sec-Butylbenzene<br>Styrene                           |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| tert-Butylbenzene                                     |                             |           |           |           |          |          |          |                |           |           |            |          |           |          |          |          |                |                |
| Tetrachloroethene                                     |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| Toluene                                               |                             |           |           |           |          |          |          | ND             |           |           |            |          |           |          |          |          | ND             | ND             |
| trans-1,2-Dichloroethene                              |                             | I         |           |           |          |          |          |                | 1         |           |            |          |           |          |          |          |                | ı İ            |

9/16/2011 P:\025\190\002\FileRm\R\RI-FS Work Plan\Final RI-FS WP 091611\Appendices\App H - Summary of GW Results\Final I-T RI-FS WP\_App H Historical GW Data Tables.xlsx H-2 Thompson GW

|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | I           |           |           |          |          |          |          |           |           |            |          |           |          |          |          |          |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|-----------|-----------|----------|----------|----------|----------|-----------|-----------|------------|----------|-----------|----------|----------|----------|----------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location                   | :           |           |           | I-6      |          |          |          |           |           | Dup of I-7 |          | I-7       |          |          |          |          | I-202s       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample ID<br>Laboratory ID | : I-6       | I-6       | I-6       | I-6      | I-6      | I-006s   | I-6      | 1-7       | I-7       | I-7-Dup    | I-7      | 1-7       | 1-7      | I-7      | I-007s   | I-7s     | I-202s       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Date                | : 10/1/1983 | 12/1/1983 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 10/1/1983 | 12/1/1983 | 12/1/1983  | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 2/1/1988     |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene<br>Total Xylenes<br>Trichloroethene<br>Trichlorofluoromethane<br>Vinyl Acetate                                                                                                                                                                                                                                                                                                                |                            |             |           |           |          |          |          | ND<br>ND |           |           |            |          |           |          |          |          | ND<br>ND | ND<br>ND     |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |             |           |           |          |          |          | ND       |           |           |            |          |           |          |          |          | ND       | <b>0.9</b> J |
| VOLATILES (ug/L) EPA SW8260C-SIM 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride                                                                                                                                                                                                                                                                                                  |                            |             |           |           |          |          |          |          |           |           |            |          |           |          |          |          |          |              |
| SEMIVOLATILES (ug/L) EPA SW8270D (a) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine            |                            |             |           |           |          |          |          |          |           |           |            |          |           |          |          |          |          |              |
| 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Benzyl Alcohol bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate |                            |             |           |           |          |          |          | ND<br>8  |           |           |            |          |           |          |          |          | ND       | ND           |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |             |           |           |          |          |          | ŏ        |           |           |            |          |           |          |          |          | 1/       | 16           |

|                                                                                                                                                                                                                                                                                                                                                   | Location:                      |     |           |           | I-6      |          |          |          | I         |           |                       |          | I-7       |          |          |          |          | I-202s   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|-----------|-----------|----------|----------|----------|----------|-----------|-----------|-----------------------|----------|-----------|----------|----------|----------|----------|----------|
|                                                                                                                                                                                                                                                                                                                                                   | Sample ID:                     | I-6 | I-6       | I-6       | I-6      | I-6      | I-006s   | I-6      | 1-7       | I-7       | Dup of I-7<br>I-7-Dup | I-7      | I-7       | I-7      | I-7      | I-007s   | I-7s     | I-202s   |
|                                                                                                                                                                                                                                                                                                                                                   | Laboratory ID:<br>Sample Date: |     | 12/1/1983 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 10/1/1983 | 12/1/1983 | 12/1/1983             | 6/1/1985 | 12/1/1985 | 7/1/1986 | 1/1/1987 | 2/1/1988 | 2/1/1988 | 2/1/1988 |
| Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitroso-Di-N-Propylamine N-Nitroso-Di-N-Propylamine Pentachlorophenol Phenanthrene |                                |     |           |           |          |          |          | ND       |           |           |                       |          |           |          |          |          | ND       | 4 M      |
| Phenanthrene<br>Phenol<br>Pyrene                                                                                                                                                                                                                                                                                                                  |                                |     |           |           |          |          |          | ND       |           |           |                       |          |           |          |          |          | ND       | 5        |
| PAHs (ug/L) EPA SW8270D-SIM 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Dibenzofuran Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TEQ            |                                |     |           |           |          |          |          |          |           |           |                       |          |           |          |          |          |          |          |
| CONVENTIONALS (ug/L) Chloride Total Cyanide Fluoride Oil and Grease                                                                                                                                                                                                                                                                               |                                |     |           |           |          |          | 25,850   |          |           |           |                       |          |           |          |          |          |          |          |
| Sulfate Total Organic Carbon (EPA 415.1 Ferrous Iron (SM3500FeD)                                                                                                                                                                                                                                                                                  | 1 (a))                         |     |           |           |          |          | 8340     |          |           |           |                       |          |           |          |          |          |          |          |

|                                                           | Location                      | [          |           |           |          |           |           |           |           |           | I-203     |           |           |          |              |           |           |            |          |
|-----------------------------------------------------------|-------------------------------|------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|--------------|-----------|-----------|------------|----------|
|                                                           | Sample ID:                    | I-203i     | I-203i    | I-203i    | I-203i   | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i       | I-203i    | I-203i    | I-203i     | I-203i   |
|                                                           | Laboratory ID<br>Sample Date: |            | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992    | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 |
| TOTAL METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (        |                               | 2/1/1300   | 3/21/1331 | 3/20/1331 | 4/4/1001 | 4/11/1331 | 3/12/1331 | 3/13/1331 | 3/20/1331 | 10/3/1331 | 4/10/1332 | 4/20/1002 | 4/00/1002 | 3/1/1332 | 3/Z-1/133Z   | 10/1/1332 | 10/0/1332 | 10/13/1332 | 4/0/1000 |
| Antimony                                                  | (a)                           |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Arsenic<br>Barium                                         |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Cadmium<br>Chromium                                       |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Copper<br>Iron                                            |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Lead                                                      |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Manganese<br>Mercury                                      |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Nickel<br>Selenium                                        |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Silver                                                    |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Zinc                                                      |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A      | (a)                           |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Arsenic<br>Barium                                         |                               | 110        | 272       | 236       | 180      | 576       | 317       | 382       | 342       | 253       | 55        | 47        | 193       | 40       | <b>196</b> J | 200       | 122       | 148        | 82       |
| Cadmium                                                   |                               | 3          |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Chromium<br>Copper                                        |                               | 1 U<br>2 U |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Iron<br>Lead                                              |                               | 2          |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Manganese                                                 |                               | 0.1 U      |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Mercury<br>Nickel                                         |                               | 1 U        |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Selenium<br>Silver                                        |                               | 2 U        |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Zinc                                                      |                               | 26         |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| PETROLEUM HYDROCARBONS NWTPH-HCID                         | S (ug/L)                      |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Diesel Range Organics                                     |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Gasoline Range Organics<br>Lube Oil                       |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil             |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| PCBs (ug/L)                                               |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| EPA SW8082<br>Aroclor 1016                                |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Aroclor 1221<br>Aroclor 1232                              |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Aroclor 1242                                              |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Aroclor 1248<br>Aroclor 1254                              |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| Aroclor 1260<br>Total PCBs                                |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| VOLATILES (ug/L)<br>EPA SW8260B (a)                       |                               |            |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| 1,1,2,2-Tetrachloroethane                                 |                               | ND         |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane        |                               | ND         |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| 1,1,2-Trichloro-1,2,2-Trifluoroetha 1,1,2-Trichloroethane | ne                            | ND         |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |
| 1,1-Dichloroethane                                        |                               | ND         |           |           |          |           |           |           |           |           |           |           |           |          |              |           |           |            |          |

|                                                              | Location:                      |            |           |           |          |           |           |           |           |           | I-203     |           |           |          |           |           |           |            |          |
|--------------------------------------------------------------|--------------------------------|------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|------------|----------|
|                                                              | Sample ID:                     | I-203i     | I-203i    | I-203i    | I-203i   | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i    | I-203i    | I-203i    | I-203i     | I-203i   |
|                                                              | Laboratory ID:<br>Sample Date: |            | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 |
| 1,1-Dichloroethene                                           |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2-Dichloroethane 1,2-Dichloroethene (total)                |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,1-Dichloropropene                                          |                                | 115        |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2-Dichloropropane                                          |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2,3-Trichlorobenzene<br>1,2,3-Trichloropropane             |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2,4-Trichlorobenzene                                       |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2,4-Trimethylbenzene                                       |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene              |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2-Dichloroethane                                           |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,2-Dichloropropane                                          |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene                   |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,3-Dichloropropane                                          |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 1,4-Dichlorobenzene                                          |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 2,2-Dichloropropane                                          |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 2-Butanone 2-Chloroethylvinylether                           |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 2-Chlorotoluene                                              |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 2-Hexanone                                                   |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| <ul><li>4-Chlorotoluene</li><li>4-Isopropyltoluene</li></ul> |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| 4-Methyl-2-Pentanone (MIBK)                                  |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Acetone                                                      |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Acrolein<br>Acrylonitrile                                    |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Benzene                                                      |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Bromobenzene                                                 |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Bromochloromethane Bromodichloromethane                      |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Bromoethane                                                  |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Bromoform                                                    |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Bromomethane<br>Carbon Disulfide                             |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Carbon Tetrachloride                                         |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Chlorobenzene                                                |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Chloroethane<br>Chloroform                                   |                                | 1 J        |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Chloromethane                                                |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| cis-1,2-Dichloroethene                                       |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| cis-1,3-Dichloropropene Dibromochloromethane                 |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Dibromomethane                                               |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Ethylbenzene                                                 |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Ethylene Dibromide<br>Hexachlorobutadiene                    |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Isopropylbenzene                                             |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| m, p-Xylene                                                  |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Methyl Iodide<br>Methylene Chloride                          |                                | <b>9</b> B |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Naphthalene                                                  |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| n-Butylbenzene                                               |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| n-Propylbenzene<br>o-Xylene                                  |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| sec-Butylbenzene                                             |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Styrene                                                      |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| tert-Butylbenzene<br>Tetrachloroethene                       |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Toluene                                                      |                                | ND         |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| trans-1,2-Dichloroethene                                     |                                |            |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | l        |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|----------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location:                                    |          |                     |                     |                    |                     |                     |                     |                     |                     | I-203               |                     |                     |                    |                     |                     |                     |                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample ID:<br>Laboratory ID:<br>Sample Date: |          | I-203i<br>3/21/1991 | I-203i<br>3/28/1991 | I-203i<br>4/4/1991 | I-203i<br>4/11/1991 | I-203i<br>9/12/1991 | I-203i<br>9/19/1991 | I-203i<br>9/26/1991 | I-203i<br>10/3/1991 | I-203i<br>4/16/1992 | I-203i<br>4/23/1992 | I-203i<br>4/30/1992 | I-203i<br>5/7/1992 | I-203i<br>9/24/1992 | I-203i<br>10/1/1992 | I-203i<br>10/8/1992 | I-203i<br>10/15/1992 | I-203i<br>4/8/1993 |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene<br>Total Xylenes<br>Trichloroethene<br>Trichlorofluoromethane<br>Vinyl Acetate<br>Vinyl Chloride                                                                                                                                                                                                                                                                                               |                                              | ND<br>ND |                     |                     | 2 2 2 2 2          |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |
| VOLATILES (ug/L) EPA SW8260C-SIM 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride                                                                                                                                                                                                                                                                                                   |                                              |          |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |
| SEMIVOLATILES (ug/L) EPA SW8270D (a) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Methylphenol 2-Nitroaniline                                                      |                                              |          |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |
| 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid Benzyl Alcohol bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate |                                              | ND       |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |
| bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | 4        |                     |                     |                    |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                      |                    |

|                                                                                                                                                                                                                                                                                                                                                                                                             |                              | -        |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                             | Location:                    |          |           |           |          |           |           |           |           |           | I-203     |           |           |          |           |           |           |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                             | Sample ID:<br>Laboratory ID: |          | I-203i    | I-203i    | I-203i   | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i    | I-203i    | I-203i    | I-203i     | I-203i   |
|                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Date:                 | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 |
| Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate DinButylphthalate Din-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenonthrene |                              | ND       |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |
| Phenol Pyrene  PAHS (ug/L) EPA SW8270D-SIM 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene                                                                                                                                                                        |                              | ND       |           |           |          |           |           |           |           |           |           |           |           |          |           |           |           |            |          |

CONVENTIONALS (ug/L) Chloride

Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TEQ

Total Cyanide
Fluoride
Oil and Grease Sulfate

Dibenzofuran Fluoranthene Fluorene

Total Organic Carbon (EPA 415.1 (a)) Ferrous Iron (SM3500FeD)

|                                                                                                                                                                                                 |                            | i         |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|----------------------|
|                                                                                                                                                                                                 | Location                   |           |           |           |            |            |            |           |           | I-203     |           |          |            |           |           |           |            |                      |
|                                                                                                                                                                                                 | Sample ID<br>Laboratory ID |           | I-203i    | I-203i    | I-203i     | I-203i     | I-203i     | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i     | I-203i    | I-203i    | I-203i    | I-203i     | I-203<br>NB06C/NB06J |
| TOTAL METALS (ug/L)                                                                                                                                                                             | Sample Date                | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/18/2008            |
| EPA 200.8/SW6010B/SW7470A (a<br>Antimony<br>Arsenic<br>Barium<br>Cadmium                                                                                                                        | a)                         |           |           |           |            |            |            |           |           |           |           |          | 140        | 68        |           | 1200      | 98         |                      |
| Chromium<br>Copper<br>Iron<br>Lead<br>Manganese                                                                                                                                                 |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            | 20,900               |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                                                                 |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (a<br>Arsenic<br>Barium                                                                                                                    | a)                         | 82        | 88        | 98        | 140        | 130        | 150        | 100       | 41        | 58        | 50        | 13       | 160        | 70        | 150       | 1200      | 98         | 182                  |
| Cadmium<br>Chromium<br>Copper<br>Iron                                                                                                                                                           |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| Lead<br>Manganese<br>Mercury<br>Nickel<br>Selenium                                                                                                                                              |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| Silver<br>Zinc                                                                                                                                                                                  |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| PETROLEUM HYDROCARBONS<br>NWTPH-HCID<br>Diesel Range Organics<br>Gasoline Range Organics<br>Lube Oil                                                                                            | (ug/L)                     |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                                   |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242                                                                                                                      |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Total PCBs                                                                                                                                      |                            |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |
| VOLATILES (ug/L)<br>EPA SW8260B (a)<br>1,1,2,2-Tetrachloroethane<br>1,1,1-Trichloroethane<br>1,1,2-Trichloro-1,2,2-Trifluoroethan<br>1,1,2-Trichloro-1,2,2-Trifluoroethan<br>1,1-Dichloroethane | ie                         |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |

| Location                     | :                |           |           |            |            |            |           |           | I-203     |           |          |            |           |           |           |            |                          |
|------------------------------|------------------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|--------------------------|
| Sample ID                    |                  | I-203i    | I-203i    | I-203i     | I-203i     | I-203i     | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i     | I-203i    | I-203i    | I-203i    | I-203i     | I-203                    |
| Laboratory ID<br>Sample Date | :<br>: 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | NB06C/NB06J<br>6/18/2008 |
|                              |                  |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            | •                        |

- 1,1-Dichloroethene
- 1,2-Dichloroethane
- 1,2-Dichloroethene (total)
- 1,1-Dichloropropene
- 1,2-Dichloropropane
- 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane
- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,2-Dibromo-3-chloropropane
- 1,2-Dichlorobenzene
- 1,2-Dichloroethane
- 1,2-Dichloropropane 1,3,5-Trimethylbenzene
- 1,3-Dichlorobenzene
- 1,3-Dichloropropane
- 1,4-Dichlorobenzene
- 2,2-Dichloropropane
- 2-Butanone
- 2-Chloroethylvinylether
- 2-Chlorotoluene 2-Hexanone
- 4-Chlorotoluene
- 4-Isopropyltoluene

4-Methyl-2-Pentanone (MIBK)

Acetone Acrolein

Acrylonitrile

Benzene

Bromobenzene

Bromochloromethane Bromodichloromethane

Bromoethane

Bromoform

Bromomethane

Carbon Disulfide

Carbon Tetrachloride Chlorobenzene

Chloroethane

Chloroform

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene Dibromochloromethane

Dibromomethane

Ethylbenzene

Ethylene Dibromide

Hexachlorobutadiene

Isopropylbenzene m, p-Xylene

Methyl Iodide

Methylene Chloride

Naphthalene n-Butylbenzene

n-Propylbenzene

o-Xylene

sec-Butylbenzene Styrene

tert-Butylbenzene

Tetrachloroethene

Toluene trans-1,2-Dichloroethene

| Location:                      |           |           |            |            |            |           |           | I-203     |           |          |            |           |           |           |            |                          |
|--------------------------------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|--------------------------|
| Sample ID:                     | I-203i    | I-203i    | I-203i     | I-203i     | I-203i     | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i     | I-203i    | I-203i    | I-203i    | I-203i     | I-203                    |
| Laboratory ID:<br>Sample Date: | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | NB06C/NB06J<br>6/18/2008 |

trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

Total Xylenes Trichloroethene

Trichlorofluoromethane

Vinyl Acetate

Vinyl Chloride

#### VOLATILES (ug/L) EPA SW8260C-SIM

1,1,2,2-Tetrachloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene Tetrachloroethene

Trichloroethene

Vinyl Chloride

#### SEMIVOLATILES (ug/L) EPA SW8270D (a)

- 1,2,4-Trichlorobenzene
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene 1-Methylnaphthalene
- 2,2'-Oxybis(1-Chloropropane)
- 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol
- 2,4-Dimethylphenol
- 2,4-Dinitrophenol 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Chloronaphthalene
- 2-Chlorophenol 2-Methylnaphthalene
- 2-Methylphenol
- 2-Nitroaniline
- 2-Nitrophenol 3,3'-Dichlorobenzidine
- 3-Nitroaniline
- 4,6-Dinitro-2-Methylphenol
- 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline
- 4-Chlorophenyl-phenylether
- 4-Methylphenol
- 4-Nitroaniline 4-Nitrophenol
- Acenaphthene
- Acenaphthylene Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene Benzo(b)fluoranthene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Benzoic Acid Benzyl Alcohol
- bis(2-Chloroethoxy) Methane
- Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate
- Butylbenzylphthalate

|           | Location:                    |           |           |           |            |            |            |           |           | I-203     |           |          |            |           |           |           |            |                      |
|-----------|------------------------------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|----------------------|
|           | Sample ID:<br>Laboratory ID: | I-203i    | I-203i    | I-203i    | I-203i     | I-203i     | I-203i     | I-203i    | I-203i    | I-203i    | I-203i    | I-203i   | I-203i     | I-203i    | I-203i    | I-203i    | I-203i     | I-203<br>NB06C/NB06J |
|           | Sample Date:                 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/18/2008            |
| Carbazole |                              |           |           |           |            |            |            |           |           |           |           |          |            |           |           |           |            |                      |

Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene

Dibenz(a,h)anthracene

Fluorene Hexachlorobenzene

Hexachlorobutadiene Hexachlorocyclopentadiene

Hexachloroethane

Indeno(1,2,3-cd)pyrene

Chrysene

Isophorone . Naphthalene

Nitrobenzene N-Nitroso-Di-N-Propylamine

N-Nitrosodiphenylamine

Pentachlorophenol Phenanthrene

Phenol Pyrene

#### PAHs (ug/L) EPA SW8270D-SIM

1-Methylnaphthalene 2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene

Dibenz(a,h)anthracene

Dibenzofuran

Fluoranthene Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene Phenanthrene

Pyrene

#### CONVENTIONALS (ug/L)

Chloride Total Cyanide

Fluoride Oil and Grease Sulfate

Total Organic Carbon (EPA 415.1 (a)) Ferrous Iron (SM3500FeD)

9730 20,400

|                                                      | Location:                    |                      | I-203          |                      | I-203s     | I          |           |           |          |           |           | I-205     |           |           |           |           |           |          |
|------------------------------------------------------|------------------------------|----------------------|----------------|----------------------|------------|------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
|                                                      |                              | Dup of I-203         |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
|                                                      | Sample ID:<br>Laboratory ID: | I-DUP<br>NB06G/NB06N | I-203<br>OL19F | I-203<br>PC88D/PC88K | I-203s     | I-205s     | I-205s    | I-205s    | I-205s   | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   |
|                                                      | Sample Date:                 | 6/18/2008            | 2/4/2009       | 6/16/2009            | 2/1/1988   | 2/1/1988   | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 |
| TOTAL METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A     | (a)                          |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Antimony<br>Arsenic                                  |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Barium                                               |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Cadmium                                              |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Chromium<br>Copper                                   |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Iron                                                 |                              | 21,900               |                | 26,400               |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Lead                                                 |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Manganese<br>Mercury                                 |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Nickel                                               |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Selenium                                             |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Silver<br>Zinc                                       |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
|                                                      |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A | (a)                          |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Arsenic                                              | (ω)                          | 194                  | 122            | 125                  | 60         | 30         | 6         | 6         | 26       | 210       | 129       | 36        | 23        | 126       | 2         | 2         | 7         | 1 U      |
| Barium                                               |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Cadmium<br>Chromium                                  |                              |                      | 2 l<br>5 l     | J<br>I               | 2 U<br>1 U | 2 U<br>1 U |           |           |          |           |           |           |           |           |           |           |           |          |
| Copper                                               |                              |                      | 2 (            |                      | 20         | 10         |           |           |          |           |           |           |           |           |           |           |           |          |
| Iron                                                 |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Lead<br>Manganese                                    |                              |                      | 1 l            | J                    | 6          | 1          |           |           |          |           |           |           |           |           |           |           |           |          |
| Mercury                                              |                              |                      | 0.1 l          | J                    | 0.1 U      | 0.1 U      |           |           |          |           |           |           |           |           |           |           |           |          |
| Nickel                                               |                              |                      |                |                      | 40 U       | 40 U       |           |           |          |           |           |           |           |           |           |           |           |          |
| Selenium<br>Silver                                   |                              |                      |                |                      | 2 U        | 2 U        |           |           |          |           |           |           |           |           |           |           |           |          |
| Zinc                                                 |                              |                      | 10 l           | J                    | 2 U        | 56         |           |           |          |           |           |           |           |           |           |           |           |          |
| PETROLEUM HYDROCARBONS                               | 6 (ug/L)                     |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| NWTPH-HCID                                           |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Diesel Range Organics Gasoline Range Organics        |                              |                      | 630 l<br>250 l |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Lube Oil                                             |                              |                      | 630 L          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| NWTPH-Dx                                             |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Diesel Range Organics                                |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Lube Oil                                             |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| PCBs (ug/L)                                          |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| EPA SW8082                                           |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Aroclor 1016                                         |                              |                      | 1 l<br>1 l     |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Aroclor 1221<br>Aroclor 1232                         |                              |                      | 1 l            |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Aroclor 1242                                         |                              |                      | 1 l            | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Aroclor 1248<br>Aroclor 1254                         |                              |                      | 1 l<br>1 l     |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Aroclor 1260                                         |                              |                      | 1 l            | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Total PCBs                                           |                              |                      | 1 (            | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| VOLATILES (ug/L)                                     |                              |                      |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| EPA SW8260B (a)                                      |                              | 1                    |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane      |                              |                      | 0.2 l<br>0.2 l | J.                   | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,1,2,2-Tetrachloroethane                            |                              |                      | 0.2 l          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,1,2-Trichloro-1,2,2-Trifluoroetha                  | ne                           |                      | 0.2 l          | J                    | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane          |                              |                      | 0.2 l<br>0.2 l | J.                   | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| ., i Diomorosalano                                   |                              | 1                    | 0.2 (          | -                    | 1 110      | 1          |           |           |          |           |           |           |           |           |           |           |           |          |

|                                                    |                              | I                    |                |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
|----------------------------------------------------|------------------------------|----------------------|----------------|----------------------|------------|------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
|                                                    | Location:                    |                      | I-203          |                      | I-203s     |            |           |           |          |           |           | I-205     |           |           |           |           |           |          |
|                                                    | 0I- ID:                      | Dup of I-203         | 1.000          | 1.000                | 1.000-     | 1.005-     | 1.005-    | 1.005-    | 1.005-   | 1.005-    | 1.005-    | 1.005-    | 1.005-    | 1.005-    | 1.005-    | 1.005-    | 1.005-    | 1.005-   |
|                                                    | Sample ID:<br>Laboratory ID: | I-DUP<br>NB06G/NB06N | I-203<br>OL19F | I-203<br>PC88D/PC88K | I-203s     | I-205s     | I-205s    | I-205s    | I-205s   | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   |
|                                                    | Sample Date:                 |                      | 2/4/2009       | 6/16/2009            | 2/1/1988   | 2/1/1988   | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 |
| 1,1-Dichloroethene                                 |                              |                      | 0.2 U          | J                    | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           | _        |
| 1,2-Dichloroethane                                 |                              |                      |                |                      | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2-Dichloroethene (total) 1,1-Dichloropropene     |                              |                      | 0.2 U          | I                    | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2-Dichloropropane                                |                              |                      | 0.2 0          | ,                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2,3-Trichlorobenzene                             |                              |                      | 0.5 U          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2,3-Trichloropropane                             |                              |                      | 0.5 U          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2,4-Trichlorobenzene                             |                              |                      | 0.5 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane |                              |                      | 0.2 U<br>0.5 U | )<br>                |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2-Dibromo-3-chioropropane                        |                              |                      | 0.5 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2-Dichloroethane                                 |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2-Dichloropropane                                |                              |                      | 0.2 U          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,3,5-Trimethylbenzene                             |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,3-Dichlorobenzene                                |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,3-Dichloropropane                                |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,4-Dichlorobenzene 2,2-Dichloropropane            |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Butanone                                         |                              |                      | 2.5 U          |                      | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Chloroethylvinylether                            |                              |                      | 1 U            |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Chlorotoluene                                    |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Hexanone                                         |                              |                      | 2.5 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Chlorotoluene                                    |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Isopropyltoluene<br>4-Methyl-2-Pentanone (MIBK)  |                              |                      | 2.5 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Acetone                                            |                              |                      | 3.1            | ,                    | ND         | 15         |           |           |          |           |           |           |           |           |           |           |           |          |
| Acrolein                                           |                              |                      | 5 U            | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Acrylonitrile                                      |                              |                      | 1 U            |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzene                                            |                              |                      | 0.2 U          |                      | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| Bromobenzene<br>Bromochloromethane                 |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Bromodichloromethane                               |                              |                      | 0.2 U          | ,<br>I               |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Bromoethane                                        |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Bromoform                                          |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Bromomethane                                       |                              |                      | 0.5 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Carbon Disulfide                                   |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Carbon Tetrachloride Chlorobenzene                 |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Chloroethane                                       |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Chloroform                                         |                              |                      | 0.2 U          | J                    | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| Chloromethane                                      |                              |                      | 0.2 U          | J                    | 1          |            |           |           |          |           |           |           |           |           |           |           |           |          |
| cis-1,2-Dichloroethene                             |                              |                      | 1.3            |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| cis-1,3-Dichloropropene Dibromochloromethane       |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Dibromocnioromethane Dibromomethane                |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Ethylbenzene                                       |                              |                      | 0.2 U          |                      | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| Ethylene Dibromide                                 |                              |                      | 0.2 U          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Hexachlorobutadiene                                |                              |                      | 0.5 U          | I                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Isopropylbenzene                                   |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| m, p-Xylene<br>Methyl Iodide                       |                              |                      | 0.4 U<br>1 U   |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Methyl lodide Methylene Chloride                   |                              |                      | 0.5 U          |                      | <b>6</b> B | <b>7</b> B |           |           |          |           |           |           |           |           |           |           |           |          |
| Naphthalene                                        |                              |                      | 0.5 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| n-Butylbenzene                                     |                              |                      | 0.2 U          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| n-Propylbenzene                                    |                              |                      | 0.2 U          | J                    |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| o-Xylene                                           |                              |                      | 0.2 U<br>0.2 U | J<br>I               |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| sec-Butylbenzene<br>Styrene                        |                              |                      | 0.2 U<br>0.2 U |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| tert-Butylbenzene                                  |                              |                      | 0.2 U          |                      |            |            |           |           |          |           |           |           |           |           |           |           |           |          |
| Tetrachloroethene                                  |                              |                      | 0.2 U          | l                    | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| Toluene                                            |                              |                      | 0.2 U          |                      | ND         | ND         |           |           |          |           |           |           |           |           |           |           |           |          |
| trans-1,2-Dichloroethene                           |                              | l                    | 0.2 U          | J                    | 1          |            |           |           |          |           |           |           |           |           |           |           |           |          |

|                                                          |              | 1             |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
|----------------------------------------------------------|--------------|---------------|----------------|----------------------|----------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
|                                                          | Location:    |               | I-203          |                      | I-203s   | I        |           |           |          |           |           | I-205     |           |           |           |           |           |          |
|                                                          |              | Dup of I-203  |                | 1.000                |          | 1.005    | 1.005     | 1.005     | 1.005    | 1.005     | 1.005     |           | 1.005     | 1.005     | 1.005     | 1.005     | 1.005     | 1.005    |
|                                                          |              | : NB06G/NB06N | I-203<br>OL19F | I-203<br>PC88D/PC88K | I-203s   | I-205s   | I-205s    | I-205s    | I-205s   | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   |
|                                                          | Sample Date: | 6/18/2008     | 2/4/2009       | 6/16/2009            | 2/1/1988 | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene |              |               | 0.2 L<br>1 L   |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Total Xylenes                                            |              |               |                |                      | ND       | ND       |           |           |          |           |           |           |           |           |           |           |           |          |
| Trichloroethene Trichlorofluoromethane                   |              |               | 0.2 L          |                      | ND       | ND       |           |           |          |           |           |           |           |           |           |           |           |          |
| Vinyl Acetate                                            |              |               | 0.2 L<br>1 L   |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Vinyl Chloride                                           |              |               | 0.2 L          |                      | ND       | ND       |           |           |          |           |           |           |           |           |           |           |           |          |
| VOLATILES (ug/L)                                         |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| EPA SW8260C-SIM                                          |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene             |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| cis-1,2-Dichloroethene                                   |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Tetrachloroethene                                        |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Trichloroethene                                          |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Vinyl Chloride                                           |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| SEMIVOLATILES (ug/L)<br>EPA SW8270D (a)                  |              |               |                |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2,4-Trichlorobenzene                                   |              |               | 1 L            | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,2-Dichlorobenzene                                      |              |               | 1 L            | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,3-Dichlorobenzene                                      |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 1,4-Dichlorobenzene<br>1-Methylnaphthalene               |              |               | 1 L<br>1 L     |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,2'-Oxybis(1-Chloropropane)                             |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,4,5-Trichlorophenol                                    |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,4,6-Trichlorophenol                                    |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,4-Dichlorophenol 2,4-Dimethylphenol                    |              |               | 5 L<br>1 L     |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,4-Dinitrophenol                                        |              |               | 10 L           | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,4-Dinitrotoluene                                       |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2,6-Dinitrotoluene 2-Chloronaphthalene                   |              |               | 5 L<br>1 L     |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Chlorophenol                                           |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Methylnaphthalene                                      |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Methylphenol 2-Nitroaniline                            |              |               | 1 L<br>5 L     |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 2-Nitrophenol                                            |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 3,3'-Dichlorobenzidine                                   |              |               | 5 L            | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 3-Nitroaniline                                           |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether     |              |               | 10 L<br>1 L    |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Chloro-3-methylphenol                                  |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Chloroaniline                                          |              |               | 5 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Chlorophenyl-phenylether                               |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Methylphenol 4-Nitroaniline                            |              |               | 1 L<br>5 L     | ,<br>J               |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 4-Nitrophenol                                            |              |               | 5 L            | IJ                   |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Acenaphthene                                             |              |               | 1 L            |                      | ND       | ND       |           |           |          |           |           |           |           |           |           |           |           |          |
| Acenaphthylene<br>Anthracene                             |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(a)anthracene                                       |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(a)pyrene                                           |              |               | 1 L            | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(b)fluoranthene                                     |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene             |              |               | 1 L<br>1 L     |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzoic Acid                                             |              |               | 10 L           | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzyl Alcohol                                           |              |               | 5 L            | J                    |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| bis(2-Chloroethoxy) Methane                              |              |               | 1 L            |                      |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate     |              |               | 1 L<br>1 L     |                      | 7        | 4        |           |           |          |           |           |           |           |           |           |           |           |          |
| Butylbenzylphthalate                                     |              |               | 1 L            |                      | 1        | 1 7      |           |           |          |           |           |           |           |           |           |           |           |          |
|                                                          |              | ı             |                | -                    | •        | 1        |           |           |          |           |           |           |           |           |           |           |           |          |

|                                                                                                             |                | I                     |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
|-------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----------------|-------------|----------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
|                                                                                                             | Location:      |                       | I-203          |             | I-203s   |          |           |           |          |           |           | I-205     |           |           |           |           |           |          |
|                                                                                                             | Sample ID:     | Dup of I-203<br>I-DUP | I-203          | I-203       | I-203s   | I-205s   | I-205s    | I-205s    | I-205s   | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   |
|                                                                                                             | Laboratory ID: | NB06G/NB06N           | OL19F          | PC88D/PC88K |          |          |           | 1-2003    | 1-2003   | 1-2003    | 1-2003    | 1-2003    | 1-2003    | 1-2003    | 1-2003    | 1-2003    | 1-2003    |          |
|                                                                                                             | Sample Date:   | 6/18/2008             | 2/4/2009       | 6/16/2009   | 2/1/1988 | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 | 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 |
| Carbazole                                                                                                   |                |                       | 1 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Chrysene                                                                                                    |                |                       | 1 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Dibenz(a,h)anthracene<br>Dibenzofuran                                                                       |                |                       | 1 L<br>1 L     |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Diethylphthalate                                                                                            |                |                       | 1 (            |             | ND       | ND       |           |           |          |           |           |           |           |           |           |           |           |          |
| Dimethylphthalate                                                                                           |                |                       | 1 (            | ,<br>I      | IND      | ND       |           |           |          |           |           |           |           |           |           |           |           |          |
| Di-n-Butylphthalate                                                                                         |                |                       | 1 (            | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Di-n-Octyl phthalate                                                                                        |                |                       | 1 (            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Fluoranthene                                                                                                |                |                       | 1 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Fluorene                                                                                                    |                |                       | 1 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Hexachlorobenzene                                                                                           |                |                       | 1 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Hexachlorobutadiene                                                                                         |                |                       | 1 L            | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Hexachlorocyclopentadiene                                                                                   |                |                       | 5 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Hexachloroethane                                                                                            |                |                       | 1 L<br>1 L     |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Indeno(1,2,3-cd)pyrene<br>Isophorone                                                                        |                |                       | 1 L            |             | 1        |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Naphthalene                                                                                                 |                |                       | 1 (            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Nitrobenzene                                                                                                |                |                       | 1 (            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| N-Nitroso-Di-N-Propylamine                                                                                  |                |                       | 5 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| N-Nitrosodiphenylamine                                                                                      |                |                       | 1 L            | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Pentachlorophenol                                                                                           |                |                       | 5 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Phenanthrene                                                                                                |                |                       | 1 L            |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Phenol                                                                                                      |                |                       | 1 L<br>1 L     | JJ<br>'     | ND       |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Pyrene                                                                                                      |                |                       | 1 (            | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| PAHs (ug/L)                                                                                                 |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| EPA SW8270D-SIM                                                                                             |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| 1-Methylnaphthalene 2-Methylnaphthalene                                                                     |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Acenaphthene                                                                                                |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Acenaphthylene                                                                                              |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Anthracene                                                                                                  |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(a)anthracene                                                                                          |                |                       | 0.1 L          | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(a)pyrene                                                                                              |                |                       | 0.1 L          |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(b)fluoranthene                                                                                        |                |                       | 0.1 L          | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(g,h,i)perylene                                                                                        |                |                       | 0.1 L          |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Benzo(k)fluoranthene<br>Chrysene                                                                            |                |                       | 0.1 C<br>0.1 L |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Dibenz(a,h)anthracene                                                                                       |                |                       | 0.1 0          |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Dibenzofuran                                                                                                |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Fluoranthene                                                                                                |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Fluorene                                                                                                    |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Indeno(1,2,3-cd)pyrene                                                                                      |                |                       | 0.1 L          | J           |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Naphthalene<br>Phenanthrene                                                                                 |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Pyrene                                                                                                      |                |                       |                |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| TEQ                                                                                                         |                |                       | NA             |             |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| CONVENTIONALS (ug/L) Chloride Total Cyanide Fluoride Oil and Grease Sulfate Total Organic Carbon (EPA 415.1 | (a))           | 9400                  |                | 9620        |          |          |           |           |          |           |           |           |           |           |           |           |           |          |
| Ferrous Iron (SM3500FeD)                                                                                    |                | 19,600                |                | 26,400      | I        | I        |           |           |          |           |           |           |           |           |           |           |           |          |

|                                                                                                                                                                                          | Location                   |           |           |           |            |          |           |           |           | I-205      |            |            |           |           |           |           |          |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|
|                                                                                                                                                                                          | Sample ID<br>Laboratory ID | : I-205s  | I-205s    | I-205s    | I-205s     | I-205s   | I-205s    | I-205s    | I-205s    | I-205s     | I-205s     | I-205s     | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   | I-205s     |
| TOTAL METALS (visil)                                                                                                                                                                     | Sample Date                | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium                                             | <b>(</b> )                 |           |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          | 580        |
| Silver<br>Zinc                                                                                                                                                                           |                            |           |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          |            |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a                                                                                                                                     | n)                         | 57        | 2         | 1         | 9          | 24       | 46        | 25        | 56        | 11         | 11         | 19         | 310       | 1 U       | 1         | 7         | 1        | 640        |
| Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silver Zinc  PETROLEUM HYDROCARBONS NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil         | (ug/L)                     |           |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          |            |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                                            |                            |           |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          |            |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                             |                            |           |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          |            |
| VOLATILES (ug/L) EPA SW8260B (a) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethan 1,1,2-Trichloroethane 1,1-Dichloroethane | e                          |           |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          |            |

| Location                     | 15          |           |           |            |          |           |           |           | I-205      |            |            |           |           |           |           |          |            |
|------------------------------|-------------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|
| Sample ID                    | ): I-205s   | I-205s    | I-205s    | I-205s     | I-205s   | I-205s    | I-205s    | I-205s    | I-205s     | I-205s     | I-205s     | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   | I-205s     |
| Laboratory ID<br>Sample Date | : 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 |

- 1,1-Dichloroethene
- 1,2-Dichloroethane
- 1,2-Dichloroethene (total)
- 1,1-Dichloropropene
- 1,2-Dichloropropane
- 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane
- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,2-Dibromo-3-chloropropane
- 1,2-Dichlorobenzene
- 1,2-Dichloroethane
- 1,2-Dichloropropane 1,3,5-Trimethylbenzene
- 1,3-Dichlorobenzene
- 1,3-Dichloropropane 1,4-Dichlorobenzene
- 2,2-Dichloropropane
- 2-Butanone
- 2-Chloroethylvinylether
- 2-Chlorotoluene 2-Hexanone
- 4-Chlorotoluene
- 4-Isopropyltoluene

4-Methyl-2-Pentanone (MIBK)

Acetone Acrolein

Acrylonitrile

Benzene

Bromobenzene Bromochloromethane

Bromodichloromethane

Bromoethane

Bromoform

Bromomethane

Carbon Disulfide

Carbon Tetrachloride Chlorobenzene

Chloroethane

Chloroform

Chloromethane cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

Ethylbenzene

Ethylene Dibromide

Hexachlorobutadiene Isopropylbenzene

m, p-Xylene Methyl Iodide

Methylene Chloride Naphthalene

n-Butylbenzene n-Propylbenzene

o-Xylene

sec-Butylbenzene

Styrene tert-Butylbenzene

Tetrachloroethene

Toluene

trans-1,2-Dichloroethene

| ı | Location:                   |         |           |           |            |          |           |           |           | I-20 <b>5</b> |            |            |           |           |           |           |          |            |
|---|-----------------------------|---------|-----------|-----------|------------|----------|-----------|-----------|-----------|---------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|
|   |                             | I-205s  | I-205s    | I-205s    | I-205s     | I-205s   | I-205s    | I-205s    | I-205s    | I-205s        | I-205s     | I-205s     | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   | I-205s     |
|   | ratory ID:<br>ple Date: 9/2 | 24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993    | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 |

trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

Total Xylenes Trichloroethene

Trichlorofluoromethane

Vinyl Acetate

Vinyl Chloride

#### VOLATILES (ug/L) EPA SW8260C-SIM

1,1,2,2-Tetrachloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene Tetrachloroethene

Trichloroethene

Vinyl Chloride

#### SEMIVOLATILES (ug/L) EPA SW8270D (a)

- 1,2,4-Trichlorobenzene
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene 1-Methylnaphthalene
- 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol
- 2,4-Dimethylphenol 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Chloronaphthalene
- 2-Chlorophenol 2-Methylnaphthalene
- 2-Methylphenol
- 2-Nitroaniline
- 2-Nitrophenol
- 3,3'-Dichlorobenzidine 3-Nitroaniline
- 4,6-Dinitro-2-Methylphenol
- 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol
- 4-Chloroaniline 4-Chlorophenyl-phenylether
- 4-Methylphenol
- 4-Nitroaniline
- 4-Nitrophenol
- Acenaphthene Acenaphthylene
- Anthracene
- Benzo(a)anthracene Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(g,h,i)perylene Benzo(k)fluoranthene
- Benzoic Acid
- bis(2-Chloroethoxy) Methane
- Bis-(2-Chloroethyl) Ether
- bis(2-Ethylhexyl)phthalate Butylbenzylphthalate

Benzyl Alcohol

|           | Location:                    |        |           |           |            |          |           |           |           | I-205      |            |            |           |           |           |           |          |            |
|-----------|------------------------------|--------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|----------|------------|
|           | Sample ID:<br>Laboratory ID: | I-205s | I-205s    | I-205s    | I-205s     | I-205s   | I-205s    | I-205s    | I-205s    | I-205s     | I-205s     | I-205s     | I-205s    | I-205s    | I-205s    | I-205s    | I-205s   | I-205s     |
|           | Sample Date:                 |        | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 |
| Carbazole |                              |        |           |           |            |          |           |           |           |            |            |            |           |           |           |           |          |            |

Chrysene

Dibenz(a,h)anthracene

Dibenzofuran

Diethylphthalate

Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene

Fluorene Hexachlorobenzene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane Indeno(1,2,3-cd)pyrene

Isophorone

. Naphthalene Nitrobenzene

N-Nitroso-Di-N-Propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene Phenol

Pyrene

#### PAHs (ug/L) EPA SW8270D-SIM

1-Methylnaphthalene

2-Methylnaphthalene

Acenaphthene Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene
Dibenz(a,h)anthracene

Dibenzofuran Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene Phenanthrene

Pyrene

#### CONVENTIONALS (ug/L)

Chloride Total Cyanide Fluoride

Oil and Grease Sulfate

Total Organic Carbon (EPA 415.1 (a)) Ferrous Iron (SM3500FeD)

|                                                      | Laasti                      |     |           |           |            | I-205                |                |                 |                      | ı        |           |           |          | I-206     |           |           |           |           |
|------------------------------------------------------|-----------------------------|-----|-----------|-----------|------------|----------------------|----------------|-----------------|----------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|
|                                                      | Location                    |     |           |           |            |                      |                | Dup of I-205    |                      |          |           |           |          |           |           |           |           |           |
|                                                      | Sample ID:<br>Laboratory ID |     | I-205s    | I-205s    | I-205s     | I-205<br>NB06D/NB06K | I-205<br>OL19E | I-2055<br>OL19G | I-205<br>PC88E/PC88L | I-206s   | I-206s    | I-206s    | I-206s   | I-206s    | I-206s    | I-206s    | I-206s    | I-206s    |
|                                                      | Sample Date:                |     | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008            | 2/4/2009       | 2/4/2009        | 6/16/2009            | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 |
| TOTAL METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A     | (a)                         |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Antimony                                             | (u)                         |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Arsenic                                              |                             | 26  |           | 27        | 112        |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Barium<br>Cadmium                                    |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Chromium                                             |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Copper<br>Iron                                       |                             |     |           |           |            | 27,500               |                |                 | 12,900               |          |           |           |          |           |           |           |           |           |
| Lead                                                 |                             |     |           |           |            | 21,300               |                |                 | 12,300               |          |           |           |          |           |           |           |           |           |
| Manganese                                            |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Mercury<br>Nickel                                    |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Selenium                                             |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Silver                                               |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Zinc                                                 |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A | (a)                         |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Arsenic<br>Barium                                    |                             | 320 | 10        | 27        | 112        | 45.9                 | 28.1           | 27.4            | 33.5                 | 1700     | 1780      | 1610      | 1740     | 1730      | 1470      | 1790      | 1580      | 1610      |
| Cadmium                                              |                             |     |           |           |            |                      | 2 U            | 2 U             |                      |          |           |           |          |           |           |           |           |           |
| Chromium                                             |                             |     |           |           |            |                      | 5 U            | 5 U             |                      | 2        |           |           |          |           |           |           |           |           |
| Copper<br>Iron                                       |                             |     |           |           |            |                      | 2 U            | 2 U             |                      | 3        |           |           |          |           |           |           |           |           |
| Lead                                                 |                             |     |           |           |            |                      | 1 U            | 1 U             |                      | 1        |           |           |          |           |           |           |           |           |
| Manganese                                            |                             |     |           |           |            |                      | 0.4.11         | 0.4.11          |                      |          |           |           |          |           |           |           |           |           |
| Mercury<br>Nickel                                    |                             |     |           |           |            |                      | 0.1 U          | 0.1 U           |                      | 1 U      |           |           |          |           |           |           |           |           |
| Selenium                                             |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Silver<br>Zinc                                       |                             |     |           |           |            |                      | 10 U           | 10 U            |                      | 2 U      |           |           |          |           |           |           |           |           |
| ZIIIC                                                |                             |     |           |           |            |                      | 10 0           | 10 0            |                      | 20       |           |           |          |           |           |           |           |           |
| PETROLEUM HYDROCARBONS                               | S (ug/L)                    |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| NWTPH-HCID Diesel Range Organics                     |                             |     |           |           |            |                      | 630 U          | 630 U           |                      |          |           |           |          |           |           |           |           |           |
| Gasoline Range Organics                              |                             |     |           |           |            |                      | 250 U          | 250 U           |                      |          |           |           |          |           |           |           |           |           |
| Lube Oil                                             |                             |     |           |           |            |                      | 630 U          | 630 U           |                      |          |           |           |          |           |           |           |           |           |
| <b>NWTPH-Dx</b> Diesel Range Organics Lube Oil       |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| PCBs (ug/L)                                          |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| EPA SW8082                                           |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| Aroclor 1016                                         |                             |     |           |           |            |                      | 1 U            | 1 U             |                      |          |           |           |          |           |           |           |           |           |
| Aroclor 1221<br>Aroclor 1232                         |                             |     |           |           |            |                      | 1 U<br>1 U     | 1 U<br>1 U      |                      |          |           |           |          |           |           |           |           |           |
| Aroclor 1242                                         |                             |     |           |           |            |                      | 1 U            | 1 U             |                      |          |           |           |          |           |           |           |           |           |
| Aroclor 1248<br>Aroclor 1254                         |                             |     |           |           |            |                      | 1 U<br>1 U     | 1 U<br>1 U      |                      |          |           |           |          |           |           |           |           |           |
| Aroclor 1254<br>Aroclor 1260                         |                             |     |           |           |            |                      | 1 U            | 1 U             |                      |          |           |           |          |           |           |           |           |           |
| Total PCBs                                           |                             |     |           |           |            |                      | 1 U            | 1 U             |                      |          |           |           |          |           |           |           |           |           |
| VOLATILES (ug/L)<br>EPA SW8260B (a)                  |                             |     |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| 1,1,2,2-Tetrachloroethane<br>1,1,1-Trichloroethane   |                             |     |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| 1,1,2,2-Tetrachloroethane                            |                             |     |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,1,2-Trichloro-1,2,2-Trifluoroetha                  | ine                         |     |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,1,2-Trichloroethane 1,1-Dichloroethane             |                             |     |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |

|                                                              |                             | İ |           |           |            |                      |                |                 |                      | _        |           |           |          |           |           |           |           |           |
|--------------------------------------------------------------|-----------------------------|---|-----------|-----------|------------|----------------------|----------------|-----------------|----------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|
|                                                              | Location                    |   |           |           |            | I-205                |                | Dup of I-205    |                      |          |           |           |          | I-206     |           |           |           |           |
|                                                              | Sample ID:<br>Laboratory ID |   | I-205s    | I-205s    | I-205s     | I-205<br>NB06D/NB06K | I-205<br>OL19E | I-2055<br>OL19G | I-205<br>PC88E/PC88L | I-206s   | I-206s    | I-206s    | I-206s   | I-206s    | I-206s    | I-206s    | I-206s    | I-206s    |
|                                                              | Sample Date:                |   | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008            | 2/4/2009       | 2/4/2009        | 6/16/2009            | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 |
| 1,1-Dichloroethene                                           |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,2-Dichloroethane 1,2-Dichloroethene (total)                |                             |   |           |           |            |                      |                |                 |                      |          |           |           |          |           |           |           |           |           |
| 1,1-Dichloropropene                                          |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,2-Dichloropropane 1,2,3-Trichlorobenzene                   |                             |   |           |           |            |                      | 0.5 U          | 0.5 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,2,3-Trichloropropane                                       |                             |   |           |           |            |                      | 0.5 U          | 0.5 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene                |                             |   |           |           |            |                      | 0.5 U<br>0.2 U | 0.5 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| 1,2-Dibromo-3-chloropropane                                  |                             |   |           |           |            |                      | 0.2 U          | 0.5 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,2-Dichlorobenzene                                          |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,2-Dichloroethane 1,2-Dichloropropane                       |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| 1,3,5-Trimethylbenzene                                       |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,3-Dichlorobenzene                                          |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 1,3-Dichloropropane 1,4-Dichlorobenzene                      |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| 2,2-Dichloropropane                                          |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 2-Butanone 2-Chloroethylvinylether                           |                             |   |           |           |            |                      | 2.5 U<br>1 U   | 2.5 U<br>1 U    |                      |          |           |           |          |           |           |           |           |           |
| 2-Chlorotoluene                                              |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| 2-Hexanone                                                   |                             |   |           |           |            |                      | 2.5 U          | 2.5 U           |                      |          |           |           |          |           |           |           |           |           |
| <ul><li>4-Chlorotoluene</li><li>4-Isopropyltoluene</li></ul> |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| 4-Methyl-2-Pentanone (MIBK)                                  |                             |   |           |           |            |                      | 2.5 U          | 2.5 U           |                      |          |           |           |          |           |           |           |           |           |
| Acetone                                                      |                             |   |           |           |            |                      | 2.5 U          | 2.5 U           |                      |          |           |           |          |           |           |           |           |           |
| Acrolein<br>Acrylonitrile                                    |                             |   |           |           |            |                      | 5 U<br>1 U     | 5 U<br>1 U      |                      |          |           |           |          |           |           |           |           |           |
| Benzene                                                      |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           | l                    |          |           |           |          |           |           |           |           |           |
| Bromobenzene                                                 |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Bromochloromethane Bromodichloromethane                      |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| Bromoethane                                                  |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Bromoform<br>Bromomethane                                    |                             |   |           |           |            |                      | 0.2 U<br>0.5 U | 0.2 U<br>0.5 U  |                      |          |           |           |          |           |           |           |           |           |
| Carbon Disulfide                                             |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Carbon Tetrachloride                                         |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Chlorobenzene<br>Chloroethane                                |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| Chloroform                                                   |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Chloromethane cis-1,2-Dichloroethene                         |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| cis-1,3-Dichloropropene                                      |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Dibromochloromethane                                         |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Dibromomethane<br>Ethylbenzene                               |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| Ethylene Dibromide                                           |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Hexachlorobutadiene                                          |                             |   |           |           |            |                      | 0.5 U          | 0.5 U           |                      |          |           |           |          |           |           |           |           |           |
| Isopropylbenzene<br>m, p-Xylene                              |                             |   |           |           |            |                      | 0.2 U<br>0.4 U | 0.2 U<br>0.4 U  |                      |          |           |           |          |           |           |           |           |           |
| Methyl Iodide                                                |                             |   |           |           |            |                      | 1 U            | 1 U             |                      |          |           |           |          |           |           |           |           |           |
| Methylene Chloride<br>Naphthalene                            |                             |   |           |           |            |                      | 0.5 U<br>0.5 U | 0.5 U<br>0.5 U  |                      |          |           |           |          |           |           |           |           |           |
| n-Butylbenzene                                               |                             |   |           |           |            |                      | 0.5 U          | 0.5 U           |                      |          |           |           |          |           |           |           |           |           |
| n-Propylbenzene                                              |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| o-Xylene<br>sec-Butylbenzene                                 |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| Styrene                                                      |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| tert-Butylbenzene                                            |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |
| Tetrachloroethene<br>Toluene                                 |                             |   |           |           |            |                      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U  |                      |          |           |           |          |           |           |           |           |           |
| trans-1,2-Dichloroethene                                     |                             |   |           |           |            |                      | 0.2 U          | 0.2 U           |                      |          |           |           |          |           |           |           |           |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location                                    |           |           |           |            | I-205                |                                                                                                                                                     |                                                         |                      | ı        |           |           |          | I-206     |           |           |           |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|-----------|-----------|------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | 1.005     | 1.005     | 1.005     | 1.005      |                      | 1.005                                                                                                                                               | Dup of I-205                                            | 1.005                | 1.000    | 1.000     | 1.000     | 1.000    |           | 1.000     | 1.000     | 1.000     | 1.000     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample ID:<br>Laboratory ID<br>Sample Date: |           | I-205s    | I-205s    | I-205s     | I-205<br>NB06D/NB06K | I-205<br>OL19E                                                                                                                                      | I-2055<br>OL19G<br>2/4/2009                             | I-205<br>PC88E/PC88L | I-206s   | I-206s    | I-206s    | I-206s   | I-206s    | I-206s    | I-206s    | I-206s    | I-206s    |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene<br>Total Xylenes<br>Trichloroethene<br>Trichlorofluoromethane<br>Vinyl Acetate<br>Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jample Date.                                | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008            | 2/4/2009<br>0.2 U<br>1 U<br>0.2 U<br>0.2 U<br>1 U<br>0.2 U                                                                                          | 0.2 U<br>1 U<br>0.2 U<br>0.2 U<br>0.2 U<br>1 U<br>0.2 U |                      | 2/1/1988 | 3/21/1991 | 3/28/1991 | 4/4/1991 | 4/11/1991 | 9/12/1991 | 9/19/1991 | 9/26/1991 | 10/3/1991 |
| VOLATILES (ug/L) EPA SW8260C-SIM 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |           |           |           |            |                      |                                                                                                                                                     |                                                         |                      |          |           |           |          |           |           |           |           |           |
| SEMIVOLATILES (ug/L) EPA SW8270D (a)  1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Methylnaphthalene 2-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenol 4-Nitrophenol |                                             |           |           |           |            |                      | 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 5 UJ 5 UJ 10 UJ 5 UJ 1 UJ 5 UJ 1 UJ 5 UJ 1 UJ 5 UJ 1 UJ 5 UJ 1 UJ 5 UJ 1 UJ 1 UJ 5 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 | 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U                 |                      |          |           |           |          |           |           |           |           |           |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |           |           |           |            |                      | 1 UJ<br>1 UJ<br>1 UJ                                                                                                                                | 1 U<br>1 U<br>1 U                                       |                      |          |           |           |          |           |           |           |           |           |

|                                                                                                                                                                                                                                                                                                                                                                 | Location:                                    |          |                     |                     |                      | I-205                             |                                                    |                                                                                                                                          |                                   | 1                  |                     |                     |                                         | I-206                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|---------------------|---------------------|----------------------|-----------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|---------------------|---------------------|-----------------------------------------|-----------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                 | Sample ID:<br>Laboratory ID:<br>Sample Date: |          | I-205s<br>12/1/1999 | I-205s<br>8/24/2000 | I-205s<br>10/25/2000 | I-205<br>NB06D/NB06K<br>6/16/2008 | I-205<br>OL19E<br>2/4/2009                         | Dup of I-205<br>I-2055<br>OL19G<br>2/4/2009                                                                                              | I-205<br>PC88E/PC88L<br>6/16/2009 | I-206s<br>2/1/1988 | I-206s<br>3/21/1991 | I-206s<br>3/28/1991 | I-206s<br>4/4/1991                      | I-206s<br>4/11/1991                     | I-206s<br>9/12/1991 | I-206s<br>9/19/1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I-206s<br>9/26/1991 | I-206s<br>10/3/1991 |
| Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene Fluorene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitroso-Di-N-Propylamine N-Nitroso-Di-N-Propylamine Pentachlorophenol Phenanthrene Phenol Pyrene | Cumple Date.                                 | 7.07.000 | 12.171000           | GE II EGGG          | TOPEGREGO            | G. T. G. E. G. G.                 | 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ            | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>5 U<br>1 U<br>1 U<br>1 U<br>5 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U |                                   |                    | G/E//1001           | O.E.O. TOO T        | *************************************** | *************************************** | <i>672</i> 1601     | C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. | OFECT TOO 1         | 1.0.0.1.00.1        |
| PAHs (ug/L) EPA SW8270D-SIM 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Dibenzofuran Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TEQ                        |                                              |          |                     |                     |                      |                                   | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U                                                                                       |                                   |                    |                     |                     |                                         |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |
| CONVENTIONALS (ug/L) Chloride Total Cyanide Fluoride Oil and Grease Sulfate Total Organic Carbon (EPA 415.7 Ferrous Iron (SM3500FeD)                                                                                                                                                                                                                            | 1 (a))                                       |          |                     |                     |                      | 8840<br>23,400                    | INA                                                | NA.                                                                                                                                      | 10,800<br>13,100                  |                    |                     |                     |                                         |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |

| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n:           |           |           |          |               |           |           |            | I-206    |           |           |           |            |            |            |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|----------|---------------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|
| Sample ID<br>Laboratory ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): I-206s    | I-206s    | I-206s    | I-206s   | I-206s        | I-206s    | I-206s    | I-206s     | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s     | I-206s     | I-206s    | I-206s    |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e: 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992     | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silver Zinc  DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silver Zinc  PETROLEUM HYDROCARBONS (ug/L) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil  NWTPH-Dx Diesel Range Organics Lube Oil  PCBs (ug/L) EPA SW8082 Aroclor 1212 Aroclor 1221 Aroclor 1221 Aroclor 1224 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 Total PCBs  VOLATILES (ug/L) EPA SW8260B (a) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,0-Dichloroethane | 1610         | 1770      | 1670      | 1600     | <b>1680</b> J | 1580      | 1550      | 1700       | 1710     | 1580      | 1510      | 1700      | 1680       | 1590       | 1810       | 1510      | 1360      |

| Location:                            |                  |           |          |           |           |           |            | I-206    |           |           |           |            |            |            |           |           |
|--------------------------------------|------------------|-----------|----------|-----------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|
| Sample ID: I-20<br>Laboratory ID:    | 206s I-206s      | I-206s    | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s     | I-206s     | I-206s    | I-206s    |
| Laboratory ID:<br>Sample Date: 4/16/ | 6/1992 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 |

- 1,1-Dichloroethene
- 1,2-Dichloroethane
- 1,2-Dichloroethene (total)
- 1,1-Dichloropropene
- 1,2-Dichloropropane
- 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane
- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,2-Dibromo-3-chloropropane
- 1,2-Dichlorobenzene
- 1,2-Dichloroethane
- 1,2-Dichloropropane 1,3,5-Trimethylbenzene
- 1,3-Dichlorobenzene
- 1,3-Dichloropropane
- 1,4-Dichlorobenzene
- 2,2-Dichloropropane 2-Butanone
- 2-Chloroethylvinylether
- 2-Chlorotoluene 2-Hexanone
- 4-Chlorotoluene
- 4-Isopropyltoluene
- 4-Methyl-2-Pentanone (MIBK)

Acetone

Acrolein Acrylonitrile

Benzene

Bromobenzene

Bromochloromethane

Bromodichloromethane

Bromoethane Bromoform

Bromomethane

Carbon Disulfide

Carbon Tetrachloride

Chlorobenzene Chloroethane

Chloroform

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene Dibromochloromethane

Dibromomethane

Ethylbenzene

Ethylene Dibromide

Hexachlorobutadiene

Isopropylbenzene m, p-Xylene

Methyl Iodide

Methylene Chloride

Naphthalene n-Butylbenzene

n-Propylbenzene

o-Xylene

sec-Butylbenzene Styrene

tert-Butylbenzene Tetrachloroethene

Toluene

trans-1,2-Dichloroethene

| Loc                | ation:                    |           |           |          |           |           |           |            | I-206    |           |           |           |            |            |            |           |           |
|--------------------|---------------------------|-----------|-----------|----------|-----------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|
|                    | le ID: I-206s             | I-206s    | I-206s    | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s     | I-206s     | I-206s    | I-206s    |
| Laborato<br>Sample | ry ID:<br>Date: 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 |

trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

Total Xylenes Trichloroethene

Trichlorofluoromethane

Vinyl Acetate

Vinyl Chloride

#### VOLATILES (ug/L) EPA SW8260C-SIM

1,1,2,2-Tetrachloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

Tetrachloroethene Trichloroethene

Vinyl Chloride

#### SEMIVOLATILES (ug/L) EPA SW8270D (a)

- 1,2,4-Trichlorobenzene
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene 1-Methylnaphthalene
- 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol
- 2,4-Dimethylphenol 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Chloronaphthalene
- 2-Chlorophenol 2-Methylnaphthalene
- 2-Methylphenol
- 2-Nitroaniline
- 2-Nitrophenol
- 3,3'-Dichlorobenzidine 3-Nitroaniline
- 4,6-Dinitro-2-Methylphenol
- 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol
- 4-Chloroaniline 4-Chlorophenyl-phenylether
- 4-Methylphenol
- 4-Nitroaniline 4-Nitrophenol
- Acenaphthene
- Acenaphthylene Anthracene
- Benzo(a)anthracene Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(g,h,i)perylene
- bis(2-Chloroethoxy) Methane
- Bis-(2-Chloroethyl) Ether
- bis(2-Ethylhexyl)phthalate Butylbenzylphthalate
- Benzo(k)fluoranthene Benzoic Acid Benzyl Alcohol

| Location                      | :           |           |           |          |           |           |           |            | I-206    |           |           |           |            |            |            |           |           |
|-------------------------------|-------------|-----------|-----------|----------|-----------|-----------|-----------|------------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|
| Sample ID:                    |             | I-206s    | I-206s    | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s   | I-206s    | I-206s    | I-206s    | I-206s     | I-206s     | I-206s     | I-206s    | I-206s    |
| Laboratory ID<br>Sample Date: | : 4/16/1992 | 4/23/1992 | 4/30/1992 | 5/7/1992 | 9/24/1992 | 10/1/1992 | 10/8/1992 | 10/15/1992 | 4/8/1993 | 4/15/1993 | 4/22/1993 | 4/29/1993 | 10/15/1993 | 10/22/1993 | 10/29/1993 | 11/5/1993 | 4/14/1994 |

Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate Fluoranthene

Dibenz(a,h)anthracene

Fluorene

Carbazole Chrysene

Hexachlorobenzene Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane

Indeno(1,2,3-cd)pyrene Isophorone

Naphthalene

Nitrobenzene

N-Nitroso-Di-N-Propylamine

N-Nitrosodiphenylamine Pentachlorophenol

Phenanthrene

Phenol Pyrene

#### PAHs (ug/L) EPA SW8270D-SIM

1-Methylnaphthalene 2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene
Dibenz(a,h)anthracene

Dibenzofuran Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene

Phenanthrene

Pyrene

#### CONVENTIONALS (ug/L)

Chloride Total Cyanide Fluoride Oil and Grease Sulfate

Total Organic Carbon (EPA 415.1 (a)) Ferrous Iron (SM3500FeD)

|                                                           | Landina                     |           |           |          |            |           | 1.000     |           |            |                      |                |                      | I pp. 44           | I pp. 40           | I DDI 40           | l pp. 45           | l 57.0         | l pz.4 l       |
|-----------------------------------------------------------|-----------------------------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|----------------------|----------------|----------------------|--------------------|--------------------|--------------------|--------------------|----------------|----------------|
|                                                           | Location                    | :         |           |          |            |           | I-206     |           |            |                      |                |                      | PBI-11             | PBI-12             | PBI-13             | PBI-15             | PZ-2           | PZ-4           |
|                                                           | Sample ID:<br>Laboratory ID |           | I-206s    | I-206s   | I-206s     | I-206s    | I-206s    | I-206s    | I-206s     | I-206<br>NB06F/NB06M | I-206<br>OL19D | I-206<br>PC88G/PC88N | PBI-11-GW<br>PI41A | PBI-12-GW<br>PI41B | PBI-13-GW<br>PI41C | PBI-15-GW<br>PI41D | PZ-2<br>OL19C  | PZ-4<br>OL19B  |
|                                                           | Sample Date:                | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008            | 2/4/2009       | 6/16/2009            | 7/28/2009          | 7/28/2009          | 7/28/2009          | 7/28/2009          | 2/4/2009       | 2/4/2009       |
| TOTAL METALS (ug/L)                                       |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| EPA 200.8/SW6010B/SW7470A (<br>Antimony                   | (a)                         |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Arsenic                                                   |                             |           |           |          | 1600       | 2270      |           | 1100      | 1350       |                      |                |                      |                    |                    |                    |                    |                |                |
| Barium                                                    |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Cadmium<br>Chromium                                       |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Copper                                                    |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Iron                                                      |                             |           |           |          |            |           |           |           |            | 48,400               |                | 30,500               |                    |                    |                    |                    |                |                |
| Lead<br>Manganese                                         |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Mercury                                                   |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Nickel<br>Selenium                                        |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Silver                                                    |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Zinc                                                      |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (    | (a)                         |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Arsenic                                                   | (a)                         | 1480      | 1370      | 1430     | 2000       | 1800      | 1600      | 1100      | 1350       | 690                  | 575            | 412                  |                    |                    |                    |                    | 11.3           | 29.2           |
| Barium                                                    |                             |           |           |          |            |           |           |           |            |                      | _              |                      |                    |                    |                    |                    |                |                |
| Cadmium<br>Chromium                                       |                             |           |           |          |            |           |           |           |            |                      | 2<br>5         |                      |                    |                    |                    |                    | 2 U<br>5 U     | 2 U<br>5 U     |
| Copper                                                    |                             |           |           |          |            |           |           |           |            |                      | 2              |                      |                    |                    |                    |                    | 2 U            | 2 U            |
| Iron .                                                    |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Lead<br>Manganese                                         |                             |           |           |          |            |           |           |           |            |                      | 1              | U                    |                    |                    |                    |                    | 1 U            | 1 U            |
| Mercury                                                   |                             |           |           |          |            |           |           |           |            |                      | 0.1            | U                    |                    |                    |                    |                    | 0.1 U          | 0.1 U          |
| Nickel                                                    |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Selenium<br>Silver                                        |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| Zinc                                                      |                             |           |           |          |            |           |           |           |            |                      | 10             | U                    |                    |                    |                    |                    | 10 U           | 10 U           |
| PETROLEUM HYDROCARBONS                                    | S (ug/L)                    |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| NWTPH-HCID Diesel Range Organics                          |                             |           |           |          |            |           |           |           |            |                      | 630            | П                    |                    |                    |                    |                    | 630 U          | 630 U          |
| Gasoline Range Organics                                   |                             |           |           |          |            |           |           |           |            |                      | 250            |                      |                    |                    |                    |                    | 250 U          | 250 U          |
| Lube Oil                                                  |                             |           |           |          |            |           |           |           |            |                      | 630            | U                    |                    |                    |                    |                    | 630 U          | 630 U          |
| <b>NWTPH-Dx</b> Diesel Range Organics Lube Oil            |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| PCBs (ug/L)                                               |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| EPA SW8082                                                |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    | 1                  |                    |                    |                | ļ , , , l      |
| Aroclor 1016<br>Aroclor 1221                              |                             |           |           |          |            |           |           |           |            |                      | 1<br>1         |                      |                    |                    |                    |                    | 1 U<br>1 U     | 1 U<br>1 U     |
| Aroclor 1232                                              |                             |           |           |          |            |           |           |           |            |                      | 1              | U                    |                    |                    |                    |                    | 1 U            | 1 U            |
| Aroclor 1242<br>Aroclor 1248                              |                             |           |           |          |            |           |           |           |            |                      | 1<br>1         |                      |                    | 1                  |                    |                    | 1 U            | 1 U<br>1 U     |
| Aroclor 1246<br>Aroclor 1254                              |                             |           |           |          |            |           |           |           |            |                      | 1              |                      |                    |                    |                    |                    | 1 U<br>1 U     | 1 U            |
| Aroclor 1260                                              |                             |           |           |          |            |           |           |           |            |                      | 1              | U                    |                    |                    |                    |                    | 1 U            | 1 U            |
| Total PCBs                                                |                             |           |           |          |            |           |           |           |            |                      | 1              | U                    |                    |                    |                    |                    | 1 U            | 1 U            |
| VOLATILES (ug/L)                                          |                             |           |           |          |            |           |           |           |            |                      |                |                      |                    |                    |                    |                    |                |                |
| EPA SW8260B (a)<br>1,1,2,2-Tetrachloroethane              |                             |           |           |          |            |           |           |           |            |                      | 0.2            | U                    | 1 U                |                    | 1 U                |                    | 0.2 U          | 0.2 U          |
| 1,1,1-Trichloroethane                                     |                             |           |           |          |            |           |           |           |            |                      | 0.2            | U                    |                    |                    |                    |                    | 0.2 U          | 0.2 U          |
| 1,1,2,2-Tetrachloroethane                                 | uno.                        |           |           |          |            |           |           |           |            |                      | 0.2            |                      |                    | 1                  |                    |                    | 0.2 U          | 0.2 U          |
| 1,1,2-Trichloro-1,2,2-Trifluoroetha 1,1,2-Trichloroethane | uie                         |           |           |          |            |           |           |           |            |                      | 0.2<br>0.2     |                      |                    |                    |                    |                    | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U |
| 1,1-Dichloroethane                                        |                             |           |           |          |            |           |           |           |            |                      | 0.3            |                      |                    |                    |                    |                    | 0.2 U          | 0.2 U          |

|                                                  | Location:                                    |                     |                     |                    |                      |                     | I-20 <b>6</b>       |                     |                      |                                   |                            |                                   | PBI-11                          | PBI-12                          | PBI-13 | PBI-15                          | PZ-2                      | PZ-4                      |
|--------------------------------------------------|----------------------------------------------|---------------------|---------------------|--------------------|----------------------|---------------------|---------------------|---------------------|----------------------|-----------------------------------|----------------------------|-----------------------------------|---------------------------------|---------------------------------|--------|---------------------------------|---------------------------|---------------------------|
|                                                  | Sample ID:<br>Laboratory ID:<br>Sample Date: | I-206s<br>4/21/1994 | I-206s<br>4/28/1994 | I-206s<br>5/5/1994 | I-206s<br>12/28/1995 | I-206s<br>4/19/1996 | I-206s<br>12/1/1999 | I-206s<br>8/24/2000 | I-206s<br>10/25/2000 | I-206<br>NB06F/NB06M<br>6/16/2008 | I-206<br>OL19D<br>2/4/2009 | I-206<br>PC88G/PC88N<br>6/16/2009 | PBI-11-GW<br>PI41A<br>7/28/2009 | PBI-12-GW<br>PI41B<br>7/28/2009 |        | PBI-15-GW<br>PI41D<br>7/28/2009 | PZ-2<br>OL19C<br>2/4/2009 | PZ-4<br>OL19B<br>2/4/2009 |
| 1,1-Dichloroethene                               | Cample Date.                                 | 4/21/1994           | 4/20/1994           | 3/3/1934           | 12/20/1995           | 4/19/1990           | 12/1/1999           | 0/24/2000           | 10/23/2000           | 0/10/2000                         | 0.2 L                      |                                   | 1.2                             | 1720/2003                       | 1 U    | 7/20/2009                       | 0.2 U                     | 0.2 U                     |
| 1,2-Dichloroethane 1,2-Dichloroethene (total)    |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   |                            |                                   |                                 |                                 |        |                                 |                           |                           |
| 1,1-Dichloropropene<br>1,2-Dichloropropane       |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L                      | U                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| 1,2,3-Trichlorobenzene<br>1,2,3-Trichloropropane |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.5 L<br>0.5 L             |                                   |                                 |                                 |        |                                 | 0.5 U<br>0.5 U            | 0.5 U<br>0.5 U            |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.5 L<br>0.2 L             | J                                 |                                 |                                 |        |                                 | 0.5 U<br>0.2 U            | 0.5 U<br>0.2 U            |
| 1,2-Dibromo-3-chloropropane                      |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.5 L                      | J                                 |                                 |                                 |        |                                 | 0.5 U                     | 0.5 U                     |
| 1,2-Dichlorobenzene 1,2-Dichloroethane           |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene       |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | <b>0.3</b><br>0.2 U       | 0.2 U<br>0.2 U            |
| 1,3-Dichlorobenzene                              |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L                      | J                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| 1,3-Dichloropropane<br>1,4-Dichlorobenzene       |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| 2,2-Dichloropropane 2-Butanone                   |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>2.5 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>2.5 U            | 0.2 U<br>2.5 U            |
| 2-Chloroethylvinylether<br>2-Chlorotoluene       |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 1 L<br>0.2 L               | J                                 |                                 |                                 |        |                                 | 1 U<br>0.2 U              | 1 U<br>0.2 U              |
| 2-Hexanone                                       |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 2.5 L                      | J                                 |                                 |                                 |        |                                 | 2.5 U                     | 2.5 U                     |
| 4-Chlorotoluene 4-Isopropyltoluene               |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| 4-Methyl-2-Pentanone (MIBK)<br>Acetone           |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 2.5 U<br><b>4.2</b>        |                                   |                                 |                                 |        |                                 | 2.5 U<br><b>2.6</b>       | 2.5 U<br><b>3</b>         |
| Acrolein                                         |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 5 L                        |                                   |                                 |                                 |        |                                 | 5 U                       | 5 U                       |
| Acrylonitrile<br>Benzene                         |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 1 L<br>0.2 L               |                                   |                                 |                                 |        |                                 | 1 U<br>0.2 U              | 1 U<br>0.2 U              |
| Bromobenzene<br>Bromochloromethane               |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 U<br>0.2 U             | J                                 |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Bromodichloromethane                             |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L                      | J                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| Bromoethane<br>Bromoform                         |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Bromomethane<br>Carbon Disulfide                 |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.5 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.5 U<br>0.2 U            | 0.5 U<br>0.2 U            |
| Carbon Tetrachloride                             |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 ل                      | J                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| Chlorobenzene<br>Chloroethane                    |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             | J                                 |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Chloroform<br>Chloromethane                      |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| cis-1,2-Dichloroethene cis-1,3-Dichloropropene   |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | <b>0.7</b><br>0.2 U        |                                   | 100                             |                                 | 190    |                                 | <b>0.5</b><br>0.2 U       | 0.2 U<br>0.2 U            |
| Dibromochloromethane                             |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L                      | J                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| Dibromomethane<br>Ethylbenzene                   |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Ethylene Dibromide<br>Hexachlorobutadiene        |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.5 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.5 U            | 0.2 U<br>0.5 U            |
| Isopropylbenzene                                 |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 ل                      | J                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| m, p-Xylene<br>Methyl lodide                     |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.4 L<br>1 L               | J                                 |                                 |                                 |        |                                 | 0.4 U<br>1 U              | 0.4 U<br>1 U              |
| Methylene Chloride<br>Naphthalene                |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.5 L<br>0.5 L             |                                   |                                 |                                 |        |                                 | 0.5 U<br>0.5 U            | 0.5 U<br>0.5 U            |
| n-Butylbenzene<br>n-Propylbenzene                |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             | J                                 |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| o-Xylene                                         |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L                      | J                                 |                                 |                                 |        |                                 | 0.2 U                     | 0.2 U                     |
| sec-Butylbenzene<br>Styrene                      |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   |                                 |                                 |        |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| tert-Butylbenzene                                |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 ل                      | J                                 | 4 11                            |                                 | 70     |                                 | 0.2 U                     | 0.2 U                     |
| Tetrachloroethene<br>Toluene                     |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 L<br>0.2 L             |                                   | 1 U                             |                                 | 78     |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| trans-1,2-Dichloroethene                         |                                              |                     |                     |                    |                      |                     |                     |                     |                      |                                   | 0.4                        |                                   |                                 | I                               | I      | 1                               | 0.2 U                     | 0.2 U                     |

|                                                                               |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   |                            |                                   | •                                    | •                               |                                       |                                 |                           |                           |
|-------------------------------------------------------------------------------|-------------------------------------------|---|---------------------|--------------------|----------------------|---------------------|---------------------|---------------------|----------------------|-----------------------------------|----------------------------|-----------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------|---------------------------|
|                                                                               | Location                                  | : |                     |                    |                      |                     | I-206               |                     |                      |                                   |                            |                                   | PBI-11                               | PBI-12                          | PBI-13                                | PBI-15                          | PZ-2                      | PZ-4                      |
|                                                                               | Sample ID<br>Laboratory ID<br>Sample Date | : | I-206s<br>4/28/1994 | I-206s<br>5/5/1994 | I-206s<br>12/28/1995 | I-206s<br>4/19/1996 | I-206s<br>12/1/1999 | I-206s<br>8/24/2000 | I-206s<br>10/25/2000 | I-206<br>NB06F/NB06M<br>6/16/2008 | I-206<br>OL19D<br>2/4/2009 | I-206<br>PC88G/PC88N<br>6/16/2009 | PBI-11-GW<br>PI41A<br>7/28/2009      | PBI-12-GW<br>PI41B<br>7/28/2009 | PBI-13-GW<br>PI41C<br>7/28/2009       | PBI-15-GW<br>PI41D<br>7/28/2009 | PZ-2<br>OL19C<br>2/4/2009 | PZ-4<br>OL19B<br>2/4/2009 |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene                      |                                           |   |                     |                    |                      |                     |                     |                     |                      | 22 22 2                           | 0.2 U<br>1 U               | J                                 |                                      |                                 |                                       |                                 | 0.2 U<br>1 U              | 0.2 U<br>1 U              |
| Total Xylenes<br>Trichloroethene<br>Trichlorofluoromethane                    |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 0.2 U<br>0.2 U             | J                                 | 2.4                                  |                                 | 1000                                  |                                 | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            |
| Vinyl Acetate<br>Vinyl Chloride                                               |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br><b>1.8</b>          | J                                 | 1.3                                  |                                 | 1 U                                   |                                 | 1 U<br>0.2 U              | 1 U<br>0.2 U              |
| VOLATILES (ug/L) EPA SW8260C-SIM 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   |                            |                                   | 0.02 U<br><b>1.2</b><br><b>77</b> ES | 0.02 U<br>0.02 U<br><b>0.68</b> | 0.02 UJ<br><b>0.58</b> J              | 0.02 U<br><b>0.14</b>           |                           |                           |
| cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride       |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   |                            |                                   | 0.038<br>2.3<br>1.3                  | 0.071<br>0.28<br>0.18           | 92 ESJ<br>32 ESJ<br>57 ESJ<br>0.051 J |                                 |                           |                           |
| SEMIVOLATILES (ug/L) EPA SW8270D (a) 1,2,4-Trichlorobenzene                   |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U                        | I                                 |                                      |                                 |                                       |                                 | 1 U                       | 1 UJ                      |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene                   |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>1 U<br>1 U          | J<br>J                            |                                      |                                 |                                       |                                 | 1 U<br>1 U                | 1 UJ<br>1 UJ              |
| 1-Methylnaphthalene<br>2,2'-Oxybis(1-Chloropropane)                           |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>1 U                 | J<br>J                            |                                      |                                 |                                       |                                 | 1 U<br>1 U<br>1 U         | 1 UJ<br>1 UJ<br>1 UJ      |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol          |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 5 U<br>5 U<br>5 U          | J<br>J                            |                                      |                                 |                                       |                                 | 5 U<br>5 U<br>5 U         | 5 U<br>5 U<br>5 U         |
| 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene                       |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>10 U<br>5 U         | J                                 |                                      |                                 |                                       |                                 | 1 U<br>10 U<br>5 U        | 1 U<br>10 U<br>5 UJ       |
| 2,6-Dinitrotoluene<br>2-Chloronaphthalene<br>2-Chlorophenol                   |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 5 U<br>1 U<br>1 U          | J                                 |                                      |                                 |                                       |                                 | 5 U<br>1 U<br>1 U         | 5 UJ<br>1 UJ<br>1 U       |
| 2-Methylnaphthalene<br>2-Methylphenol<br>2-Nitroaniline                       |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>1 U<br>5 U          | J<br>J                            |                                      |                                 |                                       |                                 | 1 U<br>1 U<br>5 U         | 1 UJ<br>1 U<br>5 UJ       |
| 2-Nitrophenol 3,3'-Dichlorobenzidine                                          |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 5 U<br>5 U                 | J<br>J                            |                                      |                                 |                                       |                                 | 5 U<br>5 U                | 5 U<br>5 UJ               |
| 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether           |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 5 U<br>10 U<br>1 U         | J<br>J                            |                                      |                                 |                                       |                                 | 5 U<br>10 U<br>1 U        | 5 UJ<br>10 U<br>1 UJ      |
| 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenylether            |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 5 U<br>5 U<br>1 U          | J                                 |                                      |                                 |                                       |                                 | 5 U<br>5 U<br>1 U         | 5 U<br>5 UJ<br>1 UJ       |
| 4-Methylphenol<br>4-Nitroaniline<br>4-Nitrophenol                             |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>5 U<br>5 U          | J                                 |                                      |                                 |                                       |                                 | 1 U<br>5 U<br>5 UJ        | 1 U<br>5 UJ<br>5 UJ       |
| Acenaphthene<br>Acenaphthylene<br>Anthracene                                  |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>1 U                 | J<br>J                            |                                      |                                 |                                       |                                 | 1 U<br>1 U<br>1 U         | 1 UJ<br>1 UJ<br>1 UJ      |
| Benzo(a)anthracene<br>Benzo(a)pyrene                                          |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>1 U                 | J<br>J                            |                                      |                                 |                                       |                                 | 1 U<br>1 U                | 1 UJ<br>1 UJ              |
| Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid   |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 L<br>1 L<br>1 L<br>10 L  | J<br>J                            |                                      |                                 |                                       |                                 | 1 U<br>1 U<br>1 U<br>10 U | 1 UJ<br>1 UJ<br>1 UJ      |
| Benzoic Acid Benzyl Alcohol bis(2-Chloroethoxy) Methane                       |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 5 U<br>1 U                 | J<br>J                            |                                      |                                 |                                       |                                 | 5 U<br>1 U                | 10 U<br>5 UJ<br>1 UJ      |
| Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate Butylbenzylphthalate     |                                           |   |                     |                    |                      |                     |                     |                     |                      |                                   | 1 U<br>1 U<br>1 U          | J                                 |                                      |                                 |                                       |                                 | 1 U<br>1 U<br>1 U         | 1 UJ<br>1 UJ<br>1 UJ      |

LANDAU ASSOCIATES

|                                                                                                                                                                                                                                                                                                                                                                                     |                         |           |           |          |            |           |           |           |            |                      |                                           |                      |                    |                    | 1                  | 1                  |                                                    |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|----------------------|-------------------------------------------|----------------------|--------------------|--------------------|--------------------|--------------------|----------------------------------------------------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                     | Location                |           |           |          |            |           | I-206     |           |            |                      |                                           |                      | PBI-11             | PBI-12             | PBI-13             | PBI-15             | PZ-2                                               | PZ-4                                               |
|                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID Laboratory ID | :         | I-206s    | I-206s   | I-206s     | I-206s    | I-206s    | I-206s    | I-206s     | I-206<br>NB06F/NB06M | I-206<br>OL19D                            | I-206<br>PC88G/PC88N | PBI-11-GW<br>PI41A | PBI-12-GW<br>PI41B | PBI-13-GW<br>PI41C | PBI-15-GW<br>PI41D | PZ-2<br>OL19C                                      | PZ-4<br>OL19B                                      |
| Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Din-Butylphthalate Din-Octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenol Pyrene | Sample Date             | 4/21/1994 | 4/28/1994 | 5/5/1994 | 12/28/1995 | 4/19/1996 | 12/1/1999 | 8/24/2000 | 10/25/2000 | 6/16/2008            | 2/4/2009  1                               | )                    | 7/28/2009          | 7/28/2009          | 7/28/2009          | 7/28/2009          | 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U            | 2/4/2009  1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 U   |
| PAHs (ug/L) EPA SW8270D-SIM 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Dibenzofuran Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TEQ                                                           |                         |           |           |          |            |           |           |           |            |                      | 0.1 L<br>0.1 L<br>0.1 L<br>0.1 L<br>0.1 L | )<br>)<br>)          |                    |                    |                    |                    | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U | 0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U<br>0.1 U |
| CONVENTIONALS (ug/L) Chloride Total Cyanide Fluoride Oil and Grease Sulfate Total Organic Carbon (EPA 415.1 Ferrous Iron (SM3500FeD)                                                                                                                                                                                                                                                | (a))                    |           |           |          |            |           |           |           |            | 12,000<br>47,200     |                                           | 11,800<br>30,200     |                    |                    |                    |                    |                                                    |                                                    |

|                                                             | .       | <b>D</b> 7.0              | 1                 |                    | D7 -                             |                           |                                  | ı                 |                    | P7.0                             |                           |                                  |                               | down System Piping             |                                |
|-------------------------------------------------------------|---------|---------------------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|-------------------------------|--------------------------------|--------------------------------|
|                                                             | cation: | PZ-6                      |                   |                    | PZ-7                             |                           |                                  |                   |                    | PZ-8                             |                           |                                  | TDP1                          | TDP25                          | TDP26                          |
| Samp<br>Laborate<br>Sample                                  |         | PZ-6<br>OL24A<br>2/4/2009 | PZ-7<br>8/24/2000 | PZ-7<br>10/25/2000 | PZ-7<br>NB06B/NB06I<br>6/16/2008 | PZ-7<br>OK85A<br>2/2/2009 | PZ-7<br>PC88C/PC88J<br>6/16/2009 | PZ-8<br>8/24/2000 | PZ-8<br>10/25/2000 | PZ-8<br>NB06E/NB06L<br>6/16/2008 | PZ-8<br>OL19A<br>2/4/2009 | PZ-8<br>PC88F/PC88M<br>6/16/2009 | TDP1-GW<br>NX93F<br>11/3/2008 | TDP25-GW<br>NY44M<br>11/5/2008 | TDP26-GW<br>NY64H<br>11/6/2008 |
| TOTAL METALS (ug/L)                                         |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| EPA 200.8/SW6010B/SW7470A (a) Antimony                      |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Arsenic                                                     |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Barium                                                      |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Cadmium<br>Chromium                                         |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Copper                                                      |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Iron                                                        |         |                           |                   |                    | 70                               |                           | 50 U                             |                   |                    | 32,400                           |                           | 28,000                           |                               |                                |                                |
| Lead                                                        |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Manganese<br>Mercury                                        |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Nickel                                                      |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Selenium                                                    |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Silver                                                      |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Zinc                                                        |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| DISSOLVED METALS (ug/L)<br>EPA 200.8/SW6010B/SW7470A (a)    |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Arsenic                                                     |         | 505                       | 9                 | 3.7                | 18.4                             | 5                         | 15.5                             | 2                 | 2.8                | 3.6                              | 1 U                       | 2                                | 13                            | 4                              | 1.3                            |
| Barium<br>Cadmium                                           |         | 2 U                       |                   |                    |                                  | 2 U                       | 1                                |                   |                    |                                  | 2 U                       |                                  | 2 U                           | 2 U                            | 2.11                           |
| Chromium                                                    |         | 2 U                       |                   |                    |                                  | 5 U                       | ,<br>J                           |                   |                    |                                  | 5 U                       |                                  | 6                             | 5 U                            | 2 U<br>5 U                     |
| Copper                                                      |         | 2 U                       |                   |                    |                                  | 2 U                       |                                  |                   |                    |                                  | 2 U                       |                                  | 2 U                           | 2 U                            | 2 U                            |
| Iron                                                        |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Lead<br>Manganese                                           |         | 5 U                       |                   |                    |                                  | 1 U                       | J                                |                   |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| Mercury                                                     |         | 0.1 U                     |                   |                    |                                  | 0.1 U                     | J                                |                   |                    |                                  | 0.1 U                     |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Nickel                                                      |         | 3 <b>C</b>                |                   |                    |                                  | 0 0                       |                                  |                   |                    |                                  | o o                       |                                  | S 5                           |                                | 5                              |
| Selenium                                                    |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| Silver<br>Zinc                                              |         | 10 U                      |                   |                    |                                  | 10 U                      | ı                                |                   |                    |                                  | 10 U                      |                                  |                               |                                |                                |
| ZIIIC                                                       |         | 10 0                      |                   |                    |                                  | 10 0                      | ,                                |                   |                    |                                  | 10 0                      |                                  |                               |                                |                                |
| PETROLEUM HYDROCARBONS (ug/L)                               |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| NWTPH-HCID Diesel Range Organics                            |         | 630 U                     |                   |                    |                                  | 630 U                     | ı                                |                   |                    |                                  | 630 U                     |                                  | 630 U                         | 630 U                          | 630 U                          |
| Gasoline Range Organics                                     |         | 250 U                     |                   |                    |                                  | 250 U                     |                                  |                   |                    |                                  | 250 U                     |                                  | 250 U                         | 250 U                          | 250 U                          |
| Lube Oil                                                    |         | 630 U                     |                   |                    |                                  | 630 U                     |                                  |                   |                    |                                  | 630 U                     |                                  | 630 U                         | 630 U                          | 630 U                          |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil               |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| PCBs (ug/L)                                                 |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| EPA SW8082<br>Aroclor 1016                                  |         | 1 U                       |                   |                    |                                  | 1 U                       | J                                | 1                 |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| Aroclor 1221                                                |         | 1 U                       |                   |                    |                                  | 1 U                       | J                                |                   |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| Aroclor 1232                                                |         | 1 U                       |                   |                    |                                  | 1 U                       | J                                |                   |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| Aroclor 1242<br>Aroclor 1248                                |         | 1 U<br>1 U                |                   |                    |                                  | 1 U<br>1 U                |                                  |                   |                    |                                  | 1 U<br>1 U                |                                  | 1 U<br>1 U                    | 1 U<br>1 U                     | 1 U<br>1 U                     |
| Aroclor 1254                                                |         | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| Aroclor 1260                                                |         | 1 U                       |                   |                    |                                  | 1 U                       | J                                |                   |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| Total PCBs                                                  |         | 1 U                       |                   |                    |                                  | 1 U                       | J                                |                   |                    |                                  | 1 U                       |                                  | 1 U                           | 1 U                            | 1 U                            |
| VOLATILES (ug/L)<br>EPA SW8260B (a)                         |         |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                               |                                |                                |
| 1,1,2,2-Tetrachloroethane                                   |         | 0.2 U                     |                   |                    |                                  | 0.2 U                     | J                                |                   |                    |                                  | 0.2 U                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| 1,1,1-Trichloroethane                                       |         | 0.2 U                     |                   |                    |                                  | 0.2 U                     | J                                |                   |                    |                                  | 0.2 U                     |                                  | 1 U                           | 0.4                            | 1.2                            |
| 1,1,2,2-Tetrachloroethane                                   |         | 0.2 U                     |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 U                     |                                  | 2                             | 227                            | 0.17                           |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane |         | 0.2 U<br>0.2 U            |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  | 2 U<br>1 U                    | 0.2 U<br>0.2 U                 | 2 U<br>1 U                     |
| 1,1-Dichloroethane                                          |         | 0.2 U                     |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 U                     |                                  | 1 U                           | 1.9                            | 4                              |

|                                                   |                                              | I              |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  | Former Washo                  | lown System Piping             | North of 14-01                 |
|---------------------------------------------------|----------------------------------------------|----------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|-------------------------------|--------------------------------|--------------------------------|
|                                                   | Location:                                    | PZ-6           |                   |                    | PZ-7                             |                           |                                  |                   |                    | PZ-8                             |                           |                                  | TDP1                          | TDP25                          | TDP26                          |
|                                                   | Sample ID:<br>Laboratory ID:<br>Sample Date: |                | PZ-7<br>8/24/2000 | PZ-7<br>10/25/2000 | PZ-7<br>NB06B/NB06I<br>6/16/2008 | PZ-7<br>OK85A<br>2/2/2009 | PZ-7<br>PC88C/PC88J<br>6/16/2009 | PZ-8<br>8/24/2000 | PZ-8<br>10/25/2000 | PZ-8<br>NB06E/NB06L<br>6/16/2008 | PZ-8<br>OL19A<br>2/4/2009 | PZ-8<br>PC88F/PC88M<br>6/16/2009 | TDP1-GW<br>NX93F<br>11/3/2008 | TDP25-GW<br>NY44M<br>11/5/2008 | TDP26-GW<br>NY64H<br>11/6/2008 |
| 1,1-Dichloroethene                                |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.2 U                          | 1                              |
| 1,2-Dichloroethane                                |                                              |                |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| 1,2-Dichloroethene (total)<br>1,1-Dichloropropene |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     | ı                                |                               |                                |                                |
| 1,2-Dichloropropane                               |                                              | 0.2 0          |                   |                    |                                  | 0.2 0                     |                                  |                   |                    |                                  | 0.2 0                     | '                                | 1 U                           | 0.2 U                          | 1 U                            |
| 1,2,3-Trichlorobenzene                            |                                              | 0.5 U          |                   |                    |                                  | 0.5 U                     |                                  |                   |                    |                                  | 0.5 L                     |                                  |                               |                                |                                |
| 1,2,3-Trichloropropane                            |                                              | 0.5 U          |                   |                    |                                  | 0.5 U                     |                                  |                   |                    |                                  | 0.5 L                     |                                  |                               |                                |                                |
| 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene     |                                              | 0.5 U<br>0.2 U |                   |                    |                                  | 0.5 U<br>0.2 U            |                                  |                   |                    |                                  | 0.5 L<br>0.2 L            |                                  |                               |                                |                                |
| 1,2-Dibromo-3-chloropropane                       |                                              | 0.5 U          |                   |                    |                                  | 0.5 U                     |                                  |                   |                    |                                  | 0.5 L                     |                                  |                               |                                |                                |
| 1,2-Dichlorobenzene                               |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     | l                                |                               |                                |                                |
| 1,2-Dichloroethane                                |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene        |                                              | 0.2 U<br>0.2 U |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 L<br>0.2 L            |                                  |                               |                                |                                |
| 1,3-Dichlorobenzene                               |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| 1,3-Dichloropropane                               |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 ل                     |                                  |                               |                                |                                |
| 1,4-Dichlorobenzene                               |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| 2,2-Dichloropropane 2-Butanone                    |                                              | 0.2 U<br>2.5 U |                   |                    |                                  | 0.2 U<br>2.5 U            |                                  |                   |                    |                                  | 0.2 L<br>2.5 L            |                                  | 5 U                           | 2.5 U                          | 5 U                            |
| 2-Chloroethylvinylether                           |                                              | 1 U            |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 5 U                           | 1 U                            | 5 U                            |
| 2-Chlorotoluene                                   |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| 2-Hexanone                                        |                                              | 2.5 U          |                   |                    |                                  | 2.5 U                     |                                  |                   |                    |                                  | 2.5 L                     |                                  | 5 U                           | 2.5 U                          | 5 U                            |
| 4-Chlorotoluene 4-Isopropyltoluene                |                                              | 0.2 U<br>0.2 U |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 L<br>0.2 L            |                                  |                               |                                |                                |
| 4-Methyl-2-Pentanone (MIBK)                       |                                              | 2.5 U          |                   |                    |                                  | 2.5 U                     |                                  |                   |                    |                                  | 2.5 L                     |                                  | 5 U                           | 2.5 U                          | 5 U                            |
| Acetone                                           |                                              | 3.9            |                   |                    |                                  | 4.8                       |                                  |                   |                    |                                  | 2.5 L                     |                                  | 5 U                           | 5.8                            | 5 U                            |
| Acrolein                                          |                                              | 5 U            |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  |                               |                                |                                |
| Acrylonitrile<br>Benzene                          |                                              | 1 U<br>0.2 U   |                   |                    |                                  | 1 U<br>0.2 U              |                                  |                   |                    |                                  | 1 L<br>0.2 L              |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Bromobenzene                                      |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 U                     |                                  | 10                            | 0.2 0                          | 10                             |
| Bromochloromethane                                |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| Bromodichloromethane                              |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Bromoethane<br>Bromoform                          |                                              | 0.2 U<br>0.2 U |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 L<br>0.2 L            |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Bromomethane                                      |                                              | 0.5 U          |                   |                    |                                  | 0.5 U                     |                                  |                   |                    |                                  | 0.5 L                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Carbon Disulfide                                  |                                              | 0.2            |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 ل                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Carbon Tetrachloride                              |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Chlorobenzene<br>Chloroethane                     |                                              | 0.2 U<br>0.2 U |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 L<br>0.2 L            |                                  | 1 U<br>1 U                    | 0.2 U<br><b>0.2</b>            | 1 U<br>1 U                     |
| Chloroform                                        |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Chloromethane                                     |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| cis-1,2-Dichloroethene                            |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | <b>45</b>                      | 460                            |
| cis-1,3-Dichloropropene Dibromochloromethane      |                                              | 0.2 U<br>0.2 U |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 L<br>0.2 L            |                                  | 1 U<br>1 U                    | 0.2 U<br>0.2 U                 | 1 U<br>1 U                     |
| Dibromomethane                                    |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               | 5.E 5                          |                                |
| Ethylbenzene                                      |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.4                            | 1 U                            |
| Ethylene Dibromide                                |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| Hexachlorobutadiene<br>Isopropylbenzene           |                                              | 0.5 U<br>0.2 U |                   |                    |                                  | 0.5 U<br>0.2 U            |                                  |                   |                    |                                  | 0.5 L<br>0.2 L            |                                  |                               |                                |                                |
| m, p-Xylene                                       |                                              | 0.4 U          |                   |                    |                                  | 0.4 U                     |                                  |                   |                    |                                  | 0.4 L                     |                                  | 2 U                           | 0.4 U                          | 2 U                            |
| Methyl Iodide                                     |                                              | 1 U            |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  |                               |                                |                                |
| Methylene Chloride                                |                                              | 0.5 U          |                   |                    |                                  | 0.5 U                     |                                  |                   |                    |                                  | 0.5 L                     |                                  | 2 U                           | 0.5 U                          | 2 U                            |
| Naphthalene<br>n-Butylbenzene                     |                                              | 0.5 U<br>0.2 U |                   |                    |                                  | 0.5 U<br>0.2 U            |                                  |                   |                    |                                  | 0.5 L<br>0.2 L            |                                  |                               |                                |                                |
| n-Propylbenzene                                   |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  |                               |                                |                                |
| o-Xylene                                          |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 0.2                            | 1 U                            |
| sec-Butylbenzene                                  |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 4.11                          | 0011                           | 4 11                           |
| Styrene<br>tert-Butylbenzene                      |                                              | 0.2 U<br>0.2 U |                   |                    |                                  | 0.2 U<br>0.2 U            |                                  |                   |                    |                                  | 0.2 L<br>0.2 L            |                                  | 1 U                           | 0.2 U                          | 1 U                            |
| Tetrachloroethene                                 |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     |                                  | 1 U                           | 2.6                            | 1.9                            |
| Toluene                                           |                                              | 0.2 U          |                   |                    |                                  | 0.2 U                     |                                  |                   |                    |                                  | 0.2 L                     | l                                | 1 U                           | 0.2 U                          | 1 U                            |
| trans-1,2-Dichloroethene                          |                                              | 0.2 U          | l                 |                    |                                  | 0.2 U                     |                                  | 1                 |                    |                                  | 0.2 L                     | l                                | 1 U                           | 0.5                            | 7.6                            |

|                                                                                                                        |                                              | I .                       |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  | Former Washdown System Piping North of 14-01 |                                |                                |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|----------------------------------------------|--------------------------------|--------------------------------|--|
|                                                                                                                        | Location:                                    | PZ-6                      |                   |                    | PZ-7                             |                           |                                  |                   |                    | PZ-8                             |                           |                                  | TDP1                                         | TDP25                          | TDP26                          |  |
|                                                                                                                        | Sample ID:<br>Laboratory ID:<br>Sample Date: | PZ-6<br>OL24A<br>2/4/2009 | PZ-7<br>8/24/2000 | PZ-7<br>10/25/2000 | PZ-7<br>NB06B/NB06I<br>6/16/2008 | PZ-7<br>OK85A<br>2/2/2009 | PZ-7<br>PC88C/PC88J<br>6/16/2009 | PZ-8<br>8/24/2000 | PZ-8<br>10/25/2000 | PZ-8<br>NB06E/NB06L<br>6/16/2008 | PZ-8<br>OL19A<br>2/4/2009 | PZ-8<br>PC88F/PC88M<br>6/16/2009 | TDP1-GW<br>NX93F<br>11/3/2008                | TDP25-GW<br>NY44M<br>11/5/2008 | TDP26-GW<br>NY64H<br>11/6/2008 |  |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene                                                               |                                              | 0.2 U<br>1 U              |                   |                    |                                  | 0.2 U<br>1 U              |                                  |                   |                    |                                  | 0.2 L<br>1 L              |                                  | 1 U                                          | 0.2 U                          | 1 U                            |  |
| Total Xylenes Trichloroethene                                                                                          |                                              | 0.2 U                     |                   |                    |                                  | 0.2 U                     | ı                                |                   |                    |                                  | 0.2 L                     | ı                                | 1 U                                          | 71                             | 240                            |  |
| Trichlorofluoromethane                                                                                                 |                                              | 0.2 U                     |                   |                    |                                  | 0.2 U                     | ı                                |                   |                    |                                  | 0.2 L                     | l                                | 1 U                                          | 0.2 U                          | 1 U                            |  |
| Vinyl Acetate<br>Vinyl Chloride                                                                                        |                                              | 1 U<br>0.2 U              |                   |                    |                                  | 1 U<br>0.2 U              |                                  |                   |                    |                                  | 1 L<br>0.2 L              |                                  | 5 U<br>1 U                                   | 1 U<br><b>1.8</b>              | 5 U<br><b>140</b>              |  |
| VOLATILES (ug/L) EPA SW8260C-SIM 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                                              |                                |                                |  |
| Trichloroethene Vinyl Chloride                                                                                         |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                                              |                                |                                |  |
| SEMIVOLATILES (ug/L)<br>EPA SW8270D (a)                                                                                |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                           |                                  |                                              |                                |                                |  |
| 1,2,4-Trichlorobenzene                                                                                                 |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1 U                            | 1 U                            |  |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene                                                                                |                                              | 1 U<br>1 U                |                   |                    |                                  | 1 U<br>1 U                |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U<br>1 U                                   | 1 U<br>1 U                     | 1 U<br>1 U                     |  |
| 1,4-Dichlorobenzene                                                                                                    |                                              | 1 U                       |                   |                    |                                  | 1 U                       | ı                                |                   |                    |                                  | 1 L                       | I                                | 1 U                                          | 1 U                            | 1 U                            |  |
| 1-Methylnaphthalene                                                                                                    |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 6.9                                          | 1 U                            | 1 U                            |  |
| 2,2'-Oxybis(1-Chloropropane)<br>2,4,5-Trichlorophenol                                                                  |                                              | 1 U<br>5 U                |                   |                    |                                  | 1 U<br>5 U                |                                  |                   |                    |                                  | 1 L<br>5 L                |                                  | 1 U<br>5 U                                   | 1 U<br>5 U                     | 1 U<br>5 U                     |  |
| 2,4,6-Trichlorophenol                                                                                                  |                                              | 5 U                       |                   |                    |                                  | 5 U                       | l                                |                   |                    |                                  | 5 L                       | l                                | 5 U                                          | 5 U                            | 5 U                            |  |
| 2,4-Dichlorophenol                                                                                                     |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 2,4-Dimethylphenol 2,4-Dinitrophenol                                                                                   |                                              | 1 U<br>10 U               |                   |                    |                                  | 1 U<br>10 U               |                                  |                   |                    |                                  | 1 L<br>10 L               |                                  | 1 U<br>10 U                                  | 1 U<br>10 U                    | 1 U<br>10 U                    |  |
| 2,4-Dinitrotoluene                                                                                                     |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       | l                                | 5 U                                          | 5 U                            | 5 U                            |  |
| 2,6-Dinitrotoluene                                                                                                     |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 2-Chloronaphthalene 2-Chlorophenol                                                                                     |                                              | 1 U<br>1 U                |                   |                    |                                  | 1 U<br>1 U                |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U<br>1 U                                   | 1 U<br>1 U                     | 1 U<br>1 U                     |  |
| 2-Methylnaphthalene                                                                                                    |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 7.9                                          | 1 U                            | 1 U                            |  |
| 2-Methylphenol                                                                                                         |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1 U                            | 1 U                            |  |
| 2-Nitroaniline<br>2-Nitrophenol                                                                                        |                                              | 5 U<br>5 U                |                   |                    |                                  | 5 U<br>5 U                |                                  |                   |                    |                                  | 5 L<br>5 L                |                                  | 5 U<br>5 U                                   | 5 U<br>5 U                     | 5 U<br>5 U                     |  |
| 3,3'-Dichlorobenzidine                                                                                                 |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 3-Nitroaniline                                                                                                         |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether                                                                   |                                              | 10 U<br>1 U               |                   |                    |                                  | 10 U<br>1 U               |                                  |                   |                    |                                  | 10 L<br>1 L               |                                  | 10 U<br>1 U                                  | 10 U<br>1 U                    | 10 U<br>1 U                    |  |
| 4-Chloro-3-methylphenol                                                                                                |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 4-Chloroaniline                                                                                                        |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 4-Chlorophenyl-phenylether                                                                                             |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U<br>1 U                                   | 1 U<br>1 U                     | 1 U<br>1 U                     |  |
| 4-Methylphenol 4-Nitroaniline                                                                                          |                                              | 1 U<br>5 U                |                   |                    |                                  | 1 U<br>5 U                |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| 4-Nitrophenol                                                                                                          |                                              | 5 UJ                      |                   |                    |                                  | 5 U                       | l                                |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| Acenaphthene                                                                                                           |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 14                                           | 1 U                            | 1 U                            |  |
| Acenaphthylene<br>Anthracene                                                                                           |                                              | 1 U<br>1 U                |                   |                    |                                  | 1 U<br>1 U                |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U<br>1 U                                   | 1 U<br>1 U                     | 1 U<br>1 U                     |  |
| Benzo(a)anthracene                                                                                                     |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1 U                            | 1 U                            |  |
| Benzo(a)pyrene                                                                                                         |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1 U                            | 1 U                            |  |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene                                                                           |                                              | 1 U<br>1 U                |                   |                    |                                  | 1 U<br>1 U                |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U<br>1 U                                   | 1 U<br>1 U                     | 1 U<br>1 U                     |  |
| Benzo(k)fluoranthene                                                                                                   |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1 U                            | 1 U                            |  |
| Benzoic Acid                                                                                                           |                                              | 10 U                      |                   |                    |                                  | 10 U                      | ı                                |                   |                    |                                  | 10 L                      | l                                | 10 U                                         | 10 U                           | 10 U                           |  |
| Benzyl Alcohol                                                                                                         |                                              | 5 U                       |                   |                    |                                  | 5 U                       |                                  |                   |                    |                                  | 5 L                       |                                  | 5 U                                          | 5 U                            | 5 U                            |  |
| bis(2-Chloroethoxy) Methane<br>Bis-(2-Chloroethyl) Ether                                                               |                                              | 1 U<br>1 U                |                   |                    |                                  | 1 U<br>1 U                |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U<br>1 U                                   | 1 U<br>1 U                     | 1 U<br>1 U                     |  |
| bis(2-Ethylhexyl)phthalate                                                                                             |                                              | 1 U                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1.3                            | 1 U                            |  |
| Butylbenzylphthalate                                                                                                   |                                              | 1 Ū                       |                   |                    |                                  | 1 U                       |                                  |                   |                    |                                  | 1 L                       |                                  | 1 U                                          | 1 U                            | 1 U                            |  |
|                                                                                                                        |                                              | •                         | •                 |                    |                                  |                           |                                  | •                 |                    |                                  |                           |                                  | -                                            | -                              | •                              |  |

|                                                                     | Location:                                    |                           |                   |                    |                                  | PZ-8                      |                                  |                   |                    |                                  | Former Washdown System Piping North of 14-01 TDP1 TDP25 TDP26 |                                  |                               |                                |                                |
|---------------------------------------------------------------------|----------------------------------------------|---------------------------|-------------------|--------------------|----------------------------------|---------------------------|----------------------------------|-------------------|--------------------|----------------------------------|---------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------|--------------------------------|
|                                                                     | Sample ID:<br>Laboratory ID:<br>Sample Date: | PZ-6<br>OL24A<br>2/4/2009 | PZ-7<br>8/24/2000 | PZ-7<br>10/25/2000 | PZ-7<br>NB06B/NB06I<br>6/16/2008 | PZ-7<br>OK85A<br>2/2/2009 | PZ-7<br>PC88C/PC88J<br>6/16/2009 | PZ-8<br>8/24/2000 | PZ-8<br>10/25/2000 | PZ-8<br>NB06E/NB06L<br>6/16/2008 | PZ-8<br>OL19A<br>2/4/2009                                     | PZ-8<br>PC88F/PC88M<br>6/16/2009 | TDP1-GW<br>NX93F<br>11/3/2008 | TDP25-GW<br>NY44M<br>11/5/2008 | TDP26-GW<br>NY64H<br>11/6/2008 |
| Carbazole                                                           | campio Bato.                                 | 1 U                       | 0/2 1/2000        | 10/20/2000         | 0/10/2000                        | 1 l                       |                                  | 0/2 1/2000        | 10/20/2000         | G/10/2000                        | 1 (                                                           |                                  | 6.9                           | 1 U                            | 1 U                            |
| Chrysene                                                            |                                              | 1 U                       |                   |                    |                                  | 1 (                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Dibenz(a,h)anthracene                                               |                                              | 1 U                       |                   |                    |                                  | 1 (                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Dibenzofuran                                                        |                                              | 1 U                       |                   |                    |                                  | 1 l                       | J                                |                   |                    |                                  | 1 (                                                           | J                                | 1 U                           | 1 U                            | 1 U                            |
| Diethylphthalate                                                    |                                              | 1 U                       |                   |                    |                                  | 1 l                       | J                                |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Dimethylphthalate                                                   |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           | J                                | 1 U                           | 1 U                            | 1 U                            |
| Di-n-Butylphthalate                                                 |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Di-n-Octyl phthalate                                                |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Fluoranthene                                                        |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 !                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Fluorene                                                            |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Hexachlorobenzene                                                   |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Hexachlorobutadiene                                                 |                                              | 1 U<br>5 U                |                   |                    |                                  | 1 l<br>5 l                |                                  |                   |                    |                                  | 1 U<br>5 U                                                    |                                  | 1 U<br>5 U                    | 1 U<br>5 U                     | 1 U<br>5 U                     |
| Hexachlorocyclopentadiene                                           |                                              | 1 U                       |                   |                    |                                  | 5 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Hexachloroethane<br>Indeno(1,2,3-cd)pyrene                          |                                              | 1 U                       |                   |                    |                                  | 1 t                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Isophorone                                                          |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Naphthalene                                                         |                                              | 1 U                       |                   |                    |                                  | 1 l                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Nitrobenzene                                                        |                                              | 1 U                       |                   |                    |                                  | 1 (                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| N-Nitroso-Di-N-Propylamine                                          |                                              | 5 U                       |                   |                    |                                  | 5 l                       |                                  |                   |                    |                                  | 5 (                                                           |                                  | 5 U                           | 5 U                            | 5 U                            |
| N-Nitrosodiphenylamine                                              |                                              | 1 U                       |                   |                    |                                  | 1 (                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1 U                           | 1 U                            | 1 U                            |
| Pentachlorophenol                                                   |                                              | 5 U                       |                   |                    |                                  | 5 l                       |                                  |                   |                    |                                  | 5 (                                                           |                                  | 5 U                           | 5 U                            | 5 U                            |
| Phenanthrene                                                        |                                              | 1 U                       |                   |                    |                                  | 1 (                       |                                  |                   |                    |                                  | 1 (                                                           |                                  | 1.8                           | 1 U                            | 1 U                            |
| Phenol                                                              |                                              | 1 UJ                      |                   |                    |                                  | 1 l                       | J                                |                   |                    |                                  | 1 (                                                           | JJ                               | 1 U                           | 1 U                            | 1 U                            |
| Pyrene                                                              |                                              | 1 U                       |                   |                    |                                  | 1 l                       | J                                |                   |                    |                                  | 1 (                                                           | J                                | 1 U                           | 1 U                            | 1 U                            |
| PAHs (ug/L) EPA SW8270D-SIM 1-Methylnaphthalene                     |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 4.4                           | 0.1 U                          | 0.1 U                          |
| 2-Methylnaphthalene Acenaphthene                                    |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 5.8<br>8.6                    | 0.1 U<br>0.1 U<br>0.1 U        | 0.1 U<br>0.1 U<br>0.1 U        |
| Acenaphthylene                                                      |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Anthracene                                                          |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Benzo(a)anthracene                                                  |                                              | 0.1 U                     |                   |                    |                                  | 0.1 l                     |                                  |                   |                    |                                  | 0.1                                                           |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Benzo(a)pyrene                                                      |                                              | 0.1 U                     |                   |                    |                                  | 0.1 l                     |                                  |                   |                    |                                  | 0.1 (                                                         |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Benzo(b)fluoranthene                                                |                                              | 0.1 U                     |                   |                    |                                  | 0.1 l                     | J                                |                   |                    |                                  | 0.1 (                                                         | J                                | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Benzo(g,h,i)perylene                                                |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Benzo(k)fluoranthene                                                |                                              | 0.1 U                     |                   |                    |                                  | 0.1 l                     |                                  |                   |                    |                                  | 0.1 (                                                         |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Chrysene Dibenz(a,h)anthracene                                      |                                              | 0.1 U<br>0.1 U            |                   |                    |                                  | 0.1 l<br>0.1 l            |                                  |                   |                    |                                  | 0.1 U<br>0.1 U                                                |                                  | 0.1 U<br>0.1 U                | 0.1 U<br>0.1 U                 | 0.1 U<br>0.1 U                 |
| Dibenzofuran Fluoranthene                                           |                                              | 0.1 0                     |                   |                    |                                  | 0.1 (                     | J                                |                   |                    |                                  | 0.11                                                          | J                                | 0.1 U<br>0.1 U<br>0.1 U       | 0.1 U<br>0.1 U<br>0.1 U        | 0.1 U<br>0.1 U<br>0.1 U        |
| Fluorene                                                            |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 0.62                          | 0.1 U                          | 0.1 U                          |
| Indeno(1,2,3-cd)pyrene                                              |                                              | 0.1 U                     |                   |                    |                                  | 0.1 ไ                     | J                                |                   |                    |                                  | 0.1 (                                                         | J                                | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| Naphthalene                                                         |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 0.13                          | 0.13                           | 0.1 U                          |
| Phenanthrene                                                        |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 1.2                           | 0.1 U                          | 0.1 U                          |
| Pyrene                                                              |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  | 0.1 U                         | 0.1 U                          | 0.1 U                          |
| TEQ                                                                 |                                              | NA                        |                   |                    |                                  | NA                        |                                  |                   |                    |                                  | NA                                                            |                                  | NA                            | NA                             | NA                             |
| CONVENTIONALS (ug/L) Chloride Total Cyanide Fluoride Oil and Grease |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  |                               |                                |                                |
| Sulfate                                                             |                                              |                           |                   |                    |                                  |                           |                                  |                   |                    |                                  |                                                               |                                  |                               |                                |                                |
| Total Organic Carbon (EPA 415.1 (a Ferrous Iron (SM3500FeD)         | n))                                          |                           |                   |                    | 1500 U<br><b>617</b>             |                           | 1500 U<br><b>47</b>              |                   |                    | 4610<br>32,500                   |                                                               | 6450<br>28,800                   |                               |                                |                                |

|                                                                                                                                                                                           | Former Wash                                   | down System Pipin                             | ng Inside 14-01                               | Former Washdown S                             | System West of 14-01                          | Hazardous Mater                               | ials Storage Sheds                                   | Hydraulic Oil Spill Area                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| Location:                                                                                                                                                                                 | TDP7                                          | TDP8                                          | TDP11                                         | TDP16                                         | TDP18                                         | TDP28                                         | TDP29                                                | TDP31                                                        |
| Sample ID:<br>Laboratory ID:<br>Sample Date:                                                                                                                                              | TDP7-GW<br>NY07N<br>11/4/2008                 | TDP8-GW<br>NY07M<br>11/4/2008                 | TDP11-GW<br>NY07O<br>11/4/2008                | TDP16-GW<br>NY44K<br>11/5/2008                | TDP18-GW<br>NY44L<br>11/5/2008                | TDP28-GW<br>NY64I<br>11/6/2008                | TDP29-GW<br>NY64J<br>11/6/2008                       | TDP31-GW<br>NY64K<br>11/6/2008                               |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silver Zinc                                 |                                               |                                               |                                               |                                               |                                               |                                               |                                                      |                                                              |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Arsenic Barium Cadmium Chromium Copper                                                                                              | <b>11.4</b><br>2 U<br><b>7</b><br>2 U         | <b>1.8</b><br>2 U<br>5 U<br>2 U               | <b>21.5</b><br>2 U<br><b>14</b><br>2 U        | <b>35</b><br>2 U<br>5 U<br>2 U                | <b>1.8</b><br>2 U<br>5 U<br>2 U               | <b>13</b><br>2 U<br>5 U<br>2 U                | <b>5.2</b><br>2 U<br>5 U<br>2 U                      | <b>3.5</b><br>2 U<br>5 U<br>2 U                              |
| Iron<br>Lead<br>Manganese<br>Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                              | 1 U<br>0.1 U                                         | 1 U<br>0.1 U                                                 |
| PETROLEUM HYDROCARBONS (ug/L) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil NWTPH-Dx Diesel Range Organics                                                            | 630 U<br>250 U<br>630 U                       | <b>630</b><br>250 U<br><b>630</b><br>250 U           | 630 U<br>250 U<br><b>630</b>                                 |
| Lube Oil  PCBs (ug/L) EPA SW8082  Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                                   | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | 3200<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U |
| VOLATILES (ug/L) EPA SW8260B (a) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U     | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U     | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U     | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U     | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U     | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>1         | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.4              | 0.2 U<br>0.2 U<br><b>0.4</b><br>0.2 U<br><b>0.3</b>          |

|                                                | ſ                                            | Former Wash                   | down System Pipin             | a Inside 14-01                 | Former Washdown S              | System West of 14-01           | Hazardous Materi               | als Storage Sheds              | Hydraulic Oil Spill Area       |
|------------------------------------------------|----------------------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                                | Location:                                    | TDP7                          | TDP8                          | TDP11                          | TDP16                          | TDP18                          | TDP28                          | TDP29                          | TDP31                          |
|                                                | Sample ID:<br>Laboratory ID:<br>Sample Date: | TDP7-GW<br>NY07N<br>11/4/2008 | TDP8-GW<br>NY07M<br>11/4/2008 | TDP11-GW<br>NY07O<br>11/4/2008 | TDP16-GW<br>NY44K<br>11/5/2008 | TDP18-GW<br>NY44L<br>11/5/2008 | TDP28-GW<br>NY64I<br>11/6/2008 | TDP29-GW<br>NY64J<br>11/6/2008 | TDP31-GW<br>NY64K<br>11/6/2008 |
| 1,1-Dichloroethene                             |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| 1,2-Dichloroethane                             |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| 1,2-Dichloroethene (total) 1,1-Dichloropropene |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,2-Dichloropropane                            |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| 1,2,3-Trichlorobenzene                         |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene  |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,2,4-Trichlorobenzene                         |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,2-Dibromo-3-chloropropane                    |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,2-Dichlorobenzene                            |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,2-Dichloroethane 1,2-Dichloropropane         |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,3,5-Trimethylbenzene                         |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,3-Dichlorobenzene                            |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 1,3-Dichloropropane<br>1,4-Dichlorobenzene     |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 2,2-Dichloropropane                            |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| 2-Butanone                                     |                                              | 2.5 U                         | 2.5 U                         | 2.5 U                          | 2.5 U                          | 2.5 U                          | 2.5 U                          | 2.5 U                          | 2.5 U                          |
| 2-Chloroethylvinylether                        |                                              | 1 U                           | 1 U                           | 1 U                            | 1 U                            | 1 U                            | 1 U                            | 1 U                            | 1 U                            |
| 2-Chlorotoluene<br>2-Hexanone                  |                                              | 2.5 U                         | 2.5 U                         | 2.5 U                          | 2.5 U                          | 2.5 U                          | 2.5 U                          | 2.5 U                          | 2.5 U                          |
| 4-Chlorotoluene                                |                                              | 2.0 0                         | 2.0 0                         | 2.0 0                          | 2.0 0                          | 2.0 0                          | 2.0 0                          | 2.0 0                          | 2.0 0                          |
| 4-Isopropyltoluene                             |                                              | 0.5.11                        |                               | 0.5.11                         | 0.7.11                         | 0.7.11                         |                                |                                | 0.7.1                          |
| 4-Methyl-2-Pentanone (MIBK) Acetone            |                                              | 2.5 U<br>3 U                  | 2.5 U<br>3 U                  | 2.5 U<br>3 U                   | 2.5 U<br>3 U                   | 2.5 U<br>3 U                   | 2.5 U<br>3 U                   | 2.5 U<br>3 U                   | 2.5 U<br>3 U                   |
| Acrolein                                       |                                              | 3 0                           | 0.0                           | 0.0                            | 3 0                            | 3 0                            | 0.0                            |                                | 0.0                            |
| Acrylonitrile                                  |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| Benzene<br>Bromobenzene                        |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Bromochloromethane                             |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| Bromodichloromethane                           |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Bromoethane<br>Bromoform                       |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Bromomethane                                   |                                              | 0.5 U                         | 0.5 U                         | 0.5 U                          | 0.5 U                          | 0.5 U                          | 0.5 U                          | 0.5 U                          | 0.5 U                          |
| Carbon Disulfide                               |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.4                            |
| Carbon Tetrachloride Chlorobenzene             |                                              | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 |
| Chloroethane                                   |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Chloroform                                     |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Chloromethane cis-1,2-Dichloroethene           |                                              | 0.2 U<br>0.2 U                | 0.2 U<br>0.4                  | 0.2 U<br>0.2 U                 |
| cis-1,3-Dichloropropene                        |                                              | 0.2 U                         | 0.4<br>0.2 U                  | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 | 0.2 U<br>0.2 U                 |
| Dibromochloromethane                           |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Dibromomethane<br>Ethylbenzene                 |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Ethylene Dibromide                             |                                              | 0.2 0                         | 0.2 0                         | 0.2 0                          | 0.2 0                          | 0.2 0                          | 0.2 0                          | 0.2 0                          | 0.2 0                          |
| Hexachlorobutadiene                            |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| Isopropylbenzene                               |                                              | 0.4.11                        | 0.4.11                        | 0.4.11                         | 0.4.11                         | 0.4.11                         | 0.4.11                         | 0.4.11                         | 0.4.11                         |
| m, p-Xylene<br>Methyl Iodide                   |                                              | 0.4 U                         | 0.4 U                         | 0.4 U                          | 0.4 U                          | 0.4 U                          | 0.4 U                          | 0.4 U                          | 0.4 U                          |
| Methylene Chloride                             |                                              | 0.5 U                         | 0.5 U                         | 0.5 U                          | 0.5 U                          | 0.5 U                          | 0.5 U                          | 0.5 U                          | 0.5 U                          |
| Naphthalene                                    |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| n-Butylbenzene<br>n-Propylbenzene              |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| o-Xylene                                       |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| sec-Butylbenzene                               |                                              |                               |                               |                                |                                |                                |                                |                                |                                |
| Styrene<br>tert-Butylbenzene                   |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Tetrachloroethene                              |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| Toluene                                        |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |
| trans-1,2-Dichloroethene                       |                                              | 0.2 U                         | 0.2 U                         | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          | 0.2 U                          |

|                                                                                                                                                       |                                                  |                                     | down System Pipin                   |                                         | Former Washdown S                       |                                         |                                         | als Storage Sheds                       | Hydraulic Oil Spill Area       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|
|                                                                                                                                                       | Location: Sample ID: Laboratory ID: Sample Date: | TDP7-GW<br>NY07N<br>11/4/2008       | TDP8 TDP8-GW NY07M 11/4/2008        | TDP11<br>TDP11-GW<br>NY07O<br>11/4/2008 | TDP16<br>TDP16-GW<br>NY44K<br>11/5/2008 | TDP18<br>TDP18-GW<br>NY44L<br>11/5/2008 | TDP28<br>TDP28-GW<br>NY64I<br>11/6/2008 | TDP29<br>TDP29-GW<br>NY64J<br>11/6/2008 | TDP31-GW<br>NY64K<br>11/6/2008 |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene                                                                                              |                                                  | 0.2 U                               | 0.2 U                               | 0.2 U                                   | 0.2 U                                   | 0.2 U                                   | 0.2 U                                   | 0.2 U                                   | 0.2 U                          |
| Total Xylenes Trichloroethene Trichlorofluoromethane Vinyl Acetate Vinyl Chloride                                                                     |                                                  | 0.2 U<br>0.2 U<br>1 U<br><b>0.2</b> | 0.2 U<br>0.2 U<br>1 U<br><b>0.7</b> | 0.2 U<br>0.2 U<br>1 U<br>0.2 U          | 0.2 U<br>0.2 U<br>1 U<br><b>0.3</b>     | 0.2 U<br>0.2 U<br>1 U<br>0.2 U          | 0.2 U<br>0.2 U<br>1 U<br>0.2 U          | 0.2 U<br>0.2 U<br>1 U<br>0.2 U          | 0.2 U<br>0.2 U<br>1 U<br>0.2 U |
| VOLATILES (ug/L) EPA SW8260C-SIM 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride |                                                  |                                     |                                     |                                         |                                         |                                         |                                         |                                         |                                |
| SEMIVOLATILES (ug/L)<br>EPA SW8270D (a)                                                                                                               |                                                  |                                     |                                     |                                         |                                         |                                         |                                         |                                         |                                |
| 1,2,4-Trichlorobenzene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                                                                                  |                                                  | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U              |
| 1,4-Dichlorobenzene<br>1-Methylnaphthalene<br>2,2'-Oxybis(1-Chloropropane)                                                                            |                                                  | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U              |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol                                                                                  |                                                  | 5 U<br>5 U<br>5 U                   | 5 U<br>5 U<br>5 U                   | 5 U<br>5 U<br>5 U                       | 5 U<br>5 U<br>5 U                       | 5 U<br>5 U<br>5 U                       | 5 U<br>5 U<br>5 U                       | 5 U<br>5 U<br>5 U                       | 5 U<br>5 U<br>5 U              |
| 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol                                                                                                |                                                  | 1 U<br>10 U<br>5 U<br>5 U           | 1 U<br>10 U<br>5 U<br>5 U           | 1 U<br>10 U<br>5 U<br>5 U               | 1 U<br>10 U<br>5 U                      | 1 U<br>10 U<br>5 U<br>5 U               | 1 U<br>10 U<br>5 U<br>5 U               | 1 U<br>10 U<br>5 U                      | 1 U<br>10 U<br>5 U<br>5 U      |
| 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene                                                                             |                                                  | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                       | 5 U<br>1 U<br>1 U<br>1 U                | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 5 U<br>1 U<br>1 U<br>1 U                | 1 U<br>1 U<br>1 U              |
| 2-Methylphenol 2-Nitroaniline 2-Nitrophenol                                                                                                           |                                                  | 1 U<br>5 U<br>5 U                   | 1 U<br>5 U<br>5 U                   | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1<br>5 U<br>5 U                         | 1 U<br>5 U<br>5 U              |
| 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-Methylphenol                                                                                      |                                                  | 5 U<br>5 U<br>10 U                  | 5 U<br>5 U<br>10 U                  | 5 U<br>5 U<br>10 U                      | 5 U<br>5 U<br>10 U                      | 5 U<br>5 U<br>10 U                      | 5 U<br>5 U<br>10 U                      | 5 U<br>5 U<br>10 U                      | 5 U<br>5 U<br>10 U             |
| 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline                                                                                     |                                                  | 1 U<br>5 U<br>5 U                   | 1 U<br>5 U<br>5 U                   | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U                       | 1 U<br>5 U<br>5 U              |
| 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline                                                                                              |                                                  | 1 U<br>1 U<br>5 U                   | 1 U<br>1 U<br>5 U                   | 1 U<br>1 U<br>5 U                       | 1 U<br>1 U<br>5 U                       | 1 U<br>1 U<br>5 U                       | 1 U<br>1 U<br>5 U                       | 1 U<br><b>3.9</b><br>5 U                | 1 U<br>1 U<br>5 U              |
| 4-Nitrophenol<br>Acenaphthene<br>Acenaphthylene                                                                                                       |                                                  | 5 U<br>1 U<br>1 U                   | 5 U<br>1 U<br>1 U                   | 5 U<br>1 U<br>1 U                       | 5 U<br><b>28</b><br>1 U                 | 5 U<br>1 U<br>1 U                       | 5 U<br>1 U<br>1 U                       | 5 U<br>1 U<br>1 U                       | 5 U<br>1 U<br>1 U              |
| Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene                                                                                                    |                                                  | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U              |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene                                                                                  |                                                  | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                   | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U                       | 1 U<br>1 U<br>1 U              |
| Benzoic Acid<br>Benzyl Alcohol<br>bis(2-Chloroethoxy) Methane                                                                                         |                                                  | 10 U<br>5 U<br>1 U                  | 10 U<br>5 U<br>1 U                  | 10 U<br>5 U<br>1 U                      | 10 U<br>5 U<br>1 U                      | 10 U<br>5 U<br>1 U                      | 10 U<br>5 U<br>1 U                      | <b>24</b><br>5 U<br>1 U                 | 10 U<br>5 U<br>1 U             |
| Bis-(2-Chloroethyl) Ether<br>bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate                                                                       |                                                  | 1 U<br><b>1</b><br>1 U              | 1 U<br><b>2.5</b><br>1 U            | 1 U<br><b>1.1</b><br>1 U                | 1 U<br>1 U<br>1 U                       | 1 U<br><b>1.8</b><br>1 U                | 1 U<br><b>3.8</b><br>1 U                | 1 U<br>1 U<br>1 U                       | 1 U<br><b>3</b><br>1 U         |

|                                                             | Γ              | Former Weeh    | down System Pipin | na Inside 1/1-01 | Former Washdown | System West of 14-01 | Hazardous Matori     | als Storage Sheds | Hydraulic Oil Spill Area |
|-------------------------------------------------------------|----------------|----------------|-------------------|------------------|-----------------|----------------------|----------------------|-------------------|--------------------------|
|                                                             | Location:      | TDP7           | TDP8              | TDP11            | TDP16           | TDP18                | TDP28                | TDP29             | TDP31                    |
|                                                             | Location.      | 1017           | 1010              | 10111            | 10110           | 10110                | 10120                | 10123             | 151 31                   |
|                                                             | Sample ID:     | TDP7-GW        | TDP8-GW           | TDP11-GW         | TDP16-GW        | TDP18-GW             | TDP28-GW             | TDP29-GW          | TDP31-GW                 |
|                                                             | Laboratory ID: | NY07N          | NY07M             | NY07O            | NY44K           | NY44L                | NY64I                | NY64J             | NY64K                    |
|                                                             | Sample Date:   | 11/4/2008      | 11/4/2008         | 11/4/2008        | 11/5/2008       | 11/5/2008            | 11/6/2008            | 11/6/2008         | 11/6/2008                |
| Carbazole                                                   |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Chrysene                                                    |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Dibenz(a,h)anthracene                                       |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Dibenzofuran                                                |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Diethylphthalate                                            |                | 2              | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Dimethylphthalate                                           |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Di-n-Butylphthalate                                         |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Di-n-Octyl phthalate                                        |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Fluoranthene                                                |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Fluorene                                                    |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Hexachlorobenzene                                           |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Hexachlorobutadiene                                         |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Hexachlorocyclopentadiene                                   |                | 5 U            | 5 U               | 5 U              | 5 U             | 5 U                  | 5 U                  | 5 U               | 5 U                      |
| Hexachloroethane                                            |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Indeno(1,2,3-cd)pyrene                                      |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Isophorone                                                  |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Naphthalene                                                 |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Nitrobenzene                                                |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| N-Nitroso-Di-N-Propylamine                                  |                | 5 U            | 5 U               | 5 U              | 5 U             | 5 U                  | 5 U                  | 5 U               | 5 U                      |
| N-Nitrosodiphenylamine                                      |                | 1 U            | 1 U               | 1 U              | 1 U             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Pentachlorophenol                                           |                | 5 U            | 5 U               | 5 U              | 5 U             | 5 U                  | 5 U                  | 5 U               | 5 U                      |
| Phenanthrene                                                |                | 1 U            | 1 U               | 1 U              | 4.7             | 1 U                  | 1 U                  | 1 U               | 1 U                      |
| Phenol                                                      |                | 1 U<br>1 U     | 1 U<br>1 U        | 1 U<br>1 U       | 1 U<br>1 U      | 1 U<br>1 U           | 1 U<br>1 U           | <b>9.1</b><br>1 U | 1 U<br>1 U               |
| Pyrene                                                      |                | 10             | 1 0               | 1 0              | 10              | 10                   | 10                   |                   | 10                       |
| PAHs (ug/L)                                                 |                |                |                   |                  |                 |                      |                      |                   |                          |
| EPA SW8270D-SIM                                             |                |                |                   |                  |                 |                      |                      |                   |                          |
| 1-Methylnaphthalene                                         |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| 2-Methylnaphthalene                                         |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Acenaphthene                                                |                | 0.1 U          | 0.1 U             | 0.1 U            | 15              | 0.64                 | 0.1 U                | 0.1 U             | 0.1 U                    |
| Acenaphthylene                                              |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Anthracene                                                  |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Benzo(a)anthracene                                          |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.14                 | 0.1 U             | 0.1 U                    |
| Benzo(a)pyrene                                              |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Benzo(b)fluoranthene                                        |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Benzo(g,h,i)perylene                                        |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Benzo(k)fluoranthene                                        |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1                  | 0.1 U             | 0.1 U                    |
| Chrysene                                                    |                | 0.1 U<br>0.1 U | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U   | 0.1 U<br>0.1 U  | 0.1 U<br>0.1 U       | <b>0.1</b><br>0.1 U  | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U           |
| Dibenz(a,h)anthracene<br>Dibenzofuran                       |                | 0.1 U<br>0.1 U | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U   | 0.1 U<br>0.1 U  | 0.1 U<br>0.1 U       | 0.1 U<br>0.1 U       | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U           |
| Fluoranthene                                                |                | 0.1 U<br>0.1 U | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U   | 0.1 U<br>0.1 U  | 0.1 U<br>0.1 U       | 0.1 0<br><b>0.39</b> | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U           |
| Fluorene                                                    |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U<br>0.1 U  | 0.1 U<br>0.1 U       | 0.39<br>0.1 U        | 0.1 U<br>0.1 U    | 0.1 U<br>0.1 U           |
| Indeno(1,2,3-cd)pyrene                                      |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.1 U                    |
| Naphthalene                                                 |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.1 U                | 0.1 U             | 0.11                     |
| Phenanthrene                                                |                | 0.1 U          | 0.1 U             | 0.1 U            | 2.6             | 0.1 U                | 0.13                 | 0.11              | 0.1                      |
| Pyrene                                                      |                | 0.1 U          | 0.1 U             | 0.1 U            | 0.1 U           | 0.1 U                | 0.36                 | 0.11              | 0.1 U                    |
| TEQ                                                         |                | NA             | NA                | NA               | NA              | NA                   | 0.025                | NA                | NA                       |
|                                                             |                |                |                   |                  |                 |                      |                      |                   |                          |
| CONVENTIONALS (ug/L)                                        |                |                |                   |                  |                 |                      |                      |                   |                          |
| Chloride                                                    |                |                |                   |                  |                 |                      |                      |                   |                          |
| Total Cyanide                                               |                |                |                   |                  |                 |                      |                      |                   |                          |
| Fluoride                                                    |                |                |                   |                  |                 |                      |                      |                   |                          |
| Oil and Grease                                              |                |                |                   |                  |                 |                      |                      |                   |                          |
| Sulfate                                                     | -//            |                |                   |                  |                 |                      |                      |                   |                          |
| Total Organic Carbon (EPA 415.1 (a Ferrous Iron (SM3500FeD) | 1))            |                |                   |                  |                 |                      |                      |                   |                          |
| remous from (SM3500FeD)                                     |                |                |                   |                  |                 |                      |                      |                   | I                        |

| Location                                                                                                                                                        |   | SEEP                         |                                  | TANK                                               | DRUM                                                 | SUMP                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------|----------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------|
| Sample ID<br>Laboratory ID<br>Sample Date                                                                                                                       | : | I-SEEP<br>NB15B<br>6/17/2008 | SEEP<br>PD99A/PD99B<br>6/23/2009 | TANK-ATS721<br>OQ13A<br>3/11/2009                  | TH-DRUM2-WATER<br>NY64N<br>11/6/2008                 | TH-SUMP<br>NY64L<br>11/6/2008        |
| TOTAL METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Antimony Arsenic Barium Cadmium Chromium                                                                      |   |                              |                                  | 50 U<br>15<br>7<br>14                              | 34.5<br>2 U<br>67                                    | 23.8<br>58<br>510                    |
| Copper<br>Iron                                                                                                                                                  |   | 3470                         | 1070                             |                                                    | 58                                                   | 1950                                 |
| Lead Manganese Mercury                                                                                                                                          |   |                              |                                  | 20 U<br>0.1 U                                      | 13<br>0.1 U<br>40                                    | <b>6</b><br>2 U                      |
| Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                                            |   |                              |                                  | 50 U<br>3 U                                        | 3 U<br>140                                           |                                      |
| DISSOLVED METALS (ug/L) EPA 200.8/SW6010B/SW7470A (a) Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silver Zinc            | 7 | 3.4                          | 5                                |                                                    |                                                      |                                      |
| PETROLEUM HYDROCARBONS (ug/L) NWTPH-HCID Diesel Range Organics Gasoline Range Organics Lube Oil                                                                 |   |                              |                                  |                                                    | 630 U<br>250 U<br>630 U                              | <b>2500</b><br>1000 U<br><b>2500</b> |
| NWTPH-Dx<br>Diesel Range Organics<br>Lube Oil                                                                                                                   |   |                              |                                  |                                                    |                                                      | 25,000<br>62,000                     |
| PCBs (ug/L) EPA SW8082 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs                                    |   |                              |                                  |                                                    | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U |                                      |
| VOLATILES (ug/L) EPA SW8260B (a) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloro-thane 1,1-Dichloroethane |   |                              |                                  | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U | 0.2 U<br>0.2 U<br>0.2 U<br>0.2 U<br>0.2 U            | 10 U<br>10 U<br>20 U<br>10 U<br>10 U |

|                                            | Ī  |                              |                                  |                                   |                                      |                               |
|--------------------------------------------|----|------------------------------|----------------------------------|-----------------------------------|--------------------------------------|-------------------------------|
| Location                                   | n: | SEEP                         |                                  | TANK                              | DRUM                                 | SUMP                          |
| Sample II<br>Laboratory II<br>Sample Dat   | ): | I-SEEP<br>NB15B<br>6/17/2008 | SEEP<br>PD99A/PD99B<br>6/23/2009 | TANK-ATS721<br>OQ13A<br>3/11/2009 | TH-DRUM2-WATER<br>NY64N<br>11/6/2008 | TH-SUMP<br>NY64L<br>11/6/2008 |
| 1,1-Dichloroethene                         |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| 1,2-Dichloroethane                         |    |                              |                                  | 0.2 0                             | 0.2 U                                | 10 U                          |
| 1,2-Dichloroethene (total)                 |    |                              |                                  |                                   |                                      |                               |
| 1,1-Dichloropropene                        |    |                              |                                  | 0.2 U                             |                                      | 40                            |
| 1,2-Dichloropropane 1,2,3-Trichlorobenzene |    |                              |                                  | 0.5 U                             | 0.2 U                                | 10 U                          |
| 1,2,3-Trichloropropane                     |    |                              |                                  | 0.5 U                             |                                      |                               |
| 1,2,4-Trichlorobenzene                     |    |                              |                                  | 0.5 U                             |                                      |                               |
| 1,2,4-Trimethylbenzene                     |    |                              |                                  | 0.2 U                             |                                      |                               |
| 1,2-Dibromo-3-chloropropane                |    |                              |                                  | 0.5 U                             |                                      |                               |
| 1,2-Dichlorobenzene                        |    |                              |                                  | 0.2 U<br>0.2 U                    |                                      |                               |
| 1,2-Dichloroethane<br>1,2-Dichloropropane  |    |                              |                                  | 0.2 U                             |                                      |                               |
| 1,3,5-Trimethylbenzene                     |    |                              |                                  | 0.2 U                             |                                      |                               |
| 1,3-Dichlorobenzene                        |    |                              |                                  | 0.2 U                             |                                      |                               |
| 1,3-Dichloropropane                        |    |                              |                                  | 0.2 U                             |                                      |                               |
| 1,4-Dichlorobenzene                        |    |                              |                                  | 0.2 U                             |                                      |                               |
| 2,2-Dichloropropane 2-Butanone             |    |                              |                                  | 0.2 U<br>2.5 U                    | 2.5 U                                | 50 U                          |
| 2-Chloroethylvinylether                    |    |                              |                                  | 2.5 U                             | 2.5 U                                | 50 U                          |
| 2-Chlorotoluene                            |    |                              |                                  | 0.2 U                             |                                      | 000                           |
| 2-Hexanone                                 |    |                              |                                  | 2.5 U                             | 2.5 U                                | 50 U                          |
| 4-Chlorotoluene                            |    |                              |                                  | 0.2 U                             |                                      |                               |
| 4-Isopropyltoluene                         |    |                              |                                  | 0.2 U                             |                                      |                               |
| 4-Methyl-2-Pentanone (MIBK)                |    |                              |                                  | 2.5 U                             | 2.5 U                                | 50 U                          |
| Acetone<br>Acrolein                        |    |                              |                                  | 2.5 U<br>5 U                      | 40                                   | 50 U                          |
| Acrylonitrile                              |    |                              |                                  | 1 U                               |                                      |                               |
| Benzene                                    |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| Bromobenzene                               |    |                              |                                  | 0.2 U                             |                                      |                               |
| Bromochloromethane                         |    |                              |                                  | 0.2 U                             |                                      | 40                            |
| Bromodichloromethane<br>Bromoethane        |    |                              |                                  | 0.2 U<br>0.2 U                    | 0.2 U                                | 10 U                          |
| Bromoform                                  |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| Bromomethane                               |    |                              |                                  | 0.5 U                             | 0.5 U                                | 10 U                          |
| Carbon Disulfide                           |    |                              |                                  | 0.2 U                             | 0.6                                  | 10 U                          |
| Carbon Tetrachloride                       |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| Chlorobenzene                              |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| Chloroethane<br>Chloroform                 |    |                              |                                  | 0.2 U<br>0.2 U                    | 0.2 U<br><b>2.3</b>                  | 10 U<br>10 U                  |
| Chloromethane                              |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| cis-1,2-Dichloroethene                     |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| cis-1,3-Dichloropropene                    |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| Dibromochloromethane                       |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| Dibromomethane<br>Ethylbenzene             |    |                              |                                  | 0.2 U<br>0.2 U                    | 0.2 U                                | 10 U                          |
| Ethylene Dibromide                         |    |                              |                                  | 0.2 U                             | 0.2 0                                | 10 0                          |
| Hexachlorobutadiene                        |    |                              |                                  | 0.5 U                             |                                      |                               |
| Isopropylbenzene                           |    |                              |                                  | 0.2 U                             |                                      |                               |
| m, p-Xylene                                |    |                              |                                  | 0.4 U                             | 0.4 U                                | 20 U                          |
| Methylona Chlorida                         |    |                              |                                  | 1 U                               |                                      | 40                            |
| Methylene Chloride<br>Naphthalene          |    |                              |                                  | 0.5 U<br>0.5 U                    | 0.6                                  | 42                            |
| n-Butylbenzene                             |    |                              |                                  | 0.5 U                             | ĺ                                    |                               |
| n-Propylbenzene                            |    |                              |                                  | 0.2 U                             | ĺ                                    |                               |
| o-Xylene                                   |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |
| sec-Butylbenzene                           |    |                              |                                  | 0.2 U                             |                                      | <u> </u>                      |
| Styrene                                    |    |                              |                                  | 0.2 U                             | 0.2 U                                | 11                            |
| tert-Butylbenzene<br>Tetrachloroethene     |    |                              |                                  | 0.2 U<br>0.2 U                    | 0.2 U                                | 10 U                          |
| Toluene                                    |    |                              |                                  | 0.2 U                             | 0.2 0                                | 29                            |
| trans-1,2-Dichloroethene                   |    |                              |                                  | 0.2 U                             | 0.2 U                                | 10 U                          |

|                                                                                        | ĺ                                            | Ī                   |                              |                                  |                                   |                                      |                               |
|----------------------------------------------------------------------------------------|----------------------------------------------|---------------------|------------------------------|----------------------------------|-----------------------------------|--------------------------------------|-------------------------------|
|                                                                                        | Location:                                    |                     | SEEP                         |                                  | TANK                              | DRUM                                 | SUMP                          |
|                                                                                        | Sample ID:<br>Laboratory ID:<br>Sample Date: | SEEP-1<br>8/24/2000 | I-SEEP<br>NB15B<br>6/17/2008 | SEEP<br>PD99A/PD99B<br>6/23/2009 | TANK-ATS721<br>OQ13A<br>3/11/2009 | TH-DRUM2-WATER<br>NY64N<br>11/6/2008 | TH-SUMP<br>NY64L<br>11/6/2008 |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene<br>Total Xylenes              | Campio Dato                                  | <i>3/2 11/2000</i>  | 32000                        | G/ 20/ 2000                      | 0.2 U<br>1 U                      | 0.2 U                                | 10 U                          |
| Trichloroethene<br>Trichlorofluoromethane<br>Vinyl Acetate<br>Vinyl Chloride           |                                              |                     |                              |                                  | 0.2 U<br>0.2 U<br>1 U<br>0.2 U    | <b>0.3</b><br>0.2 U<br>1 U<br>0.2 U  | 10 U<br>10 U<br>50 U<br>10 U  |
| VOLATILES (ug/L)<br>EPA SW8260C-SIM                                                    |                                              |                     |                              |                                  |                                   |                                      |                               |
| 1,1,2,2-Tetrachloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene  |                                              |                     |                              |                                  |                                   |                                      |                               |
| Trichloroethene<br>Vinyl Chloride                                                      |                                              |                     |                              |                                  |                                   |                                      |                               |
| SEMIVOLATILES (ug/L)<br>EPA SW8270D (a)                                                |                                              |                     |                              |                                  |                                   |                                      |                               |
| 1,2,4-Trichlorobenzene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                   |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br>1 U                    |                               |
| 1,4-Dichlorobenzene<br>1-Methylnaphthalene<br>2,2'-Oxybis(1-Chloropropane)             |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br>1 U                    |                               |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol                                         |                                              |                     |                              |                                  |                                   | 5 U<br>5 U<br>5 U                    |                               |
| 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol                                |                                              |                     |                              |                                  |                                   | 1 U<br>10 U                          |                               |
| 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene                              |                                              |                     |                              |                                  |                                   | 5 U<br>5 U<br>1 U                    |                               |
| 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol                                      |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br>1 U                    |                               |
| 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine                                    |                                              |                     |                              |                                  |                                   | 5 U<br>5 U<br>5 U                    |                               |
| 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether                    |                                              |                     |                              |                                  |                                   | 5 U<br>10 U<br>1 U                   |                               |
| 4-Chloro-3-methylphenol 4-Chloroaniline                                                |                                              |                     |                              |                                  |                                   | 5 U<br>5 U                           |                               |
| 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline                               |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br>5 U                    |                               |
| 4-Nitrophenol Acenaphthene Acenaphthylene                                              |                                              |                     |                              |                                  |                                   | 5 U<br>1 U<br>1 U                    |                               |
| Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene                                     |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br>1 U                    |                               |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene                   |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br>1 U                    |                               |
| Benzoic Acid<br>Benzyl Alcohol                                                         |                                              |                     |                              |                                  |                                   | <b>36</b><br>5 U                     |                               |
| bis(2-Chloroethoxy) Methane<br>Bis-(2-Chloroethyl) Ether<br>bis(2-Ethylhexyl)phthalate |                                              |                     |                              |                                  |                                   | 1 U<br>1 U<br><b>3.1</b>             |                               |
| Butylbenzylphthalate                                                                   |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |

# TABLE H-2 HISTORICAL GROUNDWATER ANALYTICAL RESULTS BOEING THOMPSON SITE TUKWILA, WASHINGTON

|                                     |                                              |                     | 0555                         |                                  | I                                 |                                      | l ouun                        |
|-------------------------------------|----------------------------------------------|---------------------|------------------------------|----------------------------------|-----------------------------------|--------------------------------------|-------------------------------|
|                                     | Location:                                    |                     | SEEP                         |                                  | TANK                              | DRUM                                 | SUMP                          |
|                                     | Sample ID:<br>Laboratory ID:<br>Sample Date: | SEEP-1<br>8/24/2000 | I-SEEP<br>NB15B<br>6/17/2008 | SEEP<br>PD99A/PD99B<br>6/23/2009 | TANK-ATS721<br>OQ13A<br>3/11/2009 | TH-DRUM2-WATER<br>NY64N<br>11/6/2008 | TH-SUMP<br>NY64L<br>11/6/2008 |
| Carbazole                           | Campie Date.                                 | 3/27/2000           | 0/11/2000                    | 0,20,2003                        | 0/11/2009                         | 1 U                                  | 11/0/2000                     |
| Chrysene                            |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Dibenz(a,h)anthracene               |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Dibenzofuran<br>Diethylphthalate    |                                              |                     |                              |                                  |                                   | 1 U<br>1 U                           |                               |
| Dimethylphthalate                   |                                              |                     |                              |                                  |                                   | 1.8                                  |                               |
| Di-n-Butylphthalate                 |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Di-n-Octyl phthalate                |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Fluoranthene                        |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Fluorene<br>Hexachlorobenzene       |                                              |                     |                              |                                  |                                   | 1 U<br>1 U                           |                               |
| Hexachlorobutadiene                 |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Hexachlorocyclopentadiene           |                                              |                     |                              |                                  |                                   | 5 U                                  |                               |
| Hexachloroethane                    |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Indeno(1,2,3-cd)pyrene              |                                              |                     |                              |                                  |                                   | 1 U<br>1 U                           |                               |
| Isophorone<br>Naphthalene           |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Nitrobenzene                        |                                              |                     |                              |                                  |                                   | 1 Ü                                  |                               |
| N-Nitroso-Di-N-Propylamine          |                                              |                     |                              |                                  |                                   | 5 U                                  |                               |
| N-Nitrosodiphenylamine              |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Pentachlorophenol Phenanthrene      |                                              |                     |                              |                                  |                                   | 5 U<br>1 U                           |                               |
| Phenol                              |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| Pyrene                              |                                              |                     |                              |                                  |                                   | 1 U                                  |                               |
| PAHs (ug/L)                         |                                              |                     |                              |                                  |                                   |                                      |                               |
| EPA SW8270D-SIM                     |                                              |                     |                              |                                  |                                   |                                      |                               |
| 1-Methylnaphthalene                 |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| 2-Methylnaphthalene                 |                                              |                     |                              |                                  |                                   | 0.1                                  |                               |
| Acenaphthene                        |                                              |                     |                              |                                  |                                   | 0.31                                 |                               |
| Acenaphthylene<br>Anthracene        |                                              |                     |                              |                                  |                                   | 0.1 U<br>0.1 U                       |                               |
| Benzo(a)anthracene                  |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| Benzo(a)pyrene                      |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| Benzo(b)fluoranthene                |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| Benzo(g,h,i)perylene                |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| Benzo(k)fluoranthene<br>Chrysene    |                                              |                     |                              |                                  |                                   | 0.1 U<br>0.1 U                       |                               |
| Dibenz(a,h)anthracene               |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| Dibenzofuran                        |                                              |                     |                              |                                  |                                   | 0.1 U                                |                               |
| Fluoranthene                        |                                              |                     |                              |                                  |                                   | 0.12                                 |                               |
| Fluorene<br>Indeno(1,2,3-cd)pyrene  |                                              |                     |                              |                                  |                                   | 0.1 U<br>0.1 U                       |                               |
| Naphthalene                         |                                              |                     |                              |                                  |                                   | 0.13                                 |                               |
| Phenanthrene                        |                                              |                     |                              |                                  |                                   | 0.17                                 |                               |
| Pyrene                              |                                              |                     |                              |                                  |                                   | 0.12                                 |                               |
| TEQ                                 |                                              |                     |                              |                                  |                                   | NA                                   |                               |
| CONVENTIONALS (ug/L)                |                                              |                     |                              |                                  |                                   |                                      |                               |
| Chloride                            |                                              |                     |                              |                                  |                                   |                                      |                               |
| Total Cyanide                       |                                              |                     |                              |                                  |                                   |                                      |                               |
| Fluoride<br>Oil and Grease          |                                              |                     |                              |                                  |                                   |                                      |                               |
| Sulfate                             |                                              |                     |                              |                                  |                                   |                                      |                               |
| Total Organic Carbon (EPA 415.1 (a) | )                                            |                     | 1500 L                       | J 1500 U                         |                                   |                                      |                               |
| Ferrous Iron (SM3500FeD)            |                                              |                     | 58                           | 41                               | I                                 |                                      | l                             |

Note: Results listed account for all historical analyses completed in site area as discussed in report text

B = Method blank contamination.

E = Estimated concentration calculated for an analyte response above the valid instrument calibration range.

A dilution is required to obtain an accurate quantification of the analyte

S = Indicates an analyte response that has saturated the detector. The calculated concentration is not valid a dilution is required to obtain valid quantification of the analyte

ND = Not detecte

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate

U = Indicates the compound was undetected at the reported concentration

Bold = Detected compound.

<sup>(</sup>a) = Analytical method was not always listed with historical sample results

#### **Summary of Slag Material Analytical Results**

#### TABLE I-1 SLAG MATERIAL ANALYTICAL RESULTS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                     | Sample Identification:<br>Year Collected: | Slag<br>1983 | I-4/I-6<br>1983 | I-4<br>1983 | I-6<br>1983 | I-7<br>1983 |
|---------------------|-------------------------------------------|--------------|-----------------|-------------|-------------|-------------|
| Major Com           | ponents (mg/kg)                           |              |                 |             |             |             |
| Silica              |                                           |              |                 |             |             |             |
| Alumina             |                                           | 99,500       |                 |             |             |             |
| Iron                |                                           | 123,000      |                 |             |             |             |
| Calcium             |                                           | 280,000      |                 |             |             |             |
| Magnesium           |                                           | 81,900       |                 |             |             |             |
| Sodium              |                                           | 3,800        |                 |             |             |             |
| Potassium           |                                           | 750          |                 |             |             |             |
| Sulphur             |                                           |              |                 |             |             |             |
| Trace Comp          | ponents (mg/kg)                           |              |                 |             |             |             |
| Antimony            |                                           | 15 U         |                 |             |             |             |
| Arsenic             |                                           | 30 U         | 18              | 120         | 33          | 26          |
| Barium              |                                           | 1,350        | 440             |             |             |             |
| Beryillium          |                                           | 0.3 U        |                 |             |             |             |
| Bismuth             |                                           | 50 U         |                 |             |             |             |
| Boron               |                                           | 1.0 U        |                 |             |             |             |
| Cadmium             |                                           | 2.5 U        | 2.2             |             |             |             |
| Chromium            |                                           | 4,330        | 1,300           | 920         | 2,200       | 1,700       |
| Cobalt              |                                           | 2.0 U        |                 |             |             |             |
| Copper              |                                           | 62           | 430             | 370         | 1,200       | 160         |
| Lead                |                                           | 105          | 240             | 630         | 1,400       | 120         |
| Manganese           |                                           | 70,000       |                 |             |             |             |
| Molybdenun          | n                                         | 42.2         |                 |             |             |             |
| Nickel              |                                           | 275          |                 |             |             |             |
| Phosphorus          |                                           | 9,520        |                 |             |             |             |
| Silver              |                                           | 3.0 U        |                 |             |             |             |
| Strontium           |                                           | 240          |                 |             |             |             |
| Tin                 |                                           | 8.1          |                 |             |             |             |
| Titanium            |                                           | 3,980        |                 |             |             |             |
| Tungsten<br>Uranium |                                           |              |                 |             |             |             |
|                     |                                           |              |                 |             |             |             |
| Vanadium<br>Zinc    |                                           | 1,270<br>280 | 790             | 580         | 700         | 170         |
| ZINC                |                                           | 280          | 790             | 560         | 700         | 170         |
| <b>EP Toxicity</b>  | Test (mg/L)                               |              |                 |             |             |             |
| Arsenic             |                                           |              | ND              | ND          | ND          | ND          |
| Barium              |                                           |              | ND              | ND          | ND          | ND          |
| Cadmium             |                                           |              | ND              | ND          | ND          | ND          |
| Total Chrom         |                                           |              | ND              | ND          | ND          | ND          |
| Hexavalent          | Chromium                                  |              | ND              | ND          | ND          | ND          |
| Lead                |                                           |              | ND              | ND          | ND          | ND          |
| Mercury             |                                           |              | ND              | ND          | ND          | ND          |
| Selenium            |                                           |              | ND              | ND          | ND          | ND          |
| Silver              |                                           |              | ND              | ND          | ND          | ND          |

U = Indicates the compound was undetected at the reported concentration.

ND = Not Detected

<sup>-- =</sup> Not Analyzed

#### **Surface Grab Samples/Core Samples**

| Location<br>Sample ID                           | AN-029<br>AN029-SS-<br>061025 | AN-029<br>AN029-SS-<br>061025 | AN-030<br>AN030-SS-<br>061025 | AN-045<br>AN045-SS-<br>080211 | AN-046<br>AN046-SS-<br>080211 | AN-046<br>AN096-SS-<br>080211 | AN-047<br>AN047-SS-<br>080211 | DR187<br>SD-DR187-0000 | DR188<br>SD-DR188-0000 | DR220<br>SD-DR220-0000 | EIT060<br>EIT06-01    | EST141<br>EST09-01    |
|-------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|
| Sample Date<br>Depth (ft bgs)                   | 10/25/06<br>0 to 0.33         | 10/25/06<br>0 to 0.33         | 10/25/06<br>0 to 0.33         | 02/11/08<br>0 to 0.33         | 02/11/08<br>0 to 0.33         | 02/11/08<br>0 to 0.33         | 02/11/08<br>0 to 0.33         | 08/27/98<br>0 to 0.33  | 08/25/98<br>0 to 0.33  | 08/25/98<br>0 to 0.33  | 09/26/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 |
| Conventionals                                   |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Ammonia (mg-N/kg dw)                            |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Percent moisture (%ww)                          |                               | 48.6                          |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Total organic carbon (%dw)                      |                               | 1.51                          | 1.88                          | 1.5                           | 3.16                          | 2.28                          | 2.65                          |                        | 1.75                   | 2.76                   | 0.88                  | 1.52                  |
| Total solids (%ww)                              |                               | 52.3                          | 47.9                          | 70.2                          | 64.6                          | 65.1                          | 54.2                          |                        |                        |                        |                       |                       |
| Total solids (preserved) (%ww)                  |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Total sulfides (mg/kg dw)                       |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Grain size (%dw)                                |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Fractional % >9525 microns                      |                               |                               |                               |                               |                               |                               |                               |                        | 0.01 U                 | 0.01 U                 |                       |                       |
| Fractional % phi >-1 (>2000 microns)            |                               | 1.1                           | 1.1                           |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Fractional % phi >-3 (>8000 microns)            |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Fractional % phi 0-1 (500-1000 microns)         |                               | 2.3                           | 1.6                           |                               |                               |                               |                               |                        | 0.96 J                 | 1.94 J                 |                       |                       |
| Fractional % phi -1-0 (1000-2000 microns)       |                               | 1.2                           | 1.6                           |                               |                               |                               |                               |                        | 0.02 J                 | 0.83 J                 |                       |                       |
| Fractional % phi 10+ (<0.98 micron)             |                               |                               |                               |                               |                               |                               |                               |                        | 4.69                   | 6.38                   |                       |                       |
| Fractional % phi 1-2 (250-500 microns)          |                               | 8.3                           | 2.9                           |                               |                               |                               |                               |                        | 1.3 J                  | 1.35 J                 |                       |                       |
| Fractional % phi -2-(-1) (2000-4000 microns)    |                               |                               |                               |                               |                               |                               |                               |                        | 0.01 U                 | 0.01 J                 |                       |                       |
| Fractional % phi 2-3 (125-250 microns)          |                               | 16.7                          | 4.2                           |                               |                               |                               |                               |                        | 3.31 J                 | 1.9 J                  |                       |                       |
| Fractional % phi -3-(-2) (4000-8000 microns)    |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Fractional % phi 3-4 (62.5-125 microns)         |                               | 19.8                          | 13.6                          |                               |                               |                               |                               |                        | 13.43 J                | 7.49 J                 |                       |                       |
| Fractional % phi 4-5 (31.2-62.5 microns)        |                               | 20.4                          | 26.2                          |                               |                               |                               |                               |                        | 22.87                  | 18.79                  |                       |                       |
| Fractional % phi 5-6 (15.6-31.2 microns)        |                               | 11.1                          | 20.4                          |                               |                               |                               |                               |                        | 12.63                  | 24.23                  |                       |                       |
| Fractional % phi 6-7 (7.8-15.6 microns)         |                               | 7.3                           | 11.6                          |                               |                               |                               |                               |                        | 27.36                  | 18.92                  |                       |                       |
| Fractional % phi 7-8 (3.9-7.8 microns)          |                               | 4.4                           | 6.3                           |                               |                               |                               |                               |                        | 7.17                   | 9.8                    |                       |                       |
| Fractional % phi 8-9 (1.95-3.9 microns)         |                               |                               |                               |                               |                               |                               |                               |                        | 4.12                   | 4.97                   |                       |                       |
| Fractional % phi 9-10 (0.98-1.95 microns)       |                               |                               |                               |                               |                               |                               |                               |                        | 2.14                   | 3.22                   |                       |                       |
| Fractional % Sieve 3/8-inch (4750-9525 microns) |                               |                               |                               |                               |                               |                               |                               |                        | 0.01 U                 | 0.18 J                 |                       |                       |
| Total clay                                      |                               |                               |                               | 5.4                           | 5                             | 4.8                           | 11.3                          |                        | 10.95                  | 14.57                  | 5.6                   | 16.08                 |
| Total fines (percent silt+clay)                 |                               | 43.2                          | 64.5                          | 15.9                          | 17.3                          | 17.3                          | 59.7                          |                        | 80.98                  | 86.3                   |                       |                       |
| Total gravel                                    |                               | 1.1                           | 1.1                           | 8.3                           | 21.2                          | 19.1                          | 0.9                           |                        | 0.01 U                 | 0.19 J                 | 1.33                  | 0.01                  |
| Total sand                                      |                               | 48.3                          | 23.9                          | 75.8                          | 61.6                          | 63.6                          | 39.5                          |                        | 19.0 J                 | 13.5 J                 | 80.79                 | 14.61                 |
| Total silt                                      |                               | 43.2                          | 64.5                          | 10.5                          | 12.3                          | 12.5                          | 48.4                          |                        | 70.03                  | 71.7                   | 12.28                 | 69.3                  |
| Metals (mg/kg dw)                               |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Aluminum                                        |                               |                               |                               |                               |                               |                               |                               | 12,200                 | 18,100                 | 23,000                 |                       |                       |
| Antimony                                        |                               |                               |                               |                               |                               |                               |                               |                        | 10 U                   | 10 U                   |                       |                       |
| Arsenic                                         |                               | 11.3                          | 8.9                           | 8.2                           | 25.5                          | 40.6                          | 15                            |                        | 12.5                   | 15.3                   |                       |                       |
| Barium                                          |                               |                               |                               |                               |                               |                               |                               | 42                     | 55                     | 78                     |                       |                       |
| Beryllium                                       |                               |                               |                               |                               |                               |                               |                               | 0.25                   | 0.34                   | 0.42                   |                       |                       |
| Cadmium                                         |                               | 0.5                           | 0.4 U                         | 0.4                           | 2.9                           | 3.6                           | 2.4                           |                        | 0.29                   | 0.38                   |                       |                       |
| Calcium                                         |                               |                               |                               |                               |                               |                               |                               | 14,700                 | 5,380                  | 6,300                  |                       |                       |
| Chromium                                        |                               | 33.7                          | 26                            | 27.1 J                        | 240 J                         | 165 J                         | 178 J                         |                        | 25                     | 28                     |                       |                       |
| Cobalt                                          |                               |                               |                               |                               |                               |                               |                               |                        | 8                      | 10                     |                       |                       |
| Copper                                          |                               | 54.8                          | 42                            | 35.3 J                        | 228 J                         | 268 J                         | 87.6 J                        |                        | 37                     | 47                     |                       |                       |
| Iron                                            |                               |                               |                               |                               |                               |                               |                               | 32,900                 | 23,900                 | 31,600                 |                       |                       |
| Lead                                            |                               | 128                           | 28                            | 152 J                         | 2,930 J                       | 21,700 J                      | 370 J                         |                        | 20.7                   | 22.3                   |                       |                       |
| Magnesium                                       |                               |                               |                               |                               |                               |                               |                               | 5,940                  | 7,130                  | 8,450                  |                       |                       |
| Manganese                                       |                               |                               |                               |                               |                               |                               |                               | 558                    | 258                    | 336                    |                       |                       |
| Mercury                                         |                               | 6.8                           | 0.13                          | 0.06 U                        | 0.14                          | 0.19                          | 0.29                          |                        | 0.13                   | 0.14                   |                       |                       |
| Molybdenum                                      |                               |                               |                               |                               |                               |                               |                               |                        |                        |                        |                       |                       |
| Nickel                                          |                               |                               |                               |                               |                               |                               |                               |                        | 18.8                   | 20.8                   |                       |                       |
| Potassium                                       |                               |                               |                               |                               |                               |                               |                               | 1,180                  | 2,180                  | 2,670                  |                       |                       |
| Selenium                                        |                               |                               |                               |                               |                               |                               |                               |                        | 10 J                   | 12 J                   |                       |                       |
| Silver                                          |                               | 0.7                           | 0.4 U                         | 0.3 U                         | 1.2                           | 2.8                           | 2                             |                        | 0.19                   | 0.3                    |                       |                       |
| Sodium                                          |                               |                               |                               |                               |                               |                               |                               | 6,770                  | 10,800                 | 13,800                 |                       |                       |
| Thallium                                        |                               |                               |                               |                               |                               |                               |                               |                        | 0.07                   | 0.09                   |                       |                       |

|                                                        |                                                        |                                                        |                                                        |                                                        | <u> </u>                                               |                                                        |                                                        |                                                 |                                                 |                                                 |                                             |                                             |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|
| Location<br>Sample ID<br>Sample Date<br>Depth (ft bgs) | AN-029<br>AN029-SS-<br>061025<br>10/25/06<br>0 to 0.33 | AN-029<br>AN029-SS-<br>061025<br>10/25/06<br>0 to 0.33 | AN-030<br>AN030-SS-<br>061025<br>10/25/06<br>0 to 0.33 | AN-045<br>AN045-SS-<br>080211<br>02/11/08<br>0 to 0.33 | AN-046<br>AN046-SS-<br>080211<br>02/11/08<br>0 to 0.33 | AN-046<br>AN096-SS-<br>080211<br>02/11/08<br>0 to 0.33 | AN-047<br>AN047-SS-<br>080211<br>02/11/08<br>0 to 0.33 | DR187<br>SD-DR187-0000<br>08/27/98<br>0 to 0.33 | DR188<br>SD-DR188-0000<br>08/25/98<br>0 to 0.33 | DR220<br>SD-DR220-0000<br>08/25/98<br>0 to 0.33 | EIT060<br>EIT06-01<br>09/26/97<br>0 to 0.33 | EST141<br>EST09-01<br>09/25/97<br>0 to 0.33 |
|                                                        | 0 10 0.33                                              | 0 10 0.33                                              | 0 10 0.55                                              | 0 10 0.33                                              | 0 10 0.33                                              | 0 10 0.33                                              | 0 10 0.33                                              |                                                 | 0 10 0.33                                       |                                                 | 0 10 0.33                                   | 0 10 0.55                                   |
| Tin                                                    |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 7 UJ                                            | 4                                               | 3                                               |                                             |                                             |
| Vanadium                                               |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 54                                              | 71                                              |                                             |                                             |
| Zinc                                                   |                                                        | 154 J                                                  | 96 J                                                   | 75                                                     | 950                                                    | 1,050                                                  | 280                                                    |                                                 | 81                                              | 98                                              |                                             |                                             |
| PAHs (ug/kg dw)                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 |                                                 |                                                 |                                             |                                             |
| 1-Methylnaphthalene                                    |                                                        |                                                        |                                                        | 20 U                                                   | 20 U                                                   | 20 U                                                   | 98 U                                                   |                                                 |                                                 |                                                 |                                             |                                             |
| 2-Chloronaphthalene                                    |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| 2-Methylnaphthalene                                    |                                                        | 20 U                                                   | 20 U                                                   | 20 UJ                                                  | 20 UJ                                                  | 20 UJ                                                  | 98 UJ                                                  |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| Acenaphthene                                           |                                                        | 10 J                                                   | 20 U                                                   | 20 U                                                   | 12 J                                                   | 20 U                                                   | 98 U                                                   |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| Acenaphthylene                                         |                                                        | 20 U                                                   | 20 U                                                   | 20 UJ                                                  | 20 UJ                                                  | 20 UJ                                                  | 98 UJ                                                  |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| Anthracene                                             |                                                        | 40                                                     | 26                                                     | 20 UJ                                                  | 43 J                                                   | 29 J                                                   | 98 UJ                                                  |                                                 | 20                                              | 20                                              |                                             |                                             |
| Benzo(a)anthracene                                     |                                                        | 150                                                    | 100                                                    | 30 J                                                   | 180 J                                                  | 140 J                                                  | 110 J                                                  |                                                 | 120                                             | 110                                             |                                             |                                             |
| Benzo(a)pyrene                                         |                                                        | 200                                                    | 130                                                    | 43                                                     | 250                                                    | 210                                                    | 110                                                    |                                                 | 140                                             | 130                                             |                                             |                                             |
| Benzo(b)fluoranthene                                   |                                                        | 230                                                    | 140                                                    | 57                                                     | 330                                                    | 290                                                    | 180                                                    |                                                 | 150                                             | 170                                             |                                             |                                             |
| Benzo(g,h,i)perylene                                   |                                                        | 110                                                    | 90                                                     | 20                                                     | 89                                                     | 71                                                     | 73 J                                                   |                                                 | 100                                             | 100                                             |                                             |                                             |
| Benzo(k)fluoranthene                                   |                                                        | 190                                                    | 180                                                    | 45                                                     | 240                                                    | 210                                                    | 140                                                    |                                                 | 170                                             | 160                                             |                                             |                                             |
| Chrysene                                               |                                                        | 260                                                    | 160                                                    | 45 J                                                   | 280 J                                                  | 240 J                                                  | 170 J                                                  |                                                 | 180                                             | 180                                             |                                             |                                             |
| cPAHs - mammal - half DL                               |                                                        | 290                                                    | 190 J                                                  | 62 J                                                   | 350 J                                                  | 290 J                                                  | 170 J                                                  |                                                 | 210                                             | 190                                             |                                             |                                             |
| Dibenzo(a,h)anthracene                                 |                                                        | 48                                                     | 18 J                                                   | 6.7                                                    | 22                                                     | 18 J                                                   | 18 U                                                   |                                                 | 30                                              | 20                                              |                                             |                                             |
| Dibenzofuran                                           |                                                        | 20 U                                                   | 20 U                                                   | 20 UJ                                                  | 20 UJ                                                  | 20 UJ                                                  | 98 UJ                                                  |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| Fluoranthene                                           |                                                        | 410                                                    | 220                                                    | 68                                                     | 540                                                    | 460                                                    | 470                                                    |                                                 | 340                                             | 340                                             |                                             |                                             |
| Fluorene                                               |                                                        | 14 J                                                   | 20 U                                                   | 20 U                                                   | 16 J                                                   | 11 J                                                   | 98 U                                                   |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| Indeno(1,2,3-cd)pyrene                                 |                                                        | 110                                                    | 84                                                     | 22                                                     | 100                                                    | 80 J                                                   | 72 J                                                   |                                                 | 110                                             | 100                                             |                                             |                                             |
| Naphthalene                                            |                                                        | 20 U                                                   | 20 U                                                   | 20 UJ                                                  | 20 UJ                                                  | 20 UJ                                                  | 98 UJ                                                  |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| Phenanthrene                                           |                                                        | 190                                                    | 99                                                     | 24 J                                                   | 240 J                                                  | 180 J                                                  | 180 J                                                  |                                                 | 140                                             | 110                                             |                                             |                                             |
| Pyrene                                                 |                                                        | 360                                                    | 240                                                    | 46 J                                                   | 370 J                                                  | 310 J                                                  | 420                                                    |                                                 | 290                                             | 270                                             |                                             |                                             |
| Total benzofluoranthenes                               |                                                        | 420                                                    | 320                                                    | 102                                                    | 570                                                    | 500                                                    | 320                                                    |                                                 | 320                                             | 330                                             |                                             |                                             |
| Total HPAHs                                            |                                                        | 2,100                                                  | 1,400 J                                                | 383 J                                                  | 2,400 J                                                | 2,030 J                                                | 1,750 J                                                |                                                 | 1,630                                           | 1,580                                           |                                             |                                             |
| Total LPAHs                                            |                                                        | 250 J                                                  | 125                                                    | 24 J                                                   | 310 J                                                  | 220 J                                                  | 180 J                                                  |                                                 | 160                                             | 130                                             |                                             |                                             |
| Total PAHs                                             |                                                        | 2,300 J                                                | 1,500 J                                                | 407 J                                                  | 2,710 J                                                | 2,250 J                                                | 1,930 J                                                |                                                 | 1,790                                           | 1,710                                           |                                             |                                             |
| Other SVOCs (ug/kg dw)                                 |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 |                                                 |                                                 |                                             |                                             |
| 1,2,4-Trichlorobenzene                                 |                                                        | 20 U                                                   | 20 U                                                   | 6.1 U                                                  | 19 U                                                   | 6.1 U                                                  | 18 U                                                   |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| 1,2-Dichlorobenzene                                    |                                                        | 20 U                                                   | 20 U                                                   | 6.1 UJ                                                 | 19 UJ                                                  | 6.1 UJ                                                 | 18 UJ                                                  |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| 1,3-Dichlorobenzene                                    |                                                        | 20 U                                                   | 98 U                                                   |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| 1,4-Dichlorobenzene                                    |                                                        | 20 U                                                   | 20 U                                                   | 6.1 U                                                  | 19 U                                                   | 6.1 U                                                  | 18 U                                                   |                                                 | 20 U                                            | 20 U                                            |                                             |                                             |
| 2,4,5-Trichlorophenol                                  |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 200 UJ                                          | 200 UJ                                          |                                             |                                             |
| 2,4,6-Trichlorophenol                                  |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 200 UJ                                          | 200 UJ                                          |                                             |                                             |
| 2,4-Dichlorophenol                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 1                                                      |                                                 | 60 UJ                                           | 60 UJ                                           |                                             |                                             |
| 2,4-Dimethylphenol                                     |                                                        | 20 U                                                   | 20 U                                                   | 6.1 UJ                                                 | 19 UJ                                                  | 6.1 UJ                                                 | 18 UJ                                                  |                                                 | 20 UJ                                           | 20 UJ                                           |                                             |                                             |
| 2,4-Dinitrophenol                                      |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 200 UJ                                          | 200 UJ                                          |                                             |                                             |
| 2,4-Dinitrotoluene                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 200 U                                           | 200 U                                           |                                             |                                             |
| 2,6-Dinitrotoluene                                     |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 1                                                      |                                                 | 200 U                                           | 200 U                                           |                                             |                                             |
| 2-Chlorophenol                                         |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 20 UJ                                           | 20 UJ                                           |                                             |                                             |
| 2-Methylphenol                                         |                                                        | 20 U                                                   | 20 U                                                   | 6.1 UJ                                                 | 19 UJ                                                  | 6.1 UJ                                                 | 18 UJ                                                  |                                                 | 20 UJ                                           | 20 UJ                                           |                                             |                                             |
| 2-Nitroaniline                                         |                                                        |                                                        |                                                        | 3 <b>00</b>                                            |                                                        | 300                                                    | 1                                                      |                                                 | 100 U                                           | 100 U                                           |                                             |                                             |
| 2-Nitrophenol                                          |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 1                                                      |                                                 | 100 UJ                                          | 100 UJ                                          |                                             |                                             |
| 3,3'-Dichlorobenzidine                                 |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 1                                                      |                                                 | 200 U                                           | 200 U                                           |                                             |                                             |
| 3-Nitroaniline                                         |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | <u> </u>                                               | 1                                               | 200 U                                           | 200 U                                           |                                             |                                             |
| 4,6-Dinitro-o-cresol                                   |                                                        |                                                        |                                                        |                                                        | *                                                      |                                                        |                                                        |                                                 | 200 UJ                                          | 200 UJ                                          |                                             |                                             |
| 4-Bromophenyl phenyl ether                             |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                 | 40 U                                            | 40 U                                            |                                             |                                             |
| 4-Chloro-3-methylphenol                                |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | <del> </del>                                           |                                                 | 40 UJ                                           | 40 UJ                                           |                                             |                                             |
| 4-Chloroaniline                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 1                                                      | 1                                               | 60 U                                            | 60 U                                            |                                             |                                             |
| 4-Chlorophenyl phenyl ether                            |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 1                                                      | -                                               | 20 U                                            | 20 U                                            |                                             |                                             |
| 4-Chlorophenyl phenyl ether 4-Methylphenol             |                                                        | 20 U                                                   | 20 U                                                   | 20 UJ                                                  | 20 UJ                                                  | 20 UJ                                                  | 98 UJ                                                  |                                                 | 20 UJ                                           | 20 UJ                                           |                                             |                                             |
| • •                                                    |                                                        | 20 0                                                   | 20 U                                                   | 20 UJ                                                  | 20 UJ                                                  | 20 UJ                                                  | 90 01                                                  |                                                 |                                                 |                                                 |                                             |                                             |
| 4-Nitroaniline                                         |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | I                                               | 100 U                                           | 100 U                                           |                                             |                                             |

| -                           |           |           |           |           |           |           |                                                  |                      |               |               |                   |           |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------------------------------|----------------------|---------------|---------------|-------------------|-----------|
| Location                    | AN-029    | AN-029    | AN-030    | AN-045    | AN-046    | AN-046    | AN-047                                           | DR187                | DR188         | DR220         | EIT060            | EST141    |
| Sample ID                   | AN029-SS- | AN029-SS- | AN030-SS- | AN045-SS- | AN046-SS- | AN096-SS- | AN047-SS-                                        | SD-DR187-0000        | SD-DR188-0000 | SD-DR220-0000 | EIT06-01          | EST09-01  |
|                             | 061025    | 061025    | 061025    | 080211    | 080211    | 080211    | 080211                                           |                      |               |               |                   |           |
| Sample Date                 | 10/25/06  | 10/25/06  | 10/25/06  | 02/11/08  | 02/11/08  | 02/11/08  | 02/11/08                                         | 08/27/98             | 08/25/98      | 08/25/98      | 09/26/97          | 09/25/97  |
| Depth (ft bgs)              | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33                                        | 0 to 0.33            | 0 to 0.33     | 0 to 0.33     | 0 to 0.33         | 0 to 0.33 |
| 4-Nitrophenol               |           |           |           |           |           |           |                                                  |                      | 100 UJ        | 100 UJ        |                   |           |
| Aniline                     |           |           |           |           |           |           |                                                  |                      |               |               |                   |           |
| Benzoic acid                |           | 200 U     | 790 J                                            |                      | 200 U         | 200 U         |                   |           |
| Benzyl alcohol              |           | 20 U      | 20 U      | 20 UJ     | 20 UJ     | 20 UJ     | 98 U                                             |                      | 50 U          | 50 U          |                   |           |
| bis(2-chloroethoxy)methane  |           |           |           |           |           |           |                                                  |                      | 40            | 40 U          |                   |           |
| bis(2-chloroethyl)ether     |           |           |           |           |           |           |                                                  |                      | 40 U          | 40 U          |                   |           |
| bis(2-chloroisopropyl)ether |           |           |           |           |           |           |                                                  |                      | 40 U          | 40 U          |                   |           |
| Carbazole                   |           |           |           |           |           |           |                                                  |                      | 20            | 20            |                   |           |
| Hexachlorobenzene           |           | 20 U      | 20 U      | 6.1 U     | 19 U      | 6.1 U     | 18 U                                             |                      | 20 U          | 20 U          |                   |           |
| Hexachlorobutadiene         |           | 20 U      | 20 U      | 6.1 U     | 19 U      | 6.1 U     | 18 U                                             |                      | 20 U          | 20 U          |                   |           |
| Hexachlorocyclopentadiene   |           |           |           |           |           |           |                                                  |                      | 100 UJ        | 100 UJ        |                   |           |
| Hexachloroethane            |           | 20 U      | 98 U                                             |                      | 20 U          | 20 U          |                   |           |
| Isophorone                  |           |           |           |           |           |           |                                                  |                      | 20 U          | 20 U          |                   |           |
| Nitrobenzene                |           |           |           |           |           |           |                                                  |                      | 20 U          | 20 U          |                   |           |
| n-Nitrosodimethylamine      |           |           |           |           |           |           |                                                  |                      |               |               |                   |           |
| n-Nitroso-di-n-propylamine  |           |           |           |           |           |           |                                                  |                      | 40 U          | 40 U          |                   |           |
| n-Nitrosodiphenylamine      | -         | 20 UJ     | 20 UJ     | 6.1 UJ    | 19 UJ     | 6.1 UJ    | 18 UJ                                            |                      | 40 U          | 40 U          |                   |           |
| Pentachlorophenol           |           | 98 U      | 99 U      | 30 UJ     | 93 UJ     | 31 UJ     | 92 UJ                                            |                      | 100 UJ        | 100 UJ        |                   |           |
| Phenol                      |           | 20 U      | 20 U      | 20 U      | 30        | 28        | 98 U                                             |                      | 20 UJ         | 20 UJ         |                   |           |
| PCBs (ug/kg dw)             |           |           |           |           |           |           |                                                  |                      |               |               |                   |           |
| Aroclor-1016                |           | 9.7 U     | 9.9 U     | 9.9 U     | 9.8 U     | 10 U      | 120 U                                            |                      | 20 U          | 20 U          |                   |           |
| Aroclor-1221                |           | 9.7 U     | 9.9 U     | 9.9 U     | 9.8 U     | 10 U      | 120 U                                            |                      | 40 U          | 40 U          |                   |           |
| Aroclor-1232                |           | 9.7 U     | 9.9 U     | 9.9 U     | 9.8 U     | 10 U      | 120 U                                            |                      | 20 U          | 20 U          |                   |           |
| Aroclor-1242                |           | 19 U      | 16        | 9.9 U     | 9.8 U     | 10 U      | 120 U                                            |                      | 20 U          | 20 U          |                   |           |
| Aroclor-1248                |           | 9.7 U     | 9.9 U     | 9.9 U     | 20        | 25 U      | 1,100                                            |                      | 20 U          | 20 U          |                   |           |
| Aroclor-1254                |           | 150       | 72 J      | 120       | 69        | 89        | 1,800                                            |                      | 58            | 42            |                   |           |
| Aroclor-1260                |           | 71        | 47        | 40 U      | 43        | 40 U      | 120 U                                            |                      | 46            | 35            |                   |           |
| Aroclor-1262                |           | 9.7 U     | 9.9 U     | 9.9 U     | 9.8 U     | 10 U      | 120 U                                            |                      |               |               |                   |           |
| Aroclor-1268                |           | 9.7 U     | 9.9 U     | 9.9 U     | 9.8 U     | 10 U      | 120 U                                            |                      |               |               |                   |           |
| Total PCBs                  |           | 220       | 135 J     | 120       | 132       | 89        | 2,900                                            |                      | 104           | 77            | 170               | 110       |
| Total PCBs + PCTs           |           | 220       | 1000      | 120       | 102       |           | 2,000                                            |                      | 101           | , ,           | 200               | 130       |
| Total PCTs                  |           |           |           |           |           |           |                                                  |                      |               |               | 31                | 19        |
| PCBs (ng/kg dw)             |           |           |           |           |           |           |                                                  |                      |               |               |                   |           |
| PCB TEQ - mammal (half DL)  |           |           |           |           |           |           |                                                  | 66 J                 |               |               |                   |           |
| PCB-018                     |           |           |           |           |           |           |                                                  | 1,000 UJ             | 1,000 UJ      | 1,000 UJ      |                   |           |
| PCB-028                     |           |           |           |           |           |           |                                                  | 1,000 UJ             | 1,000 UJ      | 1,000 UJ      |                   |           |
| PCB-044                     |           |           |           |           |           |           | <del> </del>                                     | 3,000 J              | 1,000 U3      | 1,000 UJ      |                   |           |
| PCB-055                     |           |           |           |           |           |           | <del> </del>                                     | 6,000 J              | 2,000 J       | 1,000 J       |                   |           |
| PCB-066                     |           |           |           |           |           |           | <del> </del>                                     | 12,000 J             | 4,000         | 3,000         |                   |           |
| PCB-000<br>PCB-077          |           |           |           |           |           |           | <del> </del>                                     | 1,000 U              | 1,000 U       | 1,000 U       | 670 U             | 770 U     |
| PCB-077<br>PCB-081          |           |           |           |           |           |           | <del> </del>                                     | 1,000 UJ             | 1,000 U       | 1,000 U       | 0/0 0             | 7700      |
| PCB-101                     |           |           |           |           |           |           | -                                                | 1,000 UJ<br>10,000 J | 4,000         | 3,000         | 25,000 J          | 29,000 J  |
| PCB-101<br>PCB-105          |           |           |           |           |           |           | -                                                | 5,000 J              | 1,000         | 1,000 U       | 25,000 J<br>550 U | 4,300     |
| PCB-105<br>PCB-110          |           |           |           |           |           |           | 1                                                | 3,000 J              | 1,000         | 1,000 0       | 550 U             |           |
| PCB-110<br>PCB-114          |           |           |           |           |           |           |                                                  | 1,000,111            | 1.000 ! !     | 1,000.11      | 550 U             | 7,700     |
|                             |           |           |           |           |           |           |                                                  | 1,000 UJ             | 1,000 U       | 1,000 U       | F 600             | 0.700     |
| PCB-118                     |           |           |           |           |           |           | <del>                                     </del> | 11,000 J             | 3,000         | 2,000         | 5,600             | 8,700     |
| PCB-123                     |           |           |           |           |           |           | 1                                                | 2,000 UJ             | 1,000 U       | 1,000 U       | 64011             | 00011     |
| PCB-126                     |           |           |           |           |           |           |                                                  | 1,000 UJ             | 1,000 U       | 1,000 U       | 610 U             | 690 U     |
| PCB-128                     |           |           |           |           |           |           | <del> </del>                                     | 4,000 J              | 1,000         | 1,000 U       | 590 U             | 3,800 J   |
| PCB-138                     |           |           |           |           |           |           | <b> </b>                                         | 21,000               | 6,000         | 4,000         | 7,300             | 8,400     |
| PCB-153                     | <u>'</u>  |           |           |           |           |           |                                                  | 12,000 J             | 4,000         | 3,000         | 15,000 J          | 23,000 J  |
| PCB-156                     | <u>'</u>  |           |           |           |           |           | ļ                                                | 2,000 J              | 1,000 U       | 1,000 U       | 530 U             | 610 U     |
| PCB-157                     | <u> </u>  |           |           |           |           |           |                                                  | 1,000 UJ             | 1,000 U       | 1,000 U       |                   | 540 U     |
| PCB-167                     | <u> </u>  |           |           |           |           |           |                                                  | 1,000 UJ             | 1,000 U       | 1,000 U       |                   |           |

| Location                   | AN-029 | AN-029    | AN-030    | AN-045    | AN-046    | AN-046    | AN-047    | DR187     | DR188         | DR220         | EIT060    | EST141    |
|----------------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|---------------|-----------|-----------|
| Sample ID                  |        | AN029-SS- | AN030-SS- | AN045-SS- | AN046-SS- | AN096-SS- | AN047-SS- |           | SD-DR188-0000 | SD-DR220-0000 | EIT06-01  | EST09-01  |
|                            | 061025 | 061025    | 061025    | 080211    | 080211    | 080211    | 080211    |           |               |               |           | 1         |
| Sample Date                |        | 10/25/06  | 10/25/06  | 02/11/08  | 02/11/08  | 02/11/08  | 02/11/08  | 08/27/98  | 08/25/98      | 08/25/98      | 09/26/97  | 09/25/97  |
| Depth (ft bgs)             |        | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 | 0 to 0.33 |
| PCB-169                    |        |           |           |           |           |           |           | 1,000 UJ  | 1,000 U       | 1,000 U       | 1,500 U   | 1,700 U   |
| PCB-170                    |        |           |           |           |           |           |           | 7,000 UJ  | 2,000 U       | 2,000 U       | 530 U     | 7,800     |
| PCB-180                    |        |           |           |           |           |           |           | 7,000 J   | 2,000         | 2,000         | 5,500     | 11,000    |
| PCB-187                    |        |           |           |           |           |           |           | 3,000 J   | 2,000         | 1,000         |           |           |
| PCB-189                    |        |           |           |           |           |           |           | 1,000 UJ  | 1,000 U       | 1,000 U       | 680 U     | 780 U     |
| PCB-195                    |        |           |           |           |           |           |           | 1,000 UJ  | 1,000 U       | 1,000 U       |           |           |
| PCB-206                    |        |           |           |           |           |           |           | 1,000 UJ  | 1,000 U       | 1,000 U       |           |           |
| PCB-209                    |        |           |           |           |           |           |           | 1,000 UJ  | 1,000 U       | 1,000 U       |           |           |
| Phthalates (ug/kg dw)      |        |           |           |           |           |           |           |           |               |               |           |           |
| Bis(2-ethylhexyl)phthalate |        | 570       | 200       | 33 UJ     | 250 J     | 320 J     | 950 J     |           | 260           | 400           |           |           |
| Butyl benzyl phthalate     |        | 83        | 29        | 36        | 55        | 70 J      | 2,200     |           | 60            | 30            |           |           |
| Diethyl phthalate          |        | 20 U      | 20 U      | 20 UJ     | 20 UJ     | 20 UJ     | 98 UJ     |           | 20 U          | 20 U          |           |           |
| Dimethyl phthalate         |        | 37        | 15 J      | 12 J      | 47 U      | 38 J      | 310 J     |           | 40            | 20 U          |           |           |
| Di-n-butyl phthalate       |        | 96 U      | 32 U      | 100 J     | 33 J      | 28 J      | 300 J     |           | 20 U          | 20 U          |           |           |
| Di-n-octyl phthalate       |        | 20 U      | 20 U      | 20 UJ     | 20 UJ     | 15 J      | 98 UJ     |           | 20 U          | 20 U          |           |           |
| Organometals (ug/kg dw)    |        |           |           |           |           |           |           |           |               |               |           |           |
| Dibutyltin as ion          |        |           |           |           |           |           |           | 20        |               |               |           |           |
| Monobutyltin as ion        |        |           |           |           |           |           |           | 8.0 J     |               |               |           |           |
| Tetrabutyltin as ion       |        |           |           |           |           |           |           | 5.0 U     |               |               |           |           |
| Tributyltin as ion         |        |           |           |           |           |           |           | 27        |               |               |           |           |
| Pesticides (ug/kg dw)      |        |           |           |           |           |           |           |           |               |               |           |           |
| 2,4'-DDD                   | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| 2,4'-DDE                   | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| 2,4'-DDT                   | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| 4,4'-DDD                   | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| 4,4'-DDE                   | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| 4,4'-DDT                   | 22 U   |           |           |           |           |           |           |           |               |               |           |           |
| Aldrin                     | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| alpha-BHC                  | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| alpha-Chlordane            | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| alpha-Endosulfan           | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| beta-BHC                   | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| beta-Chlordane             |        |           |           |           |           |           |           |           |               |               |           |           |
| beta-Endosulfan            | 9.8 U  |           |           |           |           |           |           |           |               |               |           | <u> </u>  |
| cis-Nonachlor              | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| delta-BHC                  | 40 U   |           |           |           |           |           |           |           |               |               |           |           |
| Dieldrin                   | 9.8 U  |           |           |           |           |           |           |           | ļ             |               |           |           |
| Endosulfan sulfate         | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| Endrin                     | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| Endrin aldehyde            | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| Endrin ketone              | 9.8 U  |           |           |           |           | ļ         | 1         |           | ļ             |               |           | <b></b>   |
| gamma-BHC                  | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| gamma-Chlordane            | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| Heptachlor                 | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| Heptachlor epoxide         | 4.9 U  |           |           |           |           |           |           |           |               |               |           |           |
| Methoxychlor               | 49 U   |           |           |           |           |           |           |           |               |               |           |           |
| Mirex                      |        |           |           |           |           |           |           |           |               |               |           |           |
| Oxychlordane               |        |           |           |           |           |           |           |           |               |               |           |           |
| Total aldrin/dieldrin      | 9.8 U  |           |           |           |           |           |           |           |               |               |           | <u> </u>  |
| Total chlordane            | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| Total DDTs                 | 22 U   |           |           |           |           |           |           |           |               |               |           | <u> </u>  |
| Toxaphene                  | 490 U  |           |           |           |           |           |           |           |               |               |           |           |
| trans-Nonachlor            | 9.8 U  |           |           |           |           |           |           |           |               |               |           |           |
| VOCs (ug/kg dw)            |        |           |           |           |           |           |           |           |               |               |           |           |

| Location                                              | AN-029    | AN-029    | AN-030    | AN-045    | AN-046    | AN-046    | AN-047    | DR187          | DR188         | DR220         | EIT060    | EST141    |
|-------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|---------------|---------------|-----------|-----------|
| Sample ID                                             | AN029-SS- | AN029-SS- | AN030-SS- | AN045-SS- | AN046-SS- | AN096-SS- | AN047-SS- | SD-DR187-0000  | SD-DR188-0000 | SD-DR220-0000 | EIT06-01  | EST09-01  |
|                                                       | 061025    | 061025    | 061025    | 080211    | 080211    | 080211    | 080211    |                |               |               |           |           |
| Sample Date                                           |           | 10/25/06  | 10/25/06  | 02/11/08  | 02/11/08  | 02/11/08  | 02/11/08  | 08/27/98       | 08/25/98      | 08/25/98      | 09/26/97  | 09/25/97  |
| Depth (ft bgs)                                        | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33      | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 | 0 to 0.33 |
| 1,1,1,2-Tetrachloroethane                             |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,1,1-Trichloroethane                                 |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane       |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,1,2-1 richloroethane 1,1,2-Trichlorotrifluoroethane |           |           |           |           |           |           |           | 2.3 U<br>2.3 U |               |               |           |           |
| 1,1,2-11ichloroatinatie 1,1-Dichloroacetone           |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| 1,1-Dichloroactione 1,1-Dichloroethane                |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,1-Dichloroethene                                    |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,1-Dichloropropene                                   |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,2,3-Trichlorobenzene                                |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| 1,2,3-Trichloropropane                                |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,2,4-Trimethylbenzene                                |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,2-Dibromo-3-chloropropane                           |           |           |           |           |           |           |           | 11.5 U         |               |               |           |           |
| 1,2-Dibromoethane (EDB)                               |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,2-Dichloroethane                                    |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,2-Dichloropropane                                   | _         |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,3,5-Trimethylbenzene                                |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1,3-Dichloropropane                                   |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 1-Chlorobutane                                        |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 2,2-Dichloropropane                                   |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 2-Chlorotoluene                                       |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| 2-Hexanone                                            |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| 2-Nitropropane                                        |           |           |           |           |           |           |           | 11.5 U         |               |               |           |           |
| 4-Chlorotoluene                                       |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Acetone                                               |           |           |           |           |           |           |           | 23 UJ          |               |               |           |           |
| Allyl chloride                                        |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Benzene                                               |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Bromobenzene                                          |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Bromochloromethane                                    |           |           |           |           |           |           |           | 2.3 U<br>2.3 U |               |               |           |           |
| Bromodichloromethane<br>Bromoform                     |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| Bromomethane                                          |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| Carbon disulfide                                      |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| Carbon tetrachloride                                  |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Chlorobenzene                                         |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Chloroethane                                          |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| Chloroform                                            |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Chloromethane                                         |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| cis-1,2-Dichloroethene                                |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| cis-1,3-Dichloropropene                               |           |           |           |           |           |           |           | 2.4 U          |               |               |           |           |
| Dibromochloromethane                                  |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Dibromomethane                                        |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Dichloromethane                                       |           |           |           |           |           |           |           | 11.5 U         |               |               |           |           |
| Diethyl ether                                         |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Ethyl methacrylate                                    |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Ethylbenzene                                          |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| lodomethane                                           |           |           |           |           |           |           |           | 2.3 U          |               |               |           |           |
| Isopropylbenzene                                      |           |           |           |           |           |           |           | 11.5 U         |               |               |           |           |
| m,p-Xylene                                            |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| Methacrylonitrile                                     |           |           |           |           |           |           |           | 11.5 U         |               |               |           |           |
| Methyl acrylate                                       |           |           |           |           |           |           |           | 11.5 U         |               |               |           |           |
| Methyl ethyl ketone                                   |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |
| Methyl isobutyl ketone                                |           |           |           |           |           |           | -         | 4.6 U          |               |               |           |           |
| Methyl methacrylate                                   |           |           |           |           |           |           |           | 4.6 U          |               |               |           |           |

|                                              |                                 | 411.000                         |                                 |                                 | 1, 11, 10, 11, 10               | ****                            | 411.4-                          |                        | 55/00                  |                        |                       | ===+++                |
|----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|
| Location<br>Sample ID                        |                                 | AN-029<br>AN029-SS-             | AN-030<br>AN030-SS-             | AN-045<br>AN045-SS-             | AN-046<br>AN046-SS-             | AN-046<br>AN096-SS-             | AN-047<br>AN047-SS-             | DR187<br>SD-DR187-0000 | DR188<br>SD-DR188-0000 | DR220<br>SD-DR220-0000 | EIT060<br>EIT06-01    | EST141<br>EST09-01    |
| Sample Date<br>Depth (ft bgs)                | 061025<br>10/25/06<br>0 to 0.33 | 061025<br>10/25/06<br>0 to 0.33 | 061025<br>10/25/06<br>0 to 0.33 | 080211<br>02/11/08<br>0 to 0.33 | 080211<br>02/11/08<br>0 to 0.33 | 080211<br>02/11/08<br>0 to 0.33 | 080211<br>02/11/08<br>0 to 0.33 | 08/27/98<br>0 to 0.33  | 08/25/98<br>0 to 0.33  | 08/25/98<br>0 to 0.33  | 09/26/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 |
|                                              | 0 10 0.33                       | 0 10 0.33                       | 0 10 0.33                       | 0 10 0.33                       | 0 10 0.33                       | 0 10 0.33                       | 0 10 0.33                       | 2.3 U                  | 0 10 0.33              | 0 10 0.33              | 0 10 0.33             | 0 10 0.33             |
| n-Butylbenzene                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| n-Propylbenzene<br>o-Xylene                  |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| p-Cymene                                     |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Pentachloroethane                            |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| sec-Butylbenzene                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Styrene                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| tert-Butyl methyl ether                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| tert-Butyl herryr etner<br>tert-Butylbenzene |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Tetrachloroethene                            |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Toluene                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Total xylenes                                |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 4.6 U                  |                        |                        |                       |                       |
| trans-1,2-Dichloroethene                     |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| trans-1,3-Dichloropropene                    |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 4.3 U                  |                        |                        |                       |                       |
| trans-1,4-Dichloro-2-butene                  |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 11.5 U                 |                        |                        |                       |                       |
| Trichloroethene                              |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Trichlorofluoromethane                       |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
| Vinyl chloride                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       |                       |
|                                              |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 0                  |                        |                        |                       |                       |
| Dioxin/furan (ng/kg dw)                      | 100                             |                                 |                                 |                                 |                                 |                                 |                                 | 220                    |                        |                        |                       |                       |
| 1,2,3,4,6,7,8-HpCDD                          | 160                             |                                 |                                 |                                 |                                 |                                 |                                 | 220                    |                        |                        |                       |                       |
| 1,2,3,4,6,7,8-HpCDF                          | 40                              |                                 |                                 |                                 |                                 |                                 |                                 | 42                     |                        |                        |                       |                       |
| 1,2,3,4,7,8,9-HpCDF                          | 3.2 U                           |                                 |                                 |                                 |                                 |                                 |                                 | 7.6 J                  |                        |                        |                       |                       |
| 1,2,3,4,7,8-HxCDD                            | 2.4 U                           |                                 |                                 |                                 |                                 |                                 |                                 | 3.0 U                  |                        |                        |                       |                       |
| 1,2,3,4,7,8-HxCDF                            | 6.9 J                           |                                 |                                 |                                 |                                 |                                 |                                 | 9                      |                        |                        |                       |                       |
| 1,2,3,6,7,8-HxCDD                            | 6.8 J                           |                                 |                                 |                                 |                                 |                                 |                                 | 12                     |                        |                        |                       |                       |
| 1,2,3,6,7,8-HxCDF                            | 4 U                             |                                 |                                 |                                 |                                 |                                 |                                 | 3.7 U                  |                        |                        |                       |                       |
| 1,2,3,7,8,9-HxCDD                            | 5.8 J                           |                                 |                                 |                                 |                                 |                                 |                                 | 7.9                    |                        |                        |                       | l                     |
| 1,2,3,7,8,9-HxCDF                            | 0.31 U                          |                                 |                                 |                                 |                                 |                                 |                                 | 0.41 U                 |                        |                        |                       | l                     |
| 1,2,3,7,8-PeCDD                              | 1.7 U                           |                                 |                                 |                                 |                                 |                                 |                                 | 2.3 U                  |                        |                        |                       | <b>-</b>              |
| 1,2,3,7,8-PeCDF                              | 3.8 U                           |                                 |                                 |                                 |                                 |                                 |                                 | 1.7 U                  |                        |                        |                       | <b>-</b>              |
| 2,3,4,6,7,8-HxCDF                            | 3.7 U                           |                                 |                                 |                                 |                                 |                                 |                                 | 1.9 U                  |                        |                        |                       |                       |
| 2,3,4,7,8-PeCDF                              | 5.2 J                           | -                               |                                 |                                 |                                 |                                 | -                               | 3.0 U                  |                        |                        |                       |                       |
| 2,3,7,8-TCDD                                 | 0.45 U                          | -                               |                                 |                                 |                                 |                                 | -                               | 2                      |                        |                        |                       |                       |
| 2,3,7,8-TCDF                                 | 6.3<br>8.30 J                   |                                 |                                 |                                 |                                 |                                 |                                 | 4.3                    |                        |                        |                       |                       |
| Dioxin/furan TEQ - mammal (half DL) OCDD     |                                 | -                               |                                 |                                 |                                 |                                 | -                               | 11 J                   |                        |                        |                       |                       |
| OCDF                                         | 1,400<br>90                     | -                               |                                 |                                 |                                 |                                 | -                               | 1,800                  |                        |                        |                       |                       |
|                                              | 90                              |                                 |                                 |                                 |                                 |                                 |                                 | 93                     |                        |                        |                       |                       |
| Total HpCDE                                  |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 510                    |                        |                        |                       |                       |
| Total HpCDF                                  |                                 | -                               |                                 |                                 |                                 |                                 | -                               | 140                    |                        |                        |                       |                       |
| Total HxCDD                                  |                                 | -                               |                                 |                                 |                                 |                                 | -                               | 80                     |                        |                        |                       |                       |
| Total HxCDF                                  |                                 | -                               |                                 |                                 |                                 |                                 | -                               | 60                     |                        |                        |                       |                       |
| Total PeCDD                                  |                                 | -                               |                                 |                                 |                                 |                                 | -                               | 6.7 U                  |                        |                        |                       |                       |
| Total PeCDF                                  |                                 | -                               |                                 |                                 |                                 |                                 | -                               | 38                     |                        |                        |                       |                       |
| Total TCDD                                   |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 14                     |                        |                        |                       |                       |
| Total TCDF                                   |                                 | <u> </u>                        |                                 |                                 |                                 |                                 | <u> </u>                        | 45                     |                        |                        |                       | <u></u>               |

| Location                                        | EST142                | EST143                | EST147                | EST148                | EST157                | EST158                | EST159                | EST160                | EST161                | EST162                | LDW-SS112             | LDW-SS114             |
|-------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Sample ID                                       | EST09-02              | EST09-03              | EST10-01              | EST10-02              | EST11-07              | EST11-08              | EST11-09              | EST11-10              | EST11-11              | EST11-12              |                       | LDW-SS114-010         |
|                                                 |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Sample Date<br>Depth (ft bgs)                   | 10/24/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 | 11/12/97<br>0 to 0.33 | 09/24/97<br>0 to 0.33 | 09/24/97<br>0 to 0.33 | 09/24/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 | 11/13/97<br>0 to 0.33 | 09/25/97<br>0 to 0.33 | 01/19/05<br>0 to 0.33 | 01/20/05<br>0 to 0.33 |
| Conventionals                                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Ammonia (mg-N/kg dw)                            |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 4.99                  | 2.71                  |
| Percent moisture (%ww)                          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Total organic carbon (%dw)                      | 1.64                  | 1.38                  | 1.3                   | 2.23                  | 1.79                  | 1.52                  | 1.19                  | 1.59                  | 0.85                  | 1.46                  | 1.82                  | 1.53                  |
| Total solids (%ww)                              |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 53                    | 57.98                 |
| Total solids (preserved) (%ww)                  |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 55                    | 55.15                 |
| Total sulfides (mg/kg dw)                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 6.2 UJ                | 5.8 UJ                |
| Grain size (%dw)                                |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Fractional % >9525 microns                      |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Fractional % phi >-1 (>2000 microns)            |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 2.4                   | 2.1                   |
| Fractional % phi >-3 (>8000 microns)            |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Fractional % phi 0-1 (500-1000 microns)         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 4.8                   | 4                     |
| Fractional % phi -1-0 (1000-2000 microns)       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 2                     | 2.1                   |
| Fractional % phi 10+ (<0.98 micron)             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 3.4                   | 3.3                   |
| Fractional % phi 1-2 (250-500 microns)          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 20                    | 13.3                  |
| Fractional % phi -2-(-1) (2000-4000 microns)    |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Fractional % phi 2-3 (125-250 microns)          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 18.1                  | 16.8                  |
| Fractional % phi -3-(-2) (4000-8000 microns)    |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Fractional % phi 3-4 (62.5-125 microns)         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 14.6                  | 16.6                  |
| Fractional % phi 4-5 (31.2-62.5 microns)        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 11                    | 14.6                  |
| Fractional % phi 5-6 (15.6-31.2 microns)        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 8.5                   | 11.2                  |
| Fractional % phi 6-7 (7.8-15.6 microns)         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 6.7                   | 7.2                   |
| Fractional % phi 7-8 (3.9-7.8 microns)          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 3.8                   | 4.1                   |
| Fractional % phi 8-9 (1.95-3.9 microns)         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 2.7                   | 2.8                   |
| Fractional % phi 9-10 (0.98-1.95 microns)       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 2                     | 1.8                   |
| Fractional % Sieve 3/8-inch (4750-9525 microns) |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Total clay                                      | 17.07                 | 12.16                 | 13.6                  | 15.27                 | 18.81                 | 17.69                 | 7.98                  | 17.29                 | 8.62                  | 15.26                 | 8.1                   | 7.9                   |
| Total fines (percent silt+clay)                 |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 38.1                  | 45                    |
| Total gravel                                    | 0.01 U                | 0.01                  | 0.37                  | 0.73                  | 0.01 U                | 0.04                  | 1.86                  | 0.01 U                | 2.81                  | 0.01 U                | 2.4                   | 2.1                   |
| Total sand                                      | 8.73                  | 46.41                 | 39.01                 | 39.36                 | 7.83                  | 13.7                  | 69.96                 | 10.94                 | 61.37                 | 25.92                 | 59.5                  | 52.8                  |
| Total silt                                      | 74.2                  | 41.42                 | 47.02                 | 44.64                 | 73.35                 | 68.57                 | 20.2                  | 71.77                 | 27.21                 | 58.82                 | 30                    | 37.1                  |
| Metals (mg/kg dw)                               |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Aluminum                                        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Antimony                                        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 0.4 UJ                | 0.3 UJ                |
| Arsenic                                         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 481                   | 1,100                 |
| Barium                                          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Beryllium                                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Cadmium                                         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 0.7                   | 1.6 J                 |
| Calcium                                         |                       | ļ                     |                       |                       |                       |                       |                       | ļ                     |                       |                       | 00.1                  | 70.0                  |
| Chromium                                        |                       | ļ                     |                       |                       |                       |                       |                       | ļ                     |                       |                       | 62.4                  | 72.8 J                |
| Cobalt                                          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 7.6                   | 9                     |
| Copper                                          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 77.7                  | 58.5                  |
| Iron                                            |                       | ļ                     |                       |                       |                       |                       |                       | ļ                     |                       |                       |                       | 4.15                  |
| Lead                                            |                       | ļ                     |                       |                       |                       |                       |                       | ļ                     |                       |                       | 82                    | 110                   |
| Magnesium                                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Manganese                                       |                       | ļ                     | 1                     |                       |                       |                       |                       | ļ                     |                       |                       | 0.0011                | 0.40                  |
| Mercury                                         |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 0.08 U                | 0.12                  |
| Molybdenum                                      |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 3.5                   | 3.4                   |
| Nickel                                          |                       | <del> </del>          | 1                     |                       |                       |                       |                       | ļ                     |                       |                       | 25                    | 26                    |
| Potassium                                       |                       | ļ                     | <del> </del>          |                       |                       |                       |                       | <b> </b>              |                       |                       | 6.11                  | 6.11                  |
| Selenium                                        |                       | <del> </del>          | 1                     |                       |                       |                       | -                     | <del> </del>          |                       |                       | 9 U                   | 8 U                   |
| Silver                                          |                       | 1                     |                       | I                     |                       | ĺ                     |                       | 1                     |                       |                       | 0.5                   | 0.8                   |
| Sodium                                          |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |

| Location                                      | EST142    | EST143    | EST147       | EST148    | EST157    | EST158    | EST159    | EST160       | EST161    | EST162    | LDW-SS112     | LDW-SS114                  |
|-----------------------------------------------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|---------------|----------------------------|
| Location                                      |           |           | EST10-01     |           |           | EST11-08  |           |              | EST11-11  |           |               | LDW-SS114<br>LDW-SS114-010 |
| Sample ID                                     | ES109-02  | EST09-03  | ES110-01     | EST10-02  | EST11-07  | ES111-08  | EST11-09  | EST11-10     | E5111-11  | EST11-12  | LDW-SS112-010 | LDW-55114-010              |
| O-morte Date                                  | 40/04/07  | 00/05/07  | 00/05/07     | 44/40/07  | 00/04/07  | 00/04/07  | 00/04/07  | 00/05/07     | 44/40/07  | 00/05/07  | 04/40/05      | 04/00/05                   |
| Sample Date                                   |           | 09/25/97  | 09/25/97     | 11/12/97  | 09/24/97  | 09/24/97  | 09/24/97  | 09/25/97     | 11/13/97  | 09/25/97  | 01/19/05      | 01/20/05                   |
| Depth (ft bgs)                                | 0 to 0.33 | 0 to 0.33 | 0 to 0.33    | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 | 0 to 0.33    | 0 to 0.33 | 0 to 0.33 | 0 to 0.33     | 0 to 0.33                  |
| Tin                                           |           |           |              |           |           |           |           |              |           |           |               |                            |
| Vanadium                                      |           |           |              |           |           |           |           |              |           |           | 71.9          | 72.6                       |
| Zinc                                          |           |           |              |           |           |           |           |              |           |           | 206           | 230                        |
| PAHs (ug/kg dw)                               |           |           |              |           |           |           |           |              |           |           |               |                            |
| 1-Methylnaphthalene                           |           |           |              |           |           |           |           |              |           |           |               |                            |
| 2-Chloronaphthalene                           |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 2-Methylnaphthalene                           |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| Acenaphthene                                  |           |           |              |           |           |           |           |              |           |           | 98 U          | 140                        |
| Acenaphthylene                                |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| Anthracene                                    |           |           |              |           |           |           |           |              |           |           | 200           | 250                        |
| Benzo(a)anthracene                            |           |           |              |           |           |           |           |              |           |           | 930           | 1,100                      |
| Benzo(a)pyrene                                |           |           |              |           |           |           |           |              |           |           | 1,100         | 1,300                      |
| Benzo(b)fluoranthene                          |           |           |              |           |           |           |           |              |           |           | 1,400         | 1,300                      |
| Benzo(g,h,i)perylene                          |           |           |              |           |           |           |           |              |           |           | 370           | 460                        |
| Benzo(k)fluoranthene                          |           |           |              |           |           |           |           |              |           |           | 1,200         | 1,200                      |
| Chrysene                                      |           | 1         |              |           |           |           |           |              |           |           | 1,600         | 1,900                      |
| cPAHs - mammal - half DL                      |           |           |              |           |           |           |           |              |           |           | 1,500         | 1,800 J                    |
| Dibenzo(a,h)anthracene                        |           |           |              |           |           |           |           |              |           |           | 98 U          | 86 J                       |
| Dibenzofuran                                  |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| Fluoranthene                                  |           |           |              |           |           |           |           |              |           |           | 3,400         | 3,100                      |
| Fluorene                                      |           |           |              |           |           |           |           |              |           |           | 98 U          | 130                        |
| Indeno(1,2,3-cd)pyrene                        |           |           |              |           |           |           |           |              |           |           | 410           | 560                        |
| Naphthalene                                   |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| Phenanthrene                                  |           |           |              |           |           |           |           |              |           |           | 1,200         | 1,600                      |
| Pyrene                                        |           |           |              |           |           |           |           |              |           |           | 2,000         | 2,500                      |
| Total benzofluoranthenes                      |           |           |              |           |           |           |           |              |           |           | 2,600         | 2,500                      |
| Total HPAHs                                   |           |           |              |           |           |           |           |              |           |           | 12,400        | 13,500 J                   |
| Total LPAHs                                   |           |           |              |           |           |           |           |              |           |           | 1,400         | 2,100                      |
| Total PAHs                                    |           |           |              |           |           |           |           |              |           |           | 13,800        | 15,600 J                   |
|                                               |           |           |              |           |           |           |           |              |           |           | 13,000        | 13,000 3                   |
| Other SVOCs (ug/kg dw) 1,2,4-Trichlorobenzene |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
|                                               |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene       |           |           |              |           |           |           |           |              |           |           |               | 130 U                      |
| 1,4-Dichlorobenzene                           |           |           |              |           |           |           |           |              |           |           | 98 U<br>98 U  | 130 U                      |
|                                               |           |           |              |           |           |           |           |              |           |           | 490 U         |                            |
| 2,4,5-Trichlorophenol                         |           |           |              |           |           |           |           |              |           |           |               | 640 U                      |
| 2,4,6-Trichlorophenol                         |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U<br>640 U             |
| 2,4-Dichlorophenol                            |           |           |              |           |           |           |           |              |           |           | 490 U         |                            |
| 2,4-Dimethylphenol                            |           |           | 1            |           |           |           |           | 1            |           |           | 98 U          | 130 U                      |
| 2,4-Dinitrophenol                             |           | 1         | <del> </del> |           |           |           |           | <del> </del> |           |           | 980 U         | 1,300 U                    |
| 2,4-Dinitrotoluene                            |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 2,6-Dinitrotoluene                            |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 2-Chlorophenol                                |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 2-Methylphenol                                |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 2-Nitroaniline                                |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 2-Nitrophenol                                 |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 3,3'-Dichlorobenzidine                        |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 3-Nitroaniline                                |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 4,6-Dinitro-o-cresol                          |           |           |              |           |           |           |           |              |           |           | 980 U         | 1,300 U                    |
| 4-Bromophenyl phenyl ether                    |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 4-Chloro-3-methylphenol                       |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 4-Chloroaniline                               |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |
| 4-Chlorophenyl phenyl ether                   |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 4-Methylphenol                                |           |           |              |           |           |           |           |              |           |           | 98 U          | 130 U                      |
| 4-Nitroaniline                                |           |           |              |           |           |           |           |              |           |           | 490 U         | 640 U                      |

| Location                                           | EST142    | EST143    | EST147       | EST148    | EST157            | EST158    | EST159       | EST160    | EST161       | EST162    | LDW-SS112     | LDW-SS114                  |
|----------------------------------------------------|-----------|-----------|--------------|-----------|-------------------|-----------|--------------|-----------|--------------|-----------|---------------|----------------------------|
|                                                    | EST09-02  | EST09-03  | EST10-01     | EST10-02  | EST11-07          | EST11-08  | EST11-09     | EST11-10  | EST11-11     | EST11-12  |               | LDW-SS114<br>LDW-SS114-010 |
| Sample ID                                          | E3109-02  | E3109-03  | E3110-01     | E3110-02  | E3111-0/          | E3111-00  | E3111-09     | E3111-10  | E3111-11     | E3111-12  | LDW-33112-010 | LDW-33114-010              |
| Sample Date                                        | 10/24/97  | 09/25/97  | 09/25/97     | 11/12/97  | 09/24/97          | 09/24/97  | 09/24/97     | 09/25/97  | 11/13/97     | 09/25/97  | 01/19/05      | 01/20/05                   |
| Depth (ft bgs)                                     | 0 to 0.33 | 0 to 0.33 | 0 to 0.33    | 0 to 0.33 | 0 to 0.33         | 0 to 0.33 | 0 to 0.33    | 0 to 0.33 | 0 to 0.33    | 0 to 0.33 | 0 to 0.33     | 0 to 0.33                  |
|                                                    | 0 10 0.33 | 0 10 0.33 | 0 10 0.33    | 0 10 0.33 | 0 10 0.33         | 0 10 0.33 | 0 10 0.33    | 0 10 0.33 | 0 10 0.33    | 0 10 0.33 |               |                            |
| 4-Nitrophenol                                      |           |           |              |           |                   |           |              |           |              |           | 490 U         | 640 U                      |
| Aniline                                            |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| Benzoic acid                                       |           |           |              |           |                   |           |              |           |              |           | 980 U         | 1,300 U                    |
| Benzyl alcohol                                     |           |           |              |           |                   |           |              |           |              |           | 98 U<br>98 U  | 130 U<br>130 U             |
| bis(2-chloroethoxy)methane bis(2-chloroethyl)ether |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| bis(2-chloroisopropyl)ether                        |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| Carbazole                                          |           |           |              |           |                   |           |              |           |              |           | 220           | 240                        |
| Hexachlorobenzene                                  |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| Hexachlorobutadiene                                |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| Hexachlorocyclopentadiene                          |           |           |              |           |                   |           |              |           |              |           | 490 U         | 640 U                      |
| Hexachloroethane                                   |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| Isophorone                                         |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| Nitrobenzene                                       |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
| n-Nitrosodimethylamine                             |           |           |              |           |                   |           |              |           |              |           | 490 U         | 130 U                      |
| n-Nitroso-di-n-propylamine                         |           |           | 1            |           |                   |           | 1            |           | 1            |           | 490 U         | 640 U                      |
| n-Nitrosodiphenylamine                             |           |           |              |           |                   |           | <del> </del> |           | <del> </del> |           | 98 U          | 130 U                      |
| Pentachlorophenol                                  |           |           |              |           |                   |           | <del> </del> |           | <del> </del> |           | 490 U         | 640 U                      |
| Phenol                                             |           |           |              |           |                   |           |              |           |              |           | 98 U          | 130 U                      |
|                                                    |           |           |              |           |                   |           |              |           |              |           | 90 0          | 130 0                      |
| PCBs (ug/kg dw) Aroclor-1016                       |           |           |              |           |                   |           |              |           |              |           | 34 U          | 110 U                      |
| Aroclor-1016 Aroclor-1221                          |           |           |              |           |                   |           |              |           |              |           | 34 U          | 110 U                      |
| Aroclor-1232                                       |           |           |              |           |                   |           |              |           |              |           | 34 U          | 110 U                      |
| Aroclor-1232<br>Aroclor-1242                       |           |           |              |           |                   |           |              |           |              |           | 34 U          | 110 U                      |
| Aroclor-1242<br>Aroclor-1248                       |           |           |              |           |                   |           |              |           |              |           | 76            | 210 U                      |
| Aroclor-1254                                       |           |           |              |           |                   |           |              |           |              |           | 240           | 540                        |
| Aroclor-1254 Aroclor-1260                          |           |           |              |           |                   |           |              |           |              |           | 150           | 280                        |
| Aroclor-1262                                       |           |           |              |           |                   |           |              |           |              |           | 130           | 200                        |
| Aroclor-1268                                       |           |           |              |           |                   |           |              |           |              |           |               |                            |
| Total PCBs                                         | 87 J      | 390       | 690 J        | 670 J     | 41 J              | 74 J      | 78 J         | 32 J      | 160          | 230       | 470           | 820                        |
| Total PCBs + PCTs                                  | 97        | 440       | 1,400        | 740       | 49                | 86        | 110          | 45        | 190          | 250       | 470           | 020                        |
| Total PCTs                                         | 10        | 53        | 710          | 73        | 7.8 J             | 12        | 32           | 13        | 33           | 23        |               |                            |
| PCBs (ng/kg dw)                                    | 10        | 00        | 710          | 70        | 7.00              | 12        | 02           | 10        | 00           | 20        |               |                            |
| PCB TEQ - mammal (half DL)                         |           |           |              |           |                   |           |              |           |              |           |               |                            |
| PCB-018                                            |           |           |              |           |                   |           |              |           |              |           |               |                            |
| PCB-016<br>PCB-028                                 |           |           | 1            |           |                   |           | 1            |           | 1            |           |               |                            |
| PCB-044                                            |           |           | <del> </del> |           |                   |           | <del> </del> |           | <del> </del> |           |               |                            |
| PCB-044<br>PCB-055                                 |           |           | <del> </del> |           |                   |           | <del> </del> |           | <del> </del> |           |               |                            |
| PCB-055<br>PCB-066                                 |           |           |              |           |                   |           |              |           |              |           |               |                            |
| PCB-000<br>PCB-077                                 | 700 U     | 590 U     | 910 U        | 1,400     | 440 U             | 480 U     | 350 U        | 700 U     | 310 U        | 440 U     |               |                            |
| PCB-077<br>PCB-081                                 | 7000      | 390 0     | 3100         | 1,400     | <del>11</del> 0 0 | +00 0     | 330 0        | 7000      | 310 0        | 4400      |               |                            |
| PCB-101                                            | 25,000 J  | 100,000 J | 150,000 J    | 150,000 J | 13,000 J          | 22,000 J  | 24,000 J     | 12,000 J  | 53,000 J     | 68,000 J  |               |                            |
| PCB-101                                            | 3,200     | 14,000    | 40,000       | 36,000 J  | 1,700             | 3,400     | 3,300        | 1,700     | 6,000 J      | 7,200     |               |                            |
| PCB-103                                            | 9,300     | 45,000    | 130,000      | 47,000    | 3,600 U           | 6,600 U   | 11,000       | 3,800 U   | 17,000       | 22,000    |               |                            |
| PCB-110                                            | 3,300     | +5,000    | 100,000      | 77,000    | 3,000 0           | 0,000 0   | 11,000       | 3,000 0   | 17,000       | 22,000    |               |                            |
| PCB-114 PCB-118                                    | 7,700     | 31,000    | 93,000       | 41,000    | 4,200             | 6,200     | 7,700        | 3,500     | 14,000       | 18,000    |               |                            |
| PCB-116<br>PCB-123                                 | 7,700     | 31,000    | 33,000       | 71,000    | 7,200             | 0,200     | 1,100        | 3,300     | 14,000       | 10,000    |               |                            |
| PCB-123<br>PCB-126                                 | 630 U     | 530 U     | 830 U        | 360 U     | 400 U             | 430 U     | 310 U        | 630 U     | 290 U        | 390 U     |               |                            |
| PCB-120<br>PCB-128                                 | 3,300 J   | 11,000 J  | 100,000 J    | 20,000 J  | 2,000 J           | 2,500 J   | 6,200 J      | 2,400 J   | 6,800 J      | 6,000 J   |               |                            |
| PCB-120<br>PCB-138                                 | 6,400     | 28,000    | 69,000       | 36,000    | 380 U             | 5,300     | 9,300        | 2,900     | 14,000       | 14,000    |               |                            |
| PCB-136                                            | 17,000 J  | 75,000 J  | 130,000 J    | 110,000 J | 300 0             | 15,000 J  | 20,000 J     | 8,400 J   | 33,000 J     | 44,000 J  |               |                            |
| PCB-133                                            | 550 U     | 3,300     | 7,400        | 5,000     | 350 U             | 380 U     | 280 U        | 560 U     | 250 U        | 1,000     |               |                            |
| PCB-130<br>PCB-157                                 | 490 U     | 410 U     | 640 U        | 280 U     | 310 U             | 340 U     | 240 U        | 490 U     | 220 U        | 310 U     |               |                            |
| PCB-137<br>PCB-167                                 | 430 0     | 4100      | 040 0        | 200 0     | 3100              | J+0 U     | 240 0        | 430 0     | 220 0        | 3100      |               |                            |
| FOD-10/                                            |           |           | L            |           |                   |           | <u> </u>     |           | L            |           |               |                            |

| Location                   | ECT440             | ECT442             | FCT4.47            | FCT4.40            | ECT457             | FCT4F0             | ECT450             | ECT4C0             | ECT4C4             | ECT4C0             | LDW CC440                  | LDW-SS114     |
|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------------|---------------|
| Location<br>Sample ID      | EST142<br>EST09-02 | EST143<br>EST09-03 | EST147<br>EST10-01 | EST148<br>EST10-02 | EST157<br>EST11-07 | EST158<br>EST11-08 | EST159<br>EST11-09 | EST160<br>EST11-10 | EST161<br>EST11-11 | EST162<br>EST11-12 | LDW-SS112<br>LDW-SS112-010 |               |
| Sample ID                  | E3109-02           | E3109-03           | E3110-01           | E3110-02           | E3111-07           | E3111-06           | E3111-09           | E3111-10           | E3111-11           | E3111-12           | LDW-35112-010              | LDW-33114-010 |
| Sample Date                | 10/24/97           | 09/25/97           | 09/25/97           | 11/12/97           | 09/24/97           | 09/24/97           | 09/24/97           | 09/25/97           | 11/13/97           | 09/25/97           | 01/19/05                   | 01/20/05      |
| Depth (ft bgs)             | 0 to 0.33                  | 0 to 0.33     |
| PCB-169                    | 1,600 U            | 1,300 U            | 2,000 U            | 870 U              | 980 U              | 1,100 U            | 770 U              | 1,600 U            | 680 U              | 970 U              |                            |               |
| PCB-170                    | 2,300              | 8,000              | 54,000             | 20,000             | 1,100              | 3,300              | 4,300              | 2,000              | 5,600              | 6,500              |                            |               |
| PCB-180                    | 3,800              | 9,400              | 110,000            | 29,000             | 3,200 U            | 4,900 U            | 6,300              | 2,700 U            | 9,100              | 12,000             |                            |               |
| PCB-187                    | ,                  | ,                  | ,                  | ,                  | ,                  | ,                  | ,                  | ,                  | ,                  | ,                  |                            |               |
| PCB-189                    | 710 U              | 600 U              | 930 U              | 400 U              | 450 U              | 490 U              | 350 U              | 710 U              | 310 U              | 440 U              |                            |               |
| PCB-195                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| PCB-206                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| PCB-209                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Phthalates (ug/kg dw)      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Bis(2-ethylhexyl)phthalate |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 320                        | 1,200         |
| Butyl benzyl phthalate     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 220                        | 130 U         |
| Diethyl phthalate          |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 110                        | 130 U         |
| Dimethyl phthalate         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 98 U                       | 130 U         |
| Di-n-butyl phthalate       |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 98 U                       | 83 J          |
| Di-n-octyl phthalate       |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 98 U                       | 130 U         |
| Organometals (ug/kg dw)    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Dibutyltin as ion          |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Monobutyltin as ion        |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Tetrabutyltin as ion       |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Tributyltin as ion         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Pesticides (ug/kg dw)      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| 2,4'-DDD                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| 2,4'-DDE                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| 2,4'-DDT                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| 4,4'-DDD                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| 4,4'-DDE                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| 4,4'-DDT                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Aldrin                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| alpha-BHC                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| alpha-Chlordane            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| alpha-Endosulfan           |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| beta-BHC                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| beta-Chlordane             |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| beta-Endosulfan            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| cis-Nonachlor              |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| delta-BHC                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Dieldrin                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Endosulfan sulfate         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Endrin                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Endrin aldehyde            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Endrin ketone              |                    |                    |                    |                    |                    |                    |                    |                    |                    | İ                  |                            |               |
| gamma-BHC                  |                    |                    |                    |                    |                    |                    |                    |                    |                    | 1                  |                            | 1             |
| gamma-Chlordane            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Heptachlor                 |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Heptachlor epoxide         |                    |                    |                    |                    |                    |                    |                    |                    |                    | 1                  |                            | 1             |
| Methoxychlor               |                    |                    |                    |                    |                    |                    |                    |                    |                    | İ                  |                            |               |
| Mirex                      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| Oxychlordane               |                    |                    |                    |                    |                    |                    |                    |                    |                    | 1                  |                            | 1             |
| Total aldrin/dieldrin      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            | 1             |
| Total chlordane            |                    |                    |                    |                    |                    |                    |                    |                    |                    | 1                  |                            | 1             |
| Total DDTs                 |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            | 1             |
| Toxaphene                  |                    |                    |                    |                    |                    |                    |                    |                    |                    | İ                  |                            |               |
| trans-Nonachlor            |                    |                    |                    |                    |                    |                    |                    |                    |                    | 1                  |                            | 1             |
| VOCs (ug/kg dw)            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                            |               |
| /                          | 1                  | 1                  |                    | 1                  | 1                  |                    | 1                  |                    | 1                  | I.                 | 1                          |               |

|                                    |                                                  |           |                                                  |           | A, WAOIIIIOTO |           |           |                                                  |                                                  |                                                  |               |                                                  |
|------------------------------------|--------------------------------------------------|-----------|--------------------------------------------------|-----------|---------------|-----------|-----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|--------------------------------------------------|
| Location                           |                                                  | EST143    | EST147                                           | EST148    | EST157        | EST158    | EST159    | EST160                                           | EST161                                           | EST162                                           | LDW-SS112     | LDW-SS114                                        |
| Sample ID                          | EST09-02                                         | EST09-03  | EST10-01                                         | EST10-02  | EST11-07      | EST11-08  | EST11-09  | EST11-10                                         | EST11-11                                         | EST11-12                                         | LDW-SS112-010 | LDW-SS114-010                                    |
|                                    | 1                                                |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Sample Date                        | 10/24/97                                         | 09/25/97  | 09/25/97                                         | 11/12/97  | 09/24/97      | 09/24/97  | 09/24/97  | 09/25/97                                         | 11/13/97                                         | 09/25/97                                         | 01/19/05      | 01/20/05                                         |
| Depth (ft bgs)                     |                                                  | 0 to 0.33 | 0 to 0.33                                        | 0 to 0.33 | 0 to 0.33     | 0 to 0.33 | 0 to 0.33 | 0 to 0.33                                        | 0 to 0.33                                        | 0 to 0.33                                        | 0 to 0.33     | 0 to 0.33                                        |
| 1,1,1,2-Tetrachloroethane          |                                                  |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1,1-Trichloroethane              |                                                  |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1,2,2-Tetrachloroethane          | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1,2-Trichloroethane              | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1,2-Trichlorotrifluoroethane     | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1-Dichloroacetone                | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1-Dichloroethane                 | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1-Dichloroethene                 | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,1-Dichloropropene                | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2,3-Trichlorobenzene             | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2,3-Trichloropropane             | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2,4-Trimethylbenzene             | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2-Dibromo-3-chloropropane        | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2-Dibromoethane (EDB)            | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2-Dichloroethane                 | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,2-Dichloropropane                | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,3,5-Trimethylbenzene             | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1,3-Dichloropropane                | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 1-Chlorobutane                     | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 2,2-Dichloropropane                | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 2-Chlorotoluene                    | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 2-Hexanone                         | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 2-Nitropropane                     | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| 4-Chlorotoluene                    | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Acetone                            | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Allyl chloride                     | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Benzene                            | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Bromobenzene                       | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Bromochloromethane                 | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Bromodichloromethane               | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Bromoform                          | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Bromomethane                       | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Carbon disulfide                   | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Carbon tetrachloride               | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Chlorobenzene                      | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Chloroethane                       | <del>                                     </del> |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| Chloroform                         | <del>                                     </del> |           |                                                  |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| Chloromethane                      | <del>                                     </del> |           |                                                  |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| cis-1,2-Dichloroethene             |                                                  |           | 1                                                |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| cis-1,3-Dichloropropene            |                                                  |           | 1                                                |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| Dibromochloromethane               | <del>                                     </del> |           |                                                  |           |               |           |           | 1                                                | 1                                                |                                                  |               |                                                  |
| Dibromomethane                     | <del>                                     </del> |           |                                                  |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| Dichloromethane                    |                                                  |           | <del> </del>                                     |           |               |           |           | 1                                                | <del> </del>                                     | <del> </del>                                     |               |                                                  |
| Diethyl ether                      | <del></del>                                      |           | -                                                |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| Ethyl methacrylate                 | <del></del>                                      |           | -                                                |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     | -             |                                                  |
| Ethyl methacrylate<br>Ethylbenzene | <del></del>                                      |           | -                                                |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     | -             |                                                  |
| lodomethane                        | <del></del>                                      | +         | <del> </del>                                     |           |               |           | +         | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del> </del>  |                                                  |
|                                    | <del></del>                                      |           | -                                                |           |               |           |           | 1                                                | 1                                                | <del> </del>                                     |               |                                                  |
| Isopropylbenzene<br>m,p-Xylene     | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               |                                                  |
| m,p-xyiene<br>Methacrylonitrile    | <del></del>                                      |           | 1                                                |           |               |           |           | -                                                | -                                                | 1                                                |               |                                                  |
|                                    | <del></del>                                      |           | <del>                                     </del> |           |               |           |           | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | -             | 1                                                |
| Methyl actylate                    | <del> </del>                                     |           | -                                                |           |               |           |           | -                                                | -                                                | <del> </del>                                     |               |                                                  |
| Methyl ethyl ketone                | <del></del>                                      |           | ļ                                                |           |               |           |           |                                                  |                                                  | <del> </del>                                     |               | 1                                                |
| Methyl isobutyl ketone             | <del></del>                                      |           |                                                  |           |               |           |           |                                                  |                                                  |                                                  |               | <del>                                     </del> |
| Methyl methacrylate                |                                                  |           | l                                                | 1         |               |           |           |                                                  |                                                  |                                                  |               | l .                                              |

|                                     |           |           |                    |           | A, WASHING IC      |                    |           |           |                    |                                                  |               |                                                  |
|-------------------------------------|-----------|-----------|--------------------|-----------|--------------------|--------------------|-----------|-----------|--------------------|--------------------------------------------------|---------------|--------------------------------------------------|
| Location                            | EST142    | EST143    | EST147<br>EST10-01 | EST148    | EST157<br>EST11-07 | EST158<br>EST11-08 | EST159    | EST160    | EST161<br>EST11-11 | EST162<br>EST11-12                               | LDW-SS112     | LDW-SS114                                        |
| Sample ID                           | EST09-02  | EST09-03  | ES110-01           | EST10-02  | ES111-07           | E5111-08           | EST11-09  | EST11-10  | E5111-11           | ES111-12                                         | LDW-SS112-010 | LDW-SS114-010                                    |
| Sample Date                         | 10/24/97  | 09/25/97  | 09/25/97           | 11/12/97  | 09/24/97           | 09/24/97           | 09/24/97  | 09/25/97  | 11/13/97           | 09/25/97                                         | 01/19/05      | 01/20/05                                         |
| Depth (ft bgs)                      | 0 to 0.33 | 0 to 0.33 | 0 to 0.33          | 0 to 0.33 | 0 to 0.33          | 0 to 0.33          | 0 to 0.33 | 0 to 0.33 | 0 to 0.33          | 0 to 0.33                                        | 0 to 0.33     | 0 to 0.33                                        |
| n-Butylbenzene                      |           | 1         |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| n-Propylbenzene                     |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| o-Xylene                            |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| p-Cymene                            |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Pentachloroethane                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| sec-Butylbenzene                    |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Styrene                             |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| tert-Butyl methyl ether             |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| tert-Butylbenzene                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Tetrachloroethene                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Toluene                             |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Total xylenes                       |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| trans-1,2-Dichloroethene            |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| trans-1,3-Dichloropropene           |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| trans-1,4-Dichloro-2-butene         |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Trichloroethene                     |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Trichlorofluoromethane              |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Vinyl chloride                      |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | 1                                                |
| Dioxin/furan (ng/kg dw)             |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,4,6,7,8-HpCDD                 |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,4,6,7,8-HpCDF                 |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,4,7,8,9-HpCDF                 |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,4,7,8-HxCDD                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,4,7,8-HxCDF                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,6,7,8-HxCDD                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,6,7,8-HxCDF                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,7,8,9-HxCDD                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,7,8,9-HxCDF                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,7,8-PeCDD                     |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 1,2,3,7,8-PeCDF                     |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 2,3,4,6,7,8-HxCDF                   |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 2,3,4,7,8-PeCDF                     |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 2,3,7,8-TCDD                        |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| 2,3,7,8-TCDF                        |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| Dioxin/furan TEQ - mammal (half DL) |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| OCDD                                |           |           |                    |           |                    |                    |           |           |                    |                                                  |               |                                                  |
| OCDF                                |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | <del>                                     </del> |
| Total HpCDD                         |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | <del> </del>                                     |
| Total HpCDF                         |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | <del>                                     </del> |
| Total HxCDD                         |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | <del>                                     </del> |
| Total HxCDF                         |           | -         |                    |           |                    |                    |           |           |                    | <del>                                     </del> | +             | <del>                                     </del> |
| Total PeCDD                         |           |           |                    |           |                    |                    |           |           |                    |                                                  | 1             | <u> </u>                                         |
| Total PeCDF Total TCDD              |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | <del>                                     </del> |
| Total TCDF                          |           |           |                    |           |                    |                    |           |           |                    |                                                  |               | <del>                                     </del> |
| Total TODI                          |           |           |                    |           |                    |                    |           |           |                    | <u> </u>                                         |               | 1                                                |

|                                                                            |                 |               |               |               | A, WASHING I C |               |               |               |               |           |           |           |
|----------------------------------------------------------------------------|-----------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|-----------|-----------|-----------|
| Locatio                                                                    | n LDW-SS115     | LDW-SS116     | LDW-SS118     | LDW-SS119     | LDW-SS157      | LDW-SS158     | LDW-SS159     | LDW-SS338     | LDW-SS541     | R22SD     | R23SD     | R26SD     |
| Sample II                                                                  | D LDW-SS115-010 | LDW-SS116-010 | LDW-SS118-010 | LDW-SS119-010 | LDW-SS157-010  | LDW-SS158-010 | LDW-SS159-010 | LDW-SS338-010 | LDW-SS541-010 | SD0001    | SD0020    | SD0002    |
|                                                                            |                 |               |               |               |                |               |               |               |               |           |           |           |
| Sample Dat                                                                 | e 01/25/05      | 01/20/05      | 01/20/05      | 01/19/05      | 03/16/05       | 03/16/05      | 03/16/05      | 10/03/06      | 12/17/09      | 10/08/97  | 10/11/97  | 10/09/97  |
| Depth (ft bgs                                                              |                 | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33      | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 |
| Conventionals                                                              |                 |               |               |               |                |               |               |               |               |           |           |           |
| Ammonia (mg-N/kg dw)                                                       | 4.61            | 4.81          | 11.3          | 6.41          | 4.13           | 4.32          | 7.86          |               |               |           |           |           |
| Percent moisture (%ww)                                                     | 1.01            | 1.01          | 11.0          | 0.11          | 1.10           | 1.02          | 7.00          |               |               |           |           |           |
| Total organic carbon (%dw)                                                 | 1.92            | 1.34          | 1.84          | 1.5           | 3.1            | 1.96          | 2.78          | 1.99          | 1.1           | 1.4       | 1.7       | 1.1       |
| Total solids (%ww)                                                         | 64.8            | 64.1          | 46.9          | 54.1          | 55.2           | 54.5          | 42.7          | 48.5          | 69.9          | 49.1      | 48.9      | 50.4      |
| Total solids (preserved) (%ww)                                             | 54.8            | 57.6          | 42.4          | 50.9          | 54.6           | 61.6          | 61.6          | 40.0          | 00.0          | 40.1      | 40.0      | 00.4      |
| Total sulfides (mg/kg dw)                                                  | 3.7 U           | 6.5 UJ        | 480 J         | 7.7 UJ        | 5.9 U          | 4.9 UJ        | 5.1 J         |               |               |           |           |           |
| Grain size (%dw)                                                           | 0.7 0           | 0.0 00        | 4000          | 7.7 00        | 0.5 0          | 4.0 00        | 0.10          |               |               |           |           |           |
| Fractional % >9525 microns                                                 |                 |               |               |               |                |               |               |               |               |           |           |           |
|                                                                            | 53.3            | 1.3           | 0.3           | 2.8           | 3.8            | 4.4           | 0.3           | 0.6           | 0.1           |           |           |           |
| Fractional % phi >-1 (>2000 microns) Fractional % phi >-3 (>8000 microns)  | აა.ა            | 1.3           | 0.3           | 2.0           | 3.0            | 4.4           | 0.3           | 0.0           | 0.1           | 4         |           |           |
|                                                                            | 4.0             | 6.5           | 0.4           | 2.0           | 0.0            | 7.0           | 4 F           | 0.0           | 4.4           | 7         | 6         | 2         |
| Fractional % phi 0-1 (500-1000 microns)                                    | 4.8             | 6.5           | 0.4           | 2.8<br>0.8    | 9.8<br>3.8     | 7.3<br>2.7    | 4.5           | 0.9           | 1.4<br>0.3    | 4         | 6         | 2         |
| Fractional % phi -1-0 (1000-2000 microns)                                  | 3               | 1.8           |               | 3.1           | 3.8            |               | 0.9<br>3.3    | 60            | 0.3<br>2.5    | 4         | 3         | 1         |
| Fractional % phi 10+ (<0.98 micron) Fractional % phi 1-2 (250-500 microns) | 1.1<br>15       | 1.8<br>22.4   | 8.4<br>1.9    | 3.1<br>8.6    | 3.4<br>29      | 4.5<br>14.7   | 3.3<br>15.1   | 6.9<br>2.6    | 2.5<br>19.4   | 10        | 19        | 4         |
|                                                                            | 15              | 22.4          | 1.9           | 8.6           | 29             | 14.7          | 15.1          | 2.6           | 19.4          |           |           | 8         |
| Fractional % phi -2-(-1) (2000-4000 microns)                               |                 | 04.0          | 4.4           | 45.0          | 40.0           | 40.5          | 04.0          | 0.4           | 40.5          | 4         | 2         | 1         |
| Fractional % phi 2-3 (125-250 microns)                                     | 9               | 21.2          | 4.1           | 15.9          | 19.3           | 10.5          | 24.3          | 9.4           | 48.5          | 8         | 12        | 11        |
| Fractional % phi -3-(-2) (4000-8000 microns)                               |                 | 45.0          | 40.0          | 0.4           | 0.0            | 40.4          | 40.0          | 40.0          | •             | 2         | 1         | 1         |
| Fractional % phi 3-4 (62.5-125 microns)                                    | 2.8             | 15.3          | 16.8          | 21            | 8.3            | 13.4          | 16.6          | 16.8          | 9             | 8         | 8         | 15        |
| Fractional % phi 4-5 (31.2-62.5 microns)                                   | 0.6             | 10.3          | 23.4          | 13.3          | 5.7            | 13.4          | 9.7           | 14.6          | 7.1           | 20        | 14        | 21        |
| Fractional % phi 5-6 (15.6-31.2 microns)                                   | 3.5             | 7.8           | 18.8          | 13.2          | 5              | 11.6          | 9.6           | 17.4          | 4             | 10        | 14        | 18        |
| Fractional % phi 6-7 (7.8-15.6 microns)                                    | 2.8             | 5.3           | 11.6          | 8             | 4.3            | 7.9           | 6.7           | 14.3          | 3.3           | 9         | 10        | 10        |
| Fractional % phi 7-8 (3.9-7.8 microns)                                     | 2               | 3.1           | 7.1           | 5.2           | 3.6            | 4.9           | 4.8           | 8.2           | 2.4           | 5         | 5         | 5         |
| Fractional % phi 8-9 (1.95-3.9 microns)                                    | 1.2             | 2.4           | 4.1           | 3.1           | 2.5            | 2.8           | 2.7           | 4             | 1.1           | 3         | 3         | 4         |
| Fractional % phi 9-10 (0.98-1.95 microns)                                  | 0.8             | 1.8           | 2.8           | 2.1           | 1.5            | 1.7           | 1.7           | 3.3           | 1             | 2         | 2         | 2         |
| Fractional % Sieve 3/8-inch (4750-9525 microns)                            |                 |               |               |               |                | _             |               |               |               |           | _         |           |
| Total clay                                                                 | 3.1             | 6             | 15.3          | 8.3           | 7.4            | 9             | 7.7           | 14.2          | 4.6           | 9         | 8         | 10        |
| Total fines (percent silt+clay)                                            | 12              | 32.5          | 76.2          | 48            | 26             | 46.8          | 38.5          | 68.7          | 21.4          | 53        | 51        | 60        |
| Total gravel                                                               | 53.3            | 1.3           | 0.3           | 2.8           | 3.8            | 4.4           | 0.3           | 0.6           | 0.1           | 10        | 3         | 2         |
| Total sand                                                                 | 34.6            | 66.4          | 23.5          | 49.1          | 70.2           | 48.6          | 61.4          | 30.7          | 78.6          | 37        | 46        | 37        |
| Total silt                                                                 | 8.9             | 26.5          | 60.9          | 39.7          | 18.6           | 37.8          | 30.8          | 54.5          | 16.8          | 44        | 43        | 50        |
| Metals (mg/kg dw)                                                          |                 |               |               |               |                |               |               |               |               |           |           |           |
| Aluminum                                                                   |                 |               |               |               |                |               |               |               |               |           |           |           |
| Antimony                                                                   | 0.3 UJ          | 0.3 UJ        | 0.4 UJ        | 0.3 UJ        | 0.4 UJ         | 0.3 UJ        | 0.3 UJ        | 0.4 UJ        |               |           |           |           |
| Arsenic                                                                    | 44.4            | 9.6           | 13            | 10.9          | 21.1           | 20.5          | 10            | 8.7           |               | 79.4      | 36.2      | 15.8      |
| Barium                                                                     |                 |               |               |               |                |               |               |               |               |           |           |           |
| Beryllium                                                                  |                 | 9.5           |               |               |                |               |               |               |               |           |           |           |
| Cadmium                                                                    | 1.1             | 0.3 UJ        | 0.4 UJ        | 0.6           | 1.6            | 0.7           | 0.4           | 0.4 U         |               | 1.4 J     | 1.7 J     | 0.4 UJ    |
| Calcium                                                                    | <del> </del>    | 00.5 1        | 00.           | 0= 0          |                | 4             | 00.0          |               |               | 76 :      | 56 :      | 00.1      |
| Chromium                                                                   | 55              | 26.2 J        | 29 J          | 37.6          | 69             | 174           | 29.3          | 26            |               | 76 J      | 53 J      | 28 J      |
| Cobalt                                                                     | 11              | 7.6           | 8.5           | 8.3           | 9              | 7.7           | 6.9           | 8.3           |               |           |           |           |
| Copper                                                                     | 99.7            | 38.5          | 47.4          | 46.8          | 74.7 J         | 52.1 J        | 37.0 J        | 43            |               | 53        | 56        | 40        |
| Iron                                                                       |                 |               | ļ             |               |                |               |               | ļ             |               |           |           |           |
| Lead                                                                       | 98              | 30            | 28            | 71            | 148            | 51            | 36            | 22            |               | 78        | 221       | 28        |
| Magnesium                                                                  |                 |               |               |               |                |               |               |               |               |           |           |           |
| Manganese                                                                  |                 |               |               |               |                |               |               |               |               |           |           |           |
| Mercury                                                                    | 0.07            | 0.07          | 0.12          | 0.16          | 0.12 J         | 0.10 J        | 0.10 J        | 0.13          |               | 0.11      | 0.1       | 0.1       |
| Molybdenum                                                                 | 4               | 1.2           | 1             | 1.7           | 6              | 7.6           | 1.6           | 0.8           |               |           |           |           |
| Nickel                                                                     | 35              | 20            | 20            | 19            | 37             | 48            | 19            | 22            |               | 30        | 35        | 23        |
| Potassium                                                                  |                 |               |               |               |                |               |               |               |               |           |           |           |
| Selenium                                                                   | 20 U            | 8 U           | 10 U          | 9 U           | 20 U           | 9 U           | 8 U           | 1 U           |               |           |           |           |
| Silver                                                                     | 1               | 0.5 U         | 0.6 U         | 0.7           | 2              | 0.6           | 0.5 U         | 0.4 U         |               | 1.8       | 2.3       | 0.7       |
| Sodium                                                                     |                 | ļ             | ļ             |               |                |               |               | ļ             |               |           |           |           |
| Thallium                                                                   | 0.3 U           | 0.3 U         | 0.4 U         | 0.3 U         | 0.4 U          | 0.3 U         | 0.3 U         | 0.4 U         |               |           |           |           |
|                                                                            |                 |               |               |               |                |               |               |               |               |           |           |           |

|                                         | -             |                       |                       |                       |                       |                       |                       | _                     | -                     |                       | · · · · · · · · · · · · · · · · · · · |                       |
|-----------------------------------------|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------------|-----------------------|
| Location                                |               | LDW-SS116             | LDW-SS118             | LDW-SS119             | LDW-SS157             | LDW-SS158             | LDW-SS159             | LDW-SS338             | LDW-SS541             | R22SD                 | R23SD                                 | R26SD                 |
| Sample ID                               | LDW-SS115-010 | LDW-SS116-010         | LDW-SS118-010         | LDW-SS119-010         | LDW-SS157-010         | LDW-SS158-010         | LDW-SS159-010         | LDW-SS338-010         | LDW-SS541-010         | SD0001                | SD0020                                | SD0002                |
|                                         |               |                       |                       |                       |                       |                       |                       |                       |                       |                       |                                       |                       |
| Sample Date<br>Depth (ft bgs)           |               | 01/20/05<br>0 to 0.33 | 01/20/05<br>0 to 0.33 | 01/19/05<br>0 to 0.33 | 03/16/05<br>0 to 0.33 | 03/16/05<br>0 to 0.33 | 03/16/05<br>0 to 0.33 | 10/03/06<br>0 to 0.33 | 12/17/09<br>0 to 0.33 | 10/08/97<br>0 to 0.33 | 10/11/97<br>0 to 0.33                 | 10/09/97<br>0 to 0.33 |
|                                         | 0 10 0.33     | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             | 0 10 0.33                             | 0 10 0.33             |
| Tin<br>Vanadium                         | 01            | 61.3                  | 67.6                  | E0 0                  | 67                    | 65.7                  | E2 E                  | E7 E                  |                       |                       |                                       |                       |
| Zinc                                    | 81<br>343     |                       |                       | 58.8                  | 67<br>248             |                       | 53.5<br>99            | 57.5                  |                       | 202                   | 188                                   | 91                    |
|                                         | 343           | 92.8                  | 103                   | 115                   | 240                   | 151                   | 99                    | 95                    |                       | 293                   | 100                                   | 91                    |
| PAHs (ug/kg dw)                         |               |                       |                       |                       |                       |                       |                       | CO.11                 |                       |                       |                                       |                       |
| 1-Methylnaphthalene                     | 200 U         | 99 U                  | 99 U                  | 96 U                  | E0.11                 | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 20 U                                  | 20 U                  |
| 2-Chloronaphthalene 2-Methylnaphthalene | 200 U         | 99 U                  | 99 U                  | 96 U                  | 58 U<br>58 U          | 59 U                  | 58 U                  | 62 U<br>62 U          |                       | 36                    | 110                                   | 20 U                  |
| Acenaphthene                            | 150 J         | 99 U                  | 99 U                  | 96 U                  | 86                    | 59 U                  | 58 U                  | 62 U                  |                       | 210                   | 390                                   | 20 U                  |
| Acenaphthylene                          | 200 U         | 99 U                  | 99 U                  | 96 U                  | 34 J                  | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 22                                    | 20 U                  |
| Anthracene                              | 390           | 51 J                  | 99 U                  | 96 U                  | 270                   | 63                    | 90                    | 62 U                  |                       | 630                   | 1,000                                 | 52                    |
| Benzo(a)anthracene                      | 1,500         | 310                   | 130                   | 160                   | 1,100                 | 53                    | 410                   | 82                    |                       | 2,100                 | 3,900                                 | 230                   |
| Benzo(a)pyrene                          | 1,700         | 390                   | 140                   | 180                   | 1,300                 | 58                    | 360                   | 79                    |                       | 2,400                 | 4,500                                 | 290                   |
| Benzo(b)fluoranthene                    | 1,900         | 560                   | 210                   | 230                   | 1,900                 | 58                    | 740                   | 120                   |                       | 2,100                 | 4,600                                 | 330                   |
| Benzo(g,h,i)perylene                    | 490           | 120                   | 71 J                  | 96 U                  | 510                   | 140                   | 120                   | 58 J                  |                       | 1,400                 | 3,100                                 | 190                   |
| Benzo(k)fluoranthene                    | 1,700         | 360                   | 120                   | 160                   | 1,500                 | 310                   | 600                   | 84                    |                       | 2,500                 | 4,200                                 | 310                   |
| Chrysene                                | 2,500         | 660                   | 270                   | 350                   | 1,500                 | 320                   | 780                   | 120                   |                       | 2,800                 | 5,300                                 | 370                   |
| cPAHs - mammal - half DL                | 2,400         | 550                   | 210                   | 260                   | 1,900                 | 140 J                 | 570                   | 120 J                 |                       | 3,500                 | 6,600                                 | 430                   |
| Dibenzo(a,h)anthracene                  | 240           | 99 U                  | 99 U                  | 96 U                  | 79                    | 54 J                  | 58 U                  | 8                     |                       | 510                   | 1,200                                 | 83                    |
| Dibenzofuran                            | 200 U         | 99 U                  | 99 U                  | 96 U                  | 59                    | 59 U                  | 58 U                  | 62 U                  |                       | 140                   | 300                                   | 20 U                  |
| Fluoranthene                            | 5,200         | 1,000                 | 490                   | 510                   | 3,400                 | 610                   | 2,100                 | 170                   |                       | 5,600                 | 11,000                                | 590                   |
| Fluorene                                | 180 J         | 99 U                  | 99 U                  | 96 U                  | 99                    | 59 U                  | 40 J                  | 62 U                  |                       | 260                   | 500                                   | 25                    |
| Indeno(1,2,3-cd)pyrene                  | 600           | 150                   | 46                    | 63                    | 670                   | 170                   | 180                   | 51 J                  |                       | 1,500                 | 3,200                                 | 200                   |
| Naphthalene                             | 200 U         | 99 U                  | 99 U                  | 96 U                  | 40 J                  | 59 U                  | 58 U                  | 62 U                  |                       | 43                    | 100                                   | 20 U                  |
| Phenanthrene                            | 2,400         | 280                   | 140                   | 160                   | 1,400                 | 310                   | 570                   | 54 J                  |                       | 2,900                 | 6,600                                 | 330                   |
| Pyrene                                  | 3,200         | 780 J                 | 360                   | 380                   | 2,200                 | 500                   | 1,600                 | 160                   |                       | 4,800                 | 9,600                                 | 660                   |
| Total benzofluoranthenes                | 3,600         | 920                   | 330                   | 390                   | 3,400                 | 370                   | 1,340                 | 200                   |                       | 4,600                 | 8,800                                 | 640                   |
| Total HPAHs                             | 19,000        | 4,300 J               | 1,840 J               | 2,030                 | 14,200                | 2,270 J               | 6,900                 | 930 J                 |                       | 25,700                | 51,000                                | 3,250                 |
| Total LPAHs                             | 3,100 J       | 330 J                 | 140                   | 160                   | 1,900 J               | 370                   | 700 J                 | 54 J                  |                       | 4,000                 | 8,600                                 | 410                   |
| Total PAHs                              | 22,200 J      | 4,700 J               | 1,980 J               | 2,190                 | 16,100 J              | 2,650 J               | 7,600 J               | 990 J                 |                       | 29,800                | 59,000                                | 3,660                 |
| Other SVOCs (ug/kg dw)                  | ,,            | 1,1000                | 1,000                 | _,                    | ,                     | _,,,,,,,              | 1,000                 |                       |                       |                       | ,                                     | -,                    |
| 1,2,4-Trichlorobenzene                  | 200 U         | 6.6 U                 | 6.6 U                 | 6.6 U                 | 6.4 U                 | 6.4 U                 | 6.6 U                 | 6.2 U                 |                       | 20 U                  | 20 U                                  | 20 U                  |
| 1,2-Dichlorobenzene                     | 200 U         | 6.6 U                 | 6.6 U                 | 6.6 U                 | 6.4 U                 | 6.4 U                 | 6.6 U                 | 6.2 U                 |                       | 20 U                  | 20 U                                  | 20 U                  |
| 1,3-Dichlorobenzene                     | 200 U         | 99 U                  | 99 U                  | 96 U                  | 58 U                  | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 20 U                                  | 20 U                  |
| 1,4-Dichlorobenzene                     | 200 U         | 6.6 U                 | 6.6 U                 | 6.6 U                 | 6.4 U                 | 6.4 U                 | 6.6 U                 | 6.2 U                 |                       | 20 UJ                 | 20 UJ                                 | 20 UJ                 |
| 2,4,5-Trichlorophenol                   | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 2,000 U                               | 99 U                  |
| 2,4,6-Trichlorophenol                   | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 2,000 U                               | 99 U                  |
| 2,4-Dichlorophenol                      | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 59 U                  | 1,200 U                               | 59 U                  |
| 2,4-Dimethylphenol                      | 200 U         | 6.6 U                 | 6.6 U                 | 6.6 U                 | 6.4 U                 | 6.4 U                 | 6.6 U                 | 6.2 U                 |                       | 20 U                  | 20 U                                  | 20 U                  |
| 2,4-Dinitrophenol                       | 2,000 U       | 990 U                 | 990 U                 | 960 U                 | 580 U                 | 590 U                 | 580 U                 | 620 U                 |                       | 200 UJ                | 200 UJ                                | 200 UJ                |
| 2,4-Dinitrotoluene                      | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 99 U                                  | 99 U                  |
| 2,6-Dinitrotoluene                      | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 99 U                                  | 99 U                  |
| 2-Chlorophenol                          | 200 U         | 99 U                  | 99 U                  | 96 U                  | 58 U                  | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 20 U                                  | 20 U                  |
| 2-Methylphenol                          | 200 U         | 6.6 U                 | 6.6 U                 | 6.6 U                 | 6.4 U                 | 6.4 U                 | 6.6 U                 | 6.2 U                 |                       | 20 U                  | 20 U                                  | 20 U                  |
| 2-Nitroaniline                          | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 2,000 U                               | 99 U                  |
| 2-Nitrophenol                           | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 2,000 U                               | 99 U                  |
| 3,3'-Dichlorobenzidine                  | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 U                  | 99 U                                  | 99 U                  |
| 3-Nitroaniline                          | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 120 U                 | 120 U                                 | 120 U                 |
| 4,6-Dinitro-o-cresol                    | 2,000 U       | 990 U                 | 990 U                 | 960 U                 | 580 U                 | 590 U                 | 580 U                 | 620 U                 |                       | 200 UJ                | 200 UJ                                | 200 UJ                |
| 4-Bromophenyl phenyl ether              | 200 U         | 99 U                  | 99 U                  | 96 U                  | 58 U                  | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 20 U                                  | 20 U                  |
| 4-Chloro-3-methylphenol                 | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 39 U                  | 40 U                                  | 40 U                  |
| 4-Chloroaniline                         | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 59 U                  | 60 U                                  | 59 U                  |
| 4-Chlorophenyl phenyl ether             | 200 U         | 99 U                  | 99 U                  | 96 U                  | 58 U                  | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 20 U                                  | 20 U                  |
| 4-Methylphenol                          | 200 U         | 99 U                  | 99 U                  | 96 U                  | 58 U                  | 59 U                  | 58 U                  | 62 U                  |                       | 20 U                  | 51                                    | 47                    |
| 4-Nitroaniline                          | 980 U         | 490 U                 | 500 U                 | 480 U                 | 290 U                 | 290 U                 | 290 U                 | 310 U                 |                       | 98 UJ                 | 99 UJ                                 | 99 UJ                 |

|                             | _             |               |               |               | A, WASHING I C |               |               |               |               |           |                                              |           |
|-----------------------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|-----------|----------------------------------------------|-----------|
| Location                    | LDW-SS115     | LDW-SS116     | LDW-SS118     | LDW-SS119     | LDW-SS157      | LDW-SS158     | LDW-SS159     | LDW-SS338     | LDW-SS541     | R22SD     | R23SD                                        | R26SD     |
| Sample ID                   | LDW-SS115-010 | LDW-SS116-010 | LDW-SS118-010 | LDW-SS119-010 | LDW-SS157-010  | LDW-SS158-010 | LDW-SS159-010 | LDW-SS338-010 | LDW-SS541-010 | SD0001    | SD0020                                       | SD0002    |
|                             |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| Sample Date                 |               | 01/20/05      | 01/20/05      | 01/19/05      | 03/16/05       | 03/16/05      | 03/16/05      | 10/03/06      | 12/17/09      | 10/08/97  | 10/11/97                                     | 10/09/97  |
| Depth (ft bgs               | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33      | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 | 0 to 0.33                                    | 0 to 0.33 |
| 4-Nitrophenol               | 980 U         | 490 U         | 500 U         | 480 U         | 290 U          | 290 U         | 290 U         | 310 U         |               | 98 UJ     | 99 UJ                                        | 99 UJ     |
| Aniline                     | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 UJ         |               |           |                                              |           |
| Benzoic acid                | 2,000 U       | 66 U          | 84            | 130           | 770            | 64 U          | 66 U          | 620 U         |               | 200 UJ    | 200 UJ                                       | 200 UJ    |
| Benzyl alcohol              | 200 U         | 33 U          | 33 U          | 33 U          | 32 U           | 32 U          | 33 U          | 31 UJ         |               | 27 J      | 20 UJ                                        | 20 UJ     |
| bis(2-chloroethoxy)methane  | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 U          |               | 200 U     | 400 U                                        | 20 U      |
| bis(2-chloroethyl)ether     | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 U          |               | 39 U      | 40 U                                         | 40 U      |
| bis(2-chloroisopropyl)ether | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 U          |               | 20 U      | 400 U                                        | 20 U      |
| Carbazole                   | 350           | 55 J          | 99 U          | 96 U          | 260            | 54 J          | 85            |               |               | 900       | 2,000                                        | 78        |
| Hexachlorobenzene           | 0.98 U        | 0.98 U        | 6.6 U         | 6.6 U         | 6.4 U          | 6.4 U         | 6.6 U         | 6.2 U         |               | 1.0 U     | 1.3                                          | 1.2       |
| Hexachlorobutadiene         | 0.98 U        | 0.98 U        | 6.6 U         | 6.6 U         | 6.4 U          | 6.4 U         | 6.6 U         | 6.2 U         |               | 20 U      | 20 U                                         | 20 U      |
| Hexachlorocyclopentadiene   | 980 U         | 490 U         | 500 U         | 480 U         | 290 U          | 290 U         | 290 U         | 310 U         |               | 98 UJ     | 2,000 UJ                                     | 99 UJ     |
| Hexachloroethane            | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 U          |               | 20 U      | 20 U                                         | 20 U      |
| Isophorone                  | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 U          |               | 20 U      | 20 U                                         | 20 U      |
| Nitrobenzene                | 200 U         | 99 U          | 99 U          | 96 U          | 58 U           | 59 U          | 58 U          | 62 U          |               | 20 U      | 20 U                                         | 20 U      |
| n-Nitrosodimethylamine      | 200 U         | 33 U          | 33 U          | 33 U          | 32 U           | 32 U          | 33 U          | 31 U          |               |           | <del></del>                                  |           |
| n-Nitroso-di-n-propylamine  | 980 U         | 33 U          | 33 U          | 33 U          | 32 U           | 32 U          | 33 U          | 31 U          |               | 39 U      | 790 U                                        | 40 U      |
| n-Nitrosodiphenylamine      | 200 U         | 6.6 U         | 6.6 U         | 6.6 U         | 7.1            | 6.4 U         | 8             | 6.2 U         |               | 20 U      | 20 U                                         | 20 U      |
| Pentachlorophenol           | 980 U         | 33 UJ         | 33 U          | 33 U          | 32 U           | 32 U          | 33 U          | 31 U          |               |           |                                              |           |
| Phenol                      | 200 U         | 99 U          | 99 U          | 96 U          | 110            | 59 U          | 58 U          | 62 U          |               | 40        | 64                                           | 48        |
| PCBs (ug/kg dw)             | 2000          | 00.0          | 33.0          | 000           |                | 000           | 33.5          | 0_0           |               |           | <u>.                                    </u> |           |
| Aroclor-1016                | 20 U          | 20 U          | 20 U          | 120 U         | 20 U           | 20 U          | 20 U          | 24 U          |               | 20 U      | 20 U                                         | 20 U      |
| Aroclor-1221                | 20 U          | 20 U          | 20 U          | 120 U         | 20 U           | 20 U          | 20 U          | 16 U          |               | 39 U      | 39 U                                         | 40 U      |
| Aroclor-1232                | 20 U          | 20 U          | 20 U          | 120 U         | 39 U           | 20 U          | 39 U          | 32 U          |               | 20 U      | 20 U                                         | 20 U      |
| Aroclor-1242                | 20 U          | 20 U          | 20 U          | 120 U         | 20 U           | 61 J          | 20 U          | 24 U          |               | 20 U      | 20 U                                         | 20 U      |
| Aroclor-1248                | 39 U          | 39 UJ         | 20 U          | 180           | 39 U           | 20 U          | 39 U          | 32 U          |               | 20 U      | 80 UJ                                        | 20 U      |
| Aroclor-1254                | 110           | 65 J          | 24            | 460           | 110            | 190           | 96            | 47            |               | 98        | 480                                          | 100       |
| Aroclor-1260                | 110           | 53 J          | 20 U          | 240 J         | 150            | 140           | 77            | 41            |               | 84        | 390                                          | 63        |
| Aroclor-1262                |               |               |               | 2.00          |                |               |               |               |               | <u> </u>  |                                              |           |
| Aroclor-1268                |               |               |               |               |                |               |               |               |               |           |                                              |           |
| Total PCBs                  | 220           | 118 J         | 24            | 880 J         | 260            | 390 J         | 173           | 88            |               | 182       | 870                                          | 160       |
| Total PCBs + PCTs           | 220           | 1100          |               | 0000          | 200            | 0000          | 170           |               |               | 102       | 0.0                                          | 100       |
| Total PCTs                  |               |               |               |               |                |               |               |               |               |           |                                              |           |
| PCBs (ng/kg dw)             |               |               |               |               |                |               |               |               |               |           |                                              |           |
| PCB TEQ - mammal (half DL)  |               |               |               |               |                |               |               |               |               |           |                                              |           |
| PCB-018                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-028                     |               |               |               |               |                |               | 1             |               |               |           |                                              |           |
| PCB-044                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-055                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-066                     |               |               |               |               |                |               | 1             |               |               |           |                                              |           |
| PCB-077                     | 1             |               |               |               |                |               | 1             | 1             |               |           | 1                                            |           |
| PCB-081                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-101                     | 1             |               |               |               |                |               | <del> </del>  | 1             |               |           | 1                                            |           |
| PCB-105                     | 1             |               |               |               |                |               | <del> </del>  | 1             |               |           | 1                                            |           |
| PCB-110                     |               |               |               |               |                |               | 1             | 1             |               |           |                                              | 1         |
| PCB-114                     | 1             |               |               |               |                |               | <del> </del>  | 1             |               |           | 1                                            |           |
| PCB-118                     |               |               |               |               |                |               | 1             | 1             |               |           |                                              | 1         |
| PCB-123                     |               |               |               |               |                |               | 1             | 1             |               |           |                                              | 1         |
| PCB-126                     | 1             |               |               |               |                |               | <del> </del>  | 1             |               |           | 1                                            |           |
| PCB-128                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-138                     | 1             |               |               |               |                |               | 1             | 1             |               |           | 1                                            |           |
| PCB-153                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-156                     |               |               |               |               |                |               |               |               |               |           |                                              | 1         |
| PCB-157                     |               |               |               |               |                |               |               |               |               |           |                                              |           |
| PCB-137                     | 1             |               |               |               |                |               | <del> </del>  | <del> </del>  |               |           | 1                                            |           |
| וטו-טט ו                    |               | l .           | l .           | 1             |                |               |               |               |               |           |                                              |           |

| Lagricu                                | L DW CC445                 | LDW CC44C       | LDW CC440                  | L DW CC440    | LDW CC4E7                  | LDW CC450                  | L DW CC450    | LDW CC220                  | LDW CCE44                  | Dagen           | Dagen           | Dacen                                            |
|----------------------------------------|----------------------------|-----------------|----------------------------|---------------|----------------------------|----------------------------|---------------|----------------------------|----------------------------|-----------------|-----------------|--------------------------------------------------|
| Location                               | LDW-SS115<br>LDW-SS115-010 | LDW-SS116       | LDW-SS118<br>LDW-SS118-010 | LDW-SS119     | LDW-SS157<br>LDW-SS157-010 | LDW-SS158<br>LDW-SS158-010 | LDW-SS159     | LDW-SS338<br>LDW-SS338-010 | LDW-SS541<br>LDW-SS541-010 | R22SD<br>SD0001 | R23SD<br>SD0020 | R26SD<br>SD0002                                  |
| Sample it                              | LDW-55115-010              | LDW-33110-010   | LDW-33110-010              | LDW-33119-010 | LDW-33137-010              | LDW-33136-010              | LDW-99199-010 | LDW-35336-010              | LDW-35541-010              | 300001          | SD0020          | SD0002                                           |
| Sample Date                            | 01/25/05                   | 01/20/05        | 01/20/05                   | 01/19/05      | 03/16/05                   | 03/16/05                   | 03/16/05      | 10/03/06                   | 12/17/09                   | 10/08/97        | 10/11/97        | 10/09/97                                         |
| Depth (ft bgs                          |                            | 0 to 0.33       | 0 to 0.33                  | 0 to 0.33     | 0 to 0.33                  | 0 to 0.33                  | 0 to 0.33     | 0 to 0.33                  | 0 to 0.33                  | 0 to 0.33       | 0 to 0.33       | 0 to 0.33                                        |
| PCB-169                                | ,                          |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-170                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-180                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-187                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-189                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-195                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-206                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| PCB-209                                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Phthalates (ug/kg dw)                  |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Bis(2-ethylhexyl)phthalate             | 330                        | 240             | 240                        | 280           | 1,200                      | 510                        | 190           | 180                        |                            | 690             | 1,400           | 370                                              |
| Butyl benzyl phthalate                 | 200 U                      | 63 J            | 25                         | 140           | 200                        | 78                         | 24            | 17                         |                            | 140 UJ          | 200             | 110 J                                            |
| Diethyl phthalate                      | 200 U                      | 7.3 U           | 8.6                        | 110           | 7.7 U                      | 6.4 U                      | 6.6 U         | 62 U                       |                            | 20 U            | 20 U            | 20 U                                             |
| Dimethyl phthalate                     | 200 U                      | 8.6             | 7.3                        | 37            | 6.4 U                      | 6.4 U                      | 30            | 9.3                        |                            | 26              | 200             | 25                                               |
| Di-n-butyl phthalate                   | 200 U                      | 99 U            | 99 U                       | 96 U          | 91                         | 59 U                       | 58 U          | 32 J                       |                            | 21              | 43              | 64                                               |
| Di-n-octyl phthalate                   | 200 U                      | 99 U            | 99 U                       | 96 U          | 58 U                       | 59 U                       | 58 U          | 62 U                       |                            | 20 U            | 20 U            | 20 U                                             |
| Organometals (ug/kg dw)                |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Dibutyltin as ion                      |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Monobutyltin as ion                    |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Tetrabutyltin as ion                   |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Tributyltin as ion                     |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Pesticides (ug/kg dw)                  |                            |                 |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| 2,4'-DDD                               | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| 2,4'-DDE                               | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| 2,4'-DDT                               | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| 4,4'-DDD                               | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| 4,4'-DDE                               | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| 4,4'-DDT                               | 20 U                       | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 | 1                                                |
| Aldrin                                 | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| alpha-BHC                              | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| alpha-Chlordane                        | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| alpha-Endosulfan                       | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| beta-BHC                               | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| beta-Chlordane                         | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| beta-Endosulfan                        | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| cis-Nonachlor                          | 15 U                       | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| delta-BHC                              | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 | ļ               | <b></b>                                          |
| Dieldrin                               | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 | ļ               | <b></b>                                          |
| Endosulfan sulfate                     | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Endrin                                 | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| Endrin aldehyde                        | 3.8 UJ                     | 2.0 UJ          |                            |               |                            |                            |               |                            |                            |                 | ļ               | <del> </del>                                     |
| Endrin ketone                          | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 | ļ               | <del> </del>                                     |
| gamma-BHC                              | 0.98 U                     | 0.98 U          |                            |               |                            |                            |               |                            |                            |                 |                 | <del>                                     </del> |
| gamma-Chlordane                        | 0.0011                     | 0.00.11         |                            |               |                            |                            |               |                            |                            |                 | ļ               | <del>                                     </del> |
| Heptachlor                             | 0.98 U                     | 0.98 U          |                            |               |                            |                            | -             |                            |                            |                 | 1               |                                                  |
| Heptachlor epoxide  Methoxychlor       | 11 U<br>9.8 U              | 0.98 U<br>9.8 U |                            |               |                            |                            | -             |                            |                            |                 | 1               |                                                  |
| Mirex                                  | 9.8 U<br>2.0 U             | 9.8 U<br>2.0 U  |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
|                                        | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 | <del></del>                                      |
| Oxychlordane Total aldrin/dieldrin     | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 | 1               |                                                  |
| Total algrin/gleigrin  Total chlordane | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 | <del></del>                                      |
| Total DDTs                             | 20 U                       | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 | +               | <del>                                     </del> |
| Toxaphene                              | 98 U                       | 98 U            |                            |               |                            | <del> </del>               | +             |                            |                            |                 | <del> </del>    | <del>                                     </del> |
| trans-Nonachlor                        | 2.0 U                      | 2.0 U           |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| VOCs (ug/kg dw)                        | 2.00                       | 2.00            |                            |               |                            |                            |               |                            |                            |                 |                 |                                                  |
| voca (ug/kg uw)                        | <u> </u>                   |                 |                            |               |                            |                            |               |                            |                            |                 | I               |                                                  |

| Location                              | LDW-SS115     | LDW-SS116     | LDW-SS118     | LDW-SS119     | LDW-SS157     | LDW-SS158                  | LDW-SS159     | LDW-SS338     | LDW-SS541     | R22SD     | R23SD     | R26SD     |
|---------------------------------------|---------------|---------------|---------------|---------------|---------------|----------------------------|---------------|---------------|---------------|-----------|-----------|-----------|
|                                       |               |               | LDW-SS118-010 | LDW-SS119-010 | LDW-SS157-010 | LDW-33138<br>LDW-SS158-010 |               | LDW-SS338-010 |               | SD0001    | SD0020    | SD0002    |
| Sample ID                             | LDW-33113-010 | LDW-33110-010 | LDW-33116-010 | LDW-33119-010 | LDW-33137-010 | LDW-33136-010              | LDW-33139-010 | LDW-33336-010 | LDW-33341-010 | 300001    | 350020    | 300002    |
| Sample Date                           | 01/25/05      | 01/20/05      | 01/20/05      | 01/19/05      | 03/16/05      | 03/16/05                   | 03/16/05      | 10/03/06      | 12/17/09      | 10/08/97  | 10/11/97  | 10/09/97  |
| Depth (ft bgs)                        | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33                  | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 |
| 1,1,1,2-Tetrachloroethane             | 0 10 0.00     | 0 10 0.00     | 0 10 0.00     | 0 10 0.00     | 0 10 0.00     | 0 10 0.00                  | 1 0 10 0.00   | 0 10 0.00     | 0 10 0.00     | 0 10 0.00 | 0 10 0.00 | 0 10 0.00 |
| 1,1,1-Trichloroethane                 |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1,2,2-Tetrachloroethane             |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1,2-Trichloroethane                 |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1,2-Trichloroethane                 |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1-Dichloroacetone                   |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1-Dichloroethane                    |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1-Dichloroethene                    |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,1-Dichloropropene                   |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2,3-Trichlorobenzene                |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2,3-Trichloropropane                |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2,4-Trimethylbenzene                |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2-Dibromo-3-chloropropane           |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2-Dibromoethane (EDB)               |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2-Dichloroethane                    |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,2-Dichloropropane                   |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,3,5-Trimethylbenzene                |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1,3-Dichloropropane                   |               |               |               |               |               |                            |               |               |               |           |           |           |
| 1-Chlorobutane                        |               |               |               |               |               |                            |               |               |               |           |           |           |
| 2,2-Dichloropropane                   |               |               |               |               |               |                            |               |               |               |           |           |           |
| 2-Chlorotoluene                       |               |               |               |               |               |                            |               |               |               |           |           |           |
| 2-Hexanone                            |               |               |               |               |               |                            |               |               |               |           |           |           |
| 2-Nitropropane                        |               |               |               |               |               |                            |               |               |               |           |           |           |
| 4-Chlorotoluene                       |               |               |               |               |               |                            |               |               |               |           |           |           |
| Acetone                               |               |               |               |               |               |                            |               |               |               |           |           |           |
| Allyl chloride                        |               |               |               |               |               |                            |               |               |               |           |           |           |
| Benzene                               |               |               |               |               |               |                            |               |               |               |           |           |           |
| Bromobenzene                          |               |               |               |               |               |                            |               |               |               |           |           |           |
| Bromochloromethane                    |               |               |               |               |               |                            |               |               |               |           |           |           |
| Bromodichloromethane                  |               |               |               |               |               |                            |               |               |               |           |           |           |
| Bromoform                             |               |               |               |               |               |                            |               |               |               |           |           |           |
| Bromomethane                          |               |               |               |               |               |                            |               |               |               |           |           |           |
| Carbon disulfide Carbon tetrachloride |               |               |               |               |               |                            |               |               |               |           |           |           |
| Carbon tetracriloride Chlorobenzene   |               |               |               |               |               |                            |               |               |               |           |           |           |
| Chloroethane                          |               |               |               |               |               |                            |               |               |               |           |           |           |
| Chloroform                            |               |               |               |               |               |                            |               |               |               |           |           |           |
| Chloromethane                         |               |               |               |               |               |                            | +             |               |               |           |           |           |
| cis-1,2-Dichloroethene                |               |               |               |               |               |                            |               |               |               |           |           |           |
| cis-1,3-Dichloropropene               |               |               |               |               |               |                            |               |               |               |           |           |           |
| Dibromochloromethane                  |               |               |               |               |               |                            |               |               |               |           |           |           |
| Dibromomethane                        |               |               |               |               |               |                            |               |               |               |           |           |           |
| Dichloromethane                       |               |               |               |               |               |                            |               |               |               |           |           |           |
| Diethyl ether                         |               |               |               |               |               |                            |               |               |               |           |           |           |
| Ethyl methacrylate                    |               |               |               |               |               |                            |               |               |               |           |           |           |
| Ethylbenzene                          |               |               |               |               |               |                            |               |               |               |           |           |           |
| lodomethane                           |               |               |               |               |               |                            |               |               |               |           |           |           |
| Isopropylbenzene                      |               |               |               |               |               |                            |               |               |               |           |           |           |
| m,p-Xylene                            |               |               |               |               |               |                            |               |               |               |           |           |           |
| Methacrylonitrile                     |               |               |               |               |               |                            |               |               |               |           |           |           |
| Methyl acrylate                       |               |               |               |               |               |                            |               |               |               |           |           |           |
| Methyl ethyl ketone                   |               |               |               |               |               |                            |               |               |               |           |           |           |
| Methyl isobutyl ketone                |               |               |               |               |               |                            |               |               |               |           |           |           |
| Methyl methacrylate                   |               | ì             |               | Î             |               |                            |               |               |               |           |           |           |

|                                     | -             |               |               |               | A, WASIIING I C |               |               |               |               |           |           |           |
|-------------------------------------|---------------|---------------|---------------|---------------|-----------------|---------------|---------------|---------------|---------------|-----------|-----------|-----------|
| Location                            |               | LDW-SS116     | LDW-SS118     | LDW-SS119     | LDW-SS157       | LDW-SS158     | LDW-SS159     | LDW-SS338     | LDW-SS541     | R22SD     | R23SD     | R26SD     |
| Sample ID                           | LDW-SS115-010 | LDW-SS116-010 | LDW-SS118-010 | LDW-SS119-010 | LDW-SS157-010   | LDW-SS158-010 | LDW-SS159-010 | LDW-SS338-010 | LDW-SS541-010 | SD0001    | SD0020    | SD0002    |
|                                     |               |               |               |               |                 |               |               |               |               |           |           | l         |
| Sample Date                         |               | 01/20/05      | 01/20/05      | 01/19/05      | 03/16/05        | 03/16/05      | 03/16/05      | 10/03/06      | 12/17/09      | 10/08/97  | 10/11/97  | 10/09/97  |
| Depth (ft bgs)                      | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33       | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33     | 0 to 0.33 | 0 to 0.33 | 0 to 0.33 |
| n-Butylbenzene                      |               |               |               |               |                 |               |               |               |               |           |           | 1         |
| n-Propylbenzene                     |               |               |               |               |                 |               |               |               |               |           |           | 1         |
| o-Xylene                            |               |               |               |               |                 |               |               |               |               |           |           |           |
| p-Cymene                            |               |               |               |               |                 |               |               |               |               |           |           |           |
| Pentachloroethane                   |               |               |               |               |                 |               |               |               |               |           |           |           |
| sec-Butylbenzene                    |               |               |               |               |                 |               |               |               |               |           |           |           |
| Styrene                             |               |               |               |               |                 |               |               |               |               |           |           |           |
| tert-Butyl methyl ether             |               |               |               |               |                 |               |               |               |               |           |           |           |
| tert-Butylbenzene                   |               |               |               |               |                 |               |               |               |               |           |           |           |
| Tetrachloroethene                   |               |               |               |               |                 |               |               |               |               |           |           | 1         |
| Toluene                             |               |               |               |               |                 |               |               |               |               |           |           |           |
| Total xylenes                       |               |               |               |               |                 |               |               |               |               |           |           |           |
| trans-1,2-Dichloroethene            |               |               |               |               |                 |               |               |               |               |           |           |           |
| trans-1,3-Dichloropropene           |               |               |               |               |                 |               |               |               |               |           |           |           |
| trans-1,4-Dichloro-2-butene         |               |               |               |               |                 |               |               |               |               |           |           |           |
| Trichloroethene                     |               |               |               |               |                 |               |               |               |               |           |           |           |
| Trichlorofluoromethane              |               |               |               |               |                 |               |               |               |               |           |           |           |
| Vinyl chloride                      |               |               |               |               |                 |               |               |               |               |           |           | 1         |
| Dioxin/furan (ng/kg dw)             |               |               |               |               |                 |               |               |               |               |           |           | ·         |
| 1,2,3,4,6,7,8-HpCDD                 |               |               |               |               |                 |               |               |               | 50.7          |           |           | . <u></u> |
| 1,2,3,4,6,7,8-HpCDF                 |               |               |               |               |                 |               |               |               | 35.1          |           |           | 1         |
| 1,2,3,4,7,8,9-HpCDF                 |               |               |               |               |                 |               |               |               | 3.06 J        |           |           | 1         |
| 1,2,3,4,7,8-HxCDD                   |               |               |               |               |                 |               |               |               | 0.354 U       |           |           |           |
| 1,2,3,4,7,8-HxCDF                   |               |               |               |               |                 |               |               |               | 5.57          |           |           |           |
| 1,2,3,6,7,8-HxCDD                   |               |               |               |               |                 |               |               |               | 1.92 J        |           |           |           |
| 1,2,3,6,7,8-HxCDF                   |               |               |               |               |                 |               |               |               | 0.906 J       |           |           |           |
| 1,2,3,7,8,9-HxCDD                   |               |               |               |               |                 |               |               |               | 1.06 J        |           |           | <u> </u>  |
| 1,2,3,7,8,9-HxCDF                   |               |               |               |               |                 |               |               |               | 0.0630 J      |           |           | <u> </u>  |
| 1,2,3,7,8-PeCDD                     |               |               |               |               |                 |               |               |               | 0.220 J       |           |           | 1         |
| 1,2,3,7,8-PeCDF                     |               |               |               |               |                 |               |               |               | 0.119 J       |           |           | <u> </u>  |
| 2,3,4,6,7,8-HxCDF                   |               |               |               |               |                 |               |               |               | 0.391 J       |           |           |           |
| 2,3,4,7,8-PeCDF                     |               |               |               |               |                 |               |               |               | 0.287 J       |           |           |           |
| 2,3,7,8-TCDD                        |               |               |               |               |                 |               |               |               | 0.126 J       |           |           |           |
| 2,3,7,8-TCDF                        |               |               |               |               |                 |               |               |               | 0.269 J       |           |           |           |
| Dioxin/furan TEQ - mammal (half DL) |               |               |               |               |                 |               |               |               | 2.53 J        |           |           | <u> </u>  |
| OCDD                                |               |               |               |               |                 |               |               |               | 496           |           |           |           |
| OCDF                                |               |               |               |               |                 |               |               |               | 70.3          |           |           |           |
| Total HpCDD                         |               |               |               |               |                 |               |               |               | 105           |           |           |           |
| Total HpCDF                         |               |               |               |               |                 |               |               |               | 112           |           |           |           |
| Total HxCDD                         |               |               |               |               |                 |               |               |               | 10.9          |           |           |           |
| Total HxCDF                         |               |               |               |               |                 |               |               |               | 34.5          |           |           |           |
| Total PeCDD                         |               |               |               |               |                 |               |               |               | 1.21          |           |           |           |
| Total PeCDF                         |               |               |               |               |                 |               |               |               | 4.3           |           |           |           |
| Total TCDD                          |               |               |               |               |                 |               |               |               | 1.04          |           |           |           |
| Total TCDF                          |               |               |               |               |                 |               |               |               | 2.83          |           |           |           |

|                                                                                        |                                                    |           |             | TUKWIL       |
|----------------------------------------------------------------------------------------|----------------------------------------------------|-----------|-------------|--------------|
| Location                                                                               | R27SD                                              | R31SD     | SD-216      | SD-217       |
| Sample ID                                                                              | SD0022                                             | SD0003    | SD-216-0000 | SD-217-0000  |
|                                                                                        |                                                    |           |             |              |
| Sample Date                                                                            |                                                    | 10/09/97  | 08/26/04    | 08/27/04     |
| Depth (ft bgs)                                                                         | 0 to 0.33                                          | 0 to 0.33 | 0 to 0.33   | 0 to 0.33    |
| Conventionals                                                                          |                                                    |           |             |              |
| Ammonia (mg-N/kg dw)                                                                   |                                                    |           |             |              |
| Percent moisture (%ww)                                                                 |                                                    |           |             |              |
| Total organic carbon (%dw)                                                             | 1.5                                                | 1.2       | 2.02        | 1.84         |
| Total solids (%ww)                                                                     | 50.7                                               | 47.9      |             |              |
| Total solids (preserved) (%ww)                                                         |                                                    |           |             |              |
| Total sulfides (mg/kg dw)                                                              |                                                    |           |             |              |
| Grain size (%dw)                                                                       | 1                                                  |           |             |              |
| Fractional % >9525 microns                                                             |                                                    |           |             |              |
| Fractional % phi >-1 (>2000 microns)                                                   |                                                    |           |             |              |
| Fractional % phi >-3 (>8000 microns)                                                   |                                                    |           |             |              |
| Fractional % phi 0-1 (500-1000 microns)                                                | 1                                                  | 1         |             |              |
| Fractional % phi -1-0 (1000-2000 microns)                                              | <u> </u>                                           | 1         |             |              |
| Fractional % phi 10+ (<0.98 micron)                                                    | 5                                                  | 5         |             |              |
| Fractional % phi 1-2 (250-500 microns)                                                 | 3                                                  | 4         |             |              |
| Fractional % phi 1-2 (230-300 finitions)  Fractional % phi -2-(-1) (2000-4000 microns) | <del>                                       </del> | 1         | +           |              |
| Fractional % phil 2-3 (125-250 microns)                                                | 5                                                  | 6         | +           | <del> </del> |
| Fractional % phi -3-(-2) (4000-8000 microns)                                           |                                                    | 0         |             |              |
|                                                                                        | 12                                                 | 10        |             |              |
| Fractional % phi 3-4 (62.5-125 microns)                                                |                                                    |           |             |              |
| Fractional % phi 4-5 (31.2-62.5 microns)                                               | 28                                                 | 25        |             |              |
| Fractional % phi 5-6 (15.6-31.2 microns)                                               | 20                                                 | 23        |             |              |
| Fractional % phi 6-7 (7.8-15.6 microns)                                                | 13                                                 | 12        |             |              |
| Fractional % phi 7-8 (3.9-7.8 microns)                                                 | 7                                                  | 6         |             |              |
| Fractional % phi 8-9 (1.95-3.9 microns)                                                | 4                                                  | 4         |             |              |
| Fractional % phi 9-10 (0.98-1.95 microns)                                              | 2                                                  | 2         |             |              |
| Fractional % Sieve 3/8-inch (4750-9525 microns)                                        |                                                    |           |             |              |
| Total clay                                                                             | 11                                                 | 11        |             |              |
| Total fines (percent silt+clay)                                                        | 79                                                 | 77        |             |              |
| Total gravel                                                                           |                                                    | 1         |             |              |
| Total sand                                                                             | 21                                                 | 22        |             |              |
| Total silt                                                                             | 68                                                 | 66        |             |              |
| Metals (mg/kg dw)                                                                      |                                                    |           |             |              |
| Aluminum                                                                               |                                                    |           |             |              |
| Antimony                                                                               |                                                    |           |             |              |
| Arsenic                                                                                | 14.1                                               | 26.7      |             |              |
| Barium                                                                                 |                                                    |           |             |              |
| Beryllium                                                                              |                                                    |           |             |              |
| Cadmium                                                                                | 0.4 UJ                                             | 0.5 J     |             |              |
| Calcium                                                                                |                                                    |           |             |              |
| Chromium                                                                               | 31 J                                               | 36 J      |             |              |
| Cobalt                                                                                 |                                                    |           |             |              |
| Copper                                                                                 | 40                                                 | 53        |             |              |
| Iron                                                                                   |                                                    |           |             |              |
| Lead                                                                                   | 31                                                 | 94        |             |              |
| Magnesium                                                                              |                                                    |           |             |              |
| Manganese                                                                              |                                                    |           |             |              |
| Mercury                                                                                | 0.17                                               | 0.1       |             |              |
| Molybdenum                                                                             |                                                    |           |             |              |
| Nickel                                                                                 | 26                                                 | 24        |             |              |
| Potassium                                                                              |                                                    |           |             |              |
| Selenium                                                                               | 1                                                  |           | 1           |              |
| Silver                                                                                 | 0.4 U                                              | 0.4 U     |             |              |
| Sodium                                                                                 | 1                                                  |           | 1           |              |
| Thallium                                                                               |                                                    |           |             |              |
|                                                                                        |                                                    | 1         | 1           | l            |

|                             |          |              |              | TUKWIL      |
|-----------------------------|----------|--------------|--------------|-------------|
| Location                    | R27SD    | R31SD        | SD-216       | SD-217      |
| Sample ID                   |          | SD0003       | SD-216-0000  | SD-217-0000 |
| ·                           |          |              |              |             |
| Sample Date                 | 10/11/97 | 10/09/97     | 08/26/04     | 08/27/04    |
| Depth (ft bgs)              |          | 0 to 0.33    | 0 to 0.33    | 0 to 0.33   |
| Tin                         |          |              |              |             |
| Vanadium                    |          |              |              |             |
| Zinc                        | 93       | 128          |              |             |
| PAHs (ug/kg dw)             |          |              |              |             |
| 1-Methylnaphthalene         |          |              |              |             |
| 2-Chloronaphthalene         | 19 U     | 19 U         |              |             |
| 2-Methylnaphthalene         | 19 U     | 19 U         |              |             |
| Acenaphthene                | 30       | 20           |              |             |
| Acenaphthylene              | 19 U     | 19 U         |              |             |
| Anthracene                  | 55       | 160          |              |             |
| Benzo(a)anthracene          | 220      | 300          |              |             |
| Benzo(a)pyrene              | 260      | 360          |              |             |
| Benzo(b)fluoranthene        | 250      | 400          |              |             |
| Benzo(g,h,i)perylene        | 210      | 280          |              |             |
| Benzo(k)fluoranthene        | 320      | 370          |              |             |
| Chrysene                    | 340      | 480          |              |             |
| cPAHs - mammal - half DL    | 400      | 540          |              |             |
| Dibenzo(a,h)anthracene      | 95       | 100          |              |             |
| Dibenzofuran                | 23       | 24           |              |             |
| Fluoranthene                | 540      | 570          |              |             |
| Fluorene                    | 34       | 34           |              |             |
| Indeno(1,2,3-cd)pyrene      | 220      | 250          |              |             |
| Naphthalene                 | 19 U     | 19 U         |              |             |
| Phenanthrene                | 360      | 390          |              |             |
| Pyrene                      | 640      | 830          |              |             |
| Total benzofluoranthenes    | 570      | 770          |              |             |
| Total HPAHs                 | 3,100    | 3,940        |              |             |
| Total LPAHs                 | 480      | 600          |              |             |
| Total PAHs                  | 3,570    | 4,540        |              |             |
| Other SVOCs (ug/kg dw)      | 0,070    | 1,0 10       |              |             |
| 1,2,4-Trichlorobenzene      | 19 U     | 19 U         |              |             |
| 1,2-Dichlorobenzene         | 19 U     | 19 U         |              |             |
| 1,3-Dichlorobenzene         | 19 U     | 19 U         |              |             |
| 1,4-Dichlorobenzene         | 19 UJ    | 19 UJ        |              |             |
| 2,4,5-Trichlorophenol       | 97 U     | 96 U         |              |             |
| 2,4,6-Trichlorophenol       | 97 U     | 96 U         |              |             |
| 2,4-Dichlorophenol          | 58 U     | 58 U         |              |             |
| 2,4-Dimethylphenol          | 19 U     | 19 U         |              |             |
| 2,4-Dinitrophenol           | 190 UJ   | 190 UJ       |              |             |
| 2,4-Dinitrophenor           | 97 U     | 96 U         |              |             |
| 2,6-Dinitrotoluene          | 97 U     | 96 U         |              |             |
| 2-Chlorophenol              | 19 U     | 19 U         |              |             |
| 2-Methylphenol              | 19 U     | 19 U         |              |             |
| 2-Nitroaniline              | 97 U     | 96 U         |              |             |
| 2-Nitrophenol               | 97 U     | 96 U         |              |             |
| 3,3'-Dichlorobenzidine      | 97 U     | 96 U         | -            |             |
| 3-Nitroaniline              | 120 U    | 120 U        | <del> </del> |             |
| 4,6-Dinitro-o-cresol        | 120 UJ   | 120 UJ       | -            |             |
|                             | 190 UJ   |              |              |             |
| 4-Bromophenyl phenyl ether  |          | 19 U         | 1            |             |
| 4-Chloro-3-methylphenol     | 39 U     | 38 U<br>58 U |              |             |
| 4-Chlorophopul phopul other | 58 U     |              | 1            |             |
| 4-Chlorophenyl phenyl ether | 19 U     | 19 U         |              |             |
| 4-Methylphenol              | 19 U     | 19 U         |              |             |
| 4-Nitroaniline              | 97 UJ    | 96 UJ        | <u> </u>     |             |

| Locatio                     | n R27SD     | R31SD     | SD-216      | SD-217      |
|-----------------------------|-------------|-----------|-------------|-------------|
| Sample I                    | D SD0022    | SD0003    | SD-216-0000 | SD-217-0000 |
| ·                           |             |           |             |             |
| Sample Date                 | te 10/11/97 | 10/09/97  | 08/26/04    | 08/27/04    |
| Depth (ft bg:               |             | 0 to 0.33 | 0 to 0.33   | 0 to 0.33   |
| 4-Nitrophenol               | 97 UJ       | 96 UJ     |             |             |
| Aniline                     |             |           |             |             |
| Benzoic acid                | 190 UJ      | 190 UJ    |             |             |
| Benzyl alcohol              | 19 UJ       | 19 UJ     |             |             |
| bis(2-chloroethoxy)methane  | 19 U        | 19 U      |             |             |
| bis(2-chloroethyl)ether     | 39 U        | 38 U      |             |             |
| bis(2-chloroisopropyl)ether | 19 U        | 19 U      |             |             |
| Carbazole                   | 82          | 120       |             |             |
| Hexachlorobenzene           | 1.0 U       | 1.2       |             |             |
| Hexachlorobutadiene         | 19 U        | 19 U      |             |             |
| Hexachlorocyclopentadiene   | 97 UJ       | 96 UJ     |             |             |
| Hexachloroethane            | 19 U        | 19 U      |             |             |
| Isophorone                  | 19 U        | 19 U      |             |             |
| Nitrobenzene                | 19 U        | 19 U      |             |             |
| n-Nitrosodimethylamine      |             |           |             |             |
| n-Nitroso-di-n-propylamine  | 39 U        | 38 U      |             |             |
| n-Nitrosodiphenylamine      | 19 U        | 19 U      |             |             |
| Pentachlorophenol           |             |           |             |             |
| Phenol                      | 19 U        | 19 U      |             |             |
| PCBs (ug/kg dw)             |             |           |             |             |
| Aroclor-1016                | 19 U        | 19 U      | 93 U        | 20 U        |
| Aroclor-1221                | 39 U        | 39 U      | 93 U        | 20 U        |
| Aroclor-1232                | 19 U        | 19 U      | 190 U       | 20 U        |
| Aroclor-1242                | 38 UJ       | 12 J      | 93 U        |             |
| Aroclor-1248                | 19 U        | 19 U      | 120 J       | 48.3 J      |
| Aroclor-1254                | 230         | 59        | 240 J       | 201 J       |
| Aroclor-1260                | 110         | 48        | 93 U        | 43.4        |
| Aroclor-1262                |             |           |             |             |
| Aroclor-1268                |             |           |             |             |
| Total PCBs                  | 340         | 119 J     | 360 J       | 293 J       |
| Total PCBs + PCTs           |             |           |             |             |
| Total PCTs                  |             |           |             |             |
| PCBs (ng/kg dw)             |             |           |             |             |
| PCB TEQ - mammal (half DL)  |             |           |             |             |
| PCB-018                     |             |           |             |             |
| PCB-028                     |             |           |             |             |
| PCB-044                     |             |           |             |             |
| PCB-055                     |             |           |             |             |
| PCB-066                     |             |           |             |             |
| PCB-077                     |             |           |             |             |
| PCB-081                     |             |           |             |             |
| PCB-101                     |             |           |             |             |
| PCB-105                     |             |           |             |             |
| PCB-110                     |             |           |             |             |
| PCB-114                     |             |           | 1           |             |
| PCB-118                     |             |           | 1           |             |
| PCB-123                     |             |           |             |             |
| PCB-126                     |             |           | 1           |             |
| PCB-128                     |             |           | 1           |             |
| PCB-138                     |             |           | 1           |             |
| PCB-153                     |             |           |             |             |
| PCB-156                     |             |           |             |             |
| PCB-157                     |             |           |             |             |
| PCB-167                     |             |           |             |             |

| Locatio                    |              | R31SD     | SD-216      | SD-217      |
|----------------------------|--------------|-----------|-------------|-------------|
| Sample I                   | D SD0022     | SD0003    | SD-216-0000 | SD-217-0000 |
|                            |              |           |             |             |
| Sample Date                |              | 10/09/97  | 08/26/04    | 08/27/04    |
| Depth (ft bg               | s) 0 to 0.33 | 0 to 0.33 | 0 to 0.33   | 0 to 0.33   |
| PCB-169                    |              |           |             |             |
| PCB-170                    |              |           |             |             |
| PCB-180                    |              |           |             |             |
| PCB-187                    |              |           |             |             |
| PCB-189                    |              |           |             |             |
| PCB-195                    |              |           |             |             |
| PCB-206                    |              |           |             |             |
| PCB-209                    |              |           |             |             |
| Phthalates (ug/kg dw)      |              |           |             |             |
| Bis(2-ethylhexyl)phthalate | 280          | 720       |             |             |
| Butyl benzyl phthalate     | 91 J         | 220       |             |             |
| Diethyl phthalate          | 19 U         | 19 U      |             |             |
| Dimethyl phthalate         | 19 U         | 97        |             |             |
| Di-n-butyl phthalate       | 19 U         | 31        |             |             |
| Di-n-octyl phthalate       | 19 U         | 51 J      |             | İ           |
| Organometals (ug/kg dw)    |              |           |             |             |
| Dibutyltin as ion          |              |           |             |             |
| Monobutyltin as ion        |              |           |             |             |
| Tetrabutyltin as ion       |              |           |             |             |
| Tributyltin as ion         |              |           |             |             |
| Pesticides (ug/kg dw)      |              |           |             |             |
| 2,4'-DDD                   |              |           |             |             |
| 2,4'-DDE                   |              |           |             |             |
| 2,4'-DDT                   |              |           |             |             |
| 4,4'-DDD                   |              |           |             |             |
| 4,4'-DDE                   |              |           |             |             |
| 4,4'-DDT                   |              |           |             |             |
| Aldrin                     |              |           |             |             |
| alpha-BHC                  |              | -         |             |             |
| alpha-Chlordane            |              |           |             |             |
| alpha-Endosulfan           |              |           |             |             |
| beta-BHC                   |              |           |             |             |
|                            |              |           |             |             |
| beta-Chlordane             |              |           |             |             |
| beta-Endosulfan            |              |           |             |             |
| cis-Nonachlor              |              |           |             |             |
| delta-BHC                  |              |           |             |             |
| Dieldrin                   |              |           |             |             |
| Endosulfan sulfate         |              |           |             |             |
| Endrin                     |              |           |             |             |
| Endrin aldehyde            |              |           |             |             |
| Endrin ketone              |              |           |             |             |
| gamma-BHC                  |              |           |             |             |
| gamma-Chlordane            |              |           |             |             |
| Heptachlor                 |              |           |             |             |
| Heptachlor epoxide         |              |           |             |             |
| Methoxychlor               |              |           |             |             |
| Mirex                      |              |           |             | ļ           |
| Oxychlordane               |              |           |             | ļ           |
| Total aldrin/dieldrin      |              |           |             |             |
| Total chlordane            |              |           |             |             |
| Total DDTs                 |              |           |             |             |
| Toxaphene                  |              |           |             |             |
|                            | 1            |           |             | 1           |
| trans-Nonachlor            |              |           |             |             |

| Location   R275D   R318D   SD-216   SD-216   SD-217-0000   SD00022   SD0003   SD-216-0000   SD0217-0000   SD00022   SD0003   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-0000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-00000   SD-216-000000   SD-216-000000   SD-216-000000   SD-216-000000   SD-216-0000000   SD-216-0000000   SD-216-000000000   SD-216-00000000   SD-216-00000000   SD-216-000000000   SD-216-000000000000   SD-216-00000000000000000   SD-216-00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |           |           |             | IOKWIL      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-----------|-------------|-------------|
| 1.1.1.2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location                    | R27SD     | R31SD     | SD-216      | SD-217      |
| 1,1-1,2-Testachloroeshane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample ID                   | SD0022    | SD0003    | SD-216-0000 | SD-217-0000 |
| 1,1,1,2-Tetrachtoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                           |           |           |             |             |
| 1.1.1-2 Tetrachtorochane 1.1.2.2 Tetrachtorochane 1.1.2.2 Tetrachtorochane 1.1.2.2 Tetrachtorochane 1.1.2.2 Tetrachtorochane 1.1.2 Tetrachtorochane 1.1.1-Dichtorocetane 1.1.1-Dichtorocetane 1.1.1-Dichtorochane 1.1.1-Dichtorochane 1.1.1-Dichtorochane 1.1.1-Dichtorochane 1.1.1-Dichtorochane 1.1.2-Tetrachtorochane 1.1.2-Tetrachtorochane 1.2.2-Tetrachtorochane 1.2.2-Tetrachtorochane 1.2.2-Tetrachtorochane 1.2.2-Tetrachtorochane 1.2.2-Tetrachtorochane 1.2.2-Tetrachtorochane 1.2-Dibtorochane 1.2-Dibtorochane 1.2-Dibtorochane 1.2-Dibtorochane 1.2-Dibtorochane 1.2-Dichtorochane 1.3.3-Tetrachtorochane 1.3-Dichtorochane 1.3-Dichtorochane 1.3-Dichtorochane 1.3-Dichtorochane 1.3-Dichtorochane 1.3-Dichtorochane 1.2-Dichtorochane 1.2-Di | Sample Date                 | 10/11/97  | 10/09/97  | 08/26/04    | 08/27/04    |
| 1,1,2,Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depth (ft bgs)              | 0 to 0.33 | 0 to 0.33 | 0 to 0.33   | 0 to 0.33   |
| 1,1,2-Trickloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1,2-Tetrachloroethane   |           |           |             |             |
| 1.1.2-Trichlorosthane 1.1.2-Trichlorosthane 1.1.2-Trichlorosthane 1.1.2-Trichlorosthane 1.1.1-Dichlorosthane 1.1.1-Dichlorosthane 1.1.1-Dichlorosthane 1.1.1-Dichlorosthane 1.1.1-Dichlorosthane 1.1.1-Dichlorosthane 1.1.1-Dichlorosthane 1.1.2-Trichlorosthane 1.2.2-Trichlorobenzene 1.2.2-Trichlorobenzene 1.2.2-Trichlorobenzene 1.2.2-Trichlorobenzene 1.2-Dichlorosthane 1.2-Dichlorosthane 1.2-Dichlorosthane 1.2-Dichlorosthane 1.2-Dichlorosthane 1.3-S-Trichlorobenzene 1.3-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 1.2-Dichloropropane |                             |           |           |             |             |
| 1.1.2-Trichloroethane 1.1.2-Dichloroethane 1.1.Dichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.1-Dichloropropene 1.1-Dichloropropene 1.2.3-Trichloropropane 1.2.3-Trichloropropane 1.2.3-Trichloropropane 1.2.Ditromo-3-chloropropane 1.2.Ditromo-3-chloropropane 1.2.Dichloropropane 1.2-Dichloropropane 1.2-Dichloropropane 1.2-Dichloropropane 1.3-Dichloropropane 1. |                             |           |           |             |             |
| 1.1.2-Trichtorotifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |           |           |             |             |
| 1.1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |           |           |             |             |
| 1.1-Dichloroeptoene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloroacetone         |           |           |             |             |
| 1.1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloroethane          |           |           |             |             |
| 1,23-Trichloropanzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1-Dichloroethene          |           |           |             |             |
| 1.2.3-Trinhtropropries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-Dichloropropene         |           |           |             |             |
| 1.2-Dibromo-3-chloropropane           1.2-Dibromo-3-chloropropane           1.2-Dibromo-dhane (EDB)           1.2-Dichloropropane           1.3-Dichloropropane           1.3-Dichloropropane           1.3-Dichloropropane           1-Chlorobutane           2Dichloropropane           2Dichloropropane           2Hexanone           2-Hexanone           2-Hexanone           4-Chlorotoluene           Acetone           Ally chloride           Benzene           Bromobenzene           Bromochloromethane           Bromochloromethane           Bromodichloromethane           Bromomethane           Carbon sludide           Carbon tetrachloride           Chlorosenae           Chlorosenae           Chlorosenae           Chloromethane           Chloromethane           Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2,3-Trichlorobenzene      |           |           |             |             |
| 1.2-Dibrome-3-holropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,3-Trichloropropane      |           |           |             |             |
| 1.2-Dichloroperhane (EDB)  1.2-Dichloropropane  1.3-Dichloropropane  1.3-Dichloropropane  1.3-Dichloropropane  1.3-Dichloropropane  1-Chlorobutane  2Dichloropropane  2-Dichloropropane  2-Hexanone  2-Hexanone  2-Historopane  4-Chlorotoluene  4-Chlorotoluene  Acetone  Ally choride  Benzene  Bromochloromethane  Bromochloromethane  Bromochloromethane  Bromochloromethane  Bromochloromethane  Bromochloromethane  Carbon disulfide  Carbon tetrachloride  Chloroberzene  Chloroethane  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Chlorotenene  Cis-1,2-Dichloropene  Dibromomethane  Dichloromethane  Methyl chyl ketone  Methyl chyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-Trimethylbenzene      |           |           |             |             |
| 1.2-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 2.2-Dichloropropane 2.2-Dichloropropane 2.2-Hitropropane 2Hitropropane 2Hitropropane 4Chierotoluene 4Chierotoluene Acetone Allyl chloride Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromochloromethane Bromodichloromethane Dichloromethane Carbon tetrachloride Chlorobetane Chlorobetane Chlorotom Chloromethane Dichloromethane                                                                                                                                                                                                                                                                                                                                           | 1,2-Dibromo-3-chloropropane |           |           |             |             |
| 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1-Chlorobutane 2,2-Dichloropropane 2-Chiorotoluene 2-Hexanone 2-Hixtopropane 4-Chlorotoluene 3-Hixtopropane 4-Chlorotoluene Acetone Allyl chloride Benzene Bromobenzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane Dichloromethane 2-Dibromoethane (EDB)     |           |           |             |             |
| 1,3-Dichloropropane 1,-Dichloropropane 2,-Dichloropropane 2,-Dichloropropane 2-Chicrotoluene 2-Hexanone 2-Hittopropane 4-Chiorotoluene A-Cetone Allyl chloride Benzene Bromobenzene Bromobenzene Bromodichloromethane Bromofiloromethane Carbon disulfide Carbon disulfide Chloroforom Chlorotomethane Chlorotomethane Chlorotomethane Dichloromethane cis-1,2-Dichloropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichloroethane          |           |           |             |             |
| 1.3-Dichloropropane 1-Chlorobutane 2.2-Dichloropropane 2-Chlorotoluene 2-Hexanone 2-Hitropropane 4-Chlorotoluene Acetone Allyl chloride Benzene Bromobenzene Bromochloromethane Bromochloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorotenene Chloromethane Dichloromethane Dibromochloromethane Dibromochloromethane Cis-1,2-Dichloropene Dibromochloromethane Dichloromethane Dichloromethane Dibromochloromethane Dibromomethane Dibromochloromethane Dibromomethane Dichloromethane  1,2-Dichloropropane         |           |           |             |             |
| 1-Chlorobutane 2,2-Dichloropropane 2-Chlorotoluene 2-Hexanone 2-Hexanone 2-Nitropropane 4-Chlorotoluene A-Chlorotoluene A-Chlorotoluene Altyl chloride Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorotome Chlorotome Chloromethane Chlorotome Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Chlorotomethane Cis-1,2-Dichloropropene Dibromomethane Dibromomethane Dibromomethane Dichloromethane Dispropylbenzene m,p-Xylene Methyt etryl ketone Methyt acrylate Methyl acrylate Methyl acrylate Methyl scobutyl ketone Methyl scobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3,5-Trimethylbenzene      |           |           |             |             |
| 2,2-Dichloropropane 2-Chlorotoluene 2-Hexanone 2-Hirropropane 4-Chlorotoluene Acetone Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromofiloromethane Bromotensene Bromothloromethane Bromotensene Bromothloromethane Bromotensene Bromothloromethane Bromotensene Carbon tetrachloride Chlorobenzene Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlorotenae Chlor |                             |           |           |             |             |
| 2-Chlorotoluene 2-Hexanone 2-Nitropropane 4-Chlorotoluene Acetone Ally chloride Benzene Bromobenzene Bromobioromethane Bromodichloromethane Carbon disulfide Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorotenzene Chloromethane Chloromethane Cis-1,2-Dichloromethane cis-1,2-Dichloromethane Dibromomethane Dibromomethane Dibromomethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Distript ether Ethyl methacrylate Ethyl methacrylate Ethylbenzene Isopropylbenzene mp-Xylene Methyl acrylate Methyl acrylate Methyl sobutyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-Chlorobutane              |           |           |             |             |
| 2-Nitropropane 2-Nitropropane 4-Chlorotoluene Acetone Allyl chloride Benzene Bromobenzene Bromochloromethane Bromochloromethane Bromochloromethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Chlorotenene Cist-1,2-Dichlorotene cist-1,2-Dichlorotene Dibromochloromethane Dichloromethane                                                        | 2,2-Dichloropropane         |           |           |             |             |
| 2-Nitropropane 4-Chlorotoluene Acetone Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon disulfide Carbon tetrachloride Chlorotoren Chlorotorm Chlorotorm Chlorotorm Chlorotorm Dibromomethane dis-1,2-Dichloropropene Dibromomethane Dibromomethane Dichloromethane Dichloromethane Dichloromethane Dispomomethane  2-Chlorotoluene             |           |           |             |             |
| 4-Chlorotoluene Acetone Allyl chloride Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromotorm Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorotenane Chlorotenane Chloromethane dis-1,3-Dichloropropene Dibromomethane Dibromomethane Dibromomethane Dibromomethane Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Hexanone                  |           |           |             |             |
| Acetone Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichoromethane Bromoform Bromomethane Bromoform Bromothane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Cis-1,2-Dichloroethene cis-1,2-Dichloropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dichloromethane                                                                                                                                                                                                                                                                                                                                                                      | 2-Nitropropane              |           |           |             |             |
| Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromothane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,2-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromothloromethane Dibromothloromethane Dichloromethane                                                                                                                                                                                                 | 4-Chlorotoluene             |           |           |             |             |
| Benzene   Bromobenzene   Bromochloromethane   Bromochloromethane   Bromodichloromethane   Bromoform   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromomethane   Bromome   |                             |           |           |             |             |
| Bromochloromethane Bromochloromethane Bromoform Bromomethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloroform Chloroform Chloromethane dis-1,2-Dichloroethene dis-1,3-Dichloropropene Dibromochloromethane Dichloromethane Dichloromethane Dichloromethane Dispromomethane Dichloromethane Dispromomethane Dispromomethane Dispromomethane Dichloromethane Dispromomethane Dispromomethane Dispromomethane Dichloromethane Dispromomethane Dis |                             |           |           |             |             |
| Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Ethyl methacrylate Ethyl methacrylate Ethylbenzene Isopropylbenzene m.p-Xylene Methyl arcylate Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl schule Methyl  | Benzene                     |           |           |             |             |
| Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane cis-1,2-Dichloropropene Dibromochloromethane Dibromomethane Dichloromethane omobenzene                |           |           |             |             |
| Bromoferm Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Dichloromethane                          |           |           |             |             |
| Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Dibromomethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Diptyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl acrylate Methyl acrylate Methyl stbyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |           |           |             |             |
| Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane cis-1,2-Dichloropropene Dibromochloromethane Dibromomethane Dibromomethane Dichloromethane Dichloromethane Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methyl acrylate Methyl acrylate Methyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |           |           |             |             |
| Carbon tetrachloride Chlorobenzene Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Dibromomethane Dichloromethane Dichloromethane Diethyl ether Ethyl methacrylate Ethyl methacrylate Ethylbenzene Isopropylbenzene m,p-Xylene Methacryloitrile Methyl acrylate Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           |             |             |
| Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Dibromomethane Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene lodomethane Isopropylbenzene m,p-Xylene Methyl acrylate Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |           |           |             |             |
| Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromothane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dich |                             |           |           |             |             |
| Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Dichloromethane Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylate Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |           |           |             |             |
| Chloromethane  cis-1,2-Dichloroethene  cis-1,3-Dichloropropene  Dibromochloromethane  Dibromoethane  Dichloromethane  Dichloromethane  Diethyl ether  Ethyl methacrylate  Ethylbenzene  Iodomethane  Isopropylbenzene  m,p-Xylene  Methacrylonitrile  Methyl acrylate  Methyl scrylate  Methyl scrylate  Methyl scrylate  Methyl scrylate  Methyl scrylate  Methyl isobutyl ketone  Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |           |           |             |             |
| cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene lodomethane Isopropylbenzene m,p-Xylene Methacrylate Methyl acrylate Methyl sobutyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |           |           |             |             |
| cis-1,3-Dichloropropene  Dibromochloromethane  Dibromomethane  Dichloromethane  Diethyl ether  Ethyl methacrylate  Ethylbenzene  lodomethane  Isopropylbenzene  m,p-Xylene  Methacrylonitrile  Methyl acrylate  Methyl ethyl ketone  Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |           |             |             |
| Dibromoethane Dichloromethane Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylate Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |           |             |             |
| Dibromomethane Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |           |           |             |             |
| Dichloromethane Diethyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |           |           |             |             |
| Diethyl ether Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |           |           |             |             |
| Ethyl methacrylate Ethylbenzene Iodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |           |           |             |             |
| Ethylbenzene  Iodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |           |           |             |             |
| lodomethane Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |           |           |             |             |
| Isopropylbenzene m,p-Xylene Methacrylonitrile Methyl acrylate Methyl ethyl ketone Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |           |           |             |             |
| m,p-Xylene  Methacrylonitrile  Methyl acrylate  Methyl ethyl ketone  Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |           | ļ           |             |
| Methacrylonitrile  Methyl acrylate  Methyl ethyl ketone  Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |           |           | ļ           |             |
| Methyl acrylate  Methyl ethyl ketone  Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |           |             |             |
| Methyl ethyl ketone  Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |           |             |             |
| Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |           |           |             |             |
| Methyl methacrylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |           |           | ļ           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl methacrylate         |           |           | <u> </u>    | <u> </u>    |

|                                     |                |           |           |             | TORVIL      |
|-------------------------------------|----------------|-----------|-----------|-------------|-------------|
|                                     | Location       | R27SD     | R31SD     | SD-216      | SD-217      |
|                                     | Sample ID      | SD0022    | SD0003    | SD-216-0000 | SD-217-0000 |
|                                     |                |           |           |             |             |
|                                     | Sample Date    | 10/11/97  | 10/09/97  | 08/26/04    | 08/27/04    |
|                                     | Depth (ft bgs) | 0 to 0.33 | 0 to 0.33 | 0 to 0.33   | 0 to 0.33   |
| n-Butylbenzene                      |                |           |           |             |             |
| n-Propylbenzene                     |                |           |           |             |             |
| o-Xylene                            |                |           |           |             |             |
| p-Cymene                            |                |           |           |             |             |
| Pentachloroethane                   |                |           |           |             |             |
| sec-Butylbenzene                    |                |           |           |             |             |
| Styrene                             |                |           |           |             |             |
| tert-Butyl methyl ether             |                |           |           |             |             |
| tert-Butylbenzene                   |                |           |           |             |             |
| Tetrachloroethene                   |                |           |           |             |             |
| Toluene                             |                |           |           |             |             |
| Total xylenes                       |                |           |           |             |             |
| trans-1,2-Dichloroethene            |                |           |           |             |             |
| trans-1,3-Dichloropropene           |                |           |           |             |             |
| trans-1,4-Dichloro-2-butene         |                |           |           |             |             |
| Trichloroethene                     |                |           |           |             |             |
| Trichlorofluoromethane              |                |           |           |             |             |
| Vinyl chloride                      |                |           |           |             |             |
| Dioxin/furan (ng/kg dw)             |                |           |           |             |             |
| 1,2,3,4,6,7,8-HpCDD                 |                |           |           |             |             |
| 1,2,3,4,6,7,8-HpCDF                 |                |           |           |             |             |
| 1,2,3,4,7,8,9-HpCDF                 |                |           |           |             |             |
| 1,2,3,4,7,8-HxCDD                   |                |           |           |             |             |
| 1,2,3,4,7,8-HxCDF                   |                |           |           |             |             |
| 1,2,3,6,7,8-HxCDD                   |                |           |           |             |             |
| 1,2,3,6,7,8-HxCDF                   |                |           |           |             |             |
| 1,2,3,7,8,9-HxCDD                   |                |           |           |             |             |
| 1,2,3,7,8,9-HxCDF                   |                |           |           |             |             |
| 1,2,3,7,8-PeCDD                     |                |           |           |             |             |
| 1,2,3,7,8-PeCDF                     |                |           |           |             |             |
| 2,3,4,6,7,8-HxCDF                   |                |           |           |             |             |
| 2,3,4,7,8-PeCDF                     |                |           |           |             |             |
| 2,3,7,8-TCDD                        |                |           |           |             |             |
| 2,3,7,8-TCDF                        |                |           |           |             |             |
| Dioxin/furan TEQ - mammal (half DL) |                |           |           |             |             |
| OCDD                                |                |           |           |             |             |
| OCDF                                |                |           |           |             |             |
| Total HpCDD                         |                |           |           |             |             |
| Total HpCDF                         |                |           |           |             |             |
| Total HxCDD                         |                |           |           |             |             |
| Total HxCDF                         |                |           |           |             |             |
| Total PeCDD                         |                |           |           |             |             |
| Total PeCDF                         |                |           |           |             |             |
| Total TCDD                          |                |           |           |             |             |
| Total TCDF                          |                |           |           |             |             |

| Location                                            | SD-315      | SD-336                | SD-345                |
|-----------------------------------------------------|-------------|-----------------------|-----------------------|
|                                                     |             | SD-336<br>SD-336-0000 | SD-345<br>SD-345-0000 |
| Sample ID                                           | SD-315-0000 | SD-336-0000           | SD-345-0000           |
| Sample Date                                         | 08/17/04    | 08/27/04              | 08/26/04              |
| Depth (ft bgs)                                      |             | 06/27/04<br>0 to 0.33 | 06/26/04<br>0 to 0.33 |
|                                                     | 0 10 0.33   | 0 10 0.33             | 0 10 0.33             |
| Conventionals                                       |             |                       |                       |
| Ammonia (mg-N/kg dw)                                |             |                       |                       |
| Percent moisture (%ww)                              | 4 57        | 1.55                  | 1.04                  |
| Total organic carbon (%dw) Total solids (%ww)       | 1.57        | 1.55                  | 1.24                  |
| Total solids (76ww)  Total solids (preserved) (%ww) |             |                       |                       |
| 9 7 7                                               |             |                       |                       |
| Total sulfides (mg/kg dw)                           |             |                       |                       |
| Grain size (%dw)                                    |             |                       |                       |
| Fractional % >9525 microns                          | 4.4         |                       |                       |
| Fractional % phi >-1 (>2000 microns)                | 1.4         |                       |                       |
| Fractional % phi >-3 (>8000 microns)                | 0.7         |                       |                       |
| Fractional % phi 0-1 (500-1000 microns)             | 3.7         |                       |                       |
| Fractional % phi -1-0 (1000-2000 microns)           | 1.7         |                       |                       |
| Fractional % phi 10+ (<0.98 micron)                 | 4.6         |                       |                       |
| Fractional % phi 1-2 (250-500 microns)              | 17          |                       |                       |
| Fractional % phi -2-(-1) (2000-4000 microns)        | 40.4        |                       |                       |
| Fractional % phi 2-3 (125-250 microns)              | 18.4        |                       |                       |
| Fractional % phi -3-(-2) (4000-8000 microns)        | 40.4        |                       |                       |
| Fractional % phi 3-4 (62.5-125 microns)             | 10.4        |                       |                       |
| Fractional % phi 4-5 (31.2-62.5 microns)            | 10.7        |                       |                       |
| Fractional % phi 5-6 (15.6-31.2 microns)            | 12.8        |                       |                       |
| Fractional % phi 6-7 (7.8-15.6 microns)             | 9.9         |                       |                       |
| Fractional % phi 7-8 (3.9-7.8 microns)              | 5.2         |                       |                       |
| Fractional % phi 8-9 (1.95-3.9 microns)             | 2.5         |                       |                       |
| Fractional % phi 9-10 (0.98-1.95 microns)           | 1.7         |                       |                       |
| Fractional % Sieve 3/8-inch (4750-9525 microns)     |             |                       |                       |
| Total clay                                          | 8.8         |                       |                       |
| Total fines (percent silt+clay)                     | 47.4        |                       |                       |
| Total gravel                                        | 1.4         |                       |                       |
| Total sand                                          | 51          |                       |                       |
| Total silt                                          | 38.6        |                       |                       |
| Metals (mg/kg dw)                                   |             |                       |                       |
| Aluminum                                            |             |                       |                       |
| Antimony                                            | 40          |                       |                       |
| Arsenic                                             | 12          |                       |                       |
| Barium                                              |             |                       |                       |
| Beryllium                                           | 0.54        |                       |                       |
| Cadmium                                             | 0.54        |                       |                       |
| Calcium                                             | 77.7        |                       |                       |
| Chromium                                            | 77.7        |                       |                       |
| Cobalt                                              | 00.0        |                       |                       |
| Copper                                              | 68.8        |                       |                       |
| Iron                                                | 07.0        |                       |                       |
| Lead                                                | 67.6        |                       |                       |
| Magnesium                                           |             |                       |                       |
| Manganese                                           | 0.00 1      |                       |                       |
| Melyhdenum                                          | 0.09 J      |                       |                       |
| Molybdenum                                          | F7 F        |                       |                       |
| Nickel                                              | 57.5        |                       |                       |
| Potassium                                           |             |                       |                       |
| Selenium                                            | 0.02.11     |                       |                       |
| Silver                                              | 0.99 U      |                       |                       |
| Sodium                                              |             |                       |                       |
| Thallium                                            |             |                       |                       |

|                                             | Location       | SD-315         | SD-336                | SD-345                |
|---------------------------------------------|----------------|----------------|-----------------------|-----------------------|
|                                             | Sample ID      | SD-315-0000    | SD-336<br>SD-336-0000 | SD-345<br>SD-345-0000 |
|                                             | Salliple ID    | 2D-213-0000    | 3D-330 <b>-</b> 0000  | 30-343-0000           |
|                                             | Sample Date    | 08/17/04       | 08/27/04              | 08/26/04              |
|                                             | Depth (ft bgs) | 0 to 0.33      | 0 to 0.33             | 0 to 0.33             |
| Tin                                         |                |                |                       |                       |
| Vanadium                                    |                |                |                       |                       |
| Zinc                                        |                | 133            |                       |                       |
| PAHs (ug/kg dw)                             |                |                |                       |                       |
| 1-Methylnaphthalene                         |                |                |                       |                       |
| 2-Chloronaphthalene                         |                | 20 U           |                       |                       |
| 2-Methylnaphthalene                         |                | 20 U           |                       |                       |
| Acenaphthene                                |                | 44             |                       |                       |
| Acenaphthylene                              |                | 23             |                       |                       |
| Anthracene                                  |                | 130            |                       |                       |
| Benzo(a)anthracene                          |                | 660            |                       |                       |
| Benzo(a)pyrene                              |                | 780            |                       |                       |
| Benzo(b)fluoranthene                        |                | 1,100          |                       |                       |
| Benzo(g,h,i)perylene                        |                | 300            |                       |                       |
| Benzo(k)fluoranthene                        |                | 950            |                       |                       |
| Chrysene                                    |                | 950            |                       |                       |
| cPAHs - mammal - half DL                    |                | 1,200          |                       |                       |
| Dibenzo(a,h)anthracene                      |                | 150            |                       |                       |
| Dibenzofuran                                |                | 31             |                       |                       |
| Fluoranthene                                |                | 2,300          |                       |                       |
| Fluorene                                    |                | 51             |                       |                       |
| Indeno(1,2,3-cd)pyrene                      |                | 390            |                       |                       |
| Naphthalene                                 |                | 20 U           |                       |                       |
| Phenanthrene                                |                | 680            |                       |                       |
| Pyrene                                      |                | 1,800          |                       |                       |
| Total benzofluoranthenes                    |                | 2,100          |                       |                       |
| Total HPAHs                                 |                | 9,400          |                       |                       |
| Total LPAHs                                 |                | 930            |                       |                       |
| Total PAHs                                  |                | 10,300         |                       |                       |
| Other SVOCs (ug/kg dw)                      |                | 00.11          |                       |                       |
| 1,2,4-Trichlorobenzene                      |                | 20 U           |                       |                       |
| 1,2-Dichlorobenzene                         |                | 20 U           |                       |                       |
| 1,3-Dichlorobenzene                         |                | 20 U<br>20 U   |                       |                       |
| 1,4-Dichlorobenzene                         |                |                |                       |                       |
| 2,4,5-Trichlorophenol                       |                | 100 U<br>100 U |                       |                       |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol |                |                |                       |                       |
|                                             |                | 100 U          |                       |                       |
| 2,4-Dimethylphenol                          |                | 20 U<br>200 U  |                       |                       |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene        |                | 100 U          |                       |                       |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene    |                | 100 U          |                       |                       |
| 2-Chlorophenol                              |                | 20 U           |                       |                       |
| 2-Methylphenol                              |                | 20 U           |                       |                       |
| 2-Nitroaniline                              |                | 100 U          |                       |                       |
| 2-Nitrophenol                               |                | 100 U          |                       |                       |
| 3,3'-Dichlorobenzidine                      |                | 100 U          |                       |                       |
| 3-Nitroaniline                              |                | 100 U          |                       |                       |
| 4,6-Dinitro-o-cresol                        |                | 200 U          |                       | <del> </del>          |
| 4-Bromophenyl phenyl ether                  |                | 20 U           |                       |                       |
| 4-Chloro-3-methylphenol                     |                | 100 U          |                       | <del> </del>          |
| 4-Chloroaniline                             |                | 100 U          |                       |                       |
| 4-Chlorophenyl phenyl ether                 |                | 20 U           |                       | <del> </del>          |
|                                             |                | 200            | 1                     | l                     |
| 4-Methylphenol                              | i              | 20 U           |                       |                       |

|                             | Location                          | SD-315      | SD-336      | SD-345      |
|-----------------------------|-----------------------------------|-------------|-------------|-------------|
|                             | Sample ID                         | SD-315-0000 | SD-336-0000 | SD-345-0000 |
|                             | Sample Date                       | 08/17/04    | 08/27/04    | 08/26/04    |
|                             | Depth (ft bgs)                    | 0 to 0.33   | 0 to 0.33   | 0 to 0.33   |
| 4-Nitrophenol               | ( · · · · · · · · · · · · · · · · | 100 U       |             |             |
| Aniline                     |                                   |             |             |             |
| Benzoic acid                |                                   | 200 U       |             |             |
| Benzyl alcohol              |                                   | 20 U        |             |             |
| bis(2-chloroethoxy)methane  |                                   | 20 U        |             |             |
| bis(2-chloroethyl)ether     |                                   | 20 U        |             |             |
| bis(2-chloroisopropyl)ether |                                   | 20 U        |             |             |
| Carbazole                   |                                   | 150         |             |             |
| Hexachlorobenzene           |                                   | 20 U        |             |             |
| Hexachlorobutadiene         |                                   | 20 U        |             |             |
| Hexachlorocyclopentadiene   |                                   | 100 U       |             |             |
| Hexachloroethane            |                                   | 20 U        |             |             |
| Isophorone                  |                                   | 20 U        |             |             |
| Nitrobenzene                |                                   | 20 U        |             |             |
| n-Nitrosodimethylamine      |                                   |             |             |             |
| n-Nitroso-di-n-propylamine  |                                   | 100 U       |             |             |
| n-Nitrosodiphenylamine      |                                   | 20 U        |             |             |
| Pentachlorophenol           |                                   | 100 U       |             |             |
| Phenol                      |                                   | 28          |             |             |
| PCBs (ug/kg dw)             |                                   |             |             |             |
| Aroclor-1016                |                                   | 66 U        | 71 U        | 20 U        |
| Aroclor-1221                |                                   | 66 U        | 71 U        | 20 U        |
| Aroclor-1232                |                                   | 130 U       | 140 U       | 20 U        |
| Aroclor-1242                |                                   | 66 U        | 71 U        |             |
| Aroclor-1248                |                                   | 66 U        | 71 U        | 20 U        |
| Aroclor-1254                |                                   | 150         | 180 J       | 124         |
| Aroclor-1260                |                                   | 110 J       | 71 J        | 58.1        |
| Aroclor-1262                |                                   |             |             |             |
| Aroclor-1268                |                                   |             |             |             |
| Total PCBs                  |                                   | 260 J       | 250 J       | 182         |
| Total PCBs + PCTs           |                                   |             |             |             |
| Total PCTs                  |                                   |             |             |             |
| PCBs (ng/kg dw)             |                                   |             |             |             |
| PCB TEQ - mammal (half DL)  |                                   |             |             |             |
| PCB-018                     |                                   |             |             |             |
| PCB-028                     |                                   |             |             |             |
| PCB-044                     |                                   |             |             |             |
| PCB-055                     |                                   |             |             |             |
| PCB-066                     |                                   |             |             |             |
| PCB-077                     |                                   |             |             |             |
| PCB-081                     |                                   |             |             |             |
| PCB-101                     |                                   |             |             |             |
| PCB-105<br>PCB-110          |                                   |             |             |             |
| PCB-110                     |                                   |             |             |             |
| PCB-114<br>PCB-118          |                                   |             |             |             |
| PCB-118<br>PCB-123          |                                   |             |             |             |
| PCB-123<br>PCB-126          |                                   |             |             |             |
| PCB-126<br>PCB-128          |                                   |             |             |             |
| PCB-128<br>PCB-138          |                                   |             |             |             |
| PCB-136<br>PCB-153          |                                   |             |             |             |
| PCB-133<br>PCB-156          |                                   |             |             |             |
| PCB-150                     |                                   |             |             |             |
| PCB-167                     |                                   |             |             |             |
| 1.00-101                    |                                   |             |             |             |

| Location                              | SD-315                | SD-336                | SD-345                |
|---------------------------------------|-----------------------|-----------------------|-----------------------|
| Sample ID                             | SD-315-0000           | SD-336-0000           | SD-345-0000           |
|                                       |                       |                       |                       |
| Sample Date<br>Depth (ft bgs)         | 08/17/04<br>0 to 0.33 | 08/27/04<br>0 to 0.33 | 08/26/04<br>0 to 0.33 |
| PCB-169                               | 0 10 0.33             | 0 10 0.33             | 0 10 0.33             |
| PCB-170                               |                       |                       |                       |
| PCB-170                               |                       |                       |                       |
| PCB-187                               |                       |                       |                       |
| PCB-189                               |                       |                       |                       |
| PCB-169<br>PCB-195                    |                       |                       |                       |
| PCB-195<br>PCB-206                    |                       |                       |                       |
| PCB-209                               |                       |                       |                       |
|                                       |                       |                       |                       |
| Phthalates (ug/kg dw)                 | 010                   |                       |                       |
| Bis(2-ethylhexyl)phthalate            | 610                   |                       |                       |
| Butyl benzyl phthalate                | 140                   |                       |                       |
| Diethyl phthalate                     | 20 U                  |                       |                       |
| Dimethyl phthalate                    | 35                    |                       |                       |
| Di-n-butyl phthalate                  | 20 U                  |                       |                       |
| Di-n-octyl phthalate                  | 20 U                  |                       |                       |
| Organometals (ug/kg dw)               |                       |                       |                       |
| Dibutyltin as ion                     |                       |                       |                       |
| Monobutyltin as ion                   |                       |                       |                       |
| Tetrabutyltin as ion                  |                       |                       |                       |
| Tributyltin as ion                    |                       |                       |                       |
| Pesticides (ug/kg dw)                 |                       |                       |                       |
| 2,4'-DDD                              |                       |                       |                       |
| 2,4'-DDE                              |                       |                       |                       |
| 2,4'-DDT                              |                       |                       |                       |
| 4,4'-DDD                              |                       |                       |                       |
| 4,4'-DDE                              |                       |                       |                       |
| 4,4'-DDT                              |                       |                       |                       |
| Aldrin                                |                       |                       |                       |
| alpha-BHC                             |                       |                       |                       |
| alpha-Chlordane                       |                       |                       |                       |
| alpha-Endosulfan                      |                       |                       |                       |
| beta-BHC                              |                       |                       |                       |
| beta-Chlordane                        |                       |                       |                       |
| beta-Endosulfan                       |                       |                       |                       |
| cis-Nonachlor                         |                       |                       |                       |
| delta-BHC                             |                       |                       |                       |
| Dieldrin                              |                       |                       |                       |
| Endosulfan sulfate                    |                       |                       |                       |
| Endrin                                |                       |                       |                       |
| Endrin aldehyde                       |                       |                       |                       |
| Endrin ketone                         |                       |                       |                       |
| gamma-BHC                             |                       |                       |                       |
| gamma-Chlordane                       |                       |                       |                       |
| Heptachlor                            |                       |                       |                       |
| Heptachlor epoxide                    |                       |                       |                       |
| Methoxychlor                          |                       |                       |                       |
| Mirex                                 |                       |                       |                       |
| Oxychlordane                          |                       |                       |                       |
|                                       |                       |                       |                       |
| l otal aldrin/dieldrin                |                       | 1                     |                       |
| Total aldrin/dieldrin Total chlordane |                       |                       |                       |
| Total chlordane                       |                       |                       |                       |
| Total chlordane Total DDTs            |                       |                       |                       |
| Total chlordane                       |                       |                       |                       |

| Location                       | SD-315 | SD-336                | SD-345                |
|--------------------------------|--------|-----------------------|-----------------------|
| Sample II                      |        | SD-336-0000           | SD-345-0000           |
|                                |        |                       |                       |
| Sample Date Depth (ft bgs      |        | 08/27/04<br>0 to 0.33 | 08/26/04<br>0 to 0.33 |
| 1,1,1,2-Tetrachloroethane      |        |                       |                       |
| 1,1,1-Trichloroethane          |        |                       |                       |
| 1,1,2,2-Tetrachloroethane      |        |                       |                       |
| 1,1,2-Trichloroethane          |        |                       |                       |
| 1,1,2-Trichlorotrifluoroethane |        |                       |                       |
| 1,1-Dichloroacetone            |        |                       |                       |
| 1,1-Dichloroethane             |        |                       |                       |
| 1,1-Dichloroethene             |        |                       |                       |
| 1,1-Dichloropropene            |        |                       |                       |
| 1,2,3-Trichlorobenzene         |        |                       |                       |
| 1,2,3-Trichloropropane         |        |                       |                       |
| 1,2,4-Trimethylbenzene         |        |                       |                       |
| 1,2-Dibromo-3-chloropropane    |        |                       |                       |
| 1,2-Dibromoethane (EDB)        |        | 1                     |                       |
| 1,2-Dichloroethane             |        | 1                     |                       |
| 1,2-Dichloropropane            |        |                       |                       |
| 1,3,5-Trimethylbenzene         |        |                       |                       |
| 1,3-Dichloropropane            |        |                       |                       |
| 1-Chlorobutane                 |        |                       |                       |
| 2,2-Dichloropropane            |        |                       |                       |
| 2-Chlorotoluene                |        |                       |                       |
| 2-Hexanone                     |        |                       |                       |
| 2-Nitropropane                 |        |                       |                       |
| 4-Chlorotoluene                |        |                       |                       |
| Acetone                        |        |                       |                       |
| Allyl chloride                 |        |                       |                       |
| Benzene                        |        |                       |                       |
| Bromobenzene                   |        |                       |                       |
| Bromochloromethane             |        |                       |                       |
| Bromodichloromethane           |        |                       |                       |
| Bromoform                      |        |                       |                       |
| Bromomethane                   |        |                       |                       |
| Carbon disulfide               |        |                       |                       |
| Carbon tetrachloride           |        |                       |                       |
| Chlorobenzene                  |        |                       |                       |
| Chloroethane                   |        |                       |                       |
| Chloroform                     |        |                       |                       |
| Chloromethane                  |        |                       |                       |
| cis-1,2-Dichloroethene         |        |                       |                       |
| cis-1,3-Dichloropropene        |        |                       |                       |
| Dibromochloromethane           |        |                       |                       |
| Dibromomethane                 |        |                       |                       |
| Dichloromethane                |        |                       |                       |
| Diethyl ether                  |        |                       |                       |
| Ethyl methacrylate             |        |                       |                       |
| Ethylbenzene                   |        |                       |                       |
| lodomethane                    |        |                       |                       |
| Isopropylbenzene               |        |                       |                       |
| m,p-Xylene                     |        |                       |                       |
| Methacrylonitrile              |        |                       |                       |
| Methyl acrylate                |        |                       |                       |
| Methyl ethyl ketone            |        |                       |                       |
| Methyl isobutyl ketone         |        |                       |                       |
| Methyl methacrylate            |        |                       |                       |

| Location                            | SD-315      | SD-336      | SD-345      |
|-------------------------------------|-------------|-------------|-------------|
| Sample ID                           | SD-315-0000 | SD-336-0000 | SD-345-0000 |
|                                     |             |             |             |
| Sample Date                         | 08/17/04    | 08/27/04    | 08/26/04    |
| Depth (ft bgs)                      | 0 to 0.33   | 0 to 0.33   | 0 to 0.33   |
| n-Butylbenzene                      |             |             |             |
| n-Propylbenzene                     |             |             |             |
| o-Xylene                            |             |             |             |
| p-Cymene                            |             |             |             |
| Pentachloroethane                   |             |             |             |
| sec-Butylbenzene                    |             |             |             |
| Styrene                             |             |             |             |
| tert-Butyl methyl ether             |             |             |             |
| tert-Butylbenzene                   |             |             |             |
| Tetrachloroethene                   |             |             |             |
| Toluene                             |             |             |             |
| Total xylenes                       |             |             |             |
| trans-1,2-Dichloroethene            |             |             |             |
| trans-1,3-Dichloropropene           |             |             |             |
| trans-1,4-Dichloro-2-butene         |             |             |             |
| Trichloroethene                     |             |             |             |
| Trichlorofluoromethane              |             |             |             |
| Vinyl chloride                      |             |             |             |
| Dioxin/furan (ng/kg dw)             |             |             |             |
| 1,2,3,4,6,7,8-HpCDD                 |             |             |             |
| 1,2,3,4,6,7,8-HpCDF                 |             |             |             |
| 1,2,3,4,7,8,9-HpCDF                 |             |             |             |
| 1,2,3,4,7,8-HxCDD                   |             |             |             |
| 1,2,3,4,7,8-HxCDF                   |             |             |             |
| 1,2,3,6,7,8-HxCDD                   |             |             |             |
| 1,2,3,6,7,8-HxCDF                   |             |             |             |
| 1,2,3,7,8,9-HxCDD                   |             |             |             |
| 1,2,3,7,8,9-HxCDF                   |             |             |             |
| 1,2,3,7,8-PeCDD                     |             |             |             |
| 1,2,3,7,8-PeCDF                     |             |             |             |
| 2,3,4,6,7,8-HxCDF                   |             |             |             |
| 2,3,4,7,8-PeCDF                     |             |             |             |
| 2,3,7,8-TCDD                        |             |             |             |
| 2,3,7,8-TCDF                        |             |             |             |
| Dioxin/furan TEQ - mammal (half DL) |             |             |             |
| OCDD                                |             |             |             |
| OCDF                                |             |             |             |
| Total HpCDD                         |             |             |             |
| Total HpCDF                         |             |             |             |
| Total HxCDD                         |             |             |             |
| Total HxCDF                         |             |             |             |
| Total PeCDD                         |             |             |             |
| Total PeCDF                         |             |             |             |
| Total TCDD                          |             |             |             |
| Total TCDF                          |             |             |             |

#### Notes:

- 1. Data qualifiers are as follows.
- J = Analyte was positively identified and detected; however, concentration is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
- U = Analyte not detected at quantitation limit indicated.
- UJ = Analyte not detected at the indicated quantitation limit, which is estimated.
- 2. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%.

#### Abbreviations:

CSL = Cleanup Screening Level

mg/kg = milligrams per kilogram

OC = organic carbon

PCBs = polychlorinated biphenyls

SQS = Sediment Quality Standard

TOC = total organic carbon

μg/kg = micrograms per kilogram

dw = dry weight

ft bgs = feet below ground or sediment surface

# TABLE J-2 SEDIMENT CORE SAMPLE ANALYTICAL RESULTS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

|                                                 | T         | T         |           |           |           |           |           | _                                                | T         |            |            |            |           |                                                  |
|-------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------------------------------|-----------|------------|------------|------------|-----------|--------------------------------------------------|
| Location                                        |           | AN-043    | AN-043    | AN-043    | AN-043    | AN-043    | AN-044    | AN-044                                           | AN-044    | AN-044     | AN-044     | AN-044     | AN-044    | DR220                                            |
| Sample ID                                       | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN044-SC- | AN044-SC-                                        | AN044-SC- | AN044-SC-  | AN044-SC-  | AN044-SC-  | AN094-SC- | SD-DR220-                                        |
|                                                 | 080211-A  | 080211-B  | 080211-C  | 080211-D  | 080211-E  | 080211-F  | 080211-A  | 080211-B                                         | 080211-C  | 080211-D   | 080211-E   | 080211-F   | 080211-B  | 0000A                                            |
|                                                 |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 1                                                |
|                                                 |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 1                                                |
|                                                 |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 1                                                |
| Sample Date                                     | 2/11/00   | 2/11/00   | 2/44/00   | 2/11/00   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08                                          | 2/11/08   | 2/11/08    | 2/11/08    | 2/11/08    | 2/12/00   | 9/23/98                                          |
| Sample Date                                     |           | 2/11/08   | 2/11/08   | 2/11/08   |           |           |           |                                                  |           |            |            |            | 2/12/08   |                                                  |
| Depth (ft BGS)                                  | 0 to 1    | 1 to 2    | 2 to 3    | 3 to 4    | 4 to 5    | 5 to 6    | 0 to 1    | 1 to 2                                           | 2 to 3.5  | 3.5 to 4.5 | 4.5 to 5.5 | 5.5 to 6.5 | 1 to 2    | 0 to 2                                           |
| Conventionals                                   |           |           |           |           |           |           |           |                                                  |           |            |            |            |           |                                                  |
| Ammonia (mg/kg dw)                              |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | <u></u>                                          |
| Percent moisture (%dw)                          |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 1                                                |
| Specific gravity (g/cc)                         |           |           |           |           |           |           |           |                                                  |           |            |            |            |           |                                                  |
| Total organic carbon (% dw)                     | 1.06      | 2.86      | 3.03      | 0.061     | 0.069     | 0.076     | 2.3       | 2.79                                             | 1.05      | 0.291      | 0.125      | 0.348      | 2.17      | 2.42                                             |
| Total solids (%ww)                              | 66.3      | 59.7      | 74.5      | 81.3      | 89.8      | 87.6      | 62.7      | 65.6                                             | 74.1      | 93.3       | 93.7       | 93.7       | 65.1      |                                                  |
| Total volatile solids (%ww)                     |           |           | _         |           |           |           | -         |                                                  |           |            |            |            |           |                                                  |
| Grain size (%dw)                                |           |           |           |           |           |           |           |                                                  |           |            |            |            |           |                                                  |
| Fractional % >9525 microns                      |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 0.010 U                                          |
|                                                 |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 0.010 0                                          |
| Fractional % phi >-1 (>2000 microns)            |           |           |           |           |           |           |           | <del> </del>                                     |           |            |            |            |           | 0.65 !                                           |
| Fractional % phi 0-1 (500-1000 microns)         |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 0.95 J                                           |
| Fractional % phi -1-0 (1000-2000 microns)       |           |           |           |           |           |           |           | ļ                                                |           |            |            |            |           | 0.17 J                                           |
| Fractional % phi 10+ (<0.98 micron)             |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 6.6                                              |
| Fractional % phi 1-2 (250-500 microns)          |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 1.1 J                                            |
| Fractional % phi -2-(-1) (2000-4000 microns)    |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 0.080 J                                          |
| Fractional % phi 2-3 (125-250 microns)          |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 2.2 J                                            |
| Fractional % phi 3-4 (62.5-125 microns)         |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 12 J                                             |
| Fractional % phi 4-5 (31.2-62.5 microns)        |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 20                                               |
| Fractional % phi 5-6 (15.6-31.2 microns)        |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 23                                               |
| Fractional % phi 6-7 (7.8-15.6 microns)         |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 19                                               |
| Fractional % phi 7-8 (3.9-7.8 microns)          |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 7.7                                              |
|                                                 |           |           |           |           |           |           |           |                                                  |           |            |            |            |           |                                                  |
| Fractional % phi 8-9 (1.95-3.9 microns)         |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 4.2                                              |
| Fractional % phi 9-10 (0.98-1.95 microns)       |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 2.8                                              |
| Fractional % Sieve 3/8-inch (4750-9525 microns) |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 0.010 U                                          |
| Total clay                                      | 7.3       | 12.6      | 4.4       |           |           |           | 15        | 12.5                                             | 6         | 0.6        |            |            | 13.8      | 13.6                                             |
| Total Fines                                     | 35.7      | 60.2      | 21.9      | 0.6       | 0.7       | 1.2       | 80.1      | 57.9                                             | 33.6      | 2.9        | 0.2        | 0.1        | 64.7      |                                                  |
| Total fines (percent silt+clay)                 |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 83                                               |
| Total gravel                                    | 2.7       | 7.2       | 2.1       | 0.01      | 0.01      | 0.3       | 1         | 10.4                                             | 0.1       | 0.6        | 0.6        | 1.1        | 1.1       | 0.080 J                                          |
| Total sand                                      | 61.7      | 32.5      | 76        | 99.5      | 99.3      | 98.5      | 18.9      | 31.7                                             | 66.1      | 96.5       | 99.2       | 98.7       | 34.2      | 16 J                                             |
| Total silt                                      | 28.5      | 47.6      | 17.5      |           |           |           | 65.2      | 45.3                                             | 27.7      | 2.3        |            |            | 50.8      | 70                                               |
| Geotechnical                                    |           |           |           |           |           |           |           | 12.7                                             |           |            |            |            | 55.5      | 1.0                                              |
| Atterberg limits classification                 | 1         | 1         |           |           |           | 1         |           | <del> </del>                                     |           | 1          | 1          |            |           | <del> </del>                                     |
| <u> </u>                                        |           |           |           |           |           |           |           | -                                                |           |            |            |            |           | <del></del>                                      |
| Bulk density (dry) (pcf)                        |           |           |           |           |           |           |           | <u> </u>                                         |           |            |            |            |           | <del>                                     </del> |
| Bulk density (wet) (pcf)                        |           |           |           |           |           |           |           | ļ                                                |           |            |            |            |           | <b></b>                                          |
| Porosity (S.U.)                                 |           |           |           |           |           |           |           | <u> </u>                                         |           |            |            |            |           |                                                  |
| Metals (mg/kg dw)                               |           |           |           |           |           |           |           |                                                  |           |            |            |            |           |                                                  |
| Aluminum                                        |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 23,000                                           |
| Antimony                                        | 1         | 1         |           |           |           | 1         |           |                                                  |           | 1          | 1          |            |           | 10 UJ                                            |
| Arsenic                                         | 7.2       | 10.9      | 10.2      | 1.2       | 1.2       | 1.3       | 14.3      | 23.2                                             | 4.3       | 2          | 2.1        | 1.9        | 21.6      | 10                                               |
| Barium                                          |           |           |           |           |           |           |           | 1                                                |           |            |            |            |           | 79                                               |
| Beryllium                                       | 1         | 1         |           |           |           | 1         |           | <del> </del>                                     |           | 1          | 1          |            |           | 0.42                                             |
| Cadmium                                         | 0.6       | 16.9      | 0.4       | 0.2 U     | 0.2 U     | 0.2 U     | 1.6       | 1.5                                              | 0.3 U     | 0.2 U      | 0.2 U      | 0.2 U      | 1.6       | 0.35                                             |
| Calcium                                         | 0.0       | 10.3      | 0.4       | U.Z U     | U.Z U     | 0.2 0     | 1.0       | 1.0                                              | 0.5 0     | 0.2 0      | 0.2 0      | U.Z U      | 1.0       | 6,100                                            |
|                                                 | 20.0.1    | E44 I     | 40.0.1    | 7.5.1     | 40.7.1    | 40.0 1    | 67.0      | 27.4                                             | 40.4      | 0.0        | 0.4        | 11.0       | 40.4      |                                                  |
| Chromium                                        | 30.0 J    | 514 J     | 19.0 J    | 7.5 J     | 10.7 J    | 12.2 J    | 67.9      | 37.4                                             | 13.1      | 9.2        | 9.1        | 11.9       | 40.4      | 30                                               |
| Cobalt                                          |           | <u> </u>  |           |           |           |           | 0.5       | <del>                                     </del> | 15 -      |            |            |            | _,_       | 10                                               |
| Copper                                          | 36.0 J    | 0.8 J     | 0.6 J     | 0.6 J     | 0.5 J     | 0.6 J     | 68.8      | 46.9                                             | 18.3      | 9.9        | 10.1       | 9.3        | 51.5      | 47                                               |
| Iron                                            |           |           |           |           |           |           |           |                                                  |           |            |            |            |           | 31,000                                           |
| Lead                                            | 1 J       | 2,530 J   | 1 J       | 1 J       | 1 J       | 1 J       | 161       | 52                                               | 7         | 1          | 1          | 1          | 63        | 25                                               |
|                                                 |           |           |           |           | _         |           |           |                                                  |           |            |            |            |           |                                                  |

# TABLE J-2 SEDIMENT CORE SAMPLE ANALYTICAL RESULTS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| Location                              |                                                  | AN-043    | AN-043    | AN-043    | AN-043    | AN-043    | AN-044    | AN-044    | AN-044    | AN-044     | AN-044     | AN-044     | AN-044    | DR220     |
|---------------------------------------|--------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|
| Sample ID                             | AN043-SC-                                        | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN044-SC- | AN044-SC- | AN044-SC- | AN044-SC-  | AN044-SC-  | AN044-SC-  | AN094-SC- | SD-DR220- |
|                                       | 080211-A                                         | 080211-B  | 080211-C  | 080211-D  | 080211-E  | 080211-F  | 080211-A  | 080211-B  | 080211-C  | 080211-D   | 080211-E   | 080211-F   | 080211-B  | 0000A     |
|                                       | 1                                                |           |           |           |           |           |           |           |           |            |            |            |           | 1         |
|                                       | 1                                                |           |           |           |           |           |           |           |           |            |            |            |           | 1         |
|                                       | 1                                                |           |           |           |           |           |           |           |           |            |            |            |           | 1         |
| Sample Date                           | 2/11/08                                          | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08    | 2/11/08    | 2/11/08    | 2/12/08   | 9/23/98   |
| Depth (ft BGS)                        |                                                  | 1 to 2    | 2 to 3    | 3 to 4    | 4 to 5    | 5 to 6    | 0 to 1    | 1 to 2    | 2 to 3.5  | 3.5 to 4.5 | 4.5 to 5.5 | 5.5 to 6.5 | 1 to 2    | 0 to 2    |
| Magnesium Sopin (12 200)              |                                                  | . 10 2    | 2.00      | 0 10 1    | 1 10 0    | 0.00      | 0.0.      | 1.02      | 2 10 0.0  | 0.0 10 1.0 | 10 0.0     | 0.0 10 0.0 | 1.02      | 8,100     |
| Manganese                             | $\vdash$                                         |           |           |           |           |           |           |           |           |            |            |            |           | 320       |
| Mercury                               | 0.09                                             | 1.51      | 0.09      | 0.05 U    | 0.04 U    | 0.05 U    | 0.34      | 0.24      | 0.06      | 0.04 U     | 0.05 U     | 0.04 U     | 0.27      | 0.20 J    |
| Molybdenum                            | 0.09                                             | 1.31      | 0.09      | 0.05 0    | 0.04 0    | 0.05 0    | 0.34      | 0.24      | 0.06      | 0.04 0     | 0.05 0     | 0.04 0     | 0.27      | 0.20 3    |
| Nickel                                | <del> </del>                                     |           |           |           |           |           |           |           |           |            |            |            |           | 22        |
| Potassium                             | <b></b>                                          |           |           |           |           |           |           |           |           |            |            |            |           | 2,900     |
|                                       | <b></b>                                          |           |           |           |           |           |           |           |           |            |            |            |           |           |
| Selenium                              | 0.011                                            | 0.0       | 0.0       | 0.011     | 0.011     | 0.011     | 4.4.1     | 471       | 0.0111    | 0.0111     | 0.0111     | 0.0111     | 4.0.1     | 0.70 J    |
| Silver                                | 0.3 U                                            | 2.3       | 0.8       | 0.2 U     | 0.2 U     | 0.2 U     | 1.4 J     | 1.7 J     | 0.3 UJ    | 0.2 UJ     | 0.2 UJ     | 0.2 UJ     | 1.8 J     | 0.22      |
| Sodium                                | <b></b>                                          |           |           |           |           |           |           |           |           |            |            |            |           | 11,000    |
| Thallium                              | <b></b>                                          |           |           |           |           |           |           |           |           |            |            |            |           | 0.08      |
| Tin                                   | <b></b>                                          |           |           |           |           |           |           |           |           |            |            |            |           | 5         |
| Vanadium                              |                                                  |           |           |           |           |           |           |           |           |            |            |            |           | 70        |
| Zinc                                  | 112                                              | 1,250     | 54        | 21        | 23        | 24        | 167       | 100       | 37        | 22         | 23         | 24         | 108       | 100       |
| PAHs (ug/kg dw)                       |                                                  |           |           |           |           |           |           |           |           |            |            |            |           |           |
| 1-Methylnaphthalene                   | 10 J                                             | 380       | 20 U      |           |           |           | 20 U      | 20 U      |           |            |            |            |           |           |
| 2-Chloronaphthalene                   |                                                  |           |           |           |           |           |           |           |           |            |            |            |           | 20 U      |
| 2-Methylnaphthalene                   | 11 J                                             | 99 J      | 10 J      |           |           |           | 13 J      |           |           |            |            |            | 13 J      | 20 U      |
| Acenaphthene                          | 20 J                                             | 310       | 12 J      |           |           |           |           |           |           |            |            |            |           | 20 U      |
| Acenaphthylene                        |                                                  | 99 UJ     | 20 J      |           |           |           |           |           |           |            |            |            | 12 J      | 20 U      |
| Anthracene                            | 28 J                                             | 99 J      | 17 J      |           |           |           | 27        | 10 J      |           |            |            |            | 20 J      | 20 U      |
| Benzo(a)anthracene                    | 20 J                                             | 99 J      | 20 J      |           |           |           | 72        | 23 J      |           |            |            |            | 20 J      | 60        |
| Benzo(a)pyrene                        | 110                                              | 520       | 20 J      |           |           |           | 69        | 20 J      |           |            |            |            | 28        | 70        |
| Benzo(b)fluoranthene                  | 160                                              | 670       | 27        |           |           |           | 84        | 21        |           |            |            |            | 34        | 80        |
| Benzo(g,h,i)perylene                  | 34                                               | 110       |           |           |           |           | 27        | 17 J      |           |            |            |            | 25        | 50        |
| Benzo(k)fluoranthene                  | 120                                              | 540       | 20 J      |           |           |           | 96        | 26        |           |            |            |            | 33        | 80        |
| Chrysene                              | 130 J                                            | 1,400 J   | 28 J      |           |           |           | 100       | 30        |           |            |            |            | 41        | 90        |
| cPAHs - mammal - half DL              | 150 J                                            | 690 J     | 27 J      |           |           |           | 98        | 29 J      |           |            |            |            | 39 J      | 100       |
| Dibenzo(a,h)anthracene                | 20 J                                             | 41        |           |           |           |           |           |           |           |            |            |            |           | 20 U      |
| Dibenzofuran                          | 13 J                                             | 96 J      | 10 J      |           |           |           |           |           |           |            |            |            |           | 20 U      |
| Fluoranthene                          | 310                                              | 4,600     | 130       |           |           |           | 260       | 88        | 25        |            |            |            | 120       | 140       |
| Fluorene                              | 14 J                                             | 120       | 14 J      |           |           |           | 10 J      |           |           |            |            |            | 12 J      | 20 U      |
| Indeno(1,2,3-cd)pyrene                | 41                                               | 120       |           |           |           |           | 27        | 14 J      |           |            |            |            | 20 J      | 60        |
| Naphthalene                           | 20 J                                             | 100 J     | 20 J      |           |           |           | 10 J      | 12 J      |           |            |            |            | 23 J      | 20 U      |
| Phenanthrene                          | 120 J                                            | 99 J      | 20 J      |           |           |           | 60        | 34        | 20 J      |            |            |            | 50        | 60        |
| Pyrene                                | 20 J                                             | 2,800     | 85        |           |           |           | 190       | 70        | 20        |            |            |            | 96        | 170       |
| Total benzofluoranthenes              | 280                                              | 1,210     | 47 J      |           |           |           | 180       | 47        |           |            |            |            | 67        | 160       |
| Total HPAHs                           | 970 J                                            | 10,900 J  | 330 J     |           |           |           | 930       | 309 J     | 45        |            |            |            | 420 J     | 800       |
| Total LPAHs                           | 200 J                                            | 730 J     | 103 J     |           |           |           | 107 J     | 56 J      | 20 J      |            |            |            | 117 J     | 60        |
| Total PAHs                            | 1,170 J                                          | 11,600 J  | 430 J     |           |           |           | 1,030 J   | 365 J     | 65 J      |            |            |            | 530 J     | 860       |
| Other SVOCs (ug/kg dw)                | .,                                               | ,000 0    | .00 0     |           |           |           | .,000 0   | 300 0     | 00 0      |            |            |            | 300 3     | - 555     |
| 1,2,4-Trichlorobenzene                | <del>                                     </del> |           |           |           |           |           |           |           |           |            |            | 5.9 UJ     |           | 20 U      |
| 1,2-Dichlorobenzene                   | <del></del>                                      |           |           |           |           |           |           |           |           |            |            | 5.9 UJ     |           | 20 U      |
| · · · · · · · · · · · · · · · · · · · | 6111                                             | 18 U      | 6211      | 6.1 U     | 6211      | 6211      | 1011      | 6111      | 6111      | 6011       | 6011       |            |           | 20 U      |
| 1,3-Dichlorobenzene                   | 6.1 U                                            | 10 U      | 6.2 U     | 0.1 U     | 6.2 U     | 6.2 U     | 18 U      | 6.1 U     | 6.1 U     | 6.0 U      | 6.0 U      | 5.9 U      |           |           |
| 1,4-Dichlorobenzene                   | <del>                                     </del> |           |           |           |           |           |           |           |           |            |            |            |           | 20 U      |
| 2,4,5-Trichlorophenol                 | <del>                                     </del> |           |           |           |           |           |           |           |           |            |            |            |           | 200 U     |
| 2,4,6-Trichlorophenol                 |                                                  |           |           |           |           |           |           |           |           |            |            |            |           | 200 U     |
| 2,4-Dichlorophenol                    | <b></b>                                          | 54.1      |           |           |           |           |           |           |           |            |            | 50111      |           | 60 U      |
| 2,4-Dimethylphenol                    |                                                  | 54 J      |           |           |           |           |           |           |           |            |            | 5.9 UJ     |           | 20 U      |

| [                                     |          |               |           |           |           |           |           |              |           |            |            |            |           |           |
|---------------------------------------|----------|---------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|------------|------------|------------|-----------|-----------|
| Location                              | AN-043   | AN-043        | AN-043    | AN-043    | AN-043    | AN-043    | AN-044    | AN-044       | AN-044    | AN-044     | AN-044     | AN-044     | AN-044    | DR220     |
| Sample ID                             |          | AN043-SC-     | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN044-SC- | AN044-SC-    | AN044-SC- | AN044-SC-  | AN044-SC-  | AN044-SC-  | AN094-SC- | SD-DR220- |
|                                       | 080211-A | 080211-B      | 080211-C  | 080211-D  | 080211-E  | 080211-F  | 080211-A  | 080211-B     | 080211-C  | 080211-D   | 080211-E   | 080211-F   | 080211-B  | 0000A     |
|                                       |          |               |           |           |           |           |           |              |           |            |            |            |           |           |
|                                       |          |               |           |           |           |           |           |              |           |            |            |            |           |           |
|                                       |          |               |           |           |           |           |           |              |           |            |            |            |           |           |
| Sample Date                           | 2/11/08  | 2/11/08       | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08      | 2/11/08   | 2/11/08    | 2/11/08    | 2/11/08    | 2/12/08   | 9/23/98   |
| Depth (ft BGS)                        | 0 to 1   | 1 to 2        | 2 to 3    | 3 to 4    | 4 to 5    | 5 to 6    | 0 to 1    | 1 to 2       | 2 to 3.5  | 3.5 to 4.5 | 4.5 to 5.5 | 5.5 to 6.5 | 1 to 2    | 0 to 2    |
| 2,4-Dinitrophenol                     | 0.10 .   |               |           | 0.10 .    |           | 0.00      |           | 1 10 -       |           | 0.0 10 1.0 | 15 6.6     | 0.0 10 0.0 |           | 200 U     |
| 2,4-Dinitropherior                    |          |               |           |           |           |           |           |              |           |            |            |            |           | 200 U     |
| 2,6-Dinitrotoluene                    |          |               |           |           |           |           |           |              |           |            |            |            |           | 200 U     |
|                                       |          |               |           |           |           |           |           |              |           |            |            |            |           | 200 U     |
| 2-Chlorophenol 2-Methylphenol         |          |               |           |           |           |           |           |              |           |            |            | 5.9 UJ     |           | 20 U      |
|                                       |          |               |           |           |           |           |           |              |           |            |            | 5.9 03     |           |           |
| 2-Nitroaniline                        |          |               |           |           |           |           |           |              |           |            |            |            |           | 100 U     |
| 2-Nitrophenol                         |          |               |           |           |           |           |           |              |           |            |            |            |           | 100 U     |
| 3,3'-Dichlorobenzidine                |          |               |           |           |           |           |           |              |           |            |            |            |           | 200 U     |
| 3-Nitroaniline                        |          |               |           |           |           |           |           |              |           |            |            |            |           | 200 U     |
| 4,6-Dinitro-o-cresol                  |          |               |           |           |           |           |           |              |           |            |            |            |           | 200 U     |
| 4-Bromophenyl phenyl ether            |          |               |           |           |           |           |           | ļ            |           |            |            |            |           | 40 U      |
| 4-Chloro-3-methylphenol               |          |               |           |           |           |           |           |              |           |            |            |            |           | 40 U      |
| 4-Chloroaniline                       |          |               |           |           |           |           |           |              |           |            |            |            |           | 60 U      |
| 4-Chlorophenyl phenyl ether           |          |               |           |           |           |           |           |              |           |            |            |            |           | 20 U      |
| 4-Methylphenol                        |          | 67 J          |           |           |           |           |           |              |           |            |            |            | 17 J      | 20 U      |
| 4-Nitroaniline                        |          |               |           |           |           |           |           |              |           |            |            |            |           | 100 U     |
| 4-Nitrophenol                         |          |               |           |           |           |           |           |              |           |            |            |            |           | 100 U     |
| Aniline                               |          |               |           |           |           |           |           |              |           |            |            |            |           |           |
| Benzoic acid                          |          | 990 U         |           |           |           |           | 130 J     |              |           |            |            |            |           | 200 U     |
| Benzyl alcohol                        |          | 99 U          |           |           |           |           |           |              |           |            |            |            |           | 50 U      |
| bis(2-chloroethoxy)methane            |          |               |           |           |           |           |           |              |           |            |            |            |           | 40 U      |
| bis(2-chloroethyl)ether               |          |               |           |           |           |           |           |              |           |            |            |            |           | 40 U      |
| bis(2-chloroisopropyl)ether           |          |               |           |           |           |           |           |              |           |            |            |            |           | 40 U      |
| Carbazole                             |          |               |           |           |           |           |           | 1            |           |            |            |            |           | 20 U      |
| Hexachlorobenzene                     |          |               |           |           |           |           |           | <del> </del> |           |            |            |            |           | 20 U      |
| Hexachlorobutadiene                   |          |               |           |           |           |           |           | <del> </del> |           |            |            | 5.9 UJ     |           | 20 U      |
| Hexachlorocyclopentadiene             |          |               |           |           |           |           |           | <del> </del> |           |            |            | 2.0 00     |           | 100 U     |
| Hexachloroethane                      | 20 U     | 99 U          | 20 U      |           |           |           | 20 U      | 20 U         |           |            |            |            |           | 20 U      |
| Isophorone                            | 200      | 55 6          | 200       |           |           |           | 200       | 200          |           |            |            |            |           | 20 U      |
| Nitrobenzene                          |          |               |           |           |           |           |           | <del> </del> |           |            |            |            |           | 20 U      |
| n-Nitrosodimethylamine                |          |               |           |           |           |           |           | <del> </del> |           |            |            |            |           | 200       |
| n-Nitroso-di-n-propylamine            |          |               |           |           |           |           |           | <del> </del> |           |            |            |            |           | 40 U      |
|                                       | 10 UJ    |               |           |           |           |           |           | -            |           |            |            | 50111      |           |           |
| n-Nitrosodiphenylamine                | 10 03    | 93 UJ         |           |           |           |           |           |              |           |            |            | 5.9 UJ     |           | 40 U      |
| Pentachlorophenol                     |          | 93 UJ<br>99 U |           |           |           |           | 20        | 1            | 25        | 92         | 20.1       | 170        | 24        | 100 UJ    |
| Phenol Phenol                         |          | 99 U          |           |           |           |           | 28        |              | 25        | 83         | 20 J       | 170        | 21        | 20 U      |
| PCBs (ug/kg dw)                       |          |               |           |           |           |           |           | ļ            |           | 4.5        |            |            |           |           |
| Aroclor-1016                          |          |               |           |           |           |           |           | ļ            |           | 10 U       |            |            |           | 20 U      |
| Aroclor-1221                          |          |               |           |           |           |           |           |              |           | 10 U       |            |            |           | 40 U      |
| Aroclor-1232                          |          |               |           |           |           |           |           | ļ            |           | 10 U       |            |            |           | 20 U      |
| Aroclor-1242                          |          |               |           |           |           |           | 500       | <u> </u>     |           | 10 U       |            |            |           | 130       |
| Aroclor-1248                          |          |               |           |           |           |           |           |              |           | 10 U       |            |            |           | 20 U      |
| Aroclor-1254                          | 270      | 1,500         |           |           |           |           | 2,000     | 240          |           | 10 U       |            |            | 190       | 470       |
| Aroclor-1260                          |          | 310           |           |           |           |           | 510       | 230          |           | 10 U       |            |            | 180       | 230       |
| Aroclor-1262                          |          |               | 55        |           |           |           |           |              |           | 10 U       |            |            |           |           |
| Aroclor-1268                          |          |               |           |           |           |           |           |              |           | 10 U       |            |            |           |           |
| PCB-018                               |          |               |           |           |           |           |           |              |           |            |            |            |           | 6         |
| PCB-028                               |          |               |           |           |           |           |           |              |           |            |            |            |           | 13        |
| PCB-044                               |          |               |           |           |           |           |           | 1            |           |            |            |            |           | 14        |
| · · · · · · · · · · · · · · · · · · · |          |               |           |           |           |           |           | I            |           | ı          |            |            |           |           |

|                            |          |           |           |           |           | VASHINGTO |               |           |           |            |            |            |           |           |
|----------------------------|----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|------------|------------|------------|-----------|-----------|
| Location                   |          | AN-043    | AN-043    | AN-043    | AN-043    | AN-043    | AN-044        | AN-044    | AN-044    | AN-044     | AN-044     | AN-044     | AN-044    | DR220     |
| Sample ID                  |          | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN043-SC- | AN044-SC-     | AN044-SC- | AN044-SC- | AN044-SC-  | AN044-SC-  | AN044-SC-  | AN094-SC- | SD-DR220- |
|                            | 080211-A | 080211-B  | 080211-C  | 080211-D  | 080211-E  | 080211-F  | 080211-A      | 080211-B  | 080211-C  | 080211-D   | 080211-E   | 080211-F   | 080211-B  | 0000A     |
|                            |          |           |           |           |           |           |               |           |           |            |            |            |           | 1         |
|                            |          |           |           |           |           |           |               |           |           |            |            |            |           | 1         |
|                            |          |           |           |           |           |           |               |           |           |            |            |            |           | 1         |
| Sample Date                | 2/11/08  | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08   | 2/11/08       | 2/11/08   | 2/11/08   | 2/11/08    | 2/11/08    | 2/11/08    | 2/12/08   | 9/23/98   |
| Depth (ft BGS)             |          | 1 to 2    | 2 to 3    | 3 to 4    | 4 to 5    | 5 to 6    | 0 to 1        | 1 to 2    | 2 to 3.5  | 3.5 to 4.5 | 4.5 to 5.5 | 5.5 to 6.5 | 1 to 2    | 0 to 2    |
| PCB-055                    |          |           |           | 0.10 .    |           |           | <b>V 10</b> 1 |           |           | 0.0 10 1.0 | 15 6.6     | 0.0 10 0.0 |           | 22        |
| PCB-066                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 34        |
| PCB-077                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 2.0 U     |
| PCB-081                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1.0 U     |
| PCB-101                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 27        |
| PCB-101                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 13        |
| PCB-105                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 2         |
|                            |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| PCB-118                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 24        |
| PCB-123                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 4.0 U     |
| PCB-126                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1.0 U     |
| PCB-128                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 7         |
| PCB-138                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 40        |
| PCB-153                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 26        |
| PCB-156                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 4         |
| PCB-157                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1.0 U     |
| PCB-167                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 2         |
| PCB-169                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1.0 U     |
| PCB-170                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 9         |
| PCB-180                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 14        |
| PCB-187                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 9         |
| PCB-189                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1.0 U     |
| PCB-195                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 2         |
| PCB-206                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1         |
| PCB-209                    |          |           |           |           |           |           |               |           |           |            |            |            |           | 1.0 U     |
| Total PCBs                 | 270      | 1,800     | 55        |           |           |           | 3,000         | 470       |           | 10 U       |            |            | 370       | 830       |
| Phthalates (ug/kg dw)      |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Bis(2-ethylhexyl)phthalate | 330 J    | 1,100 J   |           |           |           |           | 290           | 21        |           |            |            |            | 23        | 160       |
| Butyl benzyl phthalate     | 57       |           | 16 U      |           | 16 U      |           | 240           |           |           |            |            |            | 16 U      | 20        |
| Diethyl phthalate          |          | 99 UJ     |           |           |           |           |               |           |           |            |            |            |           | 20 U      |
| Dimethyl phthalate         | 24       |           | 16 U      |           | 16 U      |           | 48            |           |           |            |            |            | 16 U      | 20 U      |
| Di-n-butyl phthalate       | 20 J     | 99 J      |           |           |           |           | 71            |           |           |            |            |            |           | 20 U      |
| Di-n-octyl phthalate       |          | 99 UJ     |           |           |           |           |               |           |           |            |            |            |           | 20 U      |
| Pesticides (ug/kg dw)      |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Aldrin                     |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| beta-Chlordane             |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Chlordane                  |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Dieldrin                   |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Heptachlor epoxide         |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Total aldrin/dieldrin      |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Total chlordane            |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Total DDTs                 |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| VOCs (ug/kg dw)            |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Ethylbenzene               |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Total xylenes              |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| Trichloroethene            |          |           |           |           |           |           |               |           |           |            |            |            |           |           |
| THOMOTOGUIGHG              |          |           |           |           |           |           |               | ]         | ]         |            |            |            |           |           |

|                                                 | -         |           |              |              | TUKWILA, V |             |              |             |           |              |           |             |            |                                                  |
|-------------------------------------------------|-----------|-----------|--------------|--------------|------------|-------------|--------------|-------------|-----------|--------------|-----------|-------------|------------|--------------------------------------------------|
| Location                                        | DR220     | DU9120XX  | LDW-SC50a    | LDW-SC50a    | LDW-SC50a  | LDW-SC50a   | LDW-SC51     | LDW-SC51    | LDW-SC51  | LDW-SC51     | LDW-SC51  | LDW-SC51    | LDW-SC51   | SD-216                                           |
| Sample ID                                       | SD-DR220- | DUWO&M91S | LDW-SC50-0-1 | LDW-SC50-1-2 | LDW-SC50-  | LDW-SC50-2- | LDW-SC51-0-2 | LDW-SC51-0- | LDW-SC51- | LDW-SC51-1-  | LDW-SC51- | LDW-SC51-2- | LDW-SC51-  | SD-216-0000                                      |
|                                                 | 0020      | 012       |              |              | 2_8-4      | 2_8         |              | 0_5         | 0_5-1     | 1_5          | 1_5-2     | 3_8         | 3_8-5_8    |                                                  |
|                                                 |           |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
|                                                 |           |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
|                                                 |           |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Sample Date                                     | 9/23/98   | 8/6/91    | 2/24/06      | 2/24/06      | 2/24/06    | 2/24/06     | 2/22/200     | 2/22/06     | 2/22/06   | 2/22/06      | 2/22/06   | 2/22/06     | 2/22/06    | 4/21/04                                          |
| Depth (ft BGS)                                  |           | 0 to 3    | 0 to 1       | 1 to 2       | 2.8 to 4   | 2 to 2.8    | 0 to 2       | 0 to 0.5    | 0.5 to 1  | 1 to 1.5     | 1.5 to 2  | 2 to 3.8    | 3.8 to 5.8 | 0 to 1                                           |
| Conventionals                                   |           | 1 0.00    | 1 0.0.       | 1.02         | 2.0 10 1   | 1 10 2.0    | 1 0.02       | 1 0 10 010  | 0.0 to .  | 1 10 110     | 110 10 2  | 2 10 0.0    | 0.0 10 0.0 | +                                                |
|                                                 |           | 140       |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Ammonia (mg/kg dw) Percent moisture (%dw)       |           | 140       |              | 51.47        |            | 39.94       | 42.42        |             |           |              |           | 44.57       |            | +                                                |
|                                                 |           |           |              | 2.65         |            | 2.68        | 2.73         |             |           |              |           | 2.63        |            |                                                  |
| Specific gravity (g/cc)                         | 0.07      | 4.5       | 0.00         |              | 0.400      |             |              | 4.04        | 4.04      | 0.470        | 0.040     |             | 0.045      | 4.04                                             |
| Total organic carbon (% dw)                     | 2.37      | 1.5       | 0.63         | 0.816        | 0.129      | 1.18        | 1.47         | 1.61        | 1.64      | 0.473        | 0.643     | 1.73        | 0.615      | 1.61                                             |
| Total solids (%ww)                              |           | 54        | 68.6         | 74.9         | 83.1       | 74.6        | 72.3         | 68.6        | 80.4      | 80.7         | 79        | 70.9        | 82.1       | 49.1                                             |
| Total volatile solids (%ww)                     |           | 4.1       |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Grain size (%dw)                                |           |           |              |              |            |             |              |             |           |              |           |             |            | <u> </u>                                         |
| Fractional % >9525 microns                      | 0.010 U   |           |              |              |            | _           |              |             |           |              |           |             |            | <u> </u>                                         |
| Fractional % phi >-1 (>2000 microns)            |           |           | 1.6          | 0.2          | 1.5        | 1           | 23.4         |             |           |              |           | 15.9        |            | 0.100 J                                          |
| Fractional % phi 0-1 (500-1000 microns)         | 1.2 J     |           | 3.2          | 9.2          | 41.4       | 22.3        | 6.9          |             |           |              |           | 12.2        |            | 1.10 J                                           |
| Fractional % phi -1-0 (1000-2000 microns)       | 0.090 J   |           | 0.9          | 0.8          | 6.4        | 3.3         | 2.6          |             |           |              |           | 2.5         |            | 0.900 J                                          |
| Fractional % phi 10+ (<0.98 micron)             | 4.5       |           | 2.5          | 2.2          | 0.6        | 1.9         | 1.5          |             |           |              |           | 2.8         |            | 6.20 J                                           |
| Fractional % phi 1-2 (250-500 microns)          | 2.1 J     |           | 12.7         | 24.9         | 41.6       | 25.6        | 23.2         |             |           |              |           | 23.3        |            | 2.10 J                                           |
| Fractional % phi -2-(-1) (2000-4000 microns)    | 0.010 U   |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Fractional % phi 2-3 (125-250 microns)          | 3.8 J     |           | 26.4         | 23.3         | 7          | 11.6        | 20.2         |             |           |              |           | 9.3         |            | 3.80 J                                           |
| Fractional % phi 3-4 (62.5-125 microns)         | 15 J      |           | 26.4         | 19.9         | 0.8        | 14          | 6.3          |             |           |              |           | 5.7         |            | 10.8 J                                           |
| Fractional % phi 4-5 (31.2-62.5 microns)        | 23        |           | 13.8         | 10.6         | 0.2        | 8.8         | 5.3          |             |           |              |           | 6.4         |            | 16.4 J                                           |
| Fractional % phi 5-6 (15.6-31.2 microns)        | 26        |           | 5.4          | 2.9          | 0.1        | 5           | 4.8          |             |           |              |           | 7.5         |            | 25.6 J                                           |
| Fractional % phi 6-7 (7.8-15.6 microns)         | 16        |           | 3.3          | 2.8          | 0.2        | 3.3         | 1.7          |             |           |              |           | 1.9         |            | 21.3 J                                           |
| Fractional % phi 7-8 (3.9-7.8 microns)          | 4.4       |           | 1.7          | 1.7          | 0.1        | 1.8         | 2.1          |             |           |              |           | 9.1         |            | 5.40 J                                           |
| Fractional % phi 8-9 (1.95-3.9 microns)         | 2.4       |           | 1.4          | 1            | 0.1 U      | 1           | 1.2          |             |           |              |           | 2.1         |            | 3.90 J                                           |
| Fractional % phi 9-10 (0.98-1.95 microns)       | 2         |           | 0.8          | 0.5          | 0.1 U      | 0.5         | 0.8          |             |           |              |           | 1.4         |            | 2.30 J                                           |
| Fractional % Sieve 3/8-inch (4750-9525 microns) | 0.010 U   |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Total clay                                      | 8.9       |           | 4.7          | 3.7          | 0.6        | 3.4         | 3.5          |             |           |              |           | 6.3         |            | 12.40 J                                          |
| Total Fines                                     |           |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Total fines (percent silt+clay)                 | 78        |           | 28.9         | 21.7         | 1.2        | 22.3        | 17.4         |             |           |              |           | 31.2        |            | 81.1 J                                           |
| Total gravel                                    | 0.010 U   |           | 1.6          | 0.2          | 1.5        | 1           | 23.4         |             |           |              |           | 15.9        |            | 0.100 J                                          |
| Total sand                                      | 22 J      |           | 69.6         | 78.1         | 97.2       | 76.8        | 59.2         |             |           |              |           | 53          |            | 18.7 J                                           |
| Total silt                                      | 69        |           | 24.2         | 18           | 0.6        | 18.9        | 13.9         |             |           |              |           | 24.9        |            | 68.7 J                                           |
| Geotechnical                                    |           |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Atterberg limits classification                 |           |           |              | Non-Plastic  |            | Non-Plastic | Non-Plastic  |             |           |              |           | Non-Plastic |            |                                                  |
| Bulk density (dry) (pcf)                        |           |           |              | 73.4         |            | 76.4        | 77           |             |           |              |           | 72.6        |            |                                                  |
| Bulk density (wet) (pcf)                        |           | 1         | 1            | 111.2        |            | 106.9       | 109.6        |             |           |              |           | 105         |            |                                                  |
| Porosity (S.U.)                                 |           |           |              | 0.56         |            | 0.54        | 0.55         |             |           |              |           | 0.56        |            |                                                  |
| Metals (mg/kg dw)                               |           |           |              |              |            |             |              |             |           |              |           |             |            |                                                  |
| Aluminum                                        | 22,000    |           |              |              |            |             |              |             |           |              |           |             |            | <del>                                     </del> |
| Antimony                                        | 10 UJ     | 1.8       | 6 UJ         | 7 UJ         | 6 UJ       | 6 UJ        | 6 UJ         |             |           |              |           | 7 UJ        |            | +                                                |
| Arsenic                                         | 10        | 9.8       | 707          | 281          | 21         | 161         | 25           |             |           |              |           | 55          |            | <del>                                     </del> |
| Barium                                          | 81        | 5.5       |              | 251          |            |             |              |             |           |              |           | 30          |            | <del>                                     </del> |
| Beryllium                                       | 0.4       |           |              |              |            |             |              |             |           |              |           |             |            | +                                                |
| Cadmium                                         | 0.48      | 0.46      | 0.3 U        | 0.3 U        | 0.2 U      | 0.2 U       | 0.7          |             |           |              |           | 1           |            | 0.6                                              |
| Calcium                                         | 5,700     | 0.40      | 0.3 0        | 0.5 0        | 0.2 0      | 0.2 0       | 0.7          |             |           |              |           | '           |            | 0.0                                              |
| Chromium                                        | 28        | 1         | 28.5         | 24.3         | 11.8       | 21.6        | 67.4         | -           | 1         | <del> </del> |           | 34.8        |            | 33.3                                             |
| Cobalt                                          | 10        |           | 28.5<br>5.9  | 5.6          |            | 6.9         | 7.5          |             |           | <del> </del> |           | 7.4         |            | 33.3                                             |
|                                                 | 46        | 47        | 36.1         | 24.4         | 4.9<br>9.4 | 24.9        | 7.5<br>44.5  |             |           |              |           | 38.2        |            | 51.8                                             |
| Copper                                          |           | 47        | 30.7         | ∠4.4         | 9.4        | 24.9        | 44.5         |             |           |              |           | 38.2        |            | 51.8                                             |
| Iron                                            | 29,000    | 22        | 47           | 00           | 0.11       | 4.4         | 70.1         |             |           |              |           | 44 1        |            | - 00                                             |
| Lead                                            | 33        | 23        | 47           | 22           | 2 U        | 11          | 76 J         |             |           |              |           | 41 J        |            | 33                                               |

|                          |                |           |              |              |           | WASHINGTO   |              |             |           |             |           |             |            |                                                  |
|--------------------------|----------------|-----------|--------------|--------------|-----------|-------------|--------------|-------------|-----------|-------------|-----------|-------------|------------|--------------------------------------------------|
| Location                 | DR220          | DU9120XX  | LDW-SC50a    | LDW-SC50a    | LDW-SC50a | LDW-SC50a   | LDW-SC51     | LDW-SC51    | LDW-SC51  | LDW-SC51    | LDW-SC51  | LDW-SC51    | LDW-SC51   | SD-216                                           |
| Sample ID                | SD-DR220-      | DUWO&M91S | LDW-SC50-0-1 | LDW-SC50-1-2 | LDW-SC50- | LDW-SC50-2- | LDW-SC51-0-2 | LDW-SC51-0- | LDW-SC51- | LDW-SC51-1- | LDW-SC51- | LDW-SC51-2- | LDW-SC51-  | SD-216-0000                                      |
|                          | 0020           | 012       |              |              | 2_8-4     | 2_8         |              | 0_5         | 0_5-1     | 1_5         | 1_5-2     | 3_8         | 3_8-5_8    |                                                  |
|                          |                |           |              |              |           |             |              |             |           |             |           |             |            |                                                  |
|                          |                |           |              |              |           |             |              |             |           |             |           |             |            |                                                  |
|                          |                |           |              |              |           |             |              |             |           |             |           |             |            |                                                  |
| Sample Date              | 9/23/98        | 8/6/91    | 2/24/06      | 2/24/06      | 2/24/06   | 2/24/06     | 2/22/200     | 2/22/06     | 2/22/06   | 2/22/06     | 2/22/06   | 2/22/06     | 2/22/06    | 4/21/04                                          |
| Depth (ft BGS)           | 2 to 4         | 0 to 3    | 0 to 1       | 1 to 2       | 2.8 to 4  | 2 to 2.8    | 0 to 2       | 0 to 0.5    | 0.5 to 1  | 1 to 1.5    | 1.5 to 2  | 2 to 3.8    | 3.8 to 5.8 | 0 to 1                                           |
| Magnesium                | 7,400          | 1 0.00    | 1 0.0.       | 1.10 2       | 2.0 to 1  | 1 2 10 210  | 0.02         | 0 10 0.0    | 0.0 10 1  | 1 10 110    | 110 10 2  | 2 10 0.0    | 0.0 10 0.0 | 1 0 10 1                                         |
| Manganese                | 280            |           |              |              |           |             |              |             |           |             |           |             |            | <del> </del>                                     |
| Mercury                  | 0.20 J         | 0.1       | 0.2          | 0.06 U       | 0.06 U    | 0.07        | 0.10 J       |             |           |             |           | 0.12 J      |            | 0.12                                             |
| Molybdenum               | 0.20 3         | 0.1       | 1.5          | 1            | 0.6 U     | 0.7         | 3            |             |           |             |           | 7.6         |            | 0.12                                             |
| Nickel                   | 19             | 27        | 1.3          | 14           | 8         | 32          | 34           |             |           |             |           | 33          |            | <del> </del>                                     |
| Potassium                | 2,800          | 21        | 17           | 14           | 0         | 32          | 34           |             |           |             |           | აა          |            | <del> </del>                                     |
| Selenium                 | 0.70 J         |           | 6 U          | 7 U          | 6 U       | 6 U         | 6 U          |             |           |             |           | 7 U         |            | <del> </del>                                     |
|                          |                | 0.42      |              |              |           |             |              |             |           |             |           |             |            | 0.600 11                                         |
| Silver                   | 0.41<br>11,000 | 0.43      | 0.4 U        | 0.4 U        | 0.3 U     | 0.4 U       | 1.1          |             |           |             |           | 0.4 U       |            | 0.600 U                                          |
| Sodium                   |                |           | 611          | 711          | 611       | 611         | 611          |             |           |             |           | 711         |            |                                                  |
| Thallium<br>Tin          | 0.08<br>4      |           | 6 U          | 7 U          | 6 U       | 6 U         | 6 U          |             |           |             |           | 7 U         |            | <del>                                     </del> |
|                          | <u> </u>       |           | F0.6         | E0.0         | 20.0      | FO 4        | E0 E         |             |           |             |           | 60.4        |            | <del>                                     </del> |
| Vanadium                 | 64             | 400       | 50.6         | 52.2         | 39.9      | 52.4        | 52.5         |             |           |             |           | 60.1        |            | 100                                              |
| Zinc                     | 110            | 130       | 161          | 124          | 47.7      | 108         | 203          |             |           |             |           | 269         |            | 108                                              |
| PAHs (ug/kg dw)          |                |           | 2211         |              |           | 2211        | 2211         | 24.11       | 2011      | 2211        |           |             |            | <b></b>                                          |
| 1-Methylnaphthalene      | 2211           |           | 60 U         | 59 U         | 20 U      | 20 U        | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            | <b></b>                                          |
| 2-Chloronaphthalene      | 20 U           |           | 60 U         | 59 U         | 20 U      | 20 U        | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| 2-Methylnaphthalene      | 20 U           | 28 U      | 56 J         | 59 U         | 20 U      | 20 U        | 60 U         | 79          | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Acenaphthene             | 20 U           | 28 U      | 41 J         | 59 U         | 20 U      | 20 U        | 380          | 350         | 180       | 250         | 84        | 62          |            |                                                  |
| Acenaphthylene           | 20 U           | 28 U      | 60 U         | 59 U         | 20 U      | 20 U        | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Anthracene               | 30             | 28 U      | 100          | 46 J         | 20 U      | 20 U        | 200          | 540         | 160       | 59 J        | 42 J      | 82          |            |                                                  |
| Benzo(a)anthracene       | 170            | 120       | 280          | 140          | 20 U      | 12 J        | 540          | 1,600       | 410       | 130         | 71        | 270         |            |                                                  |
| Benzo(a)pyrene           | 190            | 130       | 260          | 92           | 20 U      | 20 U        | 490          | 1,600       | 390       | 50 J        | 42 J      | 260         |            |                                                  |
| Benzo(b)fluoranthene     | 230            |           | 230          | 88           | 20 U      | 11 J        | 520          | 1,600       | 410       | 87          | 50 J      | 210         |            |                                                  |
| Benzo(g,h,i)perylene     | 130            | 73        | 75           | 59 U         | 20 U      | 20 U        | 160          | 590         | 130       | 62 U        | 62 U      | 78          |            |                                                  |
| Benzo(k)fluoranthene     | 170            |           | 260          | 110          | 20 U      | 10 J        | 480          | 1,400       | 360       | 54 J        | 52 J      | 280         |            |                                                  |
| Chrysene                 | 230            | 160       | 330          | 160          | 20 U      | 14 J        | 590          | 1,900       | 490       | 120         | 67        | 320         |            |                                                  |
| cPAHs - mammal - half DL | 280            | 160       | 360          | 140 J        | 18 U      | 18 J        | 690 J        | 2,200       | 540       | 83 J        | 65 J      | 360         |            |                                                  |
| Dibenzo(a,h)anthracene   | 40             | 28 U      | 60 U         | 59 U         | 20 U      | 20 U        | 49 J         | 160         | 38        | 4.3 J       | 3.7 J     | 59 U        |            |                                                  |
| Dibenzofuran             | 20 U           | 28 U      | 60 U         | 59 U         | 20 U      | 20 U        | 230          | 230         | 89        | 130         | 92        | 59 U        |            |                                                  |
| Fluoranthene             | 350            | 260       | 770          | 200          | 14 J      | 40          | 2,100        | 4,000       | 1,200     | 720         | 730       | 810         |            |                                                  |
| Fluorene                 | 20 U           | 28 U      | 41 J         | 59 U         | 20 U      | 20 U        | 150          | 320         | 110       | 62 U        | 62 U      | 53 J        |            |                                                  |
| Indeno(1,2,3-cd)pyrene   | 170            | 82        | 100          | 35 J         | 20 U      | 20 UJ       | 220          | 690         | 160       | 62 U        | 62 U      | 110         |            |                                                  |
| Naphthalene              | 20 U           | 28 U      | 60 U         | 59 U         | 20 U      | 20 U        | 56 J         | 230         | 54 J      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Phenanthrene             | 180            | 140       | 420          | 96           | 20 U      | 20          | 910          | 2,300       | 840       | 120         | 97        | 440         |            | <u> </u>                                         |
| Pyrene                   | 440            | 380       | 500          | 140          | 11 J      | 28          | 1,200        | 2,600       | 900       | 400         | 360       | 590         |            | <u> </u>                                         |
| Total benzofluoranthenes | 400            | 280       | 490          | 200          | 20 U      | 21 J        | 1,000        | 3,000       | 770       | 141 J       | 102 J     | 490         |            |                                                  |
| Total HPAHs              | 2,120          | 2,960     | 2,810        | 970 J        | 25 J      | 115 J       | 6,300 J      | 16,100      | 4,500     | 1,570 J     | 1,380 J   | 2,930       |            |                                                  |
| Total LPAHs              | 210            | 280       | 600 J        | 142 J        | 20 U      | 20          | 1,700 J      | 3,700       | 1,340 J   | 430 J       | 223 J     | 640 J       |            |                                                  |
| Total PAHs               | 2,330          | 1,630     | 3,410 J      | 1,110 J      | 25 J      | 135 J       | 8,000 J      | 19,900      | 5,800 J   | 1,990 J     | 1,600 J   | 3,570 J     |            | <u> </u>                                         |
| Other SVOCs (ug/kg dw)   |                |           |              |              |           |             |              |             |           |             |           |             |            |                                                  |
| 1,2,4-Trichlorobenzene   | 20 U           | 8.4 U     | 3.6 J        | 4.1 J        | 6.0 UJ    | 6.0 UJ      | 6.0 U        | 6.1 UJ      | 6.0 UJ    | 6.2 UJ      | 6.2 UJ    | 5.9 U       |            |                                                  |
| 1,2-Dichlorobenzene      | 20 U           | 4.1 U     | 6.0 U        | 5.9 U        | 6.0 U     | 6.0 U       | 4.8 J        | 6.1 U       | 4.8 J     | 6.2 U       | 6.2       | 20          |            |                                                  |
| 1,3-Dichlorobenzene      | 20 U           | 4.1 U     | 60 U         | 59 U         | 20 U      | 20 U        | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| 1,4-Dichlorobenzene      | 20 U           | 4.1 U     | 6.0 U        | 5.9 U        | 6.0 U     | 6.0 U       | 5.4 J        | 6.1 U       | 6.0 U     | 6.2 U       | 8.7       | 11          |            |                                                  |
| 2,4,5-Trichlorophenol    | 200 U          |           | 300 U        | 300 U        | 99 U      | 99 U        | 300 U        | 300 U       | 300 U     | 310 U       | 310 U     | 300 U       |            |                                                  |
| 2,4,6-Trichlorophenol    | 200 U          |           | 300 U        | 300 U        | 99 U      | 99 U        | 300 U        | 300 U       | 300 U     | 310 U       | 310 U     | 300 U       |            |                                                  |
| 2,4-Dichlorophenol       | 60 U           |           | 300 U        | 300 U        | 99 U      | 99 U        | 300 U        | 300 U       | 300 U     | 310 U       | 310 U     | 300 U       |            |                                                  |
| 2,4-Dimethylphenol       | 20 U           | 14 U      | 6.0 UJ       | 5.9 UJ       | 6.0 UJ    | 6.0 UJ      | 6.0 UJ       | 6.1 UJ      | 6.0 UJ    | 6.2 UJ      | 6.2 UJ    | 9.5 J       |            |                                                  |
|                          |                |           |              |              |           |             |              |             |           |             |           |             |            |                                                  |

| Location Sample ID   DR220   SD-DR220-   DUWO&M91S   DUWO&M91S   DUW-SC50-012   DUW-SC50-012   DW-SC50-1-2   DW-SC50-1-2   DW-SC50-1-2   DW-SC51-1-2   DW-SC51-1-2   DW-SC51-1-2   DW-SC51-1-2   DW-SC51-1-2   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-SC51-1-3   DW-   | 11- LDW-SC51-2-<br>3_8<br>2/22/06               | LDW-SC51<br>- LDW-SC51-<br>3_8-5_8<br>2/22/06<br>3.8 to 5.8 | SD-216<br>SD-216-0000<br>4/21/04<br>0 to 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|
| Sample Date 9/23/98 8/6/91 2/24/06 2/24/06 2/24/06 2/24/06 2/22/200 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/ | 2/22/06<br>2 to 3.8<br>590 UJ<br>300 U<br>300 U | 3_8-5_8<br>2/22/06                                          | 4/21/04                                    |
| Sample Date 9/23/98 8/6/91 2/24/06 2/24/06 2/24/06 2/24/06 2/22/200 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/22/06 2/ | 2/22/06<br>2 to 3.8<br>590 UJ<br>300 U<br>300 U | 2/22/06                                                     |                                            |
| Depth (ft BGS)         2 to 4         0 to 3         0 to 1         1 to 2         2.8 to 4         2 to 2.8         0 to 2         0 to 0.5         0.5 to 1         1 to 1.5         1.5 to 1.5 to 1           2,4-Dinitrophenol         200 U         600 UJ         590 UJ         200 UJ         600 UJ         610 U         600 U         620 U         620 U           2,4-Dinitrotoluene         200 U         300 U         300 U         99 U         99 U         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 to 3.8<br>590 UJ<br>300 U<br>300 U            |                                                             |                                            |
| Depth (ft BGS)         2 to 4         0 to 3         0 to 1         1 to 2         2.8 to 4         2 to 2.8         0 to 2         0 to 0.5         0.5 to 1         1 to 1.5         1.5 to 1.5 to 1           2,4-Dinitrophenol         200 U         600 UJ         590 UJ         200 UJ         600 UJ         610 U         600 U         620 U         620 U           2,4-Dinitrotoluene         200 U         300 U         300 U         99 U         99 U         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 to 3.8<br>590 UJ<br>300 U<br>300 U            |                                                             |                                            |
| Depth (ft BGS)         2 to 4         0 to 3         0 to 1         1 to 2         2.8 to 4         2 to 2.8         0 to 2         0 to 0.5         0.5 to 1         1 to 1.5         1.5 to 1.5 to 1           2,4-Dinitrophenol         200 U         600 UJ         590 UJ         200 UJ         600 UJ         610 U         600 U         620 U         620 U           2,4-Dinitrotoluene         200 U         300 U         300 U         99 U         99 U         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 to 3.8<br>590 UJ<br>300 U<br>300 U            |                                                             |                                            |
| Depth (ft BGS)         2 to 4         0 to 3         0 to 1         1 to 2         2.8 to 4         2 to 2.8         0 to 2         0 to 0.5         0.5 to 1         1 to 1.5         1.5 to 1.5 to 1           2,4-Dinitrophenol         200 U         600 UJ         590 UJ         200 UJ         600 UJ         610 U         600 U         620 U         620 U           2,4-Dinitrotoluene         200 U         300 U         300 U         99 U         99 U         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 to 3.8<br>590 UJ<br>300 U<br>300 U            |                                                             |                                            |
| 2,4-Dinitrophenol         200 U         600 UJ         590 UJ         200 UJ         600 UJ         610 U         600 U         620 U         620 U           2,4-Dinitrotoluene         200 U         300 U         300 U         99 U         99 U         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 590 UJ<br>300 U<br>300 U                        | 3.8 to 5.8                                                  | 0 to 1                                     |
| 2,4-Dinitrophenol         200 U         600 UJ         590 UJ         200 UJ         600 UJ         610 U         600 U         620 U         620 U           2,4-Dinitrotoluene         200 U         300 U         300 U         99 U         99 U         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300 U<br>300 U                                  |                                                             |                                            |
| 2,4-Dinitrotoluene 200 U 300 U 99 U 99 U 300 U 300 U 310 U 310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300 U<br>300 U                                  |                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300 U                                           |                                                             |                                            |
| 2,6-Dinitrotoluene 200 U 300 U 300 U 99 U 99 U 300 U 300 U 310 U 310 U 310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                             |                                            |
| 2-Chlorophenol 20 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                            |                                                             |                                            |
| 2-Methylphenol 20 U 14 U 3.0 J 5.9 U 6.0 U 6.0 U 6.0 UJ 21 J 6.0 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2 UJ 6.2  | 5.9 UJ                                          |                                                             |                                            |
| 2-Methylphenol 20 14 0 3.0 3 3.9 0 0.0 0 0.0 0 0.0 0 21 3 0.0 0 0.2 0 0.2 0 0.2 0 0.2 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0. | 3.9 U                                           |                                                             |                                            |
| 2-Nitrophenol 100 U 300 U 99 U 99 U 300 U 300 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U  | 300 U                                           |                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                             |                                            |
| 3,3'-Dichlorobenzidine 200 U 300 UJ 99 UJ 99 UJ 300 UJ 300 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U | 300 UJ                                          |                                                             | +                                          |
| 3-Nitroaniline 200 U 300 U 99 U 99 U 300 UJ 300 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310 U 310  | 300 UJ                                          |                                                             | +                                          |
| 4,6-Dinitro-o-cresol 200 U 600 UJ 590 UJ 200 UJ 600 U 610 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U 620 U  | 590 U                                           |                                                             | +                                          |
| 4-Bromophenyl phenyl ether 40 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59 U                                            |                                                             | +                                          |
| 4-Chloro-3-methylphenol 40 U 300 U 300 U 99 U 99 U 300 U 300 U 310 U 310 U 310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300 U                                           |                                                             | <b>_</b>                                   |
| 4-Chloroaniline 60 U 300 UJ 300 UJ 99 UJ 99 UJ 300 UJ 300 UJ 310 UJ 310 UJ 310 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                             |                                            |
| 4-Chlorophenyl phenyl ether 20 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59 U                                            |                                                             |                                            |
| 4-Methylphenol 20 U 28 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59 U                                            |                                                             |                                            |
| 4-Nitroaniline 100 U 300 U 300 U 99 U 99 U 300 U 300 U 300 U 310 U 310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300 U                                           |                                                             |                                            |
| 4-Nitrophenol 100 U 300 U 300 U 99 U 99 UJ 300 U 300 U 300 U 310 U 310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300 U                                           |                                                             |                                            |
| Aniline 60 UJ 59 UJ 20 UJ 60 UJ 61 UJ 60 UJ 62 UJ 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59 UJ                                           |                                                             |                                            |
| Benzoic acid 200 U 140 U 330 J 130 UJ 64 UJ 100 UJ 90 610 U 600 U 620 U 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                              |                                                             |                                            |
| Benzyl alcohol 50 U 17 U 30 U 30 U 30 U 18 J 180 30 U 31 U 31 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 J                                            |                                                             |                                            |
| bis(2-chloroethoxy)methane 40 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59 U                                            |                                                             |                                            |
| bis(2-chloroethyl)ether 40 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59 U                                            |                                                             |                                            |
| bis(2-chloroisopropyl)ether 40 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59 U                                            |                                                             |                                            |
| Carbazole 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                             |                                            |
| Hexachlorobenzene 20 U 17 U 6.0 U 5.9 U 6.0 U 6.0 U 6.0 U 6.1 U 6.0 U 6.2 U 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.9 U                                           |                                                             |                                            |
| Hexachlorobutadiene 20 U 28 U 6.0 UJ 5.9 U 6.0 U 6.0 U 6.0 U 6.1 U 6.0 U 6.2 U 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.9 U                                           |                                                             |                                            |
| Hexachlorocyclopentadiene         100 U         300 U         300 U         99 UJ         300 U         300 U         310 U         310 U         310 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300 U                                           |                                                             |                                            |
| Hexachloroethane 20 U 28 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59 U                                            |                                                             |                                            |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59 U                                            |                                                             |                                            |
| Nitrobenzene 20 U 60 U 59 U 20 U 60 U 61 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59 U                                            |                                                             | +                                          |
| n-Nitrosodimethylamine 30 U 30 U 30 U 30 U 30 U 30 U 30 U 31 U 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 U                                            |                                                             | 1                                          |
| n-Nitroso-di-n-propylamine 40 U 30 U 30 U 30 U 30 U 30 U 30 U 31 U 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 UJ                                           |                                                             |                                            |
| n-Nitrosodiphenylamine 40 U 17 U 100 U 30 U 6.0 U 21 U 68 U 6.1 U 6.0 U 6.2 U 6.2 U 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67 U                                            |                                                             | +                                          |
| Pentachlorophenol 100 UJ 84 U 30 U 30 U 30 U 30 U 30 U 30 U 30 U 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 U                                            |                                                             | +                                          |
| Phenol 80 28 U 42 J 59 U 13 J 13 J 60 U 96 U 60 U 62 U 62 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59 U                                            |                                                             | +                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 0                                            |                                                             |                                            |
| PCBs (ug/kg dw)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5411                                            | 2011                                                        | 2011                                       |
| Aroclor-1016 20 U 14 U 55 U 110 U 3.8 UJ 7.8 UJ 57 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 U                                            | 3.9 U                                                       | 20 U                                       |
| Aroclor-1221 40 U 56 U 55 U 110 U 3.8 UJ 7.8 UJ 57 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 U                                            | 3.9 U                                                       | 20 U                                       |
| Aroclor-1232 20 U 14 U 55 U 110 U 3.8 UJ 7.8 UJ 57 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 U                                            | 3.9 U                                                       | 20 U                                       |
| Aroclor-1242 33 14 U 55 U 110 U 3.8 U 7.8 U 57 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54 U                                            | 3.9 U                                                       | 20 U                                       |
| Aroclor-1248 20 U 14 U 140 270 3.8 U 14 J 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                             | 3.9 U                                                       | 23 J                                       |
| Aroclor-1254 110 14 U 370 510 3.8 U 27 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400                                             | 3.9 U                                                       | 39 J                                       |
| Aroclor-1260 84 48 110 U 210 U 3.8 U 34 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180                                             | 3.9 U                                                       | 20 U                                       |
| Aroclor-1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                             | 1                                          |
| Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                             |                                            |
| PCB-018 1.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                                                             |                                            |
| PCB-028 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                                             |                                            |
| PCB-044 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                             |                                            |

| Location                   | DR220   | DU9120XX | LDW-SC50a    | LDW-SC50a    | LDW-SC50a | LDW-SC50a | LDW-SC51     | LDW-SC51    | LDW-SC51  | LDW-SC51    | LDW-SC51  | LDW-SC51    | LDW-SC51   | SD-216                                           |
|----------------------------|---------|----------|--------------|--------------|-----------|-----------|--------------|-------------|-----------|-------------|-----------|-------------|------------|--------------------------------------------------|
| Sample ID                  |         |          | LDW-SC50-0-1 | LDW-SC50-1-2 |           |           | LDW-SC51-0-2 | LDW-SC51-0- | LDW-SC51- | LDW-SC51-1- | LDW-SC51- | LDW-SC51-2- | LDW-SC51-  | SD-216-0000                                      |
|                            | 0020    | 012      |              |              | 2_8-4     | 2_8       |              | 0_5         | 0_5-1     | 1_5         | 1_5-2     | 3_8         | 3_8-5_8    |                                                  |
|                            |         |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
|                            |         |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
|                            |         |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Sample Date                | 9/23/98 | 8/6/91   | 2/24/06      | 2/24/06      | 2/24/06   | 2/24/06   | 2/22/200     | 2/22/06     | 2/22/06   | 2/22/06     | 2/22/06   | 2/22/06     | 2/22/06    | 4/21/04                                          |
| Depth (ft BGS)             |         | 0 to 3   | 0 to 1       | 1 to 2       | 2.8 to 4  | 2 to 2.8  | 0 to 2       | 0 to 0.5    | 0.5 to 1  | 1 to 1.5    | 1.5 to 2  | 2 to 3.8    | 3.8 to 5.8 | 0 to 1                                           |
| PCB-055                    | 5       |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-066                    | 8       |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-077                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-081                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-101                    | 5       |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-105                    | 2       |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-114                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-114<br>PCB-118         | 5       |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-116<br>PCB-123         | 2.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-123<br>PCB-126         | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-126<br>PCB-128         |         |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
|                            | 2       |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
| PCB-138<br>PCB-153         | 11<br>8 |          |              |              |           |           |              |             |           |             |           |             |            | <del>                                     </del> |
|                            |         |          |              |              |           |           |              |             |           |             |           |             |            | <del> </del>                                     |
| PCB-156                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-157                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <u> </u>                                         |
| PCB-167                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <b></b> '                                        |
| PCB-169                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            | <u> </u>                                         |
| PCB-170                    | 3       |          |              |              |           |           |              |             |           |             |           |             |            | <u> </u>                                         |
| PCB-180                    | 6       |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-187                    | 4       |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-189                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-195                    | 1       |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-206                    | 1       |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| PCB-209                    | 1.0 U   |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Total PCBs                 | 230     | 96       | 510          | 780          | 3.8 UJ    | 75 J      | 1,290        |             |           |             |           | 700         | 3.9 U      | 62 J                                             |
| Phthalates (ug/kg dw)      |         |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Bis(2-ethylhexyl)phthalate | 470     | 590      | 680          | 64           | 20 U      | 63        | 480          | 970         | 1,800     | 62 U        | 75        | 76          |            |                                                  |
| Butyl benzyl phthalate     | 50      | 28 U     | 24           | 14           | 6.0 U     | 6.6       | 36           | 43          | 35        | 10          | 17        | 29          |            |                                                  |
| Diethyl phthalate          | 20 U    | 28 U     | 60 U         | 59 U         | 20 U      | 20 U      | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Dimethyl phthalate         | 30      | 28 U     | 60 U         | 59 U         | 20 U      | 20 U      | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Di-n-butyl phthalate       | 20      | 28 U     | 60 U         | 59 U         | 20 U      | 23 U      | 69 U         | 44 J        | 51 J      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Di-n-octyl phthalate       | 20 U    | 28 U     | 60 U         | 59 U         | 20 U      | 20 U      | 60 U         | 61 U        | 60 U      | 62 U        | 62 U      | 59 U        |            |                                                  |
| Pesticides (ug/kg dw)      |         |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Aldrin                     |         | 5        |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| beta-Chlordane             |         | 4.5      |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Chlordane                  |         | 2.8 U    |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Dieldrin                   |         | 1.1 U    |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Heptachlor epoxide         |         | 1.4 U    |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Total aldrin/dieldrin      |         | 5        |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Total chlordane            |         | 4.5      |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Total DDTs                 |         | 6.8      |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| VOCs (ug/kg dw)            |         |          |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Ethylbenzene               |         | 4.1 U    |              |              |           |           |              |             |           |             |           |             |            |                                                  |
| Total xylenes              |         | 4.1 U    |              |              |           |           |              |             |           |             |           |             |            | <u> </u>                                         |
| Trichloroethene            |         | 4.1 U    |              |              |           |           |              |             |           |             |           |             |            | <del></del>                                      |
| Themorocalono              |         | 7.10     |              |              |           |           |              |             |           |             |           |             |            | <u> </u>                                         |

| Location                                        |             | SD-216                                           | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217      | SD-315-C                                         |
|-------------------------------------------------|-------------|--------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------|
| Sample ID                                       | SD-216-0010 | SD-216-0020                                      | SD-216-0030 | SD-216-0040 | SD-216-0050 | SD-216-0060 | SD-216-0070 | SD-217-0000 | SD-217-0010 | SD-217-0020 | SD-217-0030 | SD-217-0040 | SD-217-0050 | SD-315-0001                                      |
|                                                 | '           | 1                                                |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                                                 | '           | 1                                                |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                                                 | '           | 1                                                |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                                                 | '           | 1                                                |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
| Sample Date                                     | 4/21/04     | 4/21/04                                          | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 8/19/04                                          |
| Depth (ft BGS)                                  |             | 2 to 3                                           | 3 to 4      | 4 to 5      | 5 to 5.9    | 6 to 7      | 7 to 7.7    | 0 to 0.9    | 1 to 1.9    | 2 to 2.9    | 3 to 3.7    | 4 to 4.5    | 5 to 5.6    | 1 to 2                                           |
| Conventionals                                   | 1102        | 2100                                             | 0.04        | 7100        | 0 10 0.0    | 0.07        | 7 10 7.1    | 0 10 0.0    | 1 10 1.0    | 2 to 2.0    | 0 10 0.7    | 4 10 4.0    | 0 10 0.0    | 1102                                             |
| Ammonia (mg/kg dw)                              |             | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Percent moisture (%dw)                          | -           | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
|                                                 |             | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Specific gravity (g/cc)                         | 4.50        | 4.40                                             | 4.00        | 4.40        | 4.00        | 4.00        | 0.00        | 4.70        | 4.54        | 4.45        | 4.00        | 0.00        | 0.07        | 0.04                                             |
| Total organic carbon (% dw)                     | 1.58        | 1.43                                             | 1.33        | 1.13        | 1.02        | 1.09        | 0.96        | 1.73        | 1.51        | 1.15        | 1.09        | 0.28        | 0.07        | 0.21                                             |
| Total solids (%ww)                              | 61.4        | 70.4                                             | 65.9        | 73.2        | 71.6        | 77.6        | 75.4        | 61.2        | 61.4        | 78          | 78.3        | 82.9        | 81.2        | <del></del>                                      |
| Total volatile solids (%ww)                     |             | <b></b>                                          |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Grain size (%dw)                                |             | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Fractional % >9525 microns                      |             | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Fractional % phi >-1 (>2000 microns)            | 0.500 J     | <b></b> '                                        |             |             |             |             |             | 0.600 J     | 0.100 J     |             |             |             |             | <b></b>                                          |
| Fractional % phi 0-1 (500-1000 microns)         | 2.90 J      | <b></b> '                                        |             |             |             |             |             | 4.00 J      | 4.50 J      |             |             |             |             | <b></b>                                          |
| Fractional % phi -1-0 (1000-2000 microns)       | 0.700 J     | 1                                                |             |             |             |             |             | 1.10 J      | 0.900 J     |             |             |             |             | 1                                                |
| Fractional % phi 10+ (<0.98 micron)             | 2.40 J      | <u> </u>                                         |             |             |             |             |             | 5.10 J      | 5.00 J      |             |             |             |             | 1                                                |
| Fractional % phi 1-2 (250-500 microns)          | 10.1 J      | <u> </u>                                         |             |             |             |             |             | 10.4 J      | 12.3 J      |             |             |             |             | 1                                                |
| Fractional % phi -2-(-1) (2000-4000 microns)    |             |                                                  |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Fractional % phi 2-3 (125-250 microns)          | 12.4 J      |                                                  |             |             |             |             |             | 11.1 J      | 10.1 J      |             |             |             |             |                                                  |
| Fractional % phi 3-4 (62.5-125 microns)         | 16.1 J      |                                                  |             |             |             |             |             | 17.0 J      | 16.4 J      |             |             |             |             |                                                  |
| Fractional % phi 4-5 (31.2-62.5 microns)        | 16.2 J      |                                                  |             |             |             |             |             | 14.1 J      | 14.7 J      |             |             |             |             |                                                  |
| Fractional % phi 5-6 (15.6-31.2 microns)        | 11.0 J      |                                                  |             |             |             |             |             | 13.7 J      | 13.7 J      |             |             |             |             |                                                  |
| Fractional % phi 6-7 (7.8-15.6 microns)         | 14.4 J      |                                                  |             |             |             |             |             | 10.1 J      | 9.90 J      |             |             |             |             |                                                  |
| Fractional % phi 7-8 (3.9-7.8 microns)          | 7.10 J      |                                                  |             |             |             |             |             | 6.70 J      | 6.60 J      |             |             |             |             |                                                  |
| Fractional % phi 8-9 (1.95-3.9 microns)         | 4.50 J      |                                                  |             |             |             |             |             | 3.70 J      | 3.50 J      |             |             |             |             |                                                  |
| Fractional % phi 9-10 (0.98-1.95 microns)       | 1.70 J      |                                                  |             |             |             |             |             | 2.30 J      | 2.30 J      |             |             |             |             |                                                  |
| Fractional % Sieve 3/8-inch (4750-9525 microns) |             |                                                  |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Total clay                                      | 8.60 J      |                                                  |             |             |             |             |             | 11.10 J     | 10.80 J     |             |             |             |             |                                                  |
| Total Fines                                     |             |                                                  |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Total fines (percent silt+clay)                 | 57.3 J      |                                                  |             |             |             |             |             | 55.7 J      | 55.7 J      |             |             |             |             |                                                  |
| Total gravel                                    | 0.500 J     |                                                  |             |             |             |             |             | 0.600 J     | 0.100 J     |             |             |             |             |                                                  |
| Total sand                                      | 42.2 J      |                                                  |             |             |             |             |             | 43.6 J      | 44.2 J      |             |             |             |             |                                                  |
| Total silt                                      | 48.7 J      | <del>                                     </del> |             |             |             |             |             | 44.6 J      | 44.9 J      |             |             |             |             | <del>                                     </del> |
| Geotechnical                                    | 1011 0      |                                                  |             |             |             |             |             |             | 0           |             |             |             |             |                                                  |
| Atterberg limits classification                 |             | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Bulk density (dry) (pcf)                        |             | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Bulk density (wet) (pcf)                        |             | <del>                                     </del> |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Porosity (S.U.)                                 |             | <u> </u>                                         |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
|                                                 |             | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Metals (mg/kg dw)                               |             | <b>——</b> '                                      |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Aluminum                                        |             | <u> </u>                                         |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Antimony                                        |             | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Arsenic                                         | <b></b> '   | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | 4.5 U                                            |
| Barium                                          | <b></b> '   | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Beryllium                                       | <b></b> '   | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Cadmium                                         | 1.5         | <b></b> '                                        |             |             |             |             |             | 0.7         | 0.6         |             |             |             |             | 0.5 U                                            |
| Calcium                                         | <u> </u>    | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Chromium                                        | 49.1        | <b></b>                                          |             |             |             |             |             | 143 J       | 37.4 J      |             |             |             |             | 9.96                                             |
| Cobalt                                          |             | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Copper                                          | 80.8        | <b></b> '                                        |             |             |             |             |             | 69.5        | 72.4        |             |             |             |             | 7.32                                             |
| Iron                                            |             |                                                  |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Lead                                            | 119         | 1                                                |             |             |             |             |             | 97          | 106         |             |             |             |             | 2.5 U                                            |

|                           |             |             |             | -           |             | -           |             |             |             |             |             |             |             |             |
|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Location                  |             | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217      | SD-315-C    |
| Sample ID                 | SD-216-0010 | SD-216-0020 | SD-216-0030 | SD-216-0040 | SD-216-0050 | SD-216-0060 | SD-216-0070 | SD-217-0000 | SD-217-0010 | SD-217-0020 | SD-217-0030 | SD-217-0040 | SD-217-0050 | SD-315-0001 |
|                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Sample Date               | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 8/19/04     |
| Depth (ft BGS)            | 1 to 2      | 2 to 3      | 3 to 4      | 4 to 5      | 5 to 5.9    | 6 to 7      | 7 to 7.7    | 0 to 0.9    | 1 to 1.9    | 2 to 2.9    | 3 to 3.7    | 4 to 4.5    | 5 to 5.6    | 1 to 2      |
| Magnesium Septim (11 200) |             |             |             |             | 2 .2 0.0    |             |             | 0.00        |             |             | 0.000       |             | 2 13 010    |             |
| Manganese                 |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Mercury                   | 0.16        |             |             |             |             |             |             | 0.16        | 0.13        |             |             |             |             |             |
| Molybdenum                | 0.10        |             |             |             |             |             |             | 0.10        | 0.13        |             |             |             |             |             |
| Nickel                    |             |             |             |             |             |             |             |             |             |             |             |             |             | 6.92        |
| Potassium                 |             |             |             |             |             |             |             |             |             |             |             |             |             | 0.92        |
| Selenium                  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Silver                    | 1.6         |             |             |             |             |             |             | 1.3         | 1 5         |             |             |             |             | 0.99 U      |
| Sodium                    | 1.0         |             |             |             |             |             |             | 1.3         | 1.5         |             |             |             |             | 0.88.0      |
| Thallium                  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Tin                       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|                           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Vanadium                  | 470         |             |             |             |             |             |             | 450         | 4.44        |             |             |             |             | 20.0        |
| Zinc                      | 172         |             |             |             |             |             |             | 150         | 141         |             |             |             |             | 20.2        |
| PAHs (ug/kg dw)           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 1-Methylnaphthalene       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2-Chloronaphthalene       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2-Methylnaphthalene       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Acenaphthene              |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Acenaphthylene            |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Anthracene                |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Benzo(a)anthracene        |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Benzo(a)pyrene            |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Benzo(b)fluoranthene      |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Benzo(g,h,i)perylene      |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Benzo(k)fluoranthene      |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Chrysene                  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| cPAHs - mammal - half DL  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Dibenzo(a,h)anthracene    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Dibenzofuran              |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Fluoranthene              |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Fluorene                  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Indeno(1,2,3-cd)pyrene    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Naphthalene               |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Phenanthrene              |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Pyrene                    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Total benzofluoranthenes  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Total HPAHs               |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Total LPAHs               |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Total PAHs                |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Other SVOCs (ug/kg dw)    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 1,2,4-Trichlorobenzene    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 1,2-Dichlorobenzene       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 1,3-Dichlorobenzene       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 1,4-Dichlorobenzene       |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2,4,5-Trichlorophenol     |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2,4,6-Trichlorophenol     |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2,4-Dichlorophenol        |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2,4-Dimethylphenol        |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 2,4-บแทะแทบทายาดเ         |             |             |             |             |             |             |             |             |             |             |             |             |             |             |

|                             |                                                  |             |             |             |             | VASHINGTO   |             |             |             |             |             |          |          |                                                  |
|-----------------------------|--------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|--------------------------------------------------|
| Location                    | SD-216                                           | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217   | SD-217   | SD-315-C                                         |
| Sample ID                   | SD-216-0010                                      | SD-216-0020 | SD-216-0030 | SD-216-0040 | SD-216-0050 | SD-216-0060 | SD-216-0070 | SD-217-0000 | SD-217-0010 | SD-217-0020 | SD-217-0030 |          |          |                                                  |
|                             | ,                                                |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
|                             | 1 '                                              |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
|                             | 1 '                                              |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
|                             | 1 '                                              |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
|                             |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Sample Date                 |                                                  | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04  | 4/22/04  | 8/19/04                                          |
| Depth (ft BGS)              | 1 to 2                                           | 2 to 3      | 3 to 4      | 4 to 5      | 5 to 5.9    | 6 to 7      | 7 to 7.7    | 0 to 0.9    | 1 to 1.9    | 2 to 2.9    | 3 to 3.7    | 4 to 4.5 | 5 to 5.6 | 1 to 2                                           |
| 2,4-Dinitrophenol           | ,                                                |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 2,4-Dinitrotoluene          | ·                                                |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 2,6-Dinitrotoluene          |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 2-Chlorophenol              | ·                                                |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 2-Methylphenol              |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 2-Nitroaniline              |                                                  |             |             |             |             |             |             |             |             |             |             |          |          | <b>——</b>                                        |
| 2-Nitrophenol               | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |          |          | <del>                                     </del> |
| 3,3'-Dichlorobenzidine      |                                                  |             |             |             |             |             |             |             |             |             |             |          |          | <del>                                     </del> |
|                             | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |          |          | <del> </del>                                     |
| 3-Nitroaniline              | <del>                                     </del> |             |             |             |             |             |             |             |             |             |             |          |          | <del></del>                                      |
| 4,6-Dinitro-o-cresol        | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |          |          | <del></del>                                      |
| 4-Bromophenyl phenyl ether  | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |          |          | <b></b>                                          |
| 4-Chloro-3-methylphenol     | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |          |          | <b></b>                                          |
| 4-Chloroaniline             | <u> </u>                                         |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 4-Chlorophenyl phenyl ether |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 4-Methylphenol              | 1                                                |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 4-Nitroaniline              | 1                                                |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| 4-Nitrophenol               |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Aniline                     |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Benzoic acid                |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Benzyl alcohol              |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| bis(2-chloroethoxy)methane  |                                                  |             |             |             |             |             |             |             |             |             |             |          |          | <del> </del>                                     |
| bis(2-chloroethyl)ether     | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |          |          | <del>                                     </del> |
| bis(2-chloroisopropyl)ether | <del></del>                                      |             |             |             |             |             |             |             |             |             |             |          |          | <del> </del>                                     |
|                             | <b></b>                                          |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Carbazole                   | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |          |          | <del></del>                                      |
| Hexachlorobenzene           | <b></b> '                                        |             |             |             |             |             |             |             |             |             |             |          |          | <b></b>                                          |
| Hexachlorobutadiene         | <u> </u>                                         |             |             |             |             |             |             |             |             |             |             |          |          | <u> </u>                                         |
| Hexachlorocyclopentadiene   | <u> </u>                                         |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Hexachloroethane            |                                                  |             |             |             |             |             |             |             |             |             |             |          |          | <u> </u>                                         |
| Isophorone                  | <u> </u>                                         |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Nitrobenzene                |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| n-Nitrosodimethylamine      |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| n-Nitroso-di-n-propylamine  |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| n-Nitrosodiphenylamine      |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Pentachlorophenol           |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Phenol                      |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| PCBs (ug/kg dw)             |                                                  |             |             |             |             |             |             |             |             |             |             |          |          | <del></del>                                      |
| Aroclor-1016                | 19 U                                             | 20 U        | 19 U        | 20 U        | 19 U        | 20 U        | 19 U        | 19 U        | 96 U        | 19 U        | 19 U        | 19 U     | 19 U     | 11.3 U                                           |
| Aroclor-1016 Aroclor-1221   | 19 U                                             | 20 U        | 19 U        | 20 U        | 19 U        | 20 U        | 19 U        | 19 U        | 96 U        | 19 U        | 19 U        | 19 U     | 19 U     | 22.6 U                                           |
|                             |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Aroclor-1232                | 19 U                                             | 20 U        | 19 U        | 20 U        | 19 U        | 20 U        | 19 U        | 19 U        | 96 U        | 19 U        | 19 U        | 19 U     | 19 U     | 11.3 U                                           |
| Aroclor-1242                | 19 U                                             | 20 U        | 19 U        | 20 U        | 19 U        | 20 U        | 19 U        | 19 U        | 96 U        | 19 U        | 19 U        | 19 U     | 19 U     | 11.3 U                                           |
| Aroclor-1248                | 60                                               | 220         | 300         | 190         | 110         | 490         | 370         | 100         | 240         | 64          | 97          | 19 U     | 19 U     | 11.3 U                                           |
| Aroclor-1254                | 120                                              | 260         | 490         | 230         | 99          | 590         | 380         | 200         | 450         | 170         | 260         | 34       | 19 U     | 11.3 U                                           |
| Aroclor-1260                | 50                                               | 47 J        | 190         | 63          | 27          | 210         | 160         | 100         | 96 U        | 45          | 99          | 19 U     | 19 U     | 11.3 U                                           |
| Aroclor-1262                |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| Aroclor-1268                |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| PCB-018                     |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| PCB-028                     |                                                  |             |             |             |             |             |             |             |             |             |             |          |          |                                                  |
| PCB-044                     |                                                  |             |             |             |             |             |             | 1           |             |             | 1           |          |          |                                                  |
|                             |                                                  |             |             |             |             | l           |             | L           |             |             | L           | l .      |          |                                                  |

|                            |             |             |             |             |             | VASHING I O | - `         |             |             |             |             |             |             |                                                  |
|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------|
| Location                   | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-216      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217      | SD-217      | SD-315-C                                         |
| Sample ID                  | SD-216-0010 | SD-216-0020 | SD-216-0030 | SD-216-0040 | SD-216-0050 | SD-216-0060 | SD-216-0070 | SD-217-0000 | SD-217-0010 | SD-217-0020 | SD-217-0030 | SD-217-0040 | SD-217-0050 | SD-315-0001                                      |
| ·                          |             |             |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
|                            | 4/04/04     | 4/04/04     | 4/04/04     | 4/04/04     | 4/04/04     | 4/04/04     | 4/04/04     | 4/00/04     | 4/00/04     | 4/00/04     | 4/00/04     | 4/00/04     | 4/00/04     | 0/40/04                                          |
| Sample Date                |             | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/21/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 4/22/04     | 8/19/04                                          |
| Depth (ft BGS)             | 1 to 2      | 2 to 3      | 3 to 4      | 4 to 5      | 5 to 5.9    | 6 to 7      | 7 to 7.7    | 0 to 0.9    | 1 to 1.9    | 2 to 2.9    | 3 to 3.7    | 4 to 4.5    | 5 to 5.6    | 1 to 2                                           |
| PCB-055                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-066                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-077                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-081                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-101                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-105                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-114                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| PCB-118                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| PCB-123                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| PCB-126                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| PCB-128                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| PCB-138                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-153                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <u> </u>                                         |
| PCB-156                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-157                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-167                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-169                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-170                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-180                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-187                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| PCB-189                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| PCB-109                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| PCB-206                    |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| PCB-209                    |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Total PCBs                 | 230         | 530 J       | 980         | 480         | 240         | 1,290       | 910         | 400         | 690         | 280         | 460         | 34          | 19 U        | 22.6 U                                           |
| Phthalates (ug/kg dw)      |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Bis(2-ethylhexyl)phthalate |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Butyl benzyl phthalate     |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Diethyl phthalate          |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Dimethyl phthalate         |             |             |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
| Di-n-butyl phthalate       |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Di-n-octyl phthalate       |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Pesticides (ug/kg dw)      |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | <del>                                     </del> |
| Aldrin                     |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| beta-Chlordane             |             |             |             |             |             |             |             |             |             |             |             |             |             | <b></b>                                          |
| Chlordane                  |             |             |             |             |             |             |             |             |             |             |             |             |             | <del></del>                                      |
| Dieldrin                   |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Heptachlor epoxide         |             |             |             |             |             |             |             |             |             |             |             |             |             | <u> </u>                                         |
| Total aldrin/dieldrin      |             |             |             |             |             |             |             |             |             |             |             |             |             | 1                                                |
| Total chlordane            |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Total DDTs                 |             |             |             |             |             |             |             |             |             |             |             |             |             | ſ                                                |
| VOCs (ug/kg dw)            | İ           |             |             |             |             |             |             | İ           |             |             |             |             |             |                                                  |
| Ethylbenzene               |             |             |             |             |             |             |             |             |             |             |             |             |             | <del>                                     </del> |
|                            |             |             |             |             |             |             |             |             |             |             |             |             |             | <del>                                     </del> |
| Total xylenes              |             |             |             |             |             |             |             |             |             |             |             |             |             |                                                  |
| Trichloroethene            | ļ           |             |             |             |             |             |             | l           |             |             |             |             |             |                                                  |

| Location                                        | SD-315-C    | SD-315-C    |
|-------------------------------------------------|-------------|-------------|
| Sample ID                                       | SD-315-0002 | SD-315-0003 |
|                                                 |             |             |
|                                                 |             |             |
|                                                 |             |             |
|                                                 |             |             |
| Sample Date                                     | 8/19/04     | 8/19/04     |
| Depth (ft BGS)                                  | 2 to 3      | 3 to 4      |
| Conventionals                                   |             |             |
| Ammonia (mg/kg dw)                              |             |             |
| Percent moisture (%dw)                          |             |             |
| Specific gravity (g/cc)                         |             |             |
| Total organic carbon (% dw)                     | 0.3         | 0.18        |
| Total solids (%ww)                              |             |             |
| Total volatile solids (%ww)                     |             |             |
| Grain size (%dw)                                |             |             |
| Fractional % >9525 microns                      |             |             |
| Fractional % phi >-1 (>2000 microns)            |             |             |
| Fractional % phi 0-1 (500-1000 microns)         |             |             |
| Fractional % phi -1-0 (1000-2000 microns)       |             |             |
| Fractional % phi 10+ (<0.98 micron)             |             |             |
| Fractional % phi 1-2 (250-500 microns)          |             |             |
| Fractional % phi -2-(-1) (2000-4000 microns)    |             |             |
| Fractional % phi 2-3 (125-250 microns)          |             |             |
| Fractional % phi 3-4 (62.5-125 microns)         |             |             |
| Fractional % phi 4-5 (31.2-62.5 microns)        |             |             |
| Fractional % phi 5-6 (15.6-31.2 microns)        |             |             |
| Fractional % phi 6-7 (7.8-15.6 microns)         |             |             |
| Fractional % phi 7-8 (3.9-7.8 microns)          |             |             |
| Fractional % phi 8-9 (1.95-3.9 microns)         |             |             |
| Fractional % phi 9-10 (0.98-1.95 microns)       |             |             |
| Fractional % Sieve 3/8-inch (4750-9525 microns) |             |             |
| Total clay                                      |             |             |
| Total Fines                                     |             |             |
| Total fines (percent silt+clay)                 |             |             |
| Total gravel                                    |             |             |
| Total sand                                      |             |             |
| Total silt                                      |             |             |
| Geotechnical                                    |             |             |
| Atterberg limits classification                 |             |             |
| Bulk density (dry) (pcf)                        |             |             |
| Bulk density (wet) (pcf)                        |             |             |
| Porosity (S.U.)                                 |             |             |
| Metals (mg/kg dw)                               |             |             |
| Aluminum                                        |             |             |
| Antimony                                        |             |             |
| Arsenic                                         |             |             |
| Barium                                          |             |             |
| Beryllium                                       |             |             |
| Cadmium                                         |             |             |
| Calcium                                         |             |             |
| Chromium                                        |             |             |
| Cobalt                                          |             |             |
| Copper                                          |             |             |
| Iron                                            |             |             |
| Lead                                            |             |             |

| Location                 | SD-315-C    | SD-315-C    |
|--------------------------|-------------|-------------|
| Sample ID                | SD-315-0002 | SD-315-0003 |
|                          |             |             |
|                          |             |             |
|                          |             |             |
|                          |             |             |
| Sample Date              | 8/19/04     | 8/19/04     |
| Depth (ft BGS)           | 2 to 3      | 3 to 4      |
| Magnesium                |             | 0.00.       |
| Manganese                |             |             |
| Mercury                  |             |             |
| Molybdenum               |             |             |
| Nickel                   |             |             |
| Potassium                |             |             |
| Selenium                 |             |             |
| Silver                   |             |             |
|                          |             |             |
| Sodium                   |             |             |
| Thallium                 |             |             |
| Tin                      |             |             |
| Vanadium                 |             |             |
| Zinc                     |             |             |
| PAHs (ug/kg dw)          |             |             |
| 1-Methylnaphthalene      |             |             |
| 2-Chloronaphthalene      |             |             |
| 2-Methylnaphthalene      |             |             |
| Acenaphthene             |             |             |
| Acenaphthylene           |             |             |
| Anthracene               |             |             |
| Benzo(a)anthracene       |             |             |
| Benzo(a)pyrene           |             |             |
| Benzo(b)fluoranthene     |             |             |
| Benzo(g,h,i)perylene     |             |             |
| Benzo(k)fluoranthene     |             |             |
| Chrysene                 |             |             |
| cPAHs - mammal - half DL |             |             |
| Dibenzo(a,h)anthracene   |             |             |
| Dibenzofuran             |             |             |
| Fluoranthene             |             |             |
| Fluorene                 |             |             |
| Indeno(1,2,3-cd)pyrene   |             |             |
| Naphthalene              |             |             |
| Phenanthrene             |             |             |
| Pyrene                   |             |             |
| Total benzofluoranthenes |             |             |
| Total HPAHs              |             |             |
| Total LPAHs              |             |             |
| Total PAHs               |             |             |
| Other SVOCs (ug/kg dw)   |             |             |
| 1,2,4-Trichlorobenzene   |             |             |
| 1,2-Dichlorobenzene      |             |             |
| 1,3-Dichlorobenzene      |             |             |
| 1,4-Dichlorobenzene      |             |             |
| ·                        |             |             |
| 2,4,5-Trichlorophenol    |             |             |
| 2,4,6-Trichlorophenol    |             |             |
| 2,4-Dichlorophenol       |             |             |
| 2,4-Dimethylphenol       |             |             |

| Location                     |             | SD-315-C    |
|------------------------------|-------------|-------------|
| Sample ID                    | SD-315-0002 | SD-315-0003 |
|                              |             |             |
|                              |             |             |
|                              |             |             |
|                              |             |             |
| Sample Date                  | 8/19/04     | 8/19/04     |
| Depth (ft BGS)               | 2 to 3      | 3 to 4      |
| 2,4-Dinitrophenol            |             |             |
| 2,4-Dinitrotoluene           |             |             |
| 2,6-Dinitrotoluene           |             |             |
| 2-Chlorophenol               |             |             |
| 2-Methylphenol               |             |             |
| 2-Nitroaniline               |             |             |
| 2-Nitrophenol                |             |             |
| 3,3'-Dichlorobenzidine       |             |             |
| 3-Nitroaniline               |             |             |
| 4,6-Dinitro-o-cresol         |             |             |
| 4-Bromophenyl phenyl ether   |             |             |
| 4-Chloro-3-methylphenol      |             |             |
| 4-Chloroaniline              |             |             |
| 4-Chlorophenyl phenyl ether  |             |             |
| 4-Methylphenol               |             |             |
| 4-Nitroaniline               |             |             |
| 4-Nitrophenol                |             |             |
| Aniline                      |             |             |
| Benzoic acid                 |             |             |
| Benzyl alcohol               |             |             |
| bis(2-chloroethoxy)methane   |             |             |
| bis(2-chloroethyl)ether      |             |             |
| bis(2-chloroisopropyl)ether  |             |             |
| Carbazole                    |             |             |
| Hexachlorobenzene            |             |             |
| Hexachlorobutadiene          |             |             |
| Hexachlorocyclopentadiene    |             |             |
| Hexachloroethane             |             |             |
| Isophorone                   |             |             |
| Nitrobenzene                 |             |             |
| n-Nitrosodimethylamine       |             |             |
| n-Nitroso-di-n-propylamine   |             |             |
| n-Nitrosodiphenylamine       |             |             |
| Pentachlorophenol            |             |             |
| Phenol                       |             |             |
| PCBs (ug/kg dw)              |             |             |
| Aroclor-1016                 | 46 U        | 67 U        |
| Aroclor-1221                 | 46 U        | 67 U        |
| Aroclor-1221<br>Aroclor-1232 | 91 U        | 13 U        |
| Aroclor-1232<br>Aroclor-1242 | 46 U        | 6.7 U       |
| Aroclor-1242<br>Aroclor-1248 | 46 U        | 6.7 U       |
| Aroclor-1254                 | 4.6 U       | 6.7 U       |
| Aroclor-1254<br>Aroclor-1260 | 4.6 U       |             |
|                              | 4.0 U       | 6.7 U       |
| Aroclor-1262<br>Aroclor-1268 |             |             |
| PCB-018                      |             |             |
| PCB-018<br>PCB-028           |             |             |
|                              |             |             |
| PCB-044                      |             |             |

| Р | age 1 | 6 of | 16 |
|---|-------|------|----|
|   | aut i | U UI | 10 |

| Location                      | SD-315-C    | SD-315-C    |
|-------------------------------|-------------|-------------|
| Sample ID                     |             | SD-315-C    |
| Sample ID                     | 30-313-0002 | 30-313-0003 |
|                               |             |             |
|                               |             |             |
|                               |             |             |
| Samula Data                   | 8/19/04     | 9/4 0/04    |
| Sample Date<br>Depth (ft BGS) |             | 8/19/04     |
|                               | 2 to 3      | 3 to 4      |
| PCB-055                       |             |             |
| PCB-066                       |             |             |
| PCB-077<br>PCB-081            |             |             |
|                               |             |             |
| PCB-101<br>PCB-105            |             |             |
| PCB-103<br>PCB-114            |             |             |
| PCB-114<br>PCB-118            |             |             |
| PCB-116<br>PCB-123            |             |             |
| PCB-123<br>PCB-126            |             |             |
| PCB-120<br>PCB-128            |             |             |
| PCB-120<br>PCB-138            |             |             |
| PCB-130<br>PCB-153            |             |             |
| PCB-156                       |             |             |
| PCB-157                       |             |             |
| PCB-167                       |             |             |
| PCB-169                       |             |             |
| PCB-170                       |             |             |
| PCB-180                       |             |             |
| PCB-187                       |             |             |
| PCB-189                       |             |             |
| PCB-195                       |             |             |
| PCB-206                       |             |             |
| PCB-209                       |             |             |
| Total PCBs                    | 91 U        | 67 U        |
| Phthalates (ug/kg dw)         |             |             |
| Bis(2-ethylhexyl)phthalate    |             |             |
| Butyl benzyl phthalate        |             |             |
| Diethyl phthalate             |             |             |
| Dimethyl phthalate            |             |             |
| Di-n-butyl phthalate          |             |             |
| Di-n-octyl phthalate          |             |             |
| Pesticides (ug/kg dw)         |             |             |
| Aldrin                        |             |             |
| beta-Chlordane                |             |             |
| Chlordane                     |             |             |
| Dieldrin                      |             |             |
| Heptachlor epoxide            |             |             |
| Total aldrin/dieldrin         |             |             |
| Total chlordane               |             |             |
| Total DDTs                    |             |             |
| VOCs (ug/kg dw)               |             |             |
| Ethylbenzene                  |             |             |
| Total xylenes                 |             |             |
| Trichloroethene               |             |             |

CSL = Cleanup Screening Level mg/kg = milligrams per kilogram OC = organic carbon PCBs = polychlorinated biphenyls

SQS = Sediment Quality Standard

TOC = total organic carbon

ft BGS = feet below ground or sediment surface

LAET=Lowest Apparent Effects Threshold

J = Analyte was positively identified and detected; however, concentration is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.

U = Analyte not detected at quantitation limit indicated.

UJ = Analyte not detected at the indicated quantitation limit, which is estimated.

### Notes:

- 1. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%.
- 2. Organic carbon normalization is performed on samples with TOC between 0.5% and 4%. If TOC is less than 0.5% or greater than 4% then the result is compared to the dry weight equivalent values for the SQS and CSL (typically the Lowest Apparent Effects Threshold (LAET) and the 2nd Lowest Apparent Effects Threshold (2LAET), respectively).

### Soil and Groundwater Preliminary Screening Levels

| Media Column            | edia Column Column Included? |                                                                                                                            |     |    |                                                     |
|-------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----|----|-----------------------------------------------------|
| Title (a)               | Letter                       | Pathway Column Title (a)                                                                                                   | Yes | No | Comments                                            |
|                         | В                            | Groundwater Method A-HH <b>Potable</b> (Table 720-1)<br>WAC 173-340-720(3)(b)(i)                                           | (X) |    | Use Method A for TPH and lead only                  |
|                         | С                            | Groundwater Method A-HH <b>Potable ARARs</b><br>WAC 173-340-720(3)(b)(ii)                                                  | (X) |    | Use Method A for TPH and lead only                  |
|                         | D                            | Groundwater State Quality Criteria WAC 173-340-(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                    |     | х  | Not applicable to MTCA cleanup sites                |
|                         | E                            | Groundwater Method A-HH Potable Safe Drinking Water Act, 40 CFR 141: WAC 173-290-310; WAC 173-340-720(3)(b)(ii)(A) MCL     | (X) |    | Use Method A for TPH and lead only                  |
| Groundwater<br>Method A | F                            | Groundwater Safe Drinking Water Act, 40 CFR 141:<br>WAC 173-290-310; WAC 173-340-720(3)(b)(ii)(B) MCLG<br>(Non-Zero Goals) | (X) |    | Use Method A for TPH and lead only                  |
|                         | G                            | Groundwater State Board Health, Ch. 246-290 WAC:<br>WAC 173-340-720(3)(b)(ii)(C) <b>MCL</b>                                | (X) |    | Use Method A for TPH and lead only                  |
|                         | Н                            | Groundwater State Board Health, Ch. 246-290 WAC:<br>WAC 173-340-720(3)(b)(ii)(C) <b>MCLG</b>                               | (X) |    | Use Method A for TPH and lead only                  |
|                         | ļ                            | Groundwater Method A <b>-Potable</b> No Table Values WAC 173-340-720(3)(b)(iii)                                            | (X) |    | Use Method A for TPH and lead only                  |
|                         | J                            | Groundwater Method A-HH Potable/Protect Surface Water WAC 173-340-720(3)(b)(iv)                                            | (X) |    | Use Method A for TPH and lead only                  |
|                         | К                            | Groundwater Method B-HH Potable ARARs WAC 173-340-720(4)(b)(i) Safe Drinking Water Standards — <b>MCLs</b>                 | Х   |    | Use for preliminary screening levels                |
|                         | L                            | Groundwater Method B-HH Potable ARARs<br>WAC 173-340-720(4)(b)(i) Safe Drinking Water Standards — <b>MCLGs</b>             | х   |    | Use non-zero MCLGs for preliminary screening levels |
|                         | М                            | Groundwater Method B-HH Potable ARARs WAC 173-340-720(4)(b)(i) State Department of Health Standards — <b>MCLs</b>          | x   |    | Use for preliminary screening levels                |
| Groundwater<br>Method B | N                            | Groundwater Method B-HH Potable ARARs WAC 173-340-720(4)(b)(i) State Department of Health Standards — MCLGs                | x   |    | Use non-zero MCLGs for preliminary screening levels |
|                         | 0                            | Groundwater Method B-HH Non-carcinogenic/Potable<br>WAC 173-340-720(4)(b)(iii)(A) CLARC Database                           | Х   |    | Use for preliminary screening levels                |
|                         | Р                            | Groundwater Method B-HH Carcinogen/Potable<br>WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                 | х   |    | Use for preliminary screening levels                |
| _                       | Q                            | Groundwater Method B-HH Potable, Petroleum Mixture<br>WAC 173-340-720(4)(b)(iii)(C) EQ. 720-3 (4-Phase Model)              |     | Х  | Use Method A for TPH                                |

| Media Column            | Column | Pathway Column Title (a)                                                                                      |     | ided? |                                                                                                                                                                                                        |
|-------------------------|--------|---------------------------------------------------------------------------------------------------------------|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title (a)               | Letter |                                                                                                               | Yes | No    | Comments                                                                                                                                                                                               |
|                         | R      | Groundwater Method C-HH Potable ARARs<br>WAC 173-340-720(5)(b)(i)                                             |     | х     | Not applicable; Site groundwater does not meet criteria for Method C                                                                                                                                   |
|                         | s      | Groundwater Method C-HH Protect Surface Water Highest Beneficial Use WAC 173-340-720(5)(b)(ii)                |     | х     | Not applicable; Site groundwater does not meet criteria for Method C                                                                                                                                   |
| Groundwater<br>Method C | Т      | Groundwater Method C-HH Non-carcinogenic/Potable<br>WAC 173-340-720(5)(b)(iii)(A) CLARC Database              |     | х     | Not applicable; Site groundwater does not meet criteria for Method C                                                                                                                                   |
|                         | U      | Groundwater Method C-HH Carcinogen/Potable<br>WAC 173-340-720(5)(b)(iii)(B) CLARC Database                    |     | х     | Not applicable; Site groundwater does not meet criteria for Method C                                                                                                                                   |
|                         | V      | Groundwater Method C-HH Potable, Petroleum Mixture<br>WAC 173-340-720(5)(b)(iii)(C) EQ. 720-3 (4-Phase Model) |     | x     | Use Method A for TPH; Site groundwater does not meet criteria for Method C                                                                                                                             |
|                         | W      | Groundwater Method B-HH Potable/Protect Surface Water WAC 173-340-720(4)(b)(ii)                               | х   |       | Use for preliminary screening levels                                                                                                                                                                   |
| Groundwater<br>Pathway  | x      | Groundwater Non-Potable Surface Water Protection WAC 173-340-720(6)                                           | x   |       | Use for preliminary screening levels                                                                                                                                                                   |
| Evaluation              | Y      | Groundwater to Sediment Protection Ecology <b>CSL</b> WAC 173-340-720(1)(c)                                   | х   |       | Use for preliminary screening levels                                                                                                                                                                   |
|                         | Z      | Groundwater to Sediment Protection Ecology <b>SQS</b><br>WAC 173-340-720(1)(c)                                | х   |       | Use for preliminary screening levels                                                                                                                                                                   |
| ARAR's                  | AA     | EPA CERCLA T-117                                                                                              |     | х     | Not used for preliminary screening levels                                                                                                                                                              |
| ARAKS                   | AB     | EPA RCRA Plant 2 TMCLs                                                                                        |     | х     | The values in this column are preliminary values from Boeing Plant 2; input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels. |
| ARAR's (Not<br>Applied) | AC     | EPA Tap Water Residential Screening Levels (5/2010)                                                           |     | х     | Not used for preliminary screening levels                                                                                                                                                              |
|                         | AD     | Natural <b>Background</b> Levels Ch. 173-340 WAC                                                              |     | х     | Not used for preliminary screening levels                                                                                                                                                              |
| Always Applicable       | AE     | Applicable <b>DL (MDL)</b> Ch. 173-340 WAC                                                                    |     | х     | Not used for preliminary screening levels                                                                                                                                                              |
|                         | AF     | Applicable PQL (RL) Ch. 173-340 WAC                                                                           |     | х     | Not used for preliminary screening levels                                                                                                                                                              |
| EPA Method              | AG     | Analytical Methods                                                                                            |     | х     | Analytical method, not screening level or ARAR                                                                                                                                                         |

(X) = used under specific conditions explained in the comment column ARAR = applicable or relevant and appropriate requirement CLARC = cleanup level and risk calculation CSL = cleanup screening level DL = detection limit HH = human health

I-T = Boeing Isaacson-Thompson Site

MCL = maximum contaminant level

MCL = maximum contaminant level MCLG = maximum contaminant level goal MDL = method detection limit PQL = practical quantitation limit Site = Boeing Isaacson-Thompson Site SQS = sediment quality standard TMCL = total maximum contaminant load TPH = Total Petroleum Hydrocarbon USGS = U.S. Geological Survey

(a) From Ecology's (2010) Draft LDW ARARs & CULs v12-15-2010.

| Media Column               | Column |                                                                                                                              | Inclu | ded2  |                                                                                                                                                                                |
|----------------------------|--------|------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title (a)                  | Letter | Pathway Column Title (a)                                                                                                     | Yes   | No No | Comments                                                                                                                                                                       |
|                            | В      | Soil Method A, Unrestricted Land Use-HH WAC 173-340-740(2)(b)(iii) CLARC Database                                            | (X)   |       | Use for TPH, arsenic, and lead only. Site is industrial; use for preliminary screening only                                                                                    |
| Soil Method A              | С      | Soil Method A, Unrestricted Land Use-Ecol WAC 173-340-740(2)(b)(ii); Table 749-2                                             | х     |       | Simplified TEE. Use for preliminary screening only. Site is industrial and is expected to meet criteria for TEE exclusion                                                      |
| Con Mounda / C             | D      | Soil Method A, Industrial Land Use-HH WAC 173-340-745(3)(b)(i) CLARC Database                                                | (X)   |       | Use for TPH, arsenic, and lead only.                                                                                                                                           |
|                            | Е      | Soil Method A, Industrial Land Use-Ecol, WAC 173-340-745(3)(b)(iii) Table 749-2                                              | Х     |       | Simplified TEE. Use for preliminary screening only. Site is industrial and is expected to meet criteria for TEE exclusion                                                      |
|                            | F      | Soil Direct Contact Method B-HH Carcinogen WAC 173-340-740(3)(b)(iii)(B)(II) CLARC Database, Eqn 740-2                       | х     |       | Site is industrial. Use for preliminary screening only.                                                                                                                        |
|                            | G      | Soil Direct Contact Method B-HH Non-carcinogen WAC 173-340-740(3)(b)(iii)(B)(l) CLARC Database, Eqn 740-1                    | х     |       | Site is industrial. Use for preliminary screening only.                                                                                                                        |
|                            | Н      | Soil Direct Contact Method B-HH Petroleum Mixture WAC 173-340-740(3)(b)(iii)(B)(III) equation. 740-3 (4-Phase Model)         |       | х     | Data for use of Method B not available. Use Method A for preliminary screening level.                                                                                          |
| Soil Method B              | 1      | Site-Specific Wildlife Exposure Model WAC 173-340-7493(3) Table 749-4 and -5                                                 |       | Х     | Site-specific TEE not required for Site.                                                                                                                                       |
|                            | J      | Soil Terrestrial Method B-Ecol WAC 173-340-740(3)(b)(ii); WAC 173-340-7493 Table 749-3 Plants                                |       | х     | Site-specific TEE not required for Site, plant protection not required for commercial or industrial sites.                                                                     |
|                            | К      | Soil Terrestrial Method B-Ecol WAC 173-340-740(3)(b)(ii); WAC 173-340-7493 Table 749-3 Soil Biota                            |       | х     | Site-specific TEE not required for Site, biota protection not required for commercial or industrial properties                                                                 |
|                            | L      | Soil Terrestrial Method B-Ecol WAC 173-340-740(3)(b)(ii); WAC 173-340-7493 Table 749-3 Wildlife                              |       | Х     | Site-specific TEE not required for Site.                                                                                                                                       |
|                            | М      | Soil Direct Contact Method C-HH Carcinogen WAC 173-340-745(5)(b)(iii)(B)(II) Ingestion Only CLARC Database equation 745-2    | х     |       | Use for preliminary screening levels                                                                                                                                           |
|                            | N      | Soil Direct Contact Method C-HH Non-carcinogen WAC 173-340-745(5)(b)(iii)(B)(l) Ingestion Only CLARC Database equation 745-1 | Х     |       | Use for preliminary screening levels                                                                                                                                           |
| Soil Method C              | 0      | Soil Direct Contact Method C-HH Carcinogen WAC 173-340-745(5)(b)(iii)(B)(II) Ingestion + Dermal equation 745-5               |       | х     | Not applicable; only applicable if proposed changes to745-2 would result in significantly higher soil cleanup level than would be calculated without the proposed changes      |
|                            | Р      | Soil Direct Contact Method C-HH Non-carcinogen WAC 173-340-745(5)(b)(iii)(B)(l) Ingestion + Dermal equation 745-4            |       | х     | Not applicable; only applicable if proposed changes to Eqn 745-1 would result in significantly higher soil cleanup level than would be calculated without the proposed changes |
|                            | Q      | Soil Direct Contact Method C-HH Petroleum Mixture<br>WAC 173-340-745(5)(b)(iii)(B)(III) equation 740-3 (4-Phase Model)       |       | Х     | Data for use of Method C not available. Use Method A for preliminary screening level.                                                                                          |
| Soil Pathway<br>Evaluation | R      | Soil to Method B-HH Groundwater Protection -NC, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Vadose Soil               | х     |       | Use for preliminary screening levels                                                                                                                                           |
|                            | s      | Soil to Method B-HH Groundwater Protection - NC, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Saturated Soil           | х     |       | Use for preliminary screening levels                                                                                                                                           |
|                            | Т      | Soil to Method B - HH Groundwater Protection - Carc, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Vadose Soil          | Х     |       | Use for preliminary screening levels                                                                                                                                           |
|                            | U      | Soil to Method B - HH Groundwater Protection - Carc, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Saturated Soil       | х     |       | Use for preliminary screening levels                                                                                                                                           |
|                            | V      | Soil to Method C-HH Groundwater Protection - NC, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Vadose Soil              |       | х     | Use Method A for TPH; Site groundwater does not meet criteria for Method C                                                                                                     |
|                            | W      | Soil to Method C-HH Groundwater Protection - NC, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Saturated Soil           |       | х     | Site groundwater does not meet criteria for Method C groundwater                                                                                                               |
|                            | Х      | Soil to Method C-HH Groundwater Protection - Carc, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Vadose Soil            |       | Х     | Site groundwater does not meet criteria for Method C groundwater                                                                                                               |
|                            | Y      | Soil to Method C-HH Groundwater Protection - Carc, WAC 173-340-740(3)(b)(iii)(A) equation 747-1/747-2 Saturated Soil         |       | х     | Site groundwater does not meet criteria for Method C groundwater                                                                                                               |
|                            |        |                                                                                                                              | •     |       |                                                                                                                                                                                |

| Z Soil to Sediment Protection Ecology CSL WAC 173-340-740(1)(d) equation 747-1747-2 Vadose Soil  AS Soil to Sediment Protection Ecology SQS WAC 173-340-740(1)(d) equation 747-1747-2 Vadose Soil  X Use for preliminary screening levels, empirical demonstratic  AB Soil to Sediment Protection Ecology CSL WAC 173-340-740(1)(d) equation 747-1747-2 Saturated Soil  X Use for preliminary screening levels, empirical demonstratic  AC Soil to Sediment Protection Ecology SQS WAC 173-340-740(1)(d) equation 747-1747-2 Saturated Soil  X Use for preliminary screening levels, empirical demonstratic  AD Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Vadose  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - A | on may be used for cleanup levels   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| AB Soil to Sediment Protection Ecology CSL WAC 173-340-740(1)(d) equation 747-1/747-2 Saturated Soil  AC Soil to Sediment Protection Ecology SQS WAC 173-340-740(1)(d) equation 747-1/747-2 Saturated Soil  AD Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Vadose Soil  AE Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Saturated Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| AC Soil to Sediment Protection Ecology SQS WAC 173-340-740(1)(d) equation 747-1/747-2 Saturated Soil  AD Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Vadose Soil  AE Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Saturated Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  AI Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on may be used for cleanup levels   |
| AD Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Vadose X Use MDLs for I-T Site to calculate PQL  AE Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Saturated Soil X Calculate PQLs using MDLs for I-T and use for preliminary Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil X Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil X Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil X Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil V Surface Water Protection Aquatic Life SWQS:RCW 90-48; V Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil V V Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil V V Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil V V Use for preliminary screening levels, empirical demonstratic Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil V V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                           | on may be used for cleanup levels   |
| AE Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Saturated Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  Al Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;  Al Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;  Al Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on may be used for cleanup levels   |
| AE Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Acute Saturated Soil  AF Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  Al Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;  Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| AF Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Vadose Soil  AG Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil  AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  Al Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;  Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;  V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | screening levels                    |
| AG Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Soil X Use for preliminary screening levels, empirical demonstration   AH Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Surface Water Protection Aquatic Life SWQS:RCW 90-48;    All Surface Water Protection Aquat | on may be used for cleanup levels   |
| AH Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Vadose Soil  X Use for preliminary screening levels, empirical demonstration  Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on may be used for cleanup levels   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on may be used for cleanup levels   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on may be used for cleanup levels   |
| AJ Soil to Surface Water Protection Aquatic Life <b>SWQS</b> :RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) <b>Marine - Chronic</b> Vadose Soil Use for preliminary screening levels, empirical demonstration Listed numbers for Unocal are not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on may be used for cleanup levels.  |
| AK Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Chronic Saturated Soil  Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on may be used for cleanup levels   |
| AL Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Saltwater Acute equation 747-1/747-2 Vadose Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on may be used for cleanup levels   |
| AM Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Saltwater Acute equation 747-1/747-2 Saturated Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on may be used for cleanup levels   |
| AN Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Saltwater Chronic equation 747-1/747-2 Vadose Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on may be used for cleanup levels   |
| AO Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Saltwater Chronic equation 747-1/747-2 Saturated Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on may be used for cleanup levels   |
| AP Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Freshwater Acute equation 747-1/747-2 Vadose Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on may be used for cleanup levels   |
| AQ Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Freshwater Acute equation 747-1/747-2 Saturated Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on may be used for cleanup levels   |
| AR Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Freshwater Chronic equation 747-1/747-2 Vadose Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on may be used for cleanup levels   |
| AS Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC Freshwater Chronic equation 747-1/747-2 Saturated Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on may be used for cleanup levels   |
| AT Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC HH-Consumption; Water & Organisms equation 747-1/747-2 Vadose Soil X LDW not classified as drinking water source (WAC 173-201 applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-602) so ingestion of water is not |
| AU Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC HH-Consumption; Water & Organisms equation 747-1/747-2 Saturated Soil X LDW not classified as drinking water source (WAC 173-201 applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A-602) so ingestion of water is not |
| AV Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC HH-Consumption Organisms equation 747-1/747-2 Vadose Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on may be used for cleanup levels   |
| AW Soil to Surface Water Protection WAC 173-340-740(1)(d) NRWQC HH-Consumption Organisms equation 747-1/747-2 Saturated Soil X Use for preliminary screening levels, empirical demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |

| Media Column   | Column |                                                                                                                                                                      | Inclu | ded? |                                                                                                                                                                                                        |
|----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title (a)      | Letter | Pathway Column Title (a)                                                                                                                                             | Yes   | No   | Comments                                                                                                                                                                                               |
|                | AX     | Soil to Surface Water Protection Aquatic Life Fresh/Acute, <b>NTR</b> - 40 CFR 131.36 Vadose Soil                                                                    | Х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | AY     | Soil to Surface Water Protection Aquatic Life Fresh/Acute, <b>NTR</b> - 40 CFR 131.36 Saturated Soil                                                                 | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | AZ     | Soil to Surface Water Protection Aquatic Life Fresh/Chronic, NTR - 40 CFR 131.36 Vadose Soil                                                                         | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | BA     | Soil to Surface Water Protection Aquatic Life Fresh/Chronic, NTR - 40 CFR 131.36 Saturated Soil                                                                      | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | ВВ     | Soil to Surface Water Protection Aquatic Life Marine/Acute, NTR - 40 CFR 131.36 Vadose Soil                                                                          | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | ВС     | Soil to Surface Water Protection Aquatic Life Marine/Acute, NTR - 40 CFR 131.36 Saturated Soil                                                                       | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | BD     | Soil to Surface Water Protection Aquatic Life Marine/Chronic, NTR - 40 CFR 131.36 Vadose Soil                                                                        | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | BE     | Soil to Surface Water Protection Aquatic Life Marine/Chronic, NTR - 40 CFR 131.36 Saturated Soil                                                                     | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | BF     | Soil to Surface Water Protection HH-Fresh Water <b>Water &amp; Organism Consumption NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk Vadose Soil    |       | х    | LDW not classified as drinking water source (WAC 173-201A-602) so ingestion of water is not applicable.                                                                                                |
|                | BG     | Soil to Surface Water Protection HH-Fresh Water <b>Water &amp; Organism Consumption NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk Saturated Soil |       | Х    | LDW not classified as drinking water source (WAC 173-201A-602) so ingestion of water is not applicable.                                                                                                |
|                | вн     | Soil to Surface Water Protection HH-Fresh Water <b>Organism Consumption Only NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk Vadose Soil           | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | ВІ     | Soil to Surface Water Protection HH-Fresh Water <b>Organism Consumption Only NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk Saturated Soil        | х     |      | Use for preliminary screening levels, empirical demonstration may be used for cleanup levels                                                                                                           |
|                | BJ     | Soil Protective of Vapor, Direct Contact, WAC 173-340-740(3)(b)(iii)(C)                                                                                              | х     |      | Use for preliminary screening levels                                                                                                                                                                   |
|                | ВК     | Soil Protective of Vapor, Indoor/Ambient Exposure WAC 173-340-740(3)(c)(iv)(B)                                                                                       |       | Х    | Not applicable, modified Method B soil screening levels not being used for preliminary screening levels.                                                                                               |
|                | BL     | CERCLA EPA Regional Screening Level (RSL: May, 2010) Residential                                                                                                     |       | Х    | Input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels                                                                        |
|                | ВМ     | CERCLA EPA Regional Screening Level (RSL: May, 2010) Industrial                                                                                                      |       | Х    | Input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels                                                                        |
|                | BN     | CERCLA - National Oil & Hazardous Substances Pollution Contingency Plan (NCP) - 40 CFR 300 Preliminary Remediation/Cleanup Goals (2007)                              |       | х    | Input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels                                                                        |
| Soil Potential | ВО     | Soil Protection of Surface Water HH-Organoleptic Effects CWA §304 NRWQC Vadose Soil                                                                                  | х     |      | Use for preliminary screening levels                                                                                                                                                                   |
| ARARs          | BP     | Soil Protection of Surface Water HH-Organoleptic Effects CWA §304 NRWQC Saturated Soil                                                                               | х     |      | Use for preliminary screening levels                                                                                                                                                                   |
|                | BQ     | CA EPA OEHHA HH-Direct Exposure Residential Screening Levels                                                                                                         |       | Х    | Input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels                                                                        |
|                | BR     | CA EPA OEHHA HH-Direct Exposure Industrial Screening Levels                                                                                                          |       | Х    | Input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels                                                                        |
|                | BS     | Soil - Toxic Substances Control Act (TSCA) 40 CFR 761.61                                                                                                             | Х     |      | Use for preliminary screening level for PCBs                                                                                                                                                           |
|                | ВТ     | CERCLA EPA Regional Screening Level (RSL: May, 2010) Potable Groundwater Protection (Risk Based) Saturated Soil                                                      |       | Х    | Input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels                                                                        |
|                | BU     | EPA LDW Plant 2 TMCL's Groundwater Protection (Risk Based)                                                                                                           |       | х    | The values in this column are preliminary values from Boeing Plant 2; input parameters different from MTCA; updated toxicity information included in CLARC. Not used for preliminary screening levels. |

| Media Column      | Column |                                            | Inclu | ded? |                                                |
|-------------------|--------|--------------------------------------------|-------|------|------------------------------------------------|
| Title (a)         | Letter | Pathway Column Title (a)                   | Yes   | No   | Comments                                       |
|                   | BV     | Natural Background Levels Ch. 173-340 WAC  |       | х    | Not used for preliminary screening levels      |
| Always Applicable | BW     | Applicable <b>DL (MDL)</b> Ch. 173-340 WAC |       | Х    | Not used for preliminary screening levels      |
|                   | BX     | Applicable <b>PQL (RL)</b> Ch. 173-340 WAC |       | x    | Not used for preliminary screening levels      |
| EPA Method        | BY     | Analytical Method                          |       | Х    | Analytical method, not screening level or ARAR |

(X) = used under specific conditions explained in the comment column

ARAR = applicable or relevant and appropriate requirement

CA EPA OEHHA = California Environmental Protection Agency Office of Environmental Health Hazard Assessment

CalEPA = California Environmental Protection Agency

Carc = carcinogenic

CLARC = cleanup level and risk calculation

CSL = cleanup screening level

CUL = cleanup level

DL = detection limit

Ecol = ecological

HH = human health I-T = Boeing Isaacson-Thompson Site

LDW = Lower Duwamish Waterway

MDL = method detection limit

MTCA = Model Toxics Control Act

(a) From Ecology's (2010) Draft LDW ARARs & CULs v12-15-2010.

NC = noncarcinogenic

NRWQC = U.S. Environmental Protection Agency water quality criterion

NTR = national toxics rule

PQL = practical quantitation limit

RL = reporting limit

RSL = regional screening level

Site = Boeing Isaacson-Thompson Site

SQS = sediment quality standard

SWQS = Washington State surface water quality standard

TEE = terrestrial ecological evaluation
TMCL = total maximum contaminant load

TPH = Total Petroleum Hydrocarbons

TSCA = Toxic Substances Control Act

|                           | Column |                                                                                                                              | Inclu | ided? |                                                               |
|---------------------------|--------|------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------------------------------------------------------|
| Media Column<br>Title (a) | Letter | Pathway Column Title (a)                                                                                                     | Yes   | No    | Comments                                                      |
|                           | В      | Surface Water Method A-HH ARARs<br>WAC 173-340-730(2)(b)(i) [See Required ARARs]                                             | (X)   |       | Use Method A only for TPH, use ARARs in developing Method B   |
|                           | С      | Surface Water Method A-WAC 173-340-730(2)(b)(i)(A) [See Required ARARs]                                                      | (X)   |       | Use Method A only for TPH, use ARARs in developing Method B   |
| Surface Water<br>Method A | D      | Surface Water Method A-HH/Aquatic Organisms: CWA §304 WAC 173-340-730(2)(b)(i)(B) [See Required ARARs]                       | (X)   |       | Use Method A only for TPH, use ARARs in developing Method B   |
|                           | E      | Surface Water Method A-HH NTR - 40 CFR 131 WAC 173-340-730(2)(b)(i)(C) [See Required ARARs]                                  | (X)   |       | Use Method A only for TPH, use ARARs in developing Method B   |
|                           | F      | Surface Water Method A-HH Potability WAC 173-340-730(2)(b)(ii) [See Required ARARs]                                          | (X)   |       | Use Method A only for TPH, use ARARs in developing Method B   |
|                           | G      | Surface Water Method A-HH No Table Values WAC 173-340-730(2)(b)(iii) [See applicable surface water background or PQL values] | (X)   |       | Use Method A only for TPH                                     |
|                           | Н      | Surface Water Method B-HH ARARs<br>WAC 173-340-730(3)(b)(i) [See Required ARARs]                                             | Х     |       | Use ARARs for preliminary screening levels                    |
|                           | I      | Surface Water Method B-WA WQS: Ch. 173-2101 A<br>WAC 173-340-730(3)(b)(i)(A) [See Required ARARs]                            | Х     |       | Use ARARs for preliminary screening levels                    |
|                           | J      | Surface Water Method B-HH/Aquatic Organisms:CWA §304 WAC 173-340-730(3)(b)(i)(B) [See Required ARARs]                        | Х     |       | Use ARARs for preliminary screening levels                    |
|                           | К      | Surface Water Method B-HH NTR - 40 CFR 131 WAC 173-340-730(3)(b)(i)(C) [See Required ARARs]                                  | Х     |       | Use ARARs for preliminary screening levels                    |
|                           | L      | Surface Water Method B, Environmental Effects WAC 173-340-730(3)(b)(ii) [WET TESTING]                                        |       | x     | Data not available, not used for preliminary screening levels |
|                           | М      | Surface Water Method B-HH Non-carcinogen Fish Consumption WAC 173-340-730(3)(b)(iii)(A) Equation 730-1 CLARC Database        | х     |       | Use for preliminary screening levels                          |
|                           | N      | Surface Water, Method B-HH, Non-carcinogen, Fish Consumption WAC 173-340-730(3) (c) Equation 730-1 MOD - Tribal Adult        | x     |       | Use for preliminary screening levels                          |
| Surface Water             | 0      | Surface Water, Method B-HH, Non-carcinogen, Fish Consumption WAC 173-340-730(3) (c) Equation 730-1 MOD - Tribal Child        | Х     |       | Use for preliminary screening levels                          |
| Method B                  | Р      | Surface Water Method B-HH Carcinogen Fish Consumption WAC 173-340-730(3)(b)(iii)(B) Equation 730-2 CLARC Database            | х     |       | Use for preliminary screening levels                          |
|                           | Q      | Surface Water, Method B-HH, Carcinogen, Fish Consumption WAC 173-340-730(3)(b)(iii)(B) Equation 730-2 MOD - Tribal Adult     | Х     |       | Use for preliminary screening levels                          |
|                           | R      | Surface Water, Method B-HH, Carcinogen, Fish Consumption WAC 173-340-730(3)(b)(iii)(B) Equation 730-2 MOD - Tribal Child     | Х     |       | Use for preliminary screening levels                          |

| Media Column                                         | Column |                                                                                                                                     | Inclu | ided? |                                                                               |
|------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------------------------------|
| Title (a)                                            | Letter | Pathway Column Title (a)                                                                                                            | Yes   | No    | Comments                                                                      |
|                                                      | S      | Surface Water Method B-HH Petroleum Mixture<br>WAC 173-340-730(3)(b)(iii)(C)                                                        |       | х     | Use Method A for TPH                                                          |
|                                                      | Т      | Surface Water Method B-HH Potability WAC 173-340-730(3)(b)(iv)                                                                      |       | х     | Lower Duwamish Waterway not classified as drinking water per WAC 173-201A-602 |
|                                                      | U      | Surface Water Method C-HH ARARs<br>WAC 173-340-730(4)(b)(i) [See Required ARARs]                                                    |       | Х     | Not applicable; Site groundwater does not meet criteria for Method C          |
|                                                      | V      | Surface Water Method C, Environmental Effects WAC 173-340-730(4)(b)(ii) [WET TESTING]                                               |       | х     | Use Method A for TPH; Site groundwater does not meet criteria for Method C    |
| Surface Water                                        | W      | Surface Water Method C, Non-carcinogen Fish Consumption WAC 173-340-730(4)(b)(iii)(A) Equation 730-1 CLARC Database                 |       | Х     | Surface water does not qualify for Method C                                   |
| Method C                                             | Х      | Surface Water Method C, Carcinogen Fish Consumption WAC 173-340-730(4)(b)(iii)(B) Equation 730-2 CLARC Database                     |       | Х     | Surface water does not qualify for Method C                                   |
|                                                      | Y      | Surface Water Method C, Petroleum Mixture WAC 173-340-730(4)(b)(iii)(C)                                                             |       | Х     | Use Method A for TPH                                                          |
|                                                      | Z      | Surface Water Method C-HH Potability WAC 173-340-730(4)(b)(iv)                                                                      |       | Х     | Lower Duwamish Waterway not classified as drinking water per WAC 173-201A-602 |
| Surface Water MTCA<br>Method A,B,C<br>Required ARARs | AV     | Surface Water Aquatic Life <b>SWQS</b> :RCW 90-48;<br>Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) <b>Fresh - Acute</b>    | x     |       | Use for preliminary screening levels                                          |
|                                                      | AW     | Surface Water Aquatic Life <b>SWQS</b> :RCW 90-48;<br>Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) <b>Fresh - Chronic</b>  | Х     |       | Use for preliminary screening levels                                          |
|                                                      | AX     | Surface Water Aquatic Life <b>SWQS</b> :RCW 90-48;<br>Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) <b>Marine - Acute</b>   | х     |       | Use for preliminary screening levels                                          |
|                                                      | AY     | Surface Water Aquatic Life <b>SWQS</b> :RCW 90-48;<br>Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) <b>Marine - Chronic</b> | х     |       | Use MDLs for I-T to calculate PQL                                             |
|                                                      | AZ     | Surface Water HH-Consumption; Water + Organism CWA §304 NRWQC                                                                       |       | х     | Calculate PQLs using MDLs for I-T and use for preliminary screening levels    |
|                                                      | ВА     | Surface Water HH-Consumption; Organism Only<br>CWA §304 NRWQC                                                                       | Х     |       | Use for preliminary screening levels                                          |
|                                                      | BB     | Surface Water HH-Organoleptic Effects CWA §304 NRWQC                                                                                | Х     |       | Use for preliminary screening levels                                          |
|                                                      | ВС     | Surface Water Aquatic Life Fresh/Acute CWA §304 NRWQC                                                                               | Х     |       | Use for preliminary screening levels                                          |
|                                                      |        | •                                                                                                                                   |       |       | •                                                                             |

| Media Column           | Column |                                                                                                                                    |     |    |                                                                               |
|------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------|-----|----|-------------------------------------------------------------------------------|
| Title (a)              | Letter | Pathway Column Title (a)                                                                                                           | Yes | No | Comments                                                                      |
|                        | BD     | Surface Water Aquatic Life Fresh/Chronic CWA §304 NRWQC                                                                            | Х   |    | Use for preliminary screening levels                                          |
|                        | BE     | Surface Water Aquatic Life Marine/Acute CWA §304 NRWQC                                                                             | Х   |    | Use for preliminary screening levels                                          |
|                        | BF     | Surface Water Aquatic Life Marine/Chronic CWA §304 NRWQC                                                                           | Х   |    | Use for preliminary screening levels                                          |
|                        | BG     | Surface Water Aquatic Life Fresh/Acute NTR - 40 CFR 131.36                                                                         | Х   |    | Use for preliminary screening levels                                          |
|                        | ВН     | Surface Water Aquatic Life Fresh/Chronic NTR - 40 CFR 131.36                                                                       | х   |    | Use for preliminary screening levels                                          |
|                        | ВІ     | Surface Water Aquatic Life Marine/Acute NTR - 40 CFR 131.36                                                                        | х   |    | Use for preliminary screening levels                                          |
|                        | ВЈ     | Surface Water Aquatic Life Marine/Chronic NTR - 40 CFR 131.36                                                                      | х   |    | Use for preliminary screening levels                                          |
|                        | ВК     | Surface Water HH-Fresh Water <b>Water &amp; Organism Consumption NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk |     | х  | Lower Duwamish Waterway not classified as drinking water per WAC 173-201A-602 |
|                        | BL     | Surface Water HH-Fresh Water <b>Organism Consumption Only NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk        | Х   |    | Use for preliminary screening levels                                          |
|                        | ВМ     | Surface Water HH-Marine Water <b>Organism Consumption Only NTR</b> - 40 CFR 131.36 (WAC 173-201A-040[5])<br>HH - 10-6 Carc Risk    | Х   |    | Use for preliminary screening levels                                          |
|                        | BN     | Surface Water Discharge <b>(NPDES)</b> 40 CFR 122, 125/RCW 90-48; WAC 173-216, -220, -122                                          |     | х  | NPDES is not MTCA ARAR for cleanup levels                                     |
|                        | во     | Waste Water - Toxics Substances Control Act (TSCA) 40 CFR 761.61                                                                   |     | x  | Applicable to waste water, not groundwater or surface water                   |
|                        | BP     | Shoreline Management Act RCW 90-58; WAC 173-16; King County/City Seattle Shoreline Master Plans (KCC Title 25;SMC 23.60)           |     | х  | No numbers are included                                                       |
|                        | BQ     | Groundwater to Sediment Protection Ecology CSL<br>WAC 173-340-730(1)(d)                                                            | Х   |    | Use for preliminary screening levels                                          |
| Surface Water<br>ARARs | BR     | Groundwater to Sediment Protection Ecology <b>SQS</b> WAC 173-340-730(1)(d)                                                        | Х   |    | Use for preliminary screening levels                                          |
|                        | BS     | Surface Water HH - Adult Non-Carcinogen Tribal Fish Consumption without Salmon EPA RCRA (using EQ 730-1)                           |     | х  | Do not use for preliminary screening levels; use columns N, O, Q, R           |
|                        | ВТ     | Surface Water HH - Child Non-Carcinogen Tribal Fish Consumption without Salmon EPA RCRA (using EQ 730-1)                           |     | Х  | Do not use for preliminary screening levels; use columns N, O, Q, R           |
|                        | BU     | Surface Water HH - Adult Non-Carcinogen Tribal Fish Consumption without Salmon EPA RCRA (using EQ 730-2)                           |     | Х  | Do not use for preliminary screening levels; use columns N, O, Q, R           |
|                        | BV     | Surface Water HH - Child Non-Carcinogen Tribal Fish Consumption without Salmon EPA RCRA (using EQ 730-2)                           |     | х  | Do not use for preliminary screening levels; use columns N, O, Q, R           |

| Media Column      | Column |                                                  | Inclu | ded? |                                                |
|-------------------|--------|--------------------------------------------------|-------|------|------------------------------------------------|
| Title (a)         | Letter | Pathway Column Title (a)                         | Yes   | No   | Comments                                       |
|                   | BW     | Natural <b>Background</b> Levels Ch. 173-340 WAC |       | Х    | Do not use for preliminary screening levels    |
|                   | вх     | Applicable <b>DL (MDL)</b> Ch. 173-340 WAC       |       | Х    | Use MDLs for I-T to calculate PQL              |
| Always Applicable | ВҮ     | Applicable <b>PQL (RL/RDL)</b> Ch. 173-340 WAC   |       | Х    | Do not use for preliminary screening levels    |
|                   | BZ     | Analytical method                                |       | Х    | Analytical method, not screening level or ARAR |
|                   | CA     | Natural Background Levels, Ch. 173-340 WAC, LDW  |       | Х    | Do not use for preliminary screening levels    |

(X) = used under specific conditions explained in the comment column

ARAR = applicable or relevant and appropriate requirement

CLARC = cleanup level and risk calculation

CSL = cleanup screening level

CWA = Clean Water Act

EPA = U.S. Environmental Protection Agency

HH = human health

I-T = Boeing Isaccson-Thompson Site

MDL = method detection limit

(a) From Ecology's (2010) Draft LDW ARARs & CULs v12-15-2010

NPDES = National Pollution Discharge Elimination System

NRWQC = U.S. Environmental Protection Agency water quality criterion

NTR = national toxics rule

PQL = practical quantitation limit

RCRA = Resource Conservation and Recovery Act

Site = Boeing Isaacson-Thompson Site

SQS = sediment quality standard

SWQS = Washington State surface water quality standard

TSCA = Toxic Substances Control Act

WET = whole effluent toxicity

### TABLE K-4

### GROUNDWATER PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| MEDIA - MTCA Standard                                                     |                                                                                                         |                                                        |                                                                                                                                                             | GW Meth                                                                                                                            | nod A                                                                                                                |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          | GW I                                                                                                                              | Method B                                                                                                                          |                                                                                                              |                                                                                                                          |                                                                                                    | GW PATHWAY                                                                             | EVALUATION                                                                                  |                                         | POTABLE GW MOST<br>STRINGENT |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological                               | Ground Water,<br>Method A-HH,<br>Potable<br>(Table 720-1)<br>WAC 173-340-<br>720(3)(b)(i)<br>(TPH only) | Water<br>A - HH<br><b>ARAR's</b><br>'3-340-<br>(b)(ii) | Ground Water Method<br>A-HH-Potable<br>Safe Drinking Water<br>Act, 40 CFR 141:<br>WAC 173-290-310;<br>WAC 173-340-<br>720(3)(b)(ii)(A)<br>MCL<br>(TPH only) | Ground Water Safe Drinking Water Act, 40 CFR 141: WAC 173-290-310; WAC 173-340- 720(3)(b)(ii)(B) MCLG (Non- Zero Goals) (TPH only) | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCL<br>(TPH only) | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCG<br>(TPH only) | Ground Water<br>Method A -<br>Potable<br>No Table Values<br>WAC 173-340-<br>720(3)(b)(iii)<br>(TPH only) | Ground Water,<br>Method A-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(3)(b)(iv)<br>(TPH only) | Ground Water Method B - HH Potable ARAR's WAC 173-340- 720(4)(b)(i) Safe Drinking Water Standards - MCLs | Ground Water Method B - HH Potable ARAR's WAC 173-340- 720(4)(b)(i) Safe Drinking Water Standards - MCGs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i) State<br>Department of Health<br>Stanadrds - MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i) State<br>Department of Health<br>Stanadrds - MCGs | Ground Water, Method B-HH, Non-carcinogenic/ Potable WAC 173-340- 720(4)(b)(iii)(A) EQ. 720-1 CLARC Database | Ground Water,<br>Method B-HH,<br>Carcinogen/ Potable<br>WAC 173-340-<br>720(4)(b)(iii)(B) EQ.<br>720-2 CLARC<br>Database | Ground Water,<br>Method B-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(4)(b)(ii) | Ground Water,<br>Non-Potable,<br>Surface Water<br>Protection<br>WAC 173-340-<br>720(6) | Groundwater to<br>Sediment<br>Protection<br>Ecology <b>CSL</b><br>WAC 173-340-<br>720(1)(c) | Sediment<br>Protection<br>Ecology SQS   | Screening Levels             |
| UNITS                                                                     | μg/L μg.                                                                                                | /L                                                     | μg/L                                                                                                                                                        | μg/L                                                                                                                               | μg/L                                                                                                                 | μg/L                                                                                                                 | μg/L                                                                                                     | μg/L                                                                                                             | μg/L                                                                                                     | μg/L                                                                                                     | µg/L                                                                                                                              | µg/L                                                                                                                              | μg/L                                                                                                         | μg/L                                                                                                                     | μg/L                                                                                               | μg/L                                                                                   | μg/L                                                                                        | μg/L                                    | μg/L                         |
| acetone                                                                   |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 7200                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 7200                         |
| acenaphthene                                                              |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 960                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      | 9.31372549                                                                                  | 2.614379085                             |                              |
| acenaphthylene<br>anthracene                                              |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 4800                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      | 10.78431373<br>58.82352941                                                                  | 10.78431373<br>10.78431373              | 10.78431373<br>10.78431373   |
| benzene<br>benzo(g,h,i)perylene                                           |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 5                                                                                                        | *0                                                                                                       | 5                                                                                                                                 | *0                                                                                                                                | 32                                                                                                           | 0.795                                                                                                                    | *                                                                                                  | *                                                                                      | 0.029147982                                                                                 | 0.011584454                             | 0.795<br>0.011584454         |
| benzo[a]anthracene                                                        |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              | 0.12                                                                                                                     | *                                                                                                  | *                                                                                      | 0.632911392                                                                                 | 0.257852789                             | 0.12                         |
| benzo[a]pyrene<br>benzo[b]fluoranthene                                    |                                                                                                         | $-\mp$                                                 |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 0.2                                                                                                      | *0                                                                                                       | 0.2                                                                                                                               | *0                                                                                                                                |                                                                                                              | 0.012<br>0.012                                                                                                           | *                                                                                                  | *                                                                                      | 0.266903915<br>0.560398506                                                                  | 0.125826131<br>0.286425903              | 0.012<br>0.012               |
| benzo[k]fluoranthene                                                      |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              | 1.2                                                                                                                      | *                                                                                                  | *                                                                                      | 0.571791614                                                                                 | 0.292249047                             | 0.292249047                  |
| bis(2-ethylhexyl) phthalate<br>butyl benzyl phthalate                     |                                                                                                         | -                                                      |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 6                                                                                                        | *0                                                                                                       | 6                                                                                                                                 | *0                                                                                                                                | 320<br>3200                                                                                                  | 6.25<br>46                                                                                                               | *                                                                                                  | *                                                                                      | 0.472727273<br>6.837606838                                                                  | 0.284848485<br>0.523504274              | 0.284848485<br>0.523504274   |
| carbon tetrachloride                                                      |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 5                                                                                                        | *0                                                                                                       | 5                                                                                                                                 | *0                                                                                                                                | 32                                                                                                           | 0.625                                                                                                                    | *                                                                                                  | *                                                                                      | 0.007 000000                                                                                | 0.020004214                             | 0.625                        |
| chlorobenzene<br>chloroethane (ethyl chloride)                            | -                                                                                                       |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  | 100                                                                                                      | 100                                                                                                      | 100                                                                                                                               | 100                                                                                                                               | 160                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 100<br>0                     |
| chloroform (trichloromethane)                                             |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 80                                                                                                           |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 80                           |
| chloromethane (methyl chloride)<br>chrysene                               |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              | 12                                                                                                                       | *                                                                                                  | *                                                                                      | 1.949152542                                                                                 | 0.466101695                             | 0<br>0.466101695             |
| dibenz[a,h]anthracene                                                     |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 40                                                                                                           | 0.012                                                                                                                    | *                                                                                                  | *                                                                                      | 0.01259542                                                                                  | 0.004580153                             | 0.004580153                  |
| dibenzofuran<br>di-butyl phthalate (di-n-butyl phth.)                     |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 16<br>1600                                                                                                   |                                                                                                                          | *                                                                                                  | *                                                                                      | 5.132743363<br>1164.383562                                                                  | 1.327433628<br>150.6849315              | 1.327433628<br>150.6849315   |
| dichlorobenzene, 1,2-                                                     |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 600                                                                                                      | 600                                                                                                      | 600                                                                                                                               | 600                                                                                                                               | 720                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      | 5.191873589                                                                                 | 5.191873589                             |                              |
| dichlorobenzene, 1,3-<br>dichlorobenzene, 1,4-                            |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 75                                                                                                       | 75                                                                                                       | 75                                                                                                                                | 75                                                                                                                                |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | 20.73732719                                                                                 | 7.142857143                             | 0<br>7.142857143             |
| dichloroethane, 1,1-                                                      |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 5                                                                                                        | *0                                                                                                       | 5                                                                                                                                 | *0                                                                                                                                | 800<br>160                                                                                                   | 0.48                                                                                                                     | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 800                          |
| dichloroethane, 1,2-<br>dichloroethylene, 1,1-                            |                                                                                                         | -                                                      |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 7                                                                                                        | 7                                                                                                        | 7                                                                                                                                 | 7                                                                                                                                 | 72                                                                                                           | 0.46                                                                                                                     | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 0.48<br>7                    |
| diethyl phthalate                                                         |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 13000                                                                                                        |                                                                                                                          | *                                                                                                  | *                                                                                      | 873.015873<br>142.8571429                                                                   |                                         | 484.1269841<br>142.8571429   |
| dimethyl phthalate<br>di-n-octyl phthalate                                |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | 22.95918367                                                                                 |                                         |                              |
| ethylbenzene<br>fluoranthene                                              |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 700                                                                                                      | 700                                                                                                      | 700                                                                                                                               | 700                                                                                                                               | 800<br>640                                                                                                   |                                                                                                                          | *                                                                                                  | *                                                                                      | 16.92524683                                                                                 | 2.256699577                             | 700<br>2.256699577           |
| fluorene                                                                  |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 640                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      | 6.991150442                                                                                 | 2.03539823                              | 2.03539823                   |
| hexachlorobenzene<br>hexachlorobutadiene                                  |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 1                                                                                                        | *0                                                                                                       | 1                                                                                                                                 | *0                                                                                                                                | 8                                                                                                            |                                                                                                                          | *                                                                                                  | *                                                                                      | 0.680473373<br>6.237424547                                                                  |                                         | 0.112426036<br>3.923541247   |
| indeno[1,2,3-cd]pyrene                                                    |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | -                                                                                                            | 0.12                                                                                                                     | *                                                                                                  | *                                                                                      | 0.032835821                                                                                 |                                         | 0.012686567                  |
| MEK (Methyl Ethyl Ketone;2-Butanone) methylene chloride (dichloromethane) |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 5                                                                                                        | *0                                                                                                       | 5                                                                                                                                 | *0                                                                                                                                | 4800                                                                                                         | 5.83                                                                                                                     | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 4800                         |
| methylnaphthalene, 2-                                                     |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 3                                                                                                        | Ů                                                                                                        | j                                                                                                                                 | Ů                                                                                                                                 |                                                                                                              | 3.03                                                                                                                     | *                                                                                                  | *                                                                                      | 30.62200957                                                                                 | 18.18181818                             |                              |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone) naphthalene                           |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 640<br>160                                                                                                   |                                                                                                                          | *                                                                                                  | *                                                                                      | 92.39130435                                                                                 | 53.80434783                             | 640<br>53.80434783           |
| nitrosodiphenylamine, N-                                                  |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 100                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      | 1.957295374                                                                                 | 1.957295374                             | 1.957295374                  |
| pcb mixtures<br>pcb - Aroclor 1016                                        | <del>                                     </del>                                                        |                                                        |                                                                                                                                                             |                                                                                                                                    | <del> </del>                                                                                                         |                                                                                                                      |                                                                                                          |                                                                                                                  | 0.5                                                                                                      |                                                                                                          | 0.5                                                                                                                               | *0                                                                                                                                | 1.12                                                                                                         | 0.044                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                             | 0.267857143<br>0.442804428              |                              |
| pcb - Aroclor 1221                                                        |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 0.442004420                  |
| pcb - Aroclor 1232<br>pcb - Aroclor 1242                                  | -                                                                                                       |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | -                                                                                           |                                         | 0                            |
| pcb - Aroclor 1248                                                        |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 0.55                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             | 0.273348519                             | 0.273348519                  |
| pcb - Aroclor 1254<br>pcb - Aroclor 1260                                  | 1                                                                                                       |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          | -                                                                                                                                 | -                                                                                                                                 | 0.32                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             | 0.158730159<br>0.057971014              |                              |
| phenanthrene                                                              |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | 23.07692308                                                                                 | 4.807692308                             | 4.807692308                  |
| pyrene<br>tetrachloroethylene (perchloroethylene)                         | <del>                                     </del>                                                        |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  | 5                                                                                                        | *0                                                                                                       | 5                                                                                                                                 | *0                                                                                                                                | 480<br>80                                                                                                    |                                                                                                                          | *                                                                                                  | *                                                                                      | 20.17291066                                                                                 | 14.4092219                              | 14.4092219<br>5              |
| trichlorobenzene, 1,2,4-                                                  |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 70                                                                                                       | 70                                                                                                       | 70                                                                                                                                | 70                                                                                                                                |                                                                                                              | 1.51                                                                                                                     | *                                                                                                  | *                                                                                      | 2.506963788                                                                                 | 1.128133705                             | 1.128133705                  |
| trichlorethane, 1,1,1-<br>trichlorethane, 1,1,2-                          | 1                                                                                                       |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  | 200<br>5                                                                                                 | 200<br>3                                                                                                 | 200<br>5                                                                                                                          | 200<br>3                                                                                                                          | 7200                                                                                                         | 0.768                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                             | +                                       | 200<br>0.768                 |
| trichloroethylene<br>trimethylbenzene, 1,3,5-                             |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    | 1                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  | 5                                                                                                        | *0                                                                                                       | 5                                                                                                                                 | *0                                                                                                                                | 2.4                                                                                                          | 0.49                                                                                                                     | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 0.49                         |
| trimethylbenzene, 1,3,5-<br>toluene                                       | <del>                                     </del>                                                        |                                                        |                                                                                                                                                             |                                                                                                                                    | <u> </u>                                                                                                             |                                                                                                                      |                                                                                                          |                                                                                                                  | 1000                                                                                                     | 1000                                                                                                     | 1000                                                                                                                              | 1000                                                                                                                              | 80<br>1600                                                                                                   |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 80<br>1000                   |
| vinyl chloride (chloroethylene)                                           |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 2                                                                                                        | *0                                                                                                       | 2                                                                                                                                 | *0                                                                                                                                | 24                                                                                                           | 0.029                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                             |                                         | 0.029                        |
| xylene (dimethylbenzene)<br>benzoic acid                                  | 1                                                                                                       |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  | 10000                                                                                                    | 10000                                                                                                    | 10000                                                                                                                             | 10000                                                                                                                             | 1600                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      | 2242.926156                                                                                 | 2242.926156                             | 1600<br>2242.926156          |
| benzyl alcohol                                                            |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   | 800                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      | 233.0779055                                                                                 | 181.9923372                             | 181.9923372                  |
| dimethylphenol, 2,4-<br>methylphenol, 2- (o-cresol)                       | <del>                                     </del>                                                        |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | 2.020624303<br>7.110609481                                                                  | 2.020624303<br>7.110609481              |                              |
| methylphenol, 4- (p-cresol)                                               |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  |                                                                                                          | **                                                                                                       |                                                                                                                                   |                                                                                                                                   | 22                                                                                                           | 2.245                                                                                                                    | *                                                                                                  | *                                                                                      | 77.18894009                                                                                 | 77.18894009                             | 77.18894009                  |
| pentachlorophenol<br>phenol (total)                                       | <del>                                     </del>                                                        |                                                        |                                                                                                                                                             |                                                                                                                                    | +                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                  | 1                                                                                                        | *0                                                                                                       | 1                                                                                                                                 | *0                                                                                                                                | 80<br>2400                                                                                                   | 0.219                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                             | 5.325443787<br>78.35820896              |                              |
| styrene (phenylethylene)                                                  |                                                                                                         |                                                        |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                  | 100                                                                                                      | 100                                                                                                      | 100                                                                                                                               | 100                                                                                                                               | 1600                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                             | 111111111111111111111111111111111111111 | 100                          |

### **TABLE K-4**

### GROUNDWATER PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| MEDIA - MTCA Standard                       |                                                                                                         |                                                                                                       |                                                                                                                                                             | GW Meth                                                                                                                            | od A                                                                                                                 |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               | GW I                                                                                                                                            | Method B                                                                                                                                        |                                                                                                              |                                                                                                                          |                                                                                                    | GW PATHWA                                                                              | EVALUATION                                                                           |                                                                                             | POTABLE GW MOST<br>STRINGENT |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | Ground Water,<br>Method A-HH,<br>Potable<br>(Table 720-1)<br>WAC 173-340-<br>720(3)(b)(i)<br>(TPH only) | Ground Water<br>Method A - HH<br><b>Potable ARAR's</b><br>WAC 173-340-<br>720(3)(b)(ii)<br>(TPH only) | Ground Water Method<br>A-HH-Potable<br>Safe Drinking Water<br>Act, 40 CFR 141:<br>WAC 173-290-310;<br>WAC 173-340-<br>720(3)(b)(ii)(A)<br>MCL<br>(TPH only) | Ground Water Safe Drinking Water Act, 40 CFR 141: WAC 173-290-310; WAC 173-340- 720(3)(b)(ii)(B) MCLG (Non- Zero Goals) (TPH only) | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCL<br>(TPH only) | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCG<br>(TPH only) | Ground Water<br>Method A -<br>Potable<br>No Table Values<br>WAC 173-340-<br>720(3)(b)(iii)<br>(TPH only) | Ground Water,<br>Method A-HH,<br><b>Potable</b> /Protect<br>Surface Water<br>WAC 173-340-<br>720(3)(b)(iv)<br>(TPH only) | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>Safe Drinking Water<br>Standards -<br>MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i) Safe<br>Drinking Water<br>Standards -<br>MCGs | Ground Water<br>Method B - HH<br><b>Potable</b> ARAR's<br>WAC 173-340-<br>720(4)(b)(i) State<br>Department of Health<br>Stanadrds - <b>MCLs</b> | Ground Water<br>Method B - HH<br><b>Potable</b> ARAR's<br>WAC 173-340-<br>720(4)(b)(i) State<br>Department of Health<br>Stanadrds - <b>MCGs</b> | Ground Water, Method B-HH, Non-carcinogenic/ Potable WAC 173-340- 720(4)(b)(iii)(A) EQ. 720-1 CLARC Database | Ground Water,<br>Method B-HH,<br>Carcinogen/ Potable<br>WAC 173-340-<br>720(4)(b)(iii)(B) EQ.<br>720-2 CLARC<br>Database | Ground Water,<br>Method B-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(4)(b)(ii) | Ground Water,<br>Non-Potable,<br>Surface Water<br>Protection<br>WAC 173-340-<br>720(6) | Groundwater to<br>Sediment<br>Protection<br>Ecology CSL<br>WAC 173-340-<br>720(1)(c) | Groundwater to<br>Sediment<br>Protection<br>Ecology <b>SQS</b><br>WAC 173-340-<br>720(1)(c) | Screening Levels             |
| UNITS                                       | μg/L                                                                                                    | μg/L                                                                                                  | μg/L                                                                                                                                                        | μg/L                                                                                                                               | μg/L                                                                                                                 | µg/L                                                                                                                 | μg/L                                                                                                     | μg/L                                                                                                                     | μg/L                                                                                                                          | μg/L                                                                                                                          | µg/L                                                                                                                                            | µg/L                                                                                                                                            | μg/L                                                                                                         | μg/L                                                                                                                     | μg/L                                                                                               | μg/L                                                                                   | μ <b>g/</b> L                                                                        | μg/L                                                                                        | μg/L                         |
| Tributyltin                                 |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             |                              |
| Trichlorophenol, 2,4,6-                     |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 | 8                                                                                                            | 4                                                                                                                        | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 4                            |
| Aluminum<br>Antimony                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 50<br>6                                                                                                                       | 6                                                                                                                             | 6                                                                                                                                               | 6                                                                                                                                               | 16000                                                                                                        |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 50                           |
| Arsenic (III)                               |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 6                                                                                                                             | 0                                                                                                                             | 0                                                                                                                                               | 0                                                                                                                                               |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 6                            |
| Arsenic (V) Arsenic (total)                 |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 10                                                                                                                            | *0                                                                                                                            | 10                                                                                                                                              | *0                                                                                                                                              | 4.8                                                                                                          | 0.0583                                                                                                                   | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.0583                       |
| Barium                                      |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 2000                                                                                                                          | 2000                                                                                                                          | 2                                                                                                                                               | 2                                                                                                                                               | 560                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 2                            |
| Beryllium<br>Cadmium                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 5                                                                                                                             | <u>4</u><br>5                                                                                                                 | 5                                                                                                                                               | 5                                                                                                                                               | 32<br>16                                                                                                     |                                                                                                                          | *                                                                                                  | *                                                                                      | 3.357954465                                                                          | 2.556054891                                                                                 | 4<br>2.556054891             |
| Chromium (VI)<br>Chromium, total (or III)   |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 100                                                                                                                           | 100                                                                                                                           | 100                                                                                                                                             | 100                                                                                                                                             | 48                                                                                                           |                                                                                                                          | *                                                                                                  | *                                                                                      | 317.6470588                                                                          | 305.8823529                                                                                 | 48<br>100                    |
| Cobalt                                      |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 100                          |
| Copper<br>Iron                              |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 1000<br>300                                                                                                                   | 1300                                                                                                                          | 1300<br>300                                                                                                                                     | 1300                                                                                                                                            | 640<br>11200                                                                                                 |                                                                                                                          | *                                                                                                  | *                                                                                      | 123.3288287                                                                          | 123.3288287                                                                                 | 7.3<br>300                   |
| Lead                                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 15                                                                                                                            | *0                                                                                                                            | 15                                                                                                                                              | *0                                                                                                                                              | 11200                                                                                                        |                                                                                                                          | *                                                                                                  | *                                                                                      | 13.31299809                                                                          | 11.30348894                                                                                 | 11.30348894                  |
| Manganese<br>Mercury                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 50<br>2                                                                                                                       | 2                                                                                                                             | 50<br>2                                                                                                                                         | 2                                                                                                                                               |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | 0.00742766                                                                           | 0.005161594                                                                                 | 50<br>0.005161594            |
| Mercury (organic)                           |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | _                                                                                                                             |                                                                                                                               | -                                                                                                                                               | _                                                                                                                                               |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      | 0.001.2.00                                                                           | 0.000101001                                                                                 | 0                            |
| Molybdenum<br>Nickel                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               | 100                                                                                                                                             |                                                                                                                                                 | 320                                                                                                          |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      | +                                                                                           | 0<br>100                     |
| Selenium                                    |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 50                                                                                                                            | 50                                                                                                                            | 50                                                                                                                                              | 50                                                                                                                                              | 80                                                                                                           |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 50                           |
| Silver<br>Tin                               |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 100                                                                                                                           | 100                                                                                                                           | 100                                                                                                                                             |                                                                                                                                                 | 80                                                                                                           |                                                                                                                          | *                                                                                                  | *                                                                                      | 1.532250723                                                                          | 1.532250723                                                                                 | 1.532250723                  |
| Thallium                                    |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 2                                                                                                                             | 0.5                                                                                                                           | 2                                                                                                                                               | 0.5                                                                                                                                             | 1.10                                                                                                         |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.5                          |
| Vanadium<br>Zinc                            |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 5000                                                                                                                          |                                                                                                                               | 5000                                                                                                                                            |                                                                                                                                                 | 1.12<br>4800                                                                                                 |                                                                                                                          | *                                                                                                  | *                                                                                      | 76.25551053                                                                          | 32.56745762                                                                                 | 1.12<br>32.56745762          |
| LPAH                                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0                            |
| HPAH                                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0                            |
| Total Petroleum Hydrocarbons Gasoline       | 1000                                                                                                    | *                                                                                                     |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      | *                                                                                                        | *                                                                                                                        |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      | 1                                                                                           | 1000                         |
| Gasoline (w/benzene)                        | 800                                                                                                     | *                                                                                                     |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      | *                                                                                                        | *                                                                                                                        |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 800                          |
| Diesel<br>Heavy Oil                         | 500<br>500                                                                                              | *                                                                                                     |                                                                                                                                                             |                                                                                                                                    | -                                                                                                                    |                                                                                                                      | *                                                                                                        | *                                                                                                                        |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 500<br>500                   |
|                                             |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.000000                                                                                                                      | **                                                                                                                            | 0.000000                                                                                                                                        |                                                                                                                                                 |                                                                                                              | 0.0000000                                                                                                                | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             |                              |
| 2,3,7,8-TCDD (Dioxin)                       |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    | 1                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.0000003                                                                                                                     | *0                                                                                                                            | 0.0000003                                                                                                                                       | *0                                                                                                                                              |                                                                                                              | 0.0000058                                                                                                                | *                                                                                                  | *                                                                                      |                                                                                      | +                                                                                           | 0.0000003                    |
| Aldrin                                      |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 | 0.24                                                                                                         | 0.002573529<br>0.013888889                                                                                               | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.002573529                  |
| alpha-BHC<br>beta-BHC                       |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | +                                                                                                                             |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              | 0.013888889                                                                                                              | *                                                                                                  | *                                                                                      |                                                                                      | +                                                                                           | 0.013888889<br>0.048611111   |
| gamma-BHC (Lindane)<br>Chlordane            |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.0002                                                                                                                        | 0.0002<br>*0                                                                                                                  | 0.0002                                                                                                                                          |                                                                                                                                                 | 4.8<br>8                                                                                                     | 0.25                                                                                                                     | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.0002                       |
| 4,4'-DDT                                    |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.002                                                                                                                         |                                                                                                                               | 0.002                                                                                                                                           |                                                                                                                                                 | 8                                                                                                            | 0.257352941                                                                                                              | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.002<br>0.257352941         |
| 4,4'-DDE<br>4,4'-DDD                        |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                              | 0.257352941<br>0.364583333                                                                                               | *                                                                                                  | *                                                                                      |                                                                                      | 1                                                                                           | 0.257352941<br>0.364583333   |
| Dieldrin                                    |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 | 0.8                                                                                                          | 0.364583333                                                                                                              | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.00546875                   |
| alpha-Endosulfan<br>beta-Endosulfan         |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 | 96<br>96                                                                                                     |                                                                                                                          | *                                                                                                  | *                                                                                      | <u> </u>                                                                             |                                                                                             | 96<br>96                     |
| Endosulfan Sulfate                          |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          |                                                                                                                               |                                                                                                                               |                                                                                                                                                 |                                                                                                                                                 | 96                                                                                                           |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 96                           |
| Endrin<br>Endrin Aldehyde                   |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.002<br>0.002                                                                                                                | 0.002<br>0.002                                                                                                                | 0.002<br>0.002                                                                                                                                  |                                                                                                                                                 | 4.8<br>4.8                                                                                                   |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      | 1                                                                                           | 0.002<br>0.002               |
| Heptachlor                                  |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.0004                                                                                                                        | *0                                                                                                                            | 0.0004                                                                                                                                          |                                                                                                                                                 | 8                                                                                                            | 0.01944444                                                                                                               | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.0004                       |
| Heptachlor Epoxide<br>Toxaphene             |                                                                                                         |                                                                                                       |                                                                                                                                                             |                                                                                                                                    |                                                                                                                      |                                                                                                                      |                                                                                                          |                                                                                                                          | 0.0002                                                                                                                        | *0                                                                                                                            | 0.0002                                                                                                                                          |                                                                                                                                                 | 0.104                                                                                                        | 0.004807692                                                                                                              | *                                                                                                  | *                                                                                      |                                                                                      |                                                                                             | 0.0002                       |
|                                             | 1                                                                                                       |                                                                                                       |                                                                                                                                                             |                                                                                                                                    | 1                                                                                                                    |                                                                                                                      |                                                                                                          |                                                                                                                          | 1                                                                                                                             |                                                                                                                               | 1                                                                                                                                               |                                                                                                                                                 |                                                                                                              |                                                                                                                          | *                                                                                                  | *                                                                                      |                                                                                      | 1                                                                                           |                              |

<sup>\*</sup> Adapted from Ecology Spreadsheet Draft Preliminary Screening Levels & ARARs v14R1 in accordance with Ecology comments.

| PATHWAYS  HH - Human Health Ecol- Ecological  Table 1  Capataba 7  (Arsei and 7) | C 173-340-<br>0(2)(b)(iii) | Soil, Method A, Unrestricted and Use-Ecol, NAC 173-340- 740(2)(b)(ii); Table 749-2 (Simplified TEE)  mg/kg | Soil, Method A, Industrial Land Use-HH, WAC 173-340- 745(3)(b)(i) CLARC Database/ Table 745-1 (Arsenic, Lead, and TPH only) | Soil, Method A, Industrial Land Use-Ecol, WAC 173-340- 745(3)(b)(iii) Table 749-2 (Simplified TEE) | Soil, Direct Contact<br>Method B-HH,<br>Carcinogen, WAC<br>173-340-<br>740(3)(b)(iii)(B)(II)<br>CLARC Database<br>EQ. 740-2 | Soil, Direct Contact<br>Method B-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>740(3)(b)(iii)(B)(I)<br>CLARC Database<br>EQ. 740-1 | Soil, Direct Contact<br>Method C-HH,<br>Carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(II)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-2 | Soil, Direct Contact<br>Method C-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(l)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-1 | Soil to Method B-<br>HH Groundwater<br>Protection - NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection -NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Saturated Soil | Soil to Method B-<br>HH Groundwater<br>Protection - <b>Carc</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection - <b>Carc</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database | Soil to Sediment Protection Ecology CSL WAC 173-340- 740(1)(d) EQ. 747-1/747-2 Vadose Soil | Soil to Sediment Protection Ecology SQS WAC 173-340- 740(1)(d) EQ. 747-1/747-2 |
|----------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                                  | ng/kg                      | mg/kg                                                                                                      | mg/kg                                                                                                                       | 2                                                                                                  |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | V44030 0011                                                                                                                                                | Saturated Soil                                                                                                                              | vadose don                                                                                 | Vadose Soil                                                                    |
| acetone                                                                          |                            |                                                                                                            |                                                                                                                             | mg/kg                                                                                              | mg/kg                                                                                                                       | mg/kg                                                                                                                          | mg/kg                                                                                                                                         | mg/kg                                                                                                                                            | mg/kg                                                                                                                                            | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                      | mg/kg                                                                                                                                       | mg/kg                                                                                      | mg/kg                                                                          |
| n                                                                                |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 72000                                                                                                                          |                                                                                                                                               | 3150000                                                                                                                                          | 29.10552946                                                                                                                                      | 2.0782632                                                                                                                                          |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| acenaphthene (CAS 83-29-9)                                                       |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 4800                                                                                                                           |                                                                                                                                               | 210000                                                                                                                                           | 121.4086308                                                                                                                                      | 6.15328                                                                                                                                            |                                                                                                                                                            |                                                                                                                                             | 1.17739349                                                                                 | 0.330496418                                                                    |
| acenaphthylene (CAS 208-96-8)                                                    |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             | 1.363247471                                                                                | 1.363247471                                                                    |
| anthracene                                                                       |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 24000                                                                                                                          |                                                                                                                                               | 1050000                                                                                                                                          | 1977.618921                                                                                                                                      | 99.296                                                                                                                                             |                                                                                                                                                            |                                                                                                                                             | 24.23556118                                                                                | 4.443186216                                                                    |
| benzene                                                                          |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 18.18                                                                                                                       | 320                                                                                                                            | 2386                                                                                                                                          |                                                                                                                                                  | 0.246511469                                                                                                                                      | 0.014469333                                                                                                                                        | 0.006124269                                                                                                                                                | 0.000359473                                                                                                                                 |                                                                                            |                                                                                |
| benzo(g,h,i)perylene                                                             |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             | 1.560116593                                                                                | 0.620046338                                                                    |
| benzo[a]anthracene                                                               |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 1.4                                                                                                                         |                                                                                                                                | 180                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.102432                                                                                                                                                   | 0.00512264                                                                                                                                  | 5.402532267                                                                                | 2.201031664                                                                    |
| benzo[a]pyrene                                                                   |                            | 30                                                                                                         |                                                                                                                             | 300                                                                                                | 0.14                                                                                                                        |                                                                                                                                | 18                                                                                                                                            |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.18888                                                                                                                                                    | 0.00944504                                                                                                                                  | 4.201067626                                                                                | 1.980503309                                                                    |
| benzo[b]fluoranthene                                                             |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 14                                                                                                                          |                                                                                                                                | 180                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.192792001                                                                                                                                                | 0.00964064                                                                                                                                  | 9.002241624                                                                                | 4.601145719                                                                    |
| benzo[k]fluoranthene                                                             |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 14                                                                                                                          | 4000                                                                                                                           | 1800                                                                                                                                          | 70000                                                                                                                                            |                                                                                                                                                  |                                                                                                                                                    | 0.18888                                                                                                                                                    | 0.00944504                                                                                                                                  | 9.002287194                                                                                | 4.60116901                                                                     |
| bis(2-ethylhexyl) phthalate                                                      |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 71<br>500                                                                                                                   | 1600                                                                                                                           | 9375                                                                                                                                          | 70000                                                                                                                                            | C44 77C20F0                                                                                                                                      | 20.00042222                                                                                                                                        | 20.70000012                                                                                                                                                | 1.035541667                                                                                                                                 | 1.561890919                                                                                | 0.9411394                                                                      |
| butyl benzyl phthalate                                                           |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 526                                                                                                                         | 16000                                                                                                                          | 69100                                                                                                                                         | 700000<br>14000                                                                                                                                  | 611.7762859                                                                                                                                      | 30.86613333                                                                                                                                        | 0.004546333                                                                                                                                                | 0.000000507                                                                                                                                 | 1.30735747                                                                                 | 0.100094556                                                                    |
| carbon tetrachloride<br>chlorobenzene                                            |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 14.3                                                                                                                        | 320<br>1600                                                                                                                    | 1880                                                                                                                                          | 70000                                                                                                                                            | 0.231236267<br>1.532878799                                                                                                                       | 0.010729813<br>0.088746667                                                                                                                         | 0.004516333                                                                                                                                                | 0.000209567                                                                                                                                 |                                                                                            |                                                                                |
| chloroethane (ethyl chloride)                                                    | +                          |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 1000                                                                                                                           |                                                                                                                                               | 70000                                                                                                                                            | 1.532070799                                                                                                                                      | 0.000740007                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| chloroform (trichloromethane)                                                    |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 800                                                                                                                            |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| chloromethane (methyl chloride)                                                  |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 000                                                                                                                            |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| chrysene                                                                         |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 140                                                                                                                         |                                                                                                                                | 18000                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.056712004                                                                                                                                                | 0.00283664                                                                                                                                  | 9.207797444                                                                                | 2.201864606                                                                    |
| dibenz[a,h]anthracene                                                            |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 0.14                                                                                                                        |                                                                                                                                | 17.98                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.629328                                                                                                                                                   | 0.03146744                                                                                                                                  | 0.660050382                                                                                | 0.240018321                                                                    |
| dibenzofuran                                                                     |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 80                                                                                                                             |                                                                                                                                               | 3500                                                                                                                                             | 3.67704162                                                                                                                                       | 0.185226667                                                                                                                                        | <del></del>                                                                                                                                                |                                                                                                                                             | 1.180620386                                                                                | 0.305332858                                                                    |
| di-butyl phthalate (di-n-butyl phth.)                                            |                            | 200                                                                                                        |                                                                                                                             |                                                                                                    |                                                                                                                             | 8000                                                                                                                           |                                                                                                                                               | 350000                                                                                                                                           | 53.12020532                                                                                                                                      | 2.794666667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             | 38.65770658                                                                                | 5.002762027                                                                    |
| dichlorobenzene, 1,2-                                                            |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 7200                                                                                                                           |                                                                                                                                               | 315000                                                                                                                                           | 9.358649269                                                                                                                                      | 0.525432                                                                                                                                           |                                                                                                                                                            |                                                                                                                                             | 0.067582619                                                                                | 0.067582619                                                                    |
| dichlorobenzene, 1,3-                                                            | İ                          |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| dichlorobenzene, 1,4-                                                            |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             | 0.267034562                                                                                | 0.091978571                                                                    |
| dichloroethane, 1,1-                                                             |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 16000                                                                                                                          |                                                                                                                                               | 700000                                                                                                                                           | 4.079396996                                                                                                                                      | 0.257365333                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| dichloroethane, 1,2-                                                             |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 11                                                                                                                          | 1600                                                                                                                           | 1442                                                                                                                                          |                                                                                                                                                  | 0.793513525                                                                                                                                      | 0.052873067                                                                                                                                        | 0.002380541                                                                                                                                                | 0.000158619                                                                                                                                 |                                                                                            |                                                                                |
| dichloroethylene, 1,1-                                                           |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 4000                                                                                                                           |                                                                                                                                               | 180000                                                                                                                                           | 0.471688949                                                                                                                                      | 0.02316288                                                                                                                                         |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| diethyl phthalate                                                                |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               | 2800000                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             | 5.692106968                                                                                | 3.156532046                                                                    |
| dimethyl phthalate                                                               |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             | 1.631429797                                                                                | 1.631429797                                                                    |
| di-n-octyl phthalate                                                             |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                             | 90.09184156                                                                                | 1.161183736                                                                    |
| ethylbenzene                                                                     |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 8000                                                                                                                           |                                                                                                                                               | 350000                                                                                                                                           | 11.93174041                                                                                                                                      | 0.643573333                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             |                                                                                            |                                                                                |
| fluoranthene                                                                     |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 3200                                                                                                                           |                                                                                                                                               | 140000                                                                                                                                           | 909.440402                                                                                                                                       | 45.52746667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             | 24.06771324                                                                                | 3.209028432                                                                    |
| fluorene                                                                         |                            |                                                                                                            |                                                                                                                             |                                                                                                    |                                                                                                                             | 3200                                                                                                                           |                                                                                                                                               | 140000                                                                                                                                           | 147.076365                                                                                                                                       | 7.409066667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             | 1.608019552                                                                                | 0.468157591                                                                    |
| hexachlorobenzene                                                                |                            | 31                                                                                                         |                                                                                                                             | 31                                                                                                 |                                                                                                                             |                                                                                                                                | 82                                                                                                                                            |                                                                                                                                                  | 0 === 1 = 1 = 1                                                                                                                                  | 0.04004/555                                                                                                                                        |                                                                                                                                                            |                                                                                                                                             | 0.048816479                                                                                | 0.008065331                                                                    |
| hexachlorobutadiene<br>indeno[1,2,3-cd]pyrene                                    |                            |                                                                                                            |                                                                                                                             |                                                                                                    | 1.4                                                                                                                         | 80                                                                                                                             | 180                                                                                                                                           | 3500                                                                                                                                             | 0.775158765                                                                                                                                      | 0.010241333                                                                                                                                        | 0.642288                                                                                                                                                   | 0.03211544                                                                                                                                  | 0.15420161<br>1.760131344                                                                  | 0.096997787<br>0.680050747                                                     |

| MEDIA - MTCA Standard                       |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   | SOIL PATH                                                                                                                                            | IWAY EVALUA                                                                                                                                                                  | TION                                                                                                                                                 |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | Soil to Sediment<br>Protection  Ecology CSL<br>WAC 173-340-<br>740(1)(d)  EQ. 747-1/ 747-2<br>Saturated Soil | Soil to Sediment<br>Protection Ecology<br>SQS<br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Saturated Soil | Soil to Surface Water<br>Protection<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Marine - Chronic<br>Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Chronic Saturated Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2 Vadose<br>Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Saturated Soil |
| UNITS                                       | mg/kg                                                                                                        | mg/kg                                                                                                           | mg/kg                                                                                                                                            | mg/kg                                                                                                                                               | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                 | mg/kg                                                                                                                                             | mg/kg                                                                                                                                                | mg/kg                                                                                                                                                                        | mg/kg                                                                                                                                                | mg/kg                                                                                                                      | mg/kg                                                                                                                         | mg/kg                                                                                                       | mg/kg                                                                                                          |
| acetone                                     |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| acenaphthene (CAS 83-29-9)                  | 0.059669935                                                                                                  | 0.016749455                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| acenaphthylene (CAS 208-96-8)               | 0.069091503                                                                                                  | 0.069091503                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| anthracene                                  | 1.216862745                                                                                                  | 0.223091503                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzene                                     |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      | 6.23                                                                                                                                                                         |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzo(g,h,i)perylene                        | 0.078008356                                                                                                  | 0.031003321                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzo[a]anthracene                          | 0.270181435                                                                                                  | 0.110073918                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzo[a]pyrene                              | 0.210076512                                                                                                  | 0.09903607                                                                                                      |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzo[b]fluoranthene                        | 0.450160648                                                                                                  | 0.230082109                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzo[k]fluoranthene                        | 0.450163914                                                                                                  | 0.230083778                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| bis(2-ethylhexyl) phthalate                 | 0.078135515                                                                                                  | 0.047081657                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| butyl benzyl phthalate                      | 0.065960114                                                                                                  | 0.005050071                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| carbon tetrachloride                        |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| chlorobenzene                               |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| chloroethane (ethyl chloride)               |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| chloroform (trichloromethane)               |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| chloromethane (methyl chloride)             |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| chrysene                                    | 0.460558757                                                                                                  | 0.110133616                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      | 5.72                                                                                                                                                                         |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dibenz[a,h]anthracene                       | 0.033003611                                                                                                  | 0.012001313                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dibenzofuran                                | 0.059471386                                                                                                  | 0.015380531                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| di-butyl phthalate (di-n-butyl phth.)       | 2.033789954                                                                                                  | 0.263196347                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dichlorobenzene, 1,2-                       | 0.003788337                                                                                                  | 0.003788337                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dichlorobenzene, 1,3-                       |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dichlorobenzene, 1,4-                       | 0.0149447                                                                                                    | 0.005147619                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dichloroethane, 1,1-                        |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dichloroethane, 1,2-                        |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dichloroethylene, 1,1-                      |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| diethyl phthalate                           | 0.36026455                                                                                                   | 0.199783069                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dimethyl phthalate                          | 0.093952381                                                                                                  | 0.093952381                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| di-n-octyl phthalate                        | 4.506581633                                                                                                  | 0.05808483                                                                                                      |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| ethylbenzene                                |                                                                                                              |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| fluoranthene                                | 1.204851904                                                                                                  | 0.160646921                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| fluorene                                    | 0.08100413                                                                                                   | 0.023583481                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| hexachlorobenzene                           | 0.002495069                                                                                                  | 0.000412229                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| hexachlorobutadiene                         | 0.007988062                                                                                                  | 0.005024748                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| indeno[1,2,3-cd]pyrene                      | 0.088009413                                                                                                  | 0.034003637                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |

### TABLE K-5 SOIL PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE

**TUKWILA, WASHINGTON** 

| MEDIA - MTCA Standard                          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                  |             | SOIL P            | ATHWAY EVA        | LUATION             |                                                                                                             |                    |                    |              |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|-------------------|-------------------|---------------------|-------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------|
| PATHWAYS HH - Human Health Ecol- Ecological    | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water<br>Protection<br>WAC 173-340-<br>740(1)(d) NRWQC<br>Freshwater Chronic<br>EQ. 747-1/747-2<br>Saturated Soil | Protection WAC 173-<br>340-740(1)(d)<br>NRWQC HH-<br>Consumption | NRWQC HH-   | Life Fresh/Acute, | Life Fresh/Acute, | Life Fresh/Chronic, | Soil to Surface Water<br>Protection Aquatic<br>Life Fresh/Chronic,<br>NTR - 40 CFR 131.36<br>Saturated Soil | Life Marine/Acute, | Life Marine/Acute, | Aquatic Life |
| UNITS                                          | mg/kg                                                                                                      | mg/kg                                                                                                         | mg/kg                                                                                                        | mg/kg                                                                                                                             | mg/kg                                                            | mg/kg       | mg/kg             | mg/kg             | mg/kg               | mg/kg                                                                                                       | mg/kg              | mg/kg              | mg/kg        |
| acetone                                        |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                  |             |                   |                   |                     |                                                                                                             |                    |                    |              |
| acenaphthene (CAS 83-29-9)                     |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 125.2026505                                                      | 6.34557     |                   |                   |                     |                                                                                                             |                    |                    |              |
| acenaphthylene (CAS 208-96-8)                  |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                  |             |                   |                   |                     |                                                                                                             |                    |                    |              |
| anthracene                                     |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 16480.15768                                                      | 827.4666667 |                   |                   |                     |                                                                                                             |                    |                    |              |
| benzene                                        |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.392877653                                                      | 0.0230605   |                   |                   |                     |                                                                                                             |                    |                    |              |
| benzo(g,h,i)perylene                           |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.450040004                                                      | 0.00768396  |                   |                   |                     |                                                                                                             |                    |                    |              |
| benzo[a]anthracene                             |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.153648001<br>0.283320001                                       | 0.00768396  |                   |                   |                     |                                                                                                             |                    |                    |              |
| benzo[a]pyrene<br>benzo[b]fluoranthene         |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.289188001                                                      | 0.01446096  |                   |                   |                     |                                                                                                             |                    |                    |              |
| benzo[k]fluoranthene                           |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.283320001                                                      | 0.01416756  |                   |                   |                     |                                                                                                             |                    |                    |              |
| bis(2-ethylhexyl) phthalate                    |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 7.286400042                                                      | 0.364510667 |                   |                   |                     |                                                                                                             |                    |                    |              |
| butyl benzyl phthalate                         |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 363.2421697                                                      | 18.32676667 |                   |                   |                     |                                                                                                             |                    |                    |              |
| carbon tetrachloride                           |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.011561813                                                      | 0.000536491 |                   |                   |                     |                                                                                                             |                    |                    |              |
| chlorobenzene                                  |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 15.32878799                                                      | 0.887466667 |                   |                   |                     |                                                                                                             |                    |                    |              |
| chloroethane (ethyl chloride)                  |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                  |             |                   |                   |                     |                                                                                                             |                    |                    |              |
| chloroform (trichloromethane)                  |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 2.331667802                                                      | 0.151202133 |                   |                   |                     |                                                                                                             |                    |                    |              |
| chloromethane (methyl chloride)                |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                  |             |                   |                   |                     |                                                                                                             |                    |                    |              |
| chrysene                                       |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.085068007                                                      | 0.00425496  |                   |                   |                     |                                                                                                             |                    |                    |              |
| dibenz[a,h]anthracene                          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.943992                                                         | 0.04720116  |                   |                   |                     |                                                                                                             |                    |                    |              |
| dibenzofuran                                   |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                  |             |                   |                   |                     |                                                                                                             |                    |                    |              |
| di-butyl phthalate (di-n-butyl phth.)          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 149.4005775                                                      | 7.86        |                   |                   |                     |                                                                                                             |                    |                    |              |
| dichlorobenzene, 1,2-                          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 16.89756118                                                      | 0.948696667 |                   |                   |                     |                                                                                                             |                    |                    |              |
| dichlorobenzene, 1,3-                          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 3.84                                                             | 0.2752      |                   |                   |                     |                                                                                                             |                    |                    |              |
| dichlorophana 1.4                              |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 2.441804                                                         | 0.136926667 |                   |                   |                     |                                                                                                             |                    |                    |              |
| dichloroethane, 1,1-                           |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.183500003                                                      | 0.012226897 |                   |                   |                     |                                                                                                             |                    |                    |              |
| dichloroethane, 1,2-<br>dichloroethylene, 1,1- |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 46.5137714                                                       | 2.284117333 |                   |                   |                     |                                                                                                             |                    |                    |              |
| diethyl phthalate                              |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 287.0579067                                                      | 18.16613333 |                   |                   |                     |                                                                                                             |                    |                    |              |
| dimethyl phthalate                             |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 4400                                                             | 315.3333333 |                   |                   |                     |                                                                                                             |                    |                    |              |
| di-n-octyl phthalate                           |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 7700                                                             | 0.0.000000  |                   |                   |                     |                                                                                                             |                    |                    |              |
| ethylbenzene                                   |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 31.32081859                                                      | 1.68938     |                   |                   |                     |                                                                                                             |                    |                    |              |
| fluoranthene                                   |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 198.9400879                                                      | 9.959133333 |                   |                   |                     |                                                                                                             |                    |                    |              |
| fluorene                                       |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 1217.976148                                                      | 61.35633333 |                   |                   |                     |                                                                                                             |                    |                    |              |
| hexachlorobenzene                              |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 2.07992E-05                                                      | 1.06333E-06 |                   |                   |                     |                                                                                                             |                    |                    |              |
| hexachlorobutadiene                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 1.744107221                                                      | 0.023043    |                   |                   |                     |                                                                                                             |                    |                    |              |
| indeno[1,2,3-cd]pyrene                         |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.963432                                                         | 0.04817316  |                   |                   |                     |                                                                                                             |                    |                    |              |

| MEDIA - MTCA Standard                                       |                     | SOIL P                     | ATHWAY EVAL                                                                                                                                                           | LUATION                                                                            | SOIL PO                                                                                                                          | TENTIAL A                                                                                                     | RAR's                                                                 | SOIL MOST<br>STRINGENT                                       |
|-------------------------------------------------------------|---------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|
| PATHWAYS  HH - Human Health  Ecol- Ecological               | NTR - 40 CFR 131.36 |                            | Soil to Surface Water Protection HH - Fresh Water Organism Consumption Only NTR - 40 CFR 131.36 (WAC 173-201A- 040[5]) HH - 10 <sup>-6</sup> Carc Risk Saturated Soil | Soil Protective of<br>Vapor, Direct<br>Contact, WAC<br>173-340-<br>740(3)(b)(iii)C | Soil Protection of<br>Surface Water<br>HH – <b>Organoleptic</b><br><b>Effects</b><br>CWA §304 <b>NRWQC</b><br><i>Vadose Soil</i> | Soil Protection of<br>Surface Water<br>HH –<br>Organoleptic<br>Effects<br>CWA §304<br>NRWQC<br>Saturated Soil | Soil - Toxics<br>Substances<br>Control Act<br>(TSCA)<br>40 CFR 761.61 | Screening<br>Level<br>(Includes to<br>Protect Potable<br>GW) |
| UNITS                                                       | mg/kg               | mg/kg                      | mg/kg                                                                                                                                                                 | mg/kg                                                                              | mg/kg                                                                                                                            | mg/kg                                                                                                         | mg/kg                                                                 | mg/kg                                                        |
| acetone                                                     |                     |                            |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 2.0782632                                                    |
| acenaphthene (CAS 83-29-9)                                  |                     |                            |                                                                                                                                                                       |                                                                                    | 2.529346475                                                                                                                      | 0.128193333                                                                                                   |                                                                       | 0.016749455                                                  |
| acenaphthylene (CAS 208-96-8)                               |                     |                            |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.069091503                                                  |
| anthracene                                                  |                     | 45320.43361                | 2275.533333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.223091503                                                  |
| benzene                                                     |                     | 0.546947321                | 0.032103833                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.000359473                                                  |
| benzo(g,h,i)perylene                                        |                     |                            |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.031003321                                                  |
| benzo[a]anthracene                                          |                     | 0.264616001                | 0.013233487                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.00512264                                                   |
| benzo[a]pyrene                                              |                     | 0.487940001                | 0.024399687                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.00944504                                                   |
| benzo[b]fluoranthene                                        |                     | 0.498046001                | 0.024904987                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.00964064                                                   |
| benzo[k]fluoranthene                                        |                     | 0.487940001                | 0.024399687                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.00944504                                                   |
| bis(2-ethylhexyl) phthalate                                 |                     | 19.54080011                | 0.977551333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.047081657                                                  |
| butyl benzyl phthalate                                      |                     | 0.004704007                | 0.004.4750.40                                                                                                                                                         |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.005050071                                                  |
| carbon tetrachloride                                        |                     | 0.031794987                | 0.001475349                                                                                                                                                           |                                                                                    | 0.19160985                                                                                                                       | 0.011093333                                                                                                   |                                                                       | 0.000209567                                                  |
| chlorobenzene                                               |                     | 201.1903424<br>0.178900071 | 11.648<br>0.010553827                                                                                                                                                 |                                                                                    | 0.19160965                                                                                                                       | 0.011093333                                                                                                   |                                                                       | 0.011093333<br>0.010553827                                   |
| chloroethane (ethyl chloride) chloroform (trichloromethane) |                     | 2.331667802                | 0.151202133                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.151202133                                                  |
| chloromethane (methyl chloride)                             |                     | 2.331007002                | 0.131202133                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.131202133                                                  |
| chrysene                                                    |                     | 0.146506011                | 0.007327987                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.00283664                                                   |
| dibenz[a,h]anthracene                                       |                     | 1.625764                   | 0.081290887                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.012001313                                                  |
| dibenzofuran                                                |                     |                            | 0.00.20000                                                                                                                                                            |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.015380531                                                  |
| di-butyl phthalate (di-n-butyl phth.)                       |                     | 398.4015399                | 20.96                                                                                                                                                                 |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.263196347                                                  |
| dichlorobenzene, 1,2-                                       |                     | 220.9681077                | 12.40603333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.003788337                                                  |
| dichlorobenzene, 1,3-                                       |                     | 10.4                       | 0.745333333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.2752                                                       |
| dichlorobenzene, 1,4-                                       |                     | 33.41416                   | 1.873733333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.005147619                                                  |
| dichloroethane, 1,1-                                        |                     |                            |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.257365333                                                  |
| dichloroethane, 1,2-                                        |                     | 0.490986494                | 0.03271521                                                                                                                                                            |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.000158619                                                  |
| dichloroethylene, 1,1-                                      |                     | 0.020963953                | 0.001029461                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.001029461                                                  |
| diethyl phthalate                                           |                     | 782.8852                   | 49.544                                                                                                                                                                |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.199783069                                                  |
| dimethyl phthalate                                          |                     | 11600                      | 831.3333333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.093952381                                                  |
| di-n-octyl phthalate                                        |                     |                            |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.05808483                                                   |
| ethylbenzene                                                |                     | 432.52559                  | 23.32953333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.643573333                                                  |
| fluoranthene                                                |                     | 525.7702324                | 26.32056667                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.160646921                                                  |
| fluorene                                                    |                     | 3217.295485                | 162.0733333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.023583481                                                  |
| hexachlorobenzene                                           |                     | 5.52254E-05                | 2.82333E-06                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 1.06333E-06                                                  |
| hexachlorobutadiene                                         |                     | 4.844742281                | 0.064008333                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.005024748                                                  |
| indeno[1,2,3-cd]pyrene                                      |                     | 1.659244001                | 0.082964887                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                       | 0.03211544                                                   |

| MEDIA - MTCA Standard                                                     |                                                                                                                                 | SOIL M                                                                                               | lethod A                                                                                                                    |                                                                                                                            | SOIL M                                                                                                                      | ethod B                                                                                                                        | SOIL M                                                               | ethod C                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                    | SOIL PA                                                                                                                                                    | ATHWAY EVA                                                                                                                                                    | LUATION                                                                                    |                                                                                            |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological                               | Soil, Method A, Unrestricted Land Use-HH, WAC 173-340- 740(2)(b)(iii) CLARC Database/ Table 740-1 (Arsenic, Lead, and TPH only) | Soil, Method A, Unrestricted Land Use-Ecol, WAC 173-340- 740(2)(b)(ii); Table 749-2 (Simplified TEE) | Soil, Method A, Industrial Land Use-HH, WAC 173-340- 745(3)(b)(i) CLARC Database/ Table 745-1 (Arsenic, Lead, and TPH only) | Soil,<br>Method A,<br>Industrial<br>Land Use-Ecol,<br>WAC 173-340-<br>745(3)(b)(iii)<br>Table 749-2<br>(Simplified<br>TEE) | Soil, Direct Contact<br>Method B-HH,<br>Carcinogen, WAC<br>173-340-<br>740(3)(b)(iii)(B)(II)<br>CLARC Database<br>EQ. 740-2 | Soil, Direct Contact<br>Method B-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>740(3)(b)(iii)(B)(I)<br>CLARC Database<br>EQ. 740-1 | Method C-HH,<br>Carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(II) | Soil, Direct Contact<br>Method C-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(I)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-1 | Soil to Method B-<br>HH Groundwater<br>Protection - <b>NC</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection -NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Saturated Soil | Soil to Method B-<br>HH Groundwater<br>Protection - <b>Carc</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection - <b>Carc</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Saturated Soil | Soil to Sediment Protection Ecology CSL WAC 173-340- 740(1)(d) EQ. 747-1/747-2 Vadose Soil | Soil to Sediment Protection Ecology SQS WAC 173-340- 740(1)(d) EQ. 747-1/747-2 Vadose Soil |
| UNITS                                                                     | mg/kg                                                                                                                           | mg/kg                                                                                                | mg/kg                                                                                                                       | mg/kg                                                                                                                      | mg/kg                                                                                                                       | mg/kg                                                                                                                          | mg/kg                                                                | mg/kg                                                                                                                                            | mg/kg                                                                                                                                                    | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                      | mg/kg                                                                                                                                                         | mg/kg                                                                                      | mg/kg                                                                                      |
| MCK (Mothyd Ethyd Kotonova Butonono)                                      | ll                                                                                                                              |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 48000                                                                                                                          |                                                                      | 2400000                                                                                                                                          | 40.2                                                                                                                                                     | 1 276                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| MEK (Methyl Ethyl Ketone;2-Butanone) methylene chloride (dichloromethane) | -                                                                                                                               | <del> </del>                                                                                         | +                                                                                                                           |                                                                                                                            | 130                                                                                                                         | 48000<br>4800                                                                                                                  | 18000                                                                | 2100000                                                                                                                                          | 19.2                                                                                                                                                     | 1.376                                                                                                                                              | 0.028229158                                                                                                                                                | 0.001809671                                                                                                                                                   |                                                                                            | <del>                                     </del>                                           |
| methylnaphthalene, 2-                                                     |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            | 130                                                                                                                         | 320                                                                                                                            | 10000                                                                |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    | 0.020229136                                                                                                                                                | 0.001009071                                                                                                                                                   | 1.403786411                                                                                | 0.833498182                                                                                |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                                       |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 6400                                                                                                                           |                                                                      | 280000                                                                                                                                           | 2.56                                                                                                                                                     | 0.183466667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               | 1.400700411                                                                                | 0.000400102                                                                                |
| naphthalene                                                               |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 1600                                                                                                                           |                                                                      | 70000                                                                                                                                            | 6.523391213                                                                                                                                              | 0.339786667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               | 3.772891304                                                                                | 2.197154348                                                                                |
| nitrosodiphenylamine, N-                                                  |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                | 26786                                                                |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 0.227829375                                                                                | 0.227829375                                                                                |
| pcb mixtures                                                              |                                                                                                                                 | 2                                                                                                    |                                                                                                                             | 2                                                                                                                          | 0.5                                                                                                                         |                                                                                                                                | 65.63                                                                |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    | 0.039618668                                                                                                                                                | 0.001984693                                                                                                                                                   | 1.305844196                                                                                | 0.241078929                                                                                |
| pcb - Aroclor 1016                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 5.6                                                                                                                            |                                                                      | 250                                                                                                                                              | 0.611759881                                                                                                                                              | 0.030684267                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               | 1.309661255                                                                                | 0.241783616                                                                                |
| pcb - Aroclor 1221                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| pcb - Aroclor 1232                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| pcb - Aroclor 1242                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| pcb - Aroclor 1248                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 1.305964009                                                                                | 0.241101048                                                                                |
| pcb - Aroclor 1254                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 1.6                                                                                                                            |                                                                      | 70                                                                                                                                               | 0.485382421                                                                                                                                              | 0.024296533                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               | 1.303463228                                                                                | 0.240639365                                                                                |
| pcb - Aroclor 1260                                                        |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 1.301264831                                                                                | 0.240233507                                                                                |
| phenanthrene                                                              |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 9.692387538                                                                                | 2.019247404                                                                                |
| pyrene                                                                    |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 2400                                                                                                                           |                                                                      | 105000                                                                                                                                           | 668.256405                                                                                                                                               | 33.4544                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                               | 28.08071129                                                                                | 20.05765092                                                                                |
| tetrachloroethylene (perchloroethylene)                                   | -                                                                                                                               |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 800                                                                                                                            | .=                                                                   | 35000                                                                                                                                            | 0.848554667                                                                                                                                              | 0.044133333                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| trichlorobenzene, 1,2,4-                                                  |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            | 34.5                                                                                                                        | 800                                                                                                                            | 4530                                                                 | 35000                                                                                                                                            | 44.5044.5007                                                                                                                                             | 0.444000                                                                                                                                           | 0.008172744                                                                                                                                                | 0.000535094                                                                                                                                                   | 0.046319164                                                                                | 0.020843624                                                                                |
| trichlorethane, 1,1,1-                                                    | -                                                                                                                               |                                                                                                      |                                                                                                                             |                                                                                                                            | 40                                                                                                                          | 72000                                                                                                                          | 2200                                                                 |                                                                                                                                                  | 44.58415697                                                                                                                                              | 2.414208                                                                                                                                           | 0.004450720                                                                                                                                                | 0.000070454                                                                                                                                                   |                                                                                            |                                                                                            |
| trichlorethane, 1,1,2-<br>trichloroethylene                               | ╂                                                                                                                               | <del> </del>                                                                                         | +                                                                                                                           |                                                                                                                            | 18<br>11                                                                                                                    | 320                                                                                                                            | 2302<br>1050                                                         |                                                                                                                                                  | 0.01586752                                                                                                                                               | 0.0009136                                                                                                                                          | 0.004156738<br>0.003239619                                                                                                                                 | 0.000272154<br>0.000186527                                                                                                                                    |                                                                                            | 1                                                                                          |
| trimethylbenzene, 1,3,5-                                                  | 1                                                                                                                               | 1                                                                                                    |                                                                                                                             |                                                                                                                            | 11                                                                                                                          | 800                                                                                                                            | 1030                                                                 | 35000                                                                                                                                            | 1.494541973                                                                                                                                              | 0.079173333                                                                                                                                        | 0.003233013                                                                                                                                                | 0.000100327                                                                                                                                                   |                                                                                            |                                                                                            |
| toluene                                                                   | 1                                                                                                                               |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 6400                                                                                                                           |                                                                      | 33000                                                                                                                                            | 15.56360186                                                                                                                                              | 0.887466667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| vinyl chloride (chloroethylene)                                           | 1                                                                                                                               | <del> </del>                                                                                         |                                                                                                                             |                                                                                                                            | 0.67                                                                                                                        | 240                                                                                                                            | 87.5                                                                 |                                                                                                                                                  | 0.151296                                                                                                                                                 | 0.007336                                                                                                                                           | 0.000182816                                                                                                                                                | 8.86433E-06                                                                                                                                                   |                                                                                            |                                                                                            |
| xylene (dimethylbenzene)                                                  |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            | 1.0.                                                                                                                        | 16000                                                                                                                          |                                                                      | 700000                                                                                                                                           | 20.94786912                                                                                                                                              | 1.167626667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| benzoic acid                                                              |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 320000                                                                                                                         |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 9.621710689                                                                                | 9.621710689                                                                                |
| benzyl alcohol                                                            |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 8000                                                                                                                           |                                                                      | 350000                                                                                                                                           | 3.450579114                                                                                                                                              | 0.241861333                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               | 1.005317197                                                                                | 0.784973702                                                                                |
| dimethylphenol, 2,4-                                                      |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      | 70000                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 0.037082633                                                                                | 0.037082633                                                                                |
| methylphenol, 2- (o-cresol)                                               |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 4000                                                                                                                           |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 0.091443043                                                                                | 0.091443043                                                                                |
| methylphenol, 4- (p-cresol)                                               |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             | 400                                                                                                                            |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               | 0.978761233                                                                                | 0.978761233                                                                                |
| pentachlorophenol                                                         |                                                                                                                                 | 11                                                                                                   | _                                                                                                                           | 11                                                                                                                         | 2.5                                                                                                                         | 400                                                                                                                            | 328                                                                  | 17500                                                                                                                                            | 5.728000139                                                                                                                                              | 0.293333333                                                                                                                                        | 0.0156804                                                                                                                                                  | 0.000803                                                                                                                                                      | 0.73082842                                                                                 | 0.381301784                                                                                |
| phenol (total)                                                            |                                                                                                                                 | ļ                                                                                                    |                                                                                                                             |                                                                                                                            |                                                                                                                             | 24000                                                                                                                          |                                                                      | 1050000                                                                                                                                          | 10.47014422                                                                                                                                              | 0.73144                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                               | 2.095527666                                                                                | 0.733434683                                                                                |
| styrene (phenylethylene)                                                  |                                                                                                                                 | ļ                                                                                                    |                                                                                                                             |                                                                                                                            |                                                                                                                             | 16000                                                                                                                          |                                                                      |                                                                                                                                                  | 23.2815508                                                                                                                                               | 1.287146667                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                               |                                                                                            | <b></b>                                                                                    |
| Tributyltin (oxide)                                                       |                                                                                                                                 | ļ                                                                                                    |                                                                                                                             |                                                                                                                            |                                                                                                                             | 24                                                                                                                             |                                                                      | 1050                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |
| Trichlorophenol, 2,4,6-                                                   | <b> </b>                                                                                                                        |                                                                                                      |                                                                                                                             |                                                                                                                            | 91                                                                                                                          | 80                                                                                                                             |                                                                      | 3500                                                                                                                                             | 0.221761475                                                                                                                                              | 0.011781333                                                                                                                                        | 0.110880737                                                                                                                                                | 0.005890667                                                                                                                                                   |                                                                                            |                                                                                            |
|                                                                           |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                                            |                                                                                                                             |                                                                                                                                |                                                                      |                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                               |                                                                                            |                                                                                            |

| MEDIA - MTCA Standard                       |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   | SOIL PATH                                                                                                                                            | IWAY EVALUA                                                                                                                                                                  | TION                                                                                                                                                 |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | Soil to Sediment<br>Protection<br>Ecology <b>CSL</b><br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Sediment<br>Protection Ecology<br>SQS<br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Saturated Soil | Soil to Surface Water<br>Protection<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Marine - Chronic<br>Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Chronic Saturated Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2 Vadose<br>Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Saturated Soil |
| UNITS                                       | mg/kg                                                                                                                  | mg/kg                                                                                                           | mg/kg                                                                                                                                            | mg/kg                                                                                                                                               | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                 | mg/kg                                                                                                                                             | mg/kg                                                                                                                                                | mg/kg                                                                                                                                                                        | mg/kg                                                                                                                                                | mg/kg                                                                                                                      | mg/kg                                                                                                                         | mg/kg                                                                                                       | mg/kg                                                                                                          |
| MEK (Methyl Ethyl Ketone;2-Butanone)        |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| methylene chloride (dichloromethane)        | 0.070770000                                                                                                            | 0.040040404                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| methylnaphthalene, 2-                       | 0.072778309                                                                                                            | 0.043212121                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)         | 0.400405507                                                                                                            | 0.44.4400040                                                                                                    |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| naphthalene                                 | 0.196485507                                                                                                            | 0.114423913<br>0.011561091                                                                                      |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| nitrosodiphenylamine, N-                    | 0.011561091                                                                                                            |                                                                                                                 | 1.800848533                                                                                                                                      | 0.000343333                                                                                                                                         | 0.04260504                                                                                                                                         | 0.000634.403                                                                                                                                          | 0.004242667                                                                                                                                       | 0.454066667                                                                                                                                          | 0.027042720                                                                                                                                                                  | 0.0043533                                                                                                                                            |                                                                                                                            |                                                                                                                               | 0.027042720                                                                                                 | 0.0042522                                                                                                      |
| pcb mixtures                                | 0.065415923                                                                                                            | 0.012076786<br>0.012126937                                                                                      | 1.800848533                                                                                                                                      | 0.090213333                                                                                                                                         | 0.01260594                                                                                                                                         | 0.000631493                                                                                                                                           | 9.004242667                                                                                                                                       | 0.451066667                                                                                                                                          | 0.027012728                                                                                                                                                                  | 0.0013532                                                                                                                                            |                                                                                                                            |                                                                                                                               | 0.027012728                                                                                                 | 0.0013532                                                                                                      |
| pcb - Aroclor 1016<br>pcb - Aroclor 1221    | 0.065687577                                                                                                            | 0.012120937                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pcb - Aroclor 1221<br>pcb - Aroclor 1232    |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pcb - Aroclor 1232<br>pcb - Aroclor 1242    |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pcb - Aroclor 1242<br>pcb - Aroclor 1248    | 0.06542445                                                                                                             | 0.01207836                                                                                                      |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pcb - Aroclor 1248<br>pcb - Aroclor 1254    | 0.065246473                                                                                                            | 0.012075503                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pcb - Aroclor 1254<br>pcb - Aroclor 1260    | 0.065090016                                                                                                            | 0.012045505                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| phenanthrene                                | 0.486615385                                                                                                            | 0.101378205                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pyrene                                      | 1.405782901                                                                                                            | 1.004130644                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| tetrachloroethylene (perchloroethylene)     | 1.403702301                                                                                                            | 1.004130044                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| trichlorobenzene, 1,2,4-                    | 0.002518663                                                                                                            | 0.001133398                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| trichlorethane, 1,1,1-                      | 0.002010000                                                                                                            | 0.001100000                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| trichlorethane, 1,1,2-                      |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| trichloroethylene                           |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| trimethylbenzene, 1,3,5-                    |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| toluene                                     |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| vinyl chloride (chloroethylene)             |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| xylene (dimethylbenzene)                    |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzoic acid                                | 0.675472165                                                                                                            | 0.675472165                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| benzyl alcohol                              | 0.070465666                                                                                                            | 0.055021137                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| dimethylphenol, 2,4-                        | 0.002029246                                                                                                            | 0.002029246                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| methylphenol, 2- (o-cresol)                 | 0.005188375                                                                                                            | 0.005188375                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| methylphenol, 4- (p-cresol)                 | 0.055627496                                                                                                            | 0.055627496                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| pentachlorophenol                           | 0.037426036                                                                                                            | 0.019526627                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | 0.930800023                                                                                                                                       | 0.047666667                                                                                                                                          | 0.565640014                                                                                                                                                                  | 0.028966667                                                                                                                                          | 0.930800023                                                                                                                | 0.047666667                                                                                                                   | 0.565640014                                                                                                 | 0.028966667                                                                                                    |
| phenol (total)                              | 0.124179104                                                                                                            | 0.043462687                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| styrene (phenylethylene)                    |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Tributyltin (oxide)                         |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      | 0.00168                                                                                                                    | 0.0001204                                                                                                                     | 0.0000296                                                                                                   | 2.12133E-06                                                                                                    |
| Trichlorophenol, 2,4,6-                     |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
|                                             |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |

| MEDIA - MTCA Standard                         |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          | SOIL F            | PATHWAY EVA       | LUATION                                                                                                  |                     |                   |                   |                                                                                                              |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------|
| PATHWAYS  HH - Human Health  Ecol- Ecological | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water<br>Protection<br>WAC 173-340-<br>740(1)(d) NRWQC<br>Freshwater Chronic<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Surface Water<br>Protection WAC 173<br>340-740(1)(d)<br>NRWQC HH-<br>Consumption<br>Organisms EQ.<br>747-1/747-2 Vadose<br>Soil | NRWQC HH-<br>Consumption | Life Fresh/Acute, | Life Fresh/Acute, | Soil to Surface Water<br>Protection Aquatic<br>Life Fresh/Chronic,<br>NTR - 40 CFR 131.36<br>Vadose Soil | Life Fresh/Chronic, | Life Marine/Acute | Life Marine/Acute | Soil to Surface Water<br>Protection<br>Aquatic Life<br>Marine/Chronic,<br>NTR - 40 CFR 131.36<br>Vadose Soil |
| UNITS                                         | mg/kg                                                                                                      | mg/kg                                                                                                         | mg/kg                                                                                                        | mg/kg                                                                                                                             | mg/kg                                                                                                                                   | mg/kg                    | mg/kg             | mg/kg             | mg/kg                                                                                                    | mg/kg               | mg/kg             | mg/kg             | mg/kg                                                                                                        |
| MEK (Methyl Ethyl Ketone;2-Butanone)          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| methylene chloride (dichloromethane)          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 2.856810188                                                                                                                             | 0.183139933              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| methylnaphthalene, 2-                         |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)           |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| naphthalene                                   |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| nitrosodiphenylamine, N-                      |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.76248051                                                                                                                              | 0.038644                 |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| pcb mixtures                                  |                                                                                                            |                                                                                                               | 0.01260594                                                                                                   | 0.000631493                                                                                                                       | 5.76272E-05                                                                                                                             | 2.88683E-06              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| pcb - Aroclor 1016                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.007646999                                                                                              | 0.000383553         |                   |                   | 0.016386425                                                                                                  |
| pcb - Aroclor 1221                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.002949131                                                                                              | 0.000148633         |                   |                   | 0.006319565                                                                                                  |
| pcb - Aroclor 1232                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.002949131                                                                                              | 0.000148633         |                   |                   | 0.006319565                                                                                                  |
| pcb - Aroclor 1242                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.000181685                                                                                              | 1.02881E-05         |                   |                   | 0.000389324                                                                                                  |
| pcb - Aroclor 1248                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.012348437                                                                                              | 0.000618613         |                   |                   | 0.026460936                                                                                                  |
| pcb - Aroclor 1254                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.021235481                                                                                              | 0.001062973         |                   |                   | 0.045504602                                                                                                  |
| pcb - Aroclor 1260                            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   | 0.058016334                                                                                              | 0.002902013         |                   |                   | 0.124320715                                                                                                  |
| phenanthrene                                  |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| pyrene                                        |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 5568.803375                                                                                                                             | 278.7866667              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| tetrachloroethylene (perchloroethylene)       |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.024389947                                                                                                                             | 0.00129844               |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| trichlorobenzene, 1,2,4-                      |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.378868933                                                                                                                             | 0.024805667              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| trichlorethane, 1,1,1-                        |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| trichlorethane, 1,1,2-                        |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.086598718                                                                                                                             | 0.005669867              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| trichloroethylene                             |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.181570332                                                                                                                             | 0.010631                 |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| trimethylbenzene, 1,3,5-                      |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| toluene                                       |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 145.9087675                                                                                                                             | 8.32                     |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| vinyl chloride (chloroethylene)               |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.015469828                                                                                                                             | 0.000744976              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| xylene (dimethylbenzene)                      |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| benzoic acid                                  |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| benzyl alcohol                                |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| dimethylphenol, 2,4-                          |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 15.57205746                                                                                                                             | 0.852266667              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| methylphenol, 2- (o-cresol)                   |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| methylphenol, 4- (p-cresol)                   |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| pentachlorophenol                             | 1.360400033                                                                                                | 0.069666667                                                                                                   | 1.074000026                                                                                                  | 0.055                                                                                                                             | 0.214800005                                                                                                                             | 0.011                    | 1.432000035       | 0.073333333       | 0.930800023                                                                                              | 0.047666667         | 0.930800023       | 0.047666667       | 0.565640014                                                                                                  |
| phenol (total)                                |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 3751.80168                                                                                                                              | 262.0993333              |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| styrene (phenylethylene)                      |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| Tributyltin (oxide)                           | 0.00184                                                                                                    | 0.000131867                                                                                                   | 0.000288                                                                                                     | 0.00002064                                                                                                                        |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
| Trichlorophenol, 2,4,6-                       |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.066528442                                                                                                                             | 0.0035344                |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |
|                                               |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   |                                                                                                                                         |                          |                   |                   |                                                                                                          |                     |                   |                   |                                                                                                              |

| MEDIA - MTCA Standard                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOIL P         | ATHWAY EVAI                                                                                                                                                           | LUATION                                                                            | SOIL PO                                                                                                                           | TENTIAL A                                                                                                     | .RAR's                                                                | SOIL MOST<br>STRINGENT                                       |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|
| <i>PATHWAYS</i><br>HH - Human Health<br>Ecol- Ecological | Soil to Surface Water<br>Protection<br>Aquatic Life<br>Marine/Chronic,<br>NTR - 40 CFR 131.36<br>Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (WAC 173-201A- | Soil to Surface Water Protection HH - Fresh Water Organism Consumption Only NTR - 40 CFR 131.36 (WAC 173-201A- 040[5]) HH - 10 <sup>-6</sup> Carc Risk Saturated Soil | Soil Protective of<br>Vapor, Direct<br>Contact, WAC<br>173-340-<br>740(3)(b)(iii)C | Soil Protection of<br>Surface Water<br>HH – <b>Organoleptic</b><br><b>Effects</b><br>CWA §304 <b>NRWQC</b><br><i>Vad</i> ose Soil | Soil Protection of<br>Surface Water<br>HH –<br>Organoleptic<br>Effects<br>CWA §304<br>NRWQC<br>Saturated Soil | Soil - Toxics<br>Substances<br>Control Act<br>(TSCA)<br>40 CFR 761.61 | Screening<br>Level<br>(Includes to<br>Protect Potable<br>GW) |
| UNITS                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg          | mg/kg                                                                                                                                                                 | mg/kg                                                                              | mg/kg                                                                                                                             | mg/kg                                                                                                         | mg/kg                                                                 | mg/kg                                                        |
| MEK (Methyl Ethyl Ketone;2-Butanone)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 1.376                                                        |
| methylene chloride (dichloromethane)                     | TI CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY | 7.747281865    | 0.496650667                                                                                                                                                           |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.001809671                                                  |
| methylnaphthalene, 2-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.043212121                                                  |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.183466667                                                  |
| naphthalene                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.114423913                                                  |
| nitrosodiphenylamine, N-                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.033281359    | 0.103050667                                                                                                                                                           |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.011561091                                                  |
| pcb mixtures                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000153072    | 7.66813E-06                                                                                                                                                           |                                                                                    |                                                                                                                                   |                                                                                                               | 1                                                                     | 2.88683E-06                                                  |
| pcb - Aroclor 1016                                       | 0.0008219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000383553                                                  |
| pcb - Aroclor 1221                                       | 0.0003185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000148633                                                  |
| pcb - Aroclor 1232                                       | 0.0003185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000148633                                                  |
| pcb - Aroclor 1242                                       | 0.000022046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 1.02881E-05                                                  |
| pcb - Aroclor 1248                                       | 0.0013256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000618613                                                  |
| pcb - Aroclor 1254                                       | 0.0022778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.001062973                                                  |
| pcb - Aroclor 1260                                       | 0.0062186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.002902013                                                  |
| phenanthrene                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.101378205                                                  |
| pyrene                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15314.20928    | 766.6633333                                                                                                                                                           |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 1.004130644                                                  |
| tetrachloroethylene (perchloroethylene)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.065409403    | 0.00348218                                                                                                                                                            |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.00129844                                                   |
| trichlorobenzene, 1,2,4-                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000535094                                                  |
| trichlorethane, 1,1,1-                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 2.414208                                                     |
| trichlorethane, 1,1,2-                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.227321635    | 0.0148834                                                                                                                                                             |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000272154                                                  |
| trichloroethylene                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.490239896    | 0.0287037                                                                                                                                                             |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000186527                                                  |
| trimethylbenzene, 1,3,5-                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.079173333                                                  |
| toluene                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1945.450233    | 110.9333333                                                                                                                                                           |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.887466667                                                  |
| vinyl chloride (chloroethylene)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.384024973    | 0.1629635                                                                                                                                                             |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 8.86433E-06                                                  |
| xylene (dimethylbenzene)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 1.167626667                                                  |
| benzoic acid                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.675472165                                                  |
| benzyl alcohol                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.055021137                                                  |
| dimethylphenol, 2,4-                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    | 7.32802704                                                                                                                        | 0.401066667                                                                                                   |                                                                       | 0.002029246                                                  |
| methylphenol, 2- (o-cresol)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.005188375                                                  |
| methylphenol, 4- (p-cresol)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.055627496                                                  |
| pentachlorophenol                                        | 0.028966667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.587120014    | 0.030066667                                                                                                                                                           |                                                                                    | 2.148000052                                                                                                                       | 0.11                                                                                                          |                                                                       | 0.000803                                                     |
| phenol (total)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20067.77643    | 1401.926667                                                                                                                                                           |                                                                                    | 1.308768028                                                                                                                       | 0.09143                                                                                                       |                                                                       | 0.043462687                                                  |
| styrene (phenylethylene)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 1.287146667                                                  |
| Tributyltin (oxide)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 2.12133E-06                                                  |
| Trichlorophenol, 2,4,6-                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.180181198    | 0.009572333                                                                                                                                                           |                                                                                    | 0.055440369                                                                                                                       | 0.002945333                                                                                                   |                                                                       | 0.002945333                                                  |
| - ··                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.22.21.00    | 2.2.200. 2000                                                                                                                                                         |                                                                                    | 3.3303000                                                                                                                         | 111320.0000                                                                                                   |                                                                       |                                                              |

| MEDIA - MTCA Standard                                    |                                                                                                                                 | SOIL M                                                                                               | ethod A                                                                                                                     |                                                                                                    | SOIL M                                                                                                                      | ethod B                                                                 | SOIL M                                                                                                                                        | ethod C                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                    | SOIL PA                                                                                                                                                     | ATHWAY EVA                                                                                                                                             | LUATION                                                                                                      |                                                                                                              |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <i>PATHWAYS</i><br>HH - Human Health<br>Ecol- Ecological | Soil, Method A, Unrestricted Land Use-HH, WAC 173-340- 740(2)(b)(iii) CLARC Database/ Table 740-1 (Arsenic, Lead, and TPH only) | Soil, Method A, Unrestricted Land Use-Ecol, WAC 173-340- 740(2)(b)(ii); Table 749-2 (Simplified TEE) | Soil, Method A, Industrial Land Use-HH, WAC 173-340- 745(3)(b)(i) CLARC Database/ Table 745-1 (Arsenic, Lead, and TPH only) | Soil, Method A, Industrial Land Use-Ecol, WAC 173-340- 745(3)(b)(iii) Table 749-2 (Simplified TEE) | Soil, Direct Contact<br>Method B-HH,<br>Carcinogen, WAC<br>173-340-<br>740(3)(b)(iii)(B)(II)<br>CLARC Database<br>EQ. 740-2 | Method B-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>740(3)(b)(iii)(B)(I) | Soil, Direct Contact<br>Method C-HH,<br>Carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(II)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-2 | Soil, Direct Contact<br>Method C-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(I)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-1 | Soil to Method B-<br>HH Groundwater<br>Protection - NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection -NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Saturated Soil | Soil to Method B-<br>HH Groundwater<br>Protection - <b>Carc</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/ 747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection - Carc,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/ 747-2<br>CLARC Database<br>Saturated Soil | Soil to Sediment<br>Protection Ecology<br>CSL<br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Vadose Soil | Soil to Sediment<br>Protection Ecology<br>SQS<br>WAC 173-340-<br>740(1)(d) EQ.<br>747-1/747-2<br>Vadose Soil |
| UNITS                                                    | mg/kg                                                                                                                           | mg/kg                                                                                                | mg/kg                                                                                                                       | mg/kg                                                                                              | mg/kg                                                                                                                       | mg/kg                                                                   | mg/kg                                                                                                                                         | mg/kg                                                                                                                                            | mg/kg                                                                                                                                            | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                       | mg/kg                                                                                                                                                  | mg/kg                                                                                                        | mg/kg                                                                                                        |
| Aluminum                                                 |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 80000                                                                   |                                                                                                                                               | 3500000                                                                                                                                          | 64                                                                                                                                               | 4.586666667                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Antimony                                                 | 1                                                                                                                               |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 00000                                                                   |                                                                                                                                               | 3500000                                                                                                                                          | 04                                                                                                                                               | 4.300000007                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Arsenic (III)                                            |                                                                                                                                 | 20                                                                                                   |                                                                                                                             | 20                                                                                                 |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Arsenic (V)                                              |                                                                                                                                 | 95                                                                                                   |                                                                                                                             | 260                                                                                                |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Arsenic (total)                                          | 20                                                                                                                              | 20                                                                                                   | 20                                                                                                                          | 20                                                                                                 | 0.67                                                                                                                        | 24                                                                      | 87.5                                                                                                                                          | 1050                                                                                                                                             | 2.8032                                                                                                                                           | 0.140576                                                                                                                                           | 0.0340472                                                                                                                                                   | 0.001707413                                                                                                                                            |                                                                                                              |                                                                                                              |
| Barium                                                   |                                                                                                                                 | 1250                                                                                                 |                                                                                                                             | 1320                                                                                               |                                                                                                                             | 16000                                                                   |                                                                                                                                               | 700000                                                                                                                                           | 461.44                                                                                                                                           | 23.12053333                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Beryllium                                                |                                                                                                                                 | 25                                                                                                   |                                                                                                                             |                                                                                                    |                                                                                                                             | 160                                                                     | 700                                                                                                                                           | 7000                                                                                                                                             | 505.728                                                                                                                                          | 25.28917333                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Cadmium                                                  |                                                                                                                                 | 25                                                                                                   |                                                                                                                             | 36                                                                                                 |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  | 2.208                                                                                                                                            | 0.111786667                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        | 33.67271                                                                                                     | 25.63146582                                                                                                  |
| Chromium (VI)                                            |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 240                                                                     |                                                                                                                                               | 10500                                                                                                                                            | 18.432                                                                                                                                           | 0.92576                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Chromium, total (or III)                                 |                                                                                                                                 | 42                                                                                                   |                                                                                                                             | 135                                                                                                |                                                                                                                             | 120000                                                                  |                                                                                                                                               | 5250000                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        | 5401.270588                                                                                                  | 5201.223529                                                                                                  |
| Cobalt                                                   |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               | 4 4 2 2 2 2                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Copper                                                   |                                                                                                                                 | 100                                                                                                  |                                                                                                                             | 550                                                                                                |                                                                                                                             | 3200                                                                    |                                                                                                                                               | 140000                                                                                                                                           | 284.16                                                                                                                                           | 14.26346667                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        | 780.4933153                                                                                                  | 780.4933153                                                                                                  |
| Iron                                                     | 250                                                                                                                             | 220                                                                                                  | 1000                                                                                                                        | 220                                                                                                |                                                                                                                             | 56000                                                                   |                                                                                                                                               | 2450000                                                                                                                                          | 44.8                                                                                                                                             | 3.210666667                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        | 1334.514188                                                                                                  | 1133.078085                                                                                                  |
| Lead<br>Manganese                                        | 250                                                                                                                             | 220                                                                                                  | 1000                                                                                                                        | 23500                                                                                              |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        | 1334.314100                                                                                                  | 1133.076065                                                                                                  |
| Mercury                                                  |                                                                                                                                 | 9                                                                                                    |                                                                                                                             | 9                                                                                                  |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        | 0.591436697                                                                                                  | 0.410998383                                                                                                  |
| Mercury (organic)                                        |                                                                                                                                 | 0.7                                                                                                  |                                                                                                                             | 0.7                                                                                                |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        | 0.551450057                                                                                                  | 0.410330303                                                                                                  |
| Molybdenum                                               |                                                                                                                                 | <u> </u>                                                                                             |                                                                                                                             | 71                                                                                                 |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Nickel                                                   |                                                                                                                                 | 100                                                                                                  |                                                                                                                             | 1850                                                                                               |                                                                                                                             | 1600                                                                    |                                                                                                                                               | 70000                                                                                                                                            | 417.28                                                                                                                                           | 20.89173333                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Selenium                                                 |                                                                                                                                 | 0.8                                                                                                  |                                                                                                                             | 0.8                                                                                                |                                                                                                                             | 400                                                                     |                                                                                                                                               | 17500                                                                                                                                            | 8.32                                                                                                                                             | 0.422933333                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Silver                                                   |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 400                                                                     |                                                                                                                                               | 17500                                                                                                                                            | 13.6                                                                                                                                             | 0.686933333                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        | 12.206129                                                                                                    | 12.206129                                                                                                    |
| Tin                                                      |                                                                                                                                 | 275                                                                                                  |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Thallium                                                 |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Vanadium                                                 | <b> </b>                                                                                                                        | 26                                                                                                   |                                                                                                                             |                                                                                                    |                                                                                                                             | 5.6                                                                     | ļ                                                                                                                                             | 245                                                                                                                                              | 22.40448                                                                                                                                         | 1.120321067                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                        | 704.0=====                                                                                                   | 000 570 / 107                                                                                                |
| Zinc                                                     | <del> </del>                                                                                                                    | 270                                                                                                  |                                                                                                                             | 570                                                                                                |                                                                                                                             | 24000                                                                   |                                                                                                                                               | 1000000                                                                                                                                          | 5971.2                                                                                                                                           | 298.976                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                        | 764.6707895                                                                                                  | 326.5781497                                                                                                  |
| LPAH                                                     | <del>                                     </del>                                                                                |                                                                                                      | <del> </del>                                                                                                                |                                                                                                    |                                                                                                                             | -                                                                       | -                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              | <del> </del>                                                                                                 |
| HPAH                                                     |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Total Petroleum Hydrocarbons                             |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Gasoline                                                 | 100                                                                                                                             | 200                                                                                                  | 100                                                                                                                         | 12000                                                                                              |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Gasoline (w/benzene)                                     | 30                                                                                                                              |                                                                                                      | 30                                                                                                                          |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Diesel                                                   | 2000                                                                                                                            | 460                                                                                                  | 2000                                                                                                                        | 15000                                                                                              |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| Heavy Oil                                                | 2000                                                                                                                            |                                                                                                      | 2000                                                                                                                        |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
|                                                          |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                         |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                        |                                                                                                              |                                                                                                              |
| 2,3,7,8-TCDD (Dioxin)                                    | <u> </u>                                                                                                                        | 0.000005                                                                                             |                                                                                                                             |                                                                                                    |                                                                                                                             | 0.000011                                                                | 0.0015                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 1.6994E-06                                                                                                                                                  | 8.50203E-08                                                                                                                                            |                                                                                                              |                                                                                                              |
|                                                          | II I                                                                                                                            |                                                                                                      | 1                                                                                                                           |                                                                                                    | ĺ                                                                                                                           |                                                                         | 1                                                                                                                                             | I                                                                                                                                                | I                                                                                                                                                | ĺ                                                                                                                                                  | I                                                                                                                                                           | I                                                                                                                                                      | I                                                                                                            |                                                                                                              |

| MEDIA - MTCA Standard                       |                                                                                                           |                                                                                                                 | SOIL PATHWAY EVALUATION                                                                                                                          |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | Soil to Sediment<br>Protection  Ecology CSL<br>WAC 173-340-<br>740(1)(d)  EQ. 747-1/747-2  Saturated Soil | Soil to Sediment<br>Protection Ecology<br>SQS<br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Saturated Soil | Soil to Surface Water<br>Protection<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Marine - Chronic<br>Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-2014-240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Chronic Saturated Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2 Vadose<br>Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Saturated Soil |
| UNITS                                       | mg/kg                                                                                                     | mg/kg                                                                                                           | mg/kg                                                                                                                                            | mg/kg                                                                                                                                               | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                 | mg/kg                                                                                                                                             | mg/kg                                                                                                                                                | mg/kg                                                                                                                                                                        | mg/kg                                                                                                                                                | mg/kg                                                                                                                      | mg/kg                                                                                                                         | mg/kg                                                                                                       | mg/kg                                                                                                          |
| Aluminum                                    |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Antimony                                    |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Arsenic (III)                               | -                                                                                                         |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Arsenic (V) Arsenic (total)                 | -                                                                                                         |                                                                                                                 | 210.24                                                                                                                                           | 10.5432                                                                                                                                             | 110.96                                                                                                                                             | 5.564466667                                                                                                                                           | 40.296                                                                                                                                            | 2.02078                                                                                                                                              | 21.024                                                                                                                                                                       | 1.05432                                                                                                                                              | 40.296                                                                                                                     | 2.02078                                                                                                                       | 21.024                                                                                                      | 1.05432                                                                                                        |
| Barium                                      |                                                                                                           |                                                                                                                 | 210.24                                                                                                                                           | 10.0402                                                                                                                                             | 110.50                                                                                                                                             | 0.004400007                                                                                                                                           | 40.200                                                                                                                                            | 2.02010                                                                                                                                              | 21.024                                                                                                                                                                       | 1.00-102                                                                                                                                             | 40.230                                                                                                                     | 2.02010                                                                                                                       | 21.02-4                                                                                                     | 1.00402                                                                                                        |
| Beryllium                                   |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Cadmium                                     | 1.683926523                                                                                               | 1.281794816                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | 5.796                                                                                                                                             | 0.29344                                                                                                                                              | 1.2834                                                                                                                                                                       | 0.064976                                                                                                                                             | 5.52                                                                                                                       | 0.279466667                                                                                                                   | 1.2144                                                                                                      | 0.061482667                                                                                                    |
| Chromium (VI)                               | 270 0040500                                                                                               | 200 0070002                                                                                                     | 5.76                                                                                                                                             | 0.2893                                                                                                                                              | 3.84                                                                                                                                               | 0.192866667                                                                                                                                           | 422.4                                                                                                                                             | 21.21533333                                                                                                                                          | 19.2                                                                                                                                                                         | 0.964333333                                                                                                                                          | 422.4                                                                                                                      | 21.21533333                                                                                                                   | 19.2                                                                                                        | 0.964333333                                                                                                    |
| Chromium, total (or III) Cobalt             | 270.0910588                                                                                               | 260.0876863                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Copper                                      | 39.03535426                                                                                               | 39.03535426                                                                                                     |                                                                                                                                                  |                                                                                                                                                     | 5.0616                                                                                                                                             | 0.254068                                                                                                                                              | 2.1312                                                                                                                                            | 0.106976                                                                                                                                             | 1.3764                                                                                                                                                                       | 0.069088667                                                                                                                                          | 2.1312                                                                                                                     | 0.106976                                                                                                                      | 1.3764                                                                                                      | 0.069088667                                                                                                    |
| Iron                                        |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     | 3.55.15                                                                                                                                            | 0                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Lead                                        | 66.72686322                                                                                               | 56.65488386                                                                                                     |                                                                                                                                                  |                                                                                                                                                     | 500.01                                                                                                                                             | 25.00071667                                                                                                                                           | 42000.84                                                                                                                                          | 2100.0602                                                                                                                                            | 1620.0324                                                                                                                                                                    | 81.002322                                                                                                                                            | 42000.84                                                                                                                   | 2100.0602                                                                                                                     | 1620.0324                                                                                                   | 81.002322                                                                                                      |
| Manganese                                   |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Mercury                                     | 0.029572176                                                                                               | 0.020550156                                                                                                     | 2.1924                                                                                                                                           | 0.109802                                                                                                                                            | 0.012528                                                                                                                                           | 0.00062744                                                                                                                                            | 1.8792                                                                                                                                            | 0.094116                                                                                                                                             | 0.0261                                                                                                                                                                       | 0.001307167                                                                                                                                          | 1.8792                                                                                                                     | 0.094116                                                                                                                      | 0.98136                                                                                                     | 0.049149467                                                                                                    |
| Mercury (organic)<br>Molybdenum             |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Nickel                                      | -                                                                                                         |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | 96.496                                                                                                                                            | 4.831213333                                                                                                                                          | 10.6928                                                                                                                                                                      | 0.535350667                                                                                                                                          | 96.496                                                                                                                     | 4.831213333                                                                                                                   | 10.6928                                                                                                     | 0.535350667                                                                                                    |
| Selenium                                    |                                                                                                           |                                                                                                                 | 2.08                                                                                                                                             | 0.105733333                                                                                                                                         | 0.52                                                                                                                                               | 0.026433333                                                                                                                                           | 30.16                                                                                                                                             | 1.533133333                                                                                                                                          | 7.384                                                                                                                                                                        | 0.375353333                                                                                                                                          | 30.16                                                                                                                      | 1.533133333                                                                                                                   | 7.384                                                                                                       | 0.375353333                                                                                                    |
| Silver                                      | 0.610439245                                                                                               | 0.610439245                                                                                                     |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | 0.323                                                                                                                                             | 0.016314667                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                      | 0.323                                                                                                                      | 0.016314667                                                                                                                   |                                                                                                             |                                                                                                                |
| Tin                                         |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Thallium                                    | <b>_</b>                                                                                                  |                                                                                                                 | <u> </u>                                                                                                                                         |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | ļ                                                                                                                                                 |                                                                                                                                                      | -                                                                                                                                                                            |                                                                                                                                                      | -                                                                                                                          |                                                                                                                               |                                                                                                             | -                                                                                                              |
| Vanadium<br>Zinc                            | 38.24014829                                                                                               | 16.33173                                                                                                        | <del>                                     </del>                                                                                                 |                                                                                                                                                     | 129.376                                                                                                                                            | 6.477813333                                                                                                                                           | 111.96                                                                                                                                            | 5.6058                                                                                                                                               | 100.764                                                                                                                                                                      | 5.04522                                                                                                                                              | 111.96                                                                                                                     | 5.6058                                                                                                                        | 100.764                                                                                                     | 5.04522                                                                                                        |
| ZIIIC                                       | 30.24014029                                                                                               | 10.33173                                                                                                        |                                                                                                                                                  |                                                                                                                                                     | 123.370                                                                                                                                            | 0.411013333                                                                                                                                           | 111.90                                                                                                                                            | 5.0056                                                                                                                                               | 100.764                                                                                                                                                                      | 5.04522                                                                                                                                              | 111.90                                                                                                                     | 5.0056                                                                                                                        | 100.704                                                                                                     | 5.04522                                                                                                        |
| LPAH                                        |                                                                                                           |                                                                                                                 | †                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | 1                                                                                                                                                 |                                                                                                                                                      | 1                                                                                                                                                                            |                                                                                                                                                      | †                                                                                                                          | 1                                                                                                                             |                                                                                                             | <u>†</u>                                                                                                       |
| HPAH                                        |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Total Petroleum Hydrocarbons                |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Gasoline                                    |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      | <u> </u>                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Gasoline (w/benzene)                        |                                                                                                           |                                                                                                                 | 1                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | <b> </b>                                                                                                                                          |                                                                                                                                                      | 1                                                                                                                                                                            |                                                                                                                                                      | 1                                                                                                                          |                                                                                                                               |                                                                                                             | <del> </del>                                                                                                   |
| Diesel                                      | -                                                                                                         |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | -                                                                                                                                                 |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Heavy Oil                                   |                                                                                                           |                                                                                                                 | 1                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       | <del> </del>                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      | 1                                                                                                                          |                                                                                                                               |                                                                                                             | 1                                                                                                              |
| 2,3,7,8-TCDD (Dioxin)                       |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      | <del> </del>                                                                                                                                                                 |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| ,-, , (=)                                   |                                                                                                           |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      | 1                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                |
| Aldrin                                      |                                                                                                           |                                                                                                                 | 2.444280203                                                                                                                                      | 0.122429167                                                                                                                                         | 0.001857653                                                                                                                                        | 9.30462E-05                                                                                                                                           | 0.694175578                                                                                                                                       | 0.034769883                                                                                                                                          | 0.001857653                                                                                                                                                                  | 9.30462E-05                                                                                                                                          | 1.271025706                                                                                                                | 0.063663167                                                                                                                   |                                                                                                             |                                                                                                                |

| MEDIA - MTCA Standard                         |                                                                                                            |                                                                                                               | SOIL PATHWAY EVALUATION                                                                                       |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------|--------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------|
| PATHWAYS  HH - Human Health  Ecol- Ecological | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Chronic EQ. 747-1/ 747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Chronic EQ. 747-1/747-2 Saturated Soil | Soil to Surface Water<br>Protection WAC 173-<br>340-740(1)(d)<br>NRWQC HH-<br>Consumption<br>Organisms EQ.<br>747-1/747-2 Vadose<br>Soil | Soil to Surface Water Protection WAC 173 340-740(1)(d) NRWQC HH- Consumption Organisms EQ. 747-1/747-2 Saturated Soil | Soil to Surface Water<br>Protection Aquatic | Life Freeh/Agusto                       | Life Freeh/Chronic | Life Fresh/Chronic | Life Merine/Acute | Life Merine/Acute | Soil to Surface Water<br>Protection<br>Aquatic Life<br>Marine/Chronic,<br>NTR - 40 CFR 131.36<br>Vadose Soil |
| UNITS                                         | mg/kg                                                                                                      | mg/kg                                                                                                         | mg/kg                                                                                                         | mg/kg                                                                                                           | mg/kg                                                                                                                                    | mg/kg                                                                                                                 | mg/kg                                       | mg/kg                                   | mg/kg              | mg/kg              | mg/kg             | mg/kg             | mg/kg                                                                                                        |
| Aluminum                                      |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Antimony<br>Arsenic (III)                     |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 | 578.56                                                                                                                                   | 28.98346667                                                                                                           |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Arsenic (III) Arsenic (V)                     |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Arsenic (total)                               | 198.56                                                                                                     | 9.957466667                                                                                                   | 87.6                                                                                                          | 4.393                                                                                                           | 0.08176                                                                                                                                  | 0.004100133                                                                                                           | 210.24                                      | 10.5432                                 | 110.96             | 5.564466667        | 40.296            | 2.02078           | 21.024                                                                                                       |
| Barium                                        |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Beryllium                                     |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Cadmium                                       | 0.276                                                                                                      | 0.013973333                                                                                                   | 0.0345                                                                                                        | 0.001746667                                                                                                     |                                                                                                                                          |                                                                                                                       | 0.5106                                      | 0.025850667                             | 0.138              | 0.006986667        | 5.796             | 0.29344           | 1.2834                                                                                                       |
| Chromium (VI)                                 | 6.144                                                                                                      | 0.308586667                                                                                                   | 4.224                                                                                                         | 0.212153333                                                                                                     |                                                                                                                                          |                                                                                                                       | 5.76                                        | 0.2893                                  | 3.84               | 0.192866667        | 422.4             | 21.21533333       | 19.2                                                                                                         |
| Chromium, total (or III)                      | 11402.28                                                                                                   | 570.1634                                                                                                      | 1480.296                                                                                                      | 74.02121333                                                                                                     |                                                                                                                                          |                                                                                                                       | 11002.2                                     | 550.1576667                             | 3600.72            | 180.0516           |                   |                   |                                                                                                              |
| Cobalt                                        |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Copper                                        | 5.772                                                                                                      | 0.289726667                                                                                                   | 3.996                                                                                                         | 0.20058                                                                                                         |                                                                                                                                          |                                                                                                                       | 7.548                                       | 0.378873333                             | 4.884              | 0.245153333        | 1.0656            | 0.053488          | 1.0656                                                                                                       |
| Iron                                          | 42000.00                                                                                                   | CEO 040C222                                                                                                   | 500.01                                                                                                        | 0.286666667                                                                                                     |                                                                                                                                          |                                                                                                                       | 42000 00                                    | CEO 040C222                             | 500.04             | 25 00074007        | 42000.04          | 2400.0002         | 4000 0004                                                                                                    |
| Lead                                          | 13000.26                                                                                                   | 650.0186333                                                                                                   | 500.01                                                                                                        | 25.00071667                                                                                                     | 0.4                                                                                                                                      | 0.028666667                                                                                                           | 13000.26                                    | 650.0186333                             | 500.01             | 25.00071667        | 42000.84          | 2100.0602         | 1620.0324                                                                                                    |
| Manganese<br>Mercury                          | 1.4616                                                                                                     | 0.073201333                                                                                                   | 0.80388                                                                                                       | 0.040260733                                                                                                     | 0.4                                                                                                                                      | 0.02800007                                                                                                            | 2.1924                                      | 0.109802                                | 167.04             | 8.365866667        | 1.8792            | 0.094116          | 0.0261                                                                                                       |
| Mercury (organic)                             | 1.4010                                                                                                     | 0.073201333                                                                                                   | 0.00300                                                                                                       | 0.040200733                                                                                                     | 0.0012                                                                                                                                   | 0.000086                                                                                                              | 2.1924                                      | 0.109002                                | 107.04             | 8.30300007         | 1.07 92           | 0.034110          | 0.0201                                                                                                       |
| Molybdenum                                    |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 | 0.0012                                                                                                                                   | 0.00000                                                                                                               |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Nickel                                        | 612.88                                                                                                     | 30.68473333                                                                                                   | 67.808                                                                                                        | 3.394906667                                                                                                     | 5998.4                                                                                                                                   | 300.3186667                                                                                                           | 1825.6                                      | 91.40133333                             | 6.52               | 0.326433333        | 96.496            | 4.831213333       | 10.6928                                                                                                      |
| Selenium                                      |                                                                                                            |                                                                                                               | 0.52                                                                                                          | 0.026433333                                                                                                     | 436.8                                                                                                                                    | 22.204                                                                                                                | 2.08                                        | 0.105733333                             |                    |                    | 30.16             | 1.533133333       | 7.384                                                                                                        |
| Silver                                        | 0.544                                                                                                      | 0.027477333                                                                                                   |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       | 0.578                                       | 0.029194667                             |                    |                    | 0.323             | 0.016314667       |                                                                                                              |
| Tin                                           |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Thallium                                      |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 | 0.66928                                                                                                                                  | 0.033504733                                                                                                           |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Vanadium                                      | 446.55                                                                                                     |                                                                                                               | 446.55                                                                                                        |                                                                                                                 |                                                                                                                                          |                                                                                                                       | 40000                                       | • • • • • • • • • • • • • • • • • • • • | 44.1               |                    | 444.55            |                   | 100 == :                                                                                                     |
| Zinc                                          | 149.28                                                                                                     | 7.4744                                                                                                        | 149.28                                                                                                        | 7.4744                                                                                                          | 32344                                                                                                                                    | 1619.453333                                                                                                           | 136.84                                      | 6.851533333                             | 124.4              | 6.228666667        | 111.96            | 5.6058            | 100.764                                                                                                      |
| LPAH                                          |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| HPAH                                          |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Total Petroleum Hydrocarbons                  |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Gasoline                                      | <del>                                     </del>                                                           |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       | 1                                           | <del> </del>                            |                    |                    |                   |                   | <del>                                     </del>                                                             |
| Gasoline (w/benzene)                          |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Diesel                                        |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             | 1                                       |                    |                    |                   |                   |                                                                                                              |
| Heavy Oil                                     |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| ,                                             |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| 2,3,7,8-TCDD (Dioxin)                         |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 | 1.4943E-08                                                                                                                               | 7.47592E-10                                                                                                           |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
|                                               |                                                                                                            |                                                                                                               |                                                                                                               |                                                                                                                 |                                                                                                                                          |                                                                                                                       |                                             |                                         |                    |                    |                   |                   |                                                                                                              |
| Aldrin                                        | 2.933136244                                                                                                | 0.146915                                                                                                      |                                                                                                               |                                                                                                                 | 4.88856E-05                                                                                                                              | 2.44858E-06                                                                                                           | 2.933136244                                 | 0.146915                                |                    |                    | 1.271025706       | 0.063663167       |                                                                                                              |

|                                               |                     |            |                                                                |                                                                                    |                                                                                                                                   | *                                                                                                             |                                                                       |                                                              |
|-----------------------------------------------|---------------------|------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|
| MEDIA - MTCA Standard                         |                     | SOIL PA    | ATHWAY EVAI                                                    | LUATION                                                                            | SOIL PO                                                                                                                           | TENTIAL A                                                                                                     | RAR's                                                                 | SOIL MOST<br>STRINGENT                                       |
| PATHWAYS  HH - Human Health  Ecol- Ecological | NTR - 40 CFR 131.36 |            | Protection HH -<br>Fresh Water<br>Organism<br>Consumption Only | Soil Protective of<br>Vapor, Direct<br>Contact, WAC<br>173-340-<br>740(3)(b)(iii)C | Soil Protection of<br>Surface Water<br>HH – <b>Organoleptic</b><br><b>Effects</b><br>CWA §304 <b>NRWQC</b><br><i>Vad</i> ose Soil | Soil Protection of<br>Surface Water<br>HH –<br>Organoleptic<br>Effects<br>CWA §304<br>NRWQC<br>Saturated Soil | Soil - Toxics<br>Substances<br>Control Act<br>(TSCA)<br>40 CFR 761.61 | Screening<br>Level<br>(Includes to<br>Protect Potable<br>GW) |
| UNITS                                         | mg/kg               | mg/kg      | mg/kg                                                          | mg/kg                                                                              | mg/kg                                                                                                                             | mg/kg                                                                                                         | mg/kg                                                                 | mg/kg                                                        |
| Aluminum                                      |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 4.58666667                                                   |
| Antimony                                      | m ·                 | 3887.2     | 194.7326667                                                    |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 28.98346667                                                  |
| Arsenic (III)                                 |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 20                                                           |
| Arsenic (V)                                   |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 95                                                           |
| Arsenic (total)                               | 1.05432             | 0.08176    | 0.004100133                                                    |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.001707413                                                  |
| Barium                                        |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 23.12053333                                                  |
| Beryllium                                     |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 25                                                           |
| Cadmium                                       | 0.064976            |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.001746667                                                  |
| Chromium (VI)                                 | 0.964333333         |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.192866667                                                  |
| Chromium, total (or III)                      |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 42                                                           |
| Cobalt                                        |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0                                                            |
| Copper                                        | 0.053488            |            |                                                                |                                                                                    | 444                                                                                                                               | 22.28666667                                                                                                   |                                                                       | 0.053488                                                     |
| Iron                                          |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.286666667                                                  |
| Lead                                          | 81.002322           |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 25.00071667                                                  |
| Manganese                                     |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.028666667                                                  |
| Mercury                                       | 0.001307167         | 0.1566     | 0.007843                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.00062744                                                   |
| Mercury (organic)                             | 0.001.001.101       | 0.1000     | 0.0010.0                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.000086                                                     |
| Molybdenum                                    |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 71                                                           |
| Nickel                                        | 0.535350667         | 5998.4     | 300.3186667                                                    |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.326433333                                                  |
| Selenium                                      | 0.375353333         |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.026433333                                                  |
| Silver                                        |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.016314667                                                  |
| Tin                                           |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 275                                                          |
| Thallium                                      |                     | 8.9712     | 0.449106                                                       |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 0.033504733                                                  |
| Vanadium                                      |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 1.120321067                                                  |
| Zinc                                          | 5.04522             |            |                                                                |                                                                                    | 6220                                                                                                                              | 311.4333333                                                                                                   |                                                                       | 5.04522                                                      |
| LPAH                                          |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       |                                                              |
| HPAH                                          |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       |                                                              |
| Total Petroleum Hydrocarbons                  |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       |                                                              |
| Gasoline                                      |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 100                                                          |
| Gasoline (w/benzene)                          |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 30                                                           |
| Diesel                                        |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 460                                                          |
| Heavy Oil                                     |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 2000                                                         |
| ,                                             |                     |            |                                                                |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       |                                                              |
| 2,3,7,8-TCDD (Dioxin)                         |                     | 4.102E-08  | 2.05221E-09                                                    |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 7.47592E-10                                                  |
| Aldrin                                        | <b> </b>            | 0.00013688 | 6.85603E-06                                                    |                                                                                    |                                                                                                                                   |                                                                                                               |                                                                       | 2.44858E-06                                                  |

| MEDIA - MTCA Standard                       | SOIL Method A                                                                                                                   |                                                                                                      |                                                                                                                             |                                                                                                    | SOIL Method B                                                                                                               |                                                                                                                                | SOIL Method C                                                                                                                                 |                                                                                                                                                  | SOIL PATHWAY EVALUATION                                                                                                                          |                                                                                                                                                    |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | Soil, Method A, Unrestricted Land Use-HH, WAC 173-340- 740(2)(b)(iii) CLARC Database/ Table 740-1 (Arsenic, Lead, and TPH only) | Soil, Method A, Unrestricted Land Use-Ecol, WAC 173-340- 740(2)(b)(ii); Table 749-2 (Simplified TEE) | Soil, Method A, Industrial Land Use-HH, WAC 173-340- 745(3)(b)(i) CLARC Database/ Table 745-1 (Arsenic, Lead, and TPH only) | Soil, Method A, Industrial Land Use-Ecol, WAC 173-340- 745(3)(b)(iii) Table 749-2 (Simplified TEE) | Soil, Direct Contact<br>Method B-HH,<br>Carcinogen, WAC<br>173-340-<br>740(3)(b)(iii)(B)(II)<br>CLARC Database<br>EQ. 740-2 | Soil, Direct Contact<br>Method B-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>740(3)(b)(iii)(B)(I)<br>CLARC Database<br>EQ. 740-1 | Soil, Direct Contact<br>Method C-HH,<br>Carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(II)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-2 | Soil, Direct Contact<br>Method C-HH,<br>Non-carcinogen,<br>WAC 173-340-<br>745(5)(b)(iii)(B)(I)<br>Ingestion Only<br>CLARC Database<br>EQ. 745-1 | Soil to Method B-<br>HH Groundwater<br>Protection - NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection -NC,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/747-2<br>CLARC Database<br>Saturated Soil | Soil to Method B-<br>HH Groundwater<br>Protection - Carc,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/ 747-2<br>CLARC Database<br>Vadose Soil | Soil to Method B-<br>HH Groundwater<br>Protection - <b>Carc</b> ,<br>WAC 173-340-<br>740(3)(b)(iii)(A)<br>EQ. 747-1/ 747-2<br>CLARC Database<br>Saturated Soil | Soil to Sediment<br>Protection Ecology<br>CSL<br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Vadose Soil | Soil to Sediment Protection Ecology SQS WAC 173-340- 740(1)(d) EQ. 747-1/747-2 Vadose Soil |
| UNITS                                       | mg/kg                                                                                                                           | mg/kg                                                                                                | mg/kg                                                                                                                       | mg/kg                                                                                              | mg/kg                                                                                                                       | mg/kg                                                                                                                          | mg/kg                                                                                                                                         | mg/kg                                                                                                                                            | mg/kg                                                                                                                                            | mg/kg                                                                                                                                              | mg/kg                                                                                                                                               | mg/kg                                                                                                                                                          | mg/kg                                                                                                        | mg/kg                                                                                      |
| alpha-BHC (Benzene HexaChloride)            |                                                                                                                                 | 10                                                                                                   |                                                                                                                             |                                                                                                    | 0.158730159                                                                                                                 |                                                                                                                                | 20.83333333                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.00054501                                                                                                                                          | 2.84537E-05                                                                                                                                                    |                                                                                                              |                                                                                            |
| beta-BHC                                    |                                                                                                                                 | 10                                                                                                   |                                                                                                                             |                                                                                                    | 0.55555556                                                                                                                  |                                                                                                                                | 72.91666667                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.00227403                                                                                                                                          | 0.000117914                                                                                                                                                    |                                                                                                              |                                                                                            |
| gamma-BHC (Lindane)                         |                                                                                                                                 | 10                                                                                                   |                                                                                                                             |                                                                                                    |                                                                                                                             | 24                                                                                                                             |                                                                                                                                               | 1050                                                                                                                                             | 0.148996776                                                                                                                                      | 0.0078656                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
| Chlordane                                   |                                                                                                                                 | 1                                                                                                    |                                                                                                                             |                                                                                                    | 2.857142857                                                                                                                 | 40                                                                                                                             | 375                                                                                                                                           | 1750                                                                                                                                             | 8.241627595                                                                                                                                      | 0.412773333                                                                                                                                        | 0.257550862                                                                                                                                         | 0.012899167                                                                                                                                                    |                                                                                                              |                                                                                            |
| 4,4'-DDT                                    |                                                                                                                                 | 1                                                                                                    |                                                                                                                             |                                                                                                    | 2.941176471                                                                                                                 | 40                                                                                                                             | 386.0294118                                                                                                                                   | 1750                                                                                                                                             | 108.5014446                                                                                                                                      | 5.425765333                                                                                                                                        | 3.490395734                                                                                                                                         | 0.174542083                                                                                                                                                    |                                                                                                              |                                                                                            |
| 4,4'-DDE                                    |                                                                                                                                 | 1                                                                                                    |                                                                                                                             |                                                                                                    | 2.941176471                                                                                                                 |                                                                                                                                | 386.0294118                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.445761413                                                                                                                                         | 0.022310355                                                                                                                                                    |                                                                                                              |                                                                                            |
| 4,4'-DDD                                    |                                                                                                                                 | 1                                                                                                    |                                                                                                                             |                                                                                                    | 4.1667                                                                                                                      |                                                                                                                                | 546.875                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    | 0.33541677                                                                                                                                          | 0.016802431                                                                                                                                                    |                                                                                                              |                                                                                            |
| Dieldrin                                    |                                                                                                                                 | 0.17                                                                                                 |                                                                                                                             |                                                                                                    | 0.0625                                                                                                                      | 4                                                                                                                              | 8.203125                                                                                                                                      | 175                                                                                                                                              | 0.411936858                                                                                                                                      | 0.020666133                                                                                                                                        | 0.002815975                                                                                                                                         | 0.000141272                                                                                                                                                    |                                                                                                              |                                                                                            |
| alpha-Endosulfan                            |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 480                                                                                                                            |                                                                                                                                               | 21000                                                                                                                                            | 4.300876378                                                                                                                                      | 0.22336                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
| beta-Endosulfan                             |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 480                                                                                                                            |                                                                                                                                               | 21000                                                                                                                                            | 4.300876378                                                                                                                                      | 0.22336                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
| Endosulfan Sulfate                          |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             | 480                                                                                                                            |                                                                                                                                               | 21000                                                                                                                                            | 4.300876378                                                                                                                                      | 0.22336                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
| Endrin                                      |                                                                                                                                 | 0.4                                                                                                  |                                                                                                                             |                                                                                                    |                                                                                                                             | 24                                                                                                                             |                                                                                                                                               | 1050                                                                                                                                             | 1.057058563                                                                                                                                      | 0.0532688                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
| Endrin Aldehyde                             |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  | 1.057058563                                                                                                                                      | 0.0532688                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
| Heptachlor                                  |                                                                                                                                 | 0.6                                                                                                  |                                                                                                                             |                                                                                                    | 0.222222                                                                                                                    | 40                                                                                                                             | 29.1666667                                                                                                                                    | 1750                                                                                                                                             | 1.55709984                                                                                                                                       | 0.078517333                                                                                                                                        | 0.003784618                                                                                                                                         | 0.000190841                                                                                                                                                    |                                                                                                              |                                                                                            |
| Heptachlor Epoxide                          |                                                                                                                                 | 0.6                                                                                                  |                                                                                                                             |                                                                                                    | 0.10989011                                                                                                                  | 1.04                                                                                                                           | 14.42307692                                                                                                                                   | 45.5                                                                                                                                             | 0.17347207                                                                                                                                       | 0.008682613                                                                                                                                        | 0.008019234                                                                                                                                         | 0.000401378                                                                                                                                                    |                                                                                                              |                                                                                            |
| Toxaphene                                   |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    | 0.9090909                                                                                                                   |                                                                                                                                | 119.3181818                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |
|                                             |                                                                                                                                 |                                                                                                      |                                                                                                                             |                                                                                                    |                                                                                                                             |                                                                                                                                |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                     |                                                                                                                                                                |                                                                                                              |                                                                                            |

#### TABLE K-5

### SOIL PRELIMINARY SCREENING LEVELS\* BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

| MEDIA - MTCA Standard                       |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   | SOIL PATH                                                                                                                                            | IWAY EVALUA                                                                                                                                                                  | ATION                                                                                                                                                |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                                     |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | Soil to Sediment<br>Protection<br>Ecology <b>CSL</b><br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Sediment<br>Protection Ecology<br>SQS<br>WAC 173-340-<br>740(1)(d)<br>EQ. 747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Acute Vadose Soil | Soil to Surface<br>Water Protection<br>Aquatic Life<br>SWQS:RCW 90-<br>48; Ch. 173-201A-<br>240 per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Fresh - Acute<br>Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Fresh - Chronic Saturated Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90- 48; Ch. 173-201A- 240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Acute Saturated Soil | Soil to Surface Water<br>Protection<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Marine - Chronic<br>Vadose Soil | Soil to Surface Water Protection Aquatic Life SWQS:RCW 90-48; Ch. 173-2014-240 per MTCA WAC 173-340- 730(2)(b)(i)(A) Marine - Chronic Saturated Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2 Vadose<br>Soil | Soil to Surface Water<br>Protection WAC<br>173-340-740(1)(d)<br>NRWQC Saltwater<br>Acute EQ.<br>747-1/747-2<br>Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Saltwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface<br>Water Protection<br>WAC 173-340-<br>740(1)(d)<br>NRWQC Saltwater<br>Chronic<br>EQ. 747-1/747-2<br>Saturated Soil |
| UNITS                                       | mg/kg                                                                                                                  | mg/kg                                                                                                           | mg/kg                                                                                                                                            | mg/kg                                                                                                                                                                          | mg/kg                                                                                                                                              | mg/kg                                                                                                                                                 | mg/kg                                                                                                                                             | mg/kg                                                                                                                                                | mg/kg                                                                                                                                                                        | mg/kg                                                                                                                                                | mg/kg                                                                                                                      | mg/kg                                                                                                                         | mg/kg                                                                                                       | mg/kg                                                                                                                               |
| alpha-BHC (Benzene HexaChloride)            |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                                     |
| beta-BHC                                    |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                                     |
| gamma-BHC (Lindane)                         |                                                                                                                        |                                                                                                                 | 0.06208199                                                                                                                                       | 0.003277333                                                                                                                                                                    | 0.00248328                                                                                                                                         | 0.000131093                                                                                                                                           | 0.004966559                                                                                                                                       | 0.000262187                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                      | 0.004966559                                                                                                                | 0.000262187                                                                                                                   |                                                                                                             |                                                                                                                                     |
| Chlordane                                   |                                                                                                                        |                                                                                                                 | 2.472488278                                                                                                                                      | 0.123832                                                                                                                                                                       | 0.004429875                                                                                                                                        | 0.000221866                                                                                                                                           | 0.09271831                                                                                                                                        | 0.0046437                                                                                                                                            | 0.004120814                                                                                                                                                                  | 0.000206387                                                                                                                                          | 0.09271831                                                                                                                 | 0.0046437                                                                                                                     | 0.004120814                                                                                                 | 0.000206387                                                                                                                         |
| 4,4'-DDT                                    |                                                                                                                        |                                                                                                                 | 14.91894863                                                                                                                                      | 0.746042733                                                                                                                                                                    | 0.013562681                                                                                                                                        | 0.000678221                                                                                                                                           | 1.763148475                                                                                                                                       | 0.088168687                                                                                                                                          | 0.013562681                                                                                                                                                                  | 0.000678221                                                                                                                                          | 1.763148475                                                                                                                | 0.088168687                                                                                                                   | 0.013562681                                                                                                 | 0.000678221                                                                                                                         |
| 4,4'-DDE                                    |                                                                                                                        |                                                                                                                 | 1.905311642                                                                                                                                      | 0.095360833                                                                                                                                                                    | 0.001732101                                                                                                                                        | 8.66917E-05                                                                                                                                           | 0.225173194                                                                                                                                       | 0.011269917                                                                                                                                          | 0.001732101                                                                                                                                                                  | 8.66917E-05                                                                                                                                          |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                                     |
| 4,4'-DDD                                    |                                                                                                                        |                                                                                                                 | 1.012000313                                                                                                                                      | 0.050695333                                                                                                                                                                    | 0.00092                                                                                                                                            | 4.60867E-05                                                                                                                                           | 0.119600037                                                                                                                                       | 0.005991267                                                                                                                                          | 0.00092                                                                                                                                                                      | 4.60867E-05                                                                                                                                          |                                                                                                                            |                                                                                                                               |                                                                                                             |                                                                                                                                     |
| Dieldrin                                    |                                                                                                                        |                                                                                                                 | 1.287302682                                                                                                                                      | 0.064581667                                                                                                                                                                    | 0.00097835                                                                                                                                         | 4.90821E-05                                                                                                                                           | 0.365593962                                                                                                                                       | 0.018341193                                                                                                                                          | 0.00097835                                                                                                                                                                   | 4.90821E-05                                                                                                                                          | 0.365593962                                                                                                                | 0.018341193                                                                                                                   | 0.00097835                                                                                                  | 4.90821E-05                                                                                                                         |
| alpha-Endosulfan                            |                                                                                                                        |                                                                                                                 | 0.009856175                                                                                                                                      | 0.000511867                                                                                                                                                                    | 0.002508845                                                                                                                                        | 0.000130293                                                                                                                                           | 0.001523227                                                                                                                                       | 7.91067E-05                                                                                                                                          | 0.000389767                                                                                                                                                                  | 0.000020242                                                                                                                                          | 0.001523227                                                                                                                | 7.91067E-05                                                                                                                   | 0.000389767                                                                                                 | 0.000020242                                                                                                                         |
| beta-Endosulfan                             |                                                                                                                        |                                                                                                                 | 0.009856175                                                                                                                                      | 0.000511867                                                                                                                                                                    | 0.002508845                                                                                                                                        | 0.000130293                                                                                                                                           | 0.001523227                                                                                                                                       | 7.91067E-05                                                                                                                                          | 0.000389767                                                                                                                                                                  | 0.000020242                                                                                                                                          | 0.001523227                                                                                                                | 7.91067E-05                                                                                                                   | 0.000389767                                                                                                 | 0.000020242                                                                                                                         |
| Endosulfan Sulfate                          |                                                                                                                        |                                                                                                                 | 0.009856175                                                                                                                                      | 0.000511867                                                                                                                                                                    | 0.002508845                                                                                                                                        | 0.000130293                                                                                                                                           | 0.001523227                                                                                                                                       | 7.91067E-05                                                                                                                                          | 0.000389767                                                                                                                                                                  | 0.000020242                                                                                                                                          | 0.001523227                                                                                                                | 7.91067E-05                                                                                                                   | 0.000389767                                                                                                 | 0.000020242                                                                                                                         |
| Endrin                                      |                                                                                                                        |                                                                                                                 | 0.039639696                                                                                                                                      | 0.00199758                                                                                                                                                                     | 0.000506507                                                                                                                                        | 2.55246E-05                                                                                                                                           | 0.00814816                                                                                                                                        | 0.000410614                                                                                                                                          | 0.000506507                                                                                                                                                                  | 2.55246E-05                                                                                                                                          | 0.00814816                                                                                                                 | 0.000410614                                                                                                                   | 0.000506507                                                                                                 | 2.55246E-05                                                                                                                         |
| Endrin Aldehyde                             |                                                                                                                        |                                                                                                                 | 0.039639696                                                                                                                                      | 0.00199758                                                                                                                                                                     | 0.000506507                                                                                                                                        | 2.55246E-05                                                                                                                                           | 0.00814816                                                                                                                                        | 0.000410614                                                                                                                                          | 0.000506507                                                                                                                                                                  | 2.55246E-05                                                                                                                                          | 0.00814816                                                                                                                 | 0.000410614                                                                                                                   | 0.000506507                                                                                                 | 2.55246E-05                                                                                                                         |
| Heptachlor                                  |                                                                                                                        |                                                                                                                 | 0.10121149                                                                                                                                       | 0.005103627                                                                                                                                                                    | 0.000739622                                                                                                                                        | 3.72957E-05                                                                                                                                           | 0.010315786                                                                                                                                       | 0.000520177                                                                                                                                          | 0.000700695                                                                                                                                                                  | 3.53328E-05                                                                                                                                          | 0.010315786                                                                                                                | 0.000520177                                                                                                                   | 0.000700695                                                                                                 | 3.53328E-05                                                                                                                         |
| Heptachlor Epoxide                          |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      | 0.088404036                                                                                                                | 0.004424793                                                                                                                   | 0.006004802                                                                                                 | 0.000300552                                                                                                                         |
| Toxaphene                                   |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      | 0.00084                                                                                                                    | 0.0000602                                                                                                                     | 80000008                                                                                                    | 5.73333E-08                                                                                                                         |
|                                             |                                                                                                                        |                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                            |                                                                                                                               |                                                                                                             | ,                                                                                                                                   |

### TABLE K-5 SOIL PRELIMINARY SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE

**TUKWILA, WASHINGTON** 

| MEDIA - MTCA Standard                       |                                                                                                            |                                                                                                               | SOIL PATHWAY EVALUATION                                                                                      |                                                                                                                                   |                           |                                                                                                                        |                                      |                                         |                                           |                                                                                                             |                                          |                                          |              |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------|--|--|
| PATHWAYS HH - Human Health Ecol- Ecological | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Acute EQ. 747-1/747-2 Saturated Soil | Soil to Surface Water Protection WAC 173-340- 740(1)(d) NRWQC Freshwater Chronic EQ. 747-1/747-2 Vadose Soil | Soil to Surface Water<br>Protection<br>WAC 173-340-<br>740(1)(d) NRWQC<br>Freshwater Chronic<br>EQ. 747-1/747-2<br>Saturated Soil |                           | Soil to Surface Water Protection WAC 173- 340-740(1)(d) NRWQC HH- Consumption Organisms EQ. 747-1/747-2 Saturated Soil | Protection Aquatic Life Fresh/Acute, | Protection Aquatic<br>Life Fresh/Acute, | Protection Aquatic<br>Life Fresh/Chronic, | Soil to Surface Water<br>Protection Aquatic<br>Life Fresh/Chronic,<br>NTR - 40 CFR 131.36<br>Saturated Soil | Protection Aquatic<br>Life Marine/Acute, | Protection Aquatic<br>Life Marine/Acute, | Aquatic Life |  |  |
| UNITS                                       | mg/kg                                                                                                      | mg/kg                                                                                                         | mg/kg                                                                                                        | mg/kg                                                                                                                             | mg/kg                     | mg/kg                                                                                                                  | mg/kg                                | mg/kg                                   | mg/kg                                     | mg/kg                                                                                                       | mg/kg                                    | mg/kg                                    | mg/kg        |  |  |
| alpha-BHC (Benzene HexaChloride)            |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.00019228                | 1.00385E-05                                                                                                            |                                      |                                         |                                           |                                                                                                             |                                          |                                          |              |  |  |
| beta-BHC                                    | 11                                                                                                         |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.000795261               | 4.12363E-05                                                                                                            |                                      |                                         |                                           |                                                                                                             |                                          |                                          |              |  |  |
| gamma-BHC (Lindane)                         | 0.029488945                                                                                                | 0.001556733                                                                                                   |                                                                                                              |                                                                                                                                   | 0.055873791               | 0.0029496                                                                                                              | 0.06208199                           | 0.003277333                             | 0.00248328                                | 0.000131093                                                                                                 | 0.004966559                              | 0.000262187                              |              |  |  |
| Chlordane                                   | 2.472488278                                                                                                | 0.123832                                                                                                      | 0.004429875                                                                                                  | 0.000221866                                                                                                                       | 0.000834465               | 4.17933E-05                                                                                                            | 2.472488278                          | 0.123832                                | 0.004429875                               | 0.000221866                                                                                                 | 0.09271831                               | 0.0046437                                | 0.004120814  |  |  |
| 4,4'-DDT                                    | 14.91894863                                                                                                | 0.746042733                                                                                                   | 0.013562681                                                                                                  | 0.000678221                                                                                                                       | 0.00298379                | 0.000149209                                                                                                            | 14.91894863                          | 0.746042733                             | 0.013562681                               | 0.000678221                                                                                                 | 1.763148475                              | 0.088168687                              | 0.013562681  |  |  |
| 4,4'-DDE                                    |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.000381062               | 1.90722E-05                                                                                                            |                                      |                                         |                                           |                                                                                                             |                                          |                                          |              |  |  |
| 4,4'-DDD                                    |                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                                                   | 0.0002852                 | 1.42869E-05                                                                                                            |                                      |                                         |                                           |                                                                                                             |                                          |                                          |              |  |  |
| Dieldrin                                    | 0.123581058                                                                                                | 0.00619984                                                                                                    | 0.02883558                                                                                                   | 0.001446629                                                                                                                       | 2.78057E-05               | 1.39496E-06                                                                                                            | 1.287302682                          | 0.064581667                             | 0.00097835                                | 4.90821E-05                                                                                                 | 0.365593962                              | 0.018341193                              | 0.00097835   |  |  |
| alpha-Endosulfan                            | 0.009856175                                                                                                | 0.000511867                                                                                                   | 0.002508845                                                                                                  | 0.000130293                                                                                                                       | 3.987270808               | 0.207073333                                                                                                            | 0.009856175                          | 0.000511867                             | 0.002508845                               | 0.000130293                                                                                                 | 0.001523227                              | 7.91067E-05                              | 0.000389767  |  |  |
| beta-Endosulfan                             | 0.009856175                                                                                                | 0.000511867                                                                                                   | 0.002508845                                                                                                  | 0.000130293                                                                                                                       | 3.987270808               | 0.207073333                                                                                                            | 0.009856175                          | 0.000511867                             | 0.002508845                               | 0.000130293                                                                                                 | 0.001523227                              | 7.91067E-05                              | 0.000389767  |  |  |
| Endosulfan Sulfate                          | 0.009856175                                                                                                | 0.000511867                                                                                                   | 0.002508845                                                                                                  | 0.000130293                                                                                                                       | 3.987270808               | 0.207073333                                                                                                            | 0.009856175                          | 0.000511867                             | 0.002508845                               | 0.000130293                                                                                                 | 0.001523227                              | 7.91067E-05                              | 0.000389767  |  |  |
| Endrin                                      | 0.018938966                                                                                                | 0.000954399                                                                                                   | 0.007927939                                                                                                  | 0.000399516                                                                                                                       | 0.013213232               | 0.00066586                                                                                                             | 0.039639696                          | 0.00199758                              | 0.000506507                               | 2.55246E-05                                                                                                 | 0.00814816                               | 0.000410614                              | 0.000506507  |  |  |
| Endrin Aldehyde                             | 0.018938966                                                                                                | 0.000954399                                                                                                   | 0.007927939                                                                                                  | 0.000399516                                                                                                                       | 0.06606616                | 0.0033293                                                                                                              | 0.039639696                          | 0.00199758                              | 0.000506507                               | 2.55246E-05                                                                                                 | 0.00814816                               | 0.000410614                              | 0.000506507  |  |  |
| Heptachlor                                  | 0.10121149                                                                                                 | 0.005103627<br>0.043413067                                                                                    | 0.000739622<br>0.006338403                                                                                   | 3.72957E-05<br>0.000317249                                                                                                        | 1.53764E-05<br>6.5052E-05 | 7.75359E-07<br>3.25598E-06                                                                                             | 0.10121149                           | 0.005103627                             | 0.000739622                               | 3.72957E-05                                                                                                 | 0.010315786                              | 0.000520177                              | 0.000700695  |  |  |
| Handard Inc. Paradala                       |                                                                                                            | 1 11/1/2/17/2/167                                                                                             | 11 1111623284113                                                                                             | 1 11 11111137 / 2/10                                                                                                              | 1 6 50571-05              | 1 32559XF=06                                                                                                           | 0.867360352                          | 0.043413067                             | 0.006338403                               | 0.000317249                                                                                                 | 0.088404036                              | 0.004424793                              | 0.006004802  |  |  |
| Heptachlor Epoxide<br>Toxaphene             | 0.867360352<br>0.00292                                                                                     | 0.000209267                                                                                                   | 0.000338403                                                                                                  | 5.73333E-08                                                                                                                       | 0.00000112                | 8.02667E-08                                                                                                            | 0.00292                              | 0.000209267                             | 0.0000008                                 | 5.73333E-08                                                                                                 | 0.000404000                              | 0.0000602                                | 0.0000008    |  |  |

| MEDIA - MTCA Standard                       |                     | SOIL PATHWAY EVALUATION |                                                                                                                                                                       |                                                                                    | SOIL PO                                                                                                                          | .RAR's                                                                                                        | SOIL MOST<br>STRINGENT                                                         |                                                              |
|---------------------------------------------|---------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological | NTR - 40 CFR 131.36 | (WAC 173-201A-          | Soil to Surface Water Protection HH - Fresh Water Organism Consumption Only NTR - 40 CFR 131.36 (WAC 173-201A- 040[5]) HH - 10 <sup>-6</sup> Carc Risk Saturated Soil | Soil Protective of<br>Vapor, Direct<br>Contact, WAC<br>173-340-<br>740(3)(b)(iii)C | Soil Protection of<br>Surface Water<br>HH – <b>Organoleptic</b><br><b>Effects</b><br>CWA §304 <b>NRWQC</b><br><i>Vadose Soil</i> | Soil Protection of<br>Surface Water<br>HH –<br>Organoleptic<br>Effects<br>CWA §304<br>NRWQC<br>Saturated Soil | Soil - Toxics<br>Substances<br>Control Act<br>( <b>TSCA</b> )<br>40 CFR 761.61 | Screening<br>Level<br>(Includes to<br>Protect Potable<br>GW) |
| UNITS                                       | mg/kg               | mg/kg                   | mg/kg                                                                                                                                                                 | mg/kg                                                                              | mg/kg                                                                                                                            | mg/kg                                                                                                         | mg/kg                                                                          | mg/kg                                                        |
| alpha-BHC (Benzene HexaChloride)            |                     | 0.00051013              | 2.66327E-05                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 1.00385E-05                                                  |
| beta-BHC                                    |                     | 0.002151882             | 0.000111581                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 4.12363E-05                                                  |
| gamma-BHC (Lindane)                         |                     | 0.001955583             | 0.000103236                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 0.000103236                                                  |
| Chlordane                                   | 0.000206387         | 0.00060782              | 3.0442E-05                                                                                                                                                            |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 3.0442E-05                                                   |
| 4,4'-DDT                                    | 0.000678221         | 0.008001982             | 0.00040015                                                                                                                                                            |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 0.000149209                                                  |
| 4,4'-DDE                                    |                     | 0.00102194              | 5.11481E-05                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 1.90722E-05                                                  |
| 4,4'-DDD                                    |                     | 0.0007728               | 3.87128E-05                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 1.42869E-05                                                  |
| Dieldrin                                    | 4.90821E-05         | 7.2089E-05              | 3.61657E-06                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 1.39496E-06                                                  |
| alpha-Endosulfan                            | 0.000020242         |                         |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 0.000020242                                                  |
| beta-Endosulfan                             | 0.000020242         |                         |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 0.000020242                                                  |
| Endosulfan Sulfate                          | 0.000020242         |                         |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 0.000020242                                                  |
| Endrin                                      | 2.55246E-05         | 0.178378632             | 0.00898911                                                                                                                                                            |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 2.55246E-05                                                  |
| Endrin Aldehyde                             | 2.55246E-05         | 0.178378632             | 0.00898911                                                                                                                                                            |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 2.55246E-05                                                  |
| Heptachlor                                  | 3.53328E-05         | 4.08739E-05             | 2.06108E-06                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 7.75359E-07                                                  |
| Heptachlor Epoxide                          | 0.000300552         | 0.00018348              | 9.18353E-06                                                                                                                                                           |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 3.25598E-06                                                  |
| Toxaphene                                   | 5.73333E-08         |                         |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                | 5.73333E-08                                                  |
|                                             |                     |                         |                                                                                                                                                                       |                                                                                    |                                                                                                                                  |                                                                                                               |                                                                                |                                                              |

<sup>\*</sup> Adapted from Ecology Spreadsheet Draft Preliminary Screening Levels & ARARs v14R1 in accordance with Ecology comments.

### Draft Preliminary Screening Levels And ARARs (v14RI)

| WORKSHEET NAME | NAME DESCRIPTION |
|----------------|------------------|
|                |                  |

Most Stringent Screening Levels Most Stringent Screening Levels

Most Stringent Levels W-O PGW Most Stringent Screening Levels WithOut Potable GroundWater in Site

Most Stringent Levels W-O PSW Most Stringent Screening Levels WithOut Potable Surface Water in Site

Most Stringent Levels W-O PW Most Stringent Screening Levels WithOut any Potable Waters in Site

Soil Soil

Groundwater Groundwater

Surface Water Surface Water

Air Air

EQ 730-1 Non-Carc-SW CUL EQ 730-1 Non-Carc-SW CUL

EQ 730-2 Carc-SW CUL EQ 730-2 Carc-SW CUL

Most String Soil to Protect PGW Most String Soil to Protect Potable GW

Most String Soil to Protect NGW Most String Soil to Protect Non-potable GW

Most String Soil to Protect PSW Most String Soil to Protect Potable/Fresh SW

Most String Soil to Protect NSW Most String Soil to Protect Non-potable/Fresh SW

Assumes all waters (SW & GW) are potable in Site

Assumes GW at the Site is NOT potable, but SW is fresh/marine and potentially potable

Assumes SW at the Site is Fresh/Marine, but NOT potable, and GW is potable

Assumes both GW and SW at the Site is NOT potable, but surface water is fresh/marine

Provides all ARARs, including protection of GW, SW & Sediments

Provides all ARARs, including protection of SW & Sediments

Provides all ARARs, including protection of Sediments & potable GW standards (for potable SW comparison)

Provides all ARARs, including dusts/fumes/gases

Shows how HH protection Cleanup Levels for SW were calculated using MTCA equation 730-1

Shows how HH protection Cleanup Levels for SW were calculated using MTCA equation 730-2

Shows how to calcualate chemical equilibrium partitioning from soil to water using MTCA equation 747-1

Uses EQ 747-1 to calculate most stringent protective soil values when potable groundwater exists at Site

Uses EQ 747-1 to calculate most stringent protective soil values when NO potable groundwater exists at Site

Uses EQ 747-1 to calculate most stringent protective soil values when potable surfacewater exists at Site

Uses EQ 747-1 to calculate most stringent protective soil values when fresh non-potable surface water exists

| MEDIA - MTCA Standard                                                                                                                                                        | Soil Standard to<br>Protect ALL Waters<br>for Potability | GW MOST<br>STRINGENT       | SW MOST<br>STRINGENT       | SEDIMENT<br>MOST      | AIR MOST<br>STRINGENT      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------|-----------------------|----------------------------|
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into<br>These Screening Levels Because They<br>Are Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels                                      | Screening<br>Levels        | Screening<br>Levels        | Screening<br>Levels** | Screening<br>Levels        |
| UNITS                                                                                                                                                                        | mg/kg                                                    | μg/L                       | μg/L                       | mg/kg DW              | ppbv                       |
| acetone                                                                                                                                                                      | 1.731886                                                 | 6000                       | 6000                       |                       | 13658.27586                |
| acenaphthene                                                                                                                                                                 | 0.016749455                                              | 2.614379085                | 2.614379085                | 0.5                   |                            |
| acenaphthylene<br>anthracene                                                                                                                                                 | 0.069091503<br>0.223091503                               | 10.78431373<br>10.78431373 | 10.78431373<br>10.78431373 | 0.56<br>0.96          | 200                        |
| benzene                                                                                                                                                                      | 0.00021                                                  | 0.795                      | 0.795                      | 0.50                  | 0.026297055                |
| benzo(g,h,i)perylene                                                                                                                                                         | 0.031003321                                              | 0.011584454                | 0.011584454                | 0.67                  |                            |
| benzo[a]anthracene                                                                                                                                                           | 4.78776E-05                                              | 0.000112155                | 0.000258331                | 0.062                 | 0.000931735                |
| benzo[a]pyrene<br>benzo[b]fluoranthene                                                                                                                                       | 5.18596E-06<br>4.23316E-05                               | 6.5888E-06<br>5.26914E-05  | 1.51762E-05<br>0.000121366 | 0.062<br>0.062        | 0.000085086                |
| benzo[k]fluoranthene                                                                                                                                                         | 4.34357E-05                                              | 5.51854E-05                | 0.00012711                 | 0.062                 |                            |
| bis(2-ethylhexyl) phthalate                                                                                                                                                  | 0.047081657                                              | 0.284848485                | 0.284848485                | 1.3                   |                            |
| butyl benzyl phthalate carbon tetrachloride                                                                                                                                  | 0.003954085<br>7.71205E-05                               | 0.523504274<br>0.247823653 | 0.409933862<br>0.23        | 0.063                 | 0.009204519                |
| chlorobenzene                                                                                                                                                                | 0.011093333                                              | 100                        | 20                         |                       | 4.972513321                |
| chloroethane                                                                                                                                                                 | 0.000127267                                              | 21000                      | 0.41                       |                       | 236.4                      |
| chloroform (trichloromethane)                                                                                                                                                | 0.000053                                                 | 4.3                        | 4.2952095                  |                       | 0.022320352                |
| chloromethane<br>chrysene                                                                                                                                                    | 0.005688476<br>0.000264903                               | 190<br>0.001120636         | 18.90068394<br>0.002581193 | 0.062                 | 19.89891089<br>0.009317346 |
| dibenz[a,h]anthracene                                                                                                                                                        | 7.1198E-05                                               | 2.71511E-05                | 6.25379E-05                | 0.062                 | 7.02586E-05                |
| dibenzofuran                                                                                                                                                                 | 0.015367257                                              | 1.327433628                | 1.327433628                | 0.54                  | 624                        |
| di-butyl phthalate (di-n-butyl phth.)                                                                                                                                        | 0.081356353                                              | 46.57806484                | 46.57806484                | 1.4                   | 439.7482014                |
| dichlorobenzene, 1,2-<br>dichlorobenzene, 1,3-                                                                                                                               | 0.003788337<br>0.091733333                               | 5.191873589<br>600         | 5.191873589<br>320         | 0.035<br>0.17         | 15.2022449                 |
| dichlorobenzene, 1,4-                                                                                                                                                        | 0.00041                                                  | 4                          | 4                          | 0.11                  | 0.036591837                |
| dichloroethane, 1,1-                                                                                                                                                         | 0.000321707                                              | 1                          | 1                          |                       | 0.370454545                |
| dichloroethane, 1,2-                                                                                                                                                         | 0.000042                                                 | 0.48                       | 0.38                       |                       | 0.023215152                |
| dichloroethylene, 1,1-<br>diethyl phthalate                                                                                                                                  | 1.83373E-05<br>0.199783069                               | 0.729<br>484.1269841       | 0.057<br>484.1269841       | 0.2                   | 0.012616099<br>550.6756757 |
| dimethyl phthalate                                                                                                                                                           | 0.093952381                                              | 142.8571429                | 142.8571429                | 0.071                 | 630.1546392                |
| di-n-octyl phthalate                                                                                                                                                         | 0.000548534                                              | 0.295918367                | 0.295918367                | 6.2                   |                            |
| ethylbenzene                                                                                                                                                                 | 0.0017                                                   | 700                        | 2.233717193                | 0.01                  | 0.223403353                |
| fluoranthene<br>fluorene                                                                                                                                                     | 0.160534086<br>0.023563127                               | 2.256699577<br>2.03539823  | 2.256699577<br>2.03539823  | 1.7<br>0.54           |                            |
| hexachlorobenzene                                                                                                                                                            | 2.42708E-07                                              | 0.05                       | 6.61931E-05                | 0.022                 | 0.000455004                |
| hexachlorobutadiene                                                                                                                                                          | 0.000563273                                              | 0.9                        | 0.44                       | 0.011                 | 0.0103125                  |
| indeno[1,2,3-cd]pyrene                                                                                                                                                       | 6.0854E-05                                               | 2.27382E-05                | 5.23736E-05                | 0.062                 |                            |
| MEK (Methyl Ethyl Ketone;2-Butanone) methylene chloride (dichloromethane)                                                                                                    | 1.376<br>0.0012                                          | 4800<br>5                  | 4800<br>4.6                |                       | 0.748763251                |
| methylnaphthalene, 2-                                                                                                                                                        | 0.043212121                                              | 18.18181818                | 18.18181818                | 0.67                  | 3015                       |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                                                                                                                                          | 0.183466667                                              | 640                        |                            |                       |                            |
| naphthalene                                                                                                                                                                  | 0.00047<br>0.008905288                                   | 53.80434783                | 53.80434783<br>1.382665579 | 2.1                   | 0.013731669                |
| nitrosodiphenylamine, N-<br>pcb mixtures                                                                                                                                     | 6.66052E-07                                              | 1.593580667<br>2.30915E-05 | 1.47662E-05                | 0.028                 | 0.000291233                |
| pcb - Aroclor 1016                                                                                                                                                           | 1.75613E-06                                              | 0.0000641                  | 0.00042189                 | 0.000000              | 0.00020.1200               |
| pcb - Aroclor 1221                                                                                                                                                           | 2.44557E-07                                              | 2.30915E-05                | 2.30352E-05                |                       |                            |
| pcb - Aroclor 1232                                                                                                                                                           | 0.00012                                                  | 2 200455 05                | 0.014                      |                       |                            |
| pcb - Aroclor 1242<br>pcb - Aroclor 1248                                                                                                                                     | 1.69278E-08<br>1.01785E-06                               | 2.30915E-05<br>2.30915E-05 | 2.30352E-05<br>2.30352E-05 |                       |                            |
| pcb - Aroclor 1246<br>pcb - Aroclor 1254                                                                                                                                     | 4.16425E-07                                              | 5.49145E-06                | 5.48457E-06                |                       |                            |
| pcb - Aroclor 1260                                                                                                                                                           | 4.77489E-06                                              | 2.30915E-05                | 2.30352E-05                |                       |                            |
| phenanthrene                                                                                                                                                                 | 0.101378205                                              | 4.807692308                | 4.807692308                | 1.5                   | 200                        |
| pyrene<br>tetrachloroethylene (perchloroethylene)                                                                                                                            | 0.683027333<br>1.13219E-05                               | 9.8<br>0.020523086         | 9.828761139<br>0.02060763  | 2.6<br>0.057          | 200<br>0.060461399         |
| trichlorobenzene, 1,2,4-                                                                                                                                                     | 5.02642E-05                                              | 1.128133705                | 0.141842417                | 0.031                 | 0.12312562                 |
| trichlorethane, 1,1,1-                                                                                                                                                       | 0.067061333                                              | 200                        | 200                        |                       | 419.7188906                |
| trichlorethane, 1,1,2-                                                                                                                                                       | 0.000078                                                 | 0.768                      | 0.59                       | 0.46                  | 0.027492504                |
| trichloroethylene<br>trimethylbenzene, 1,3,5-                                                                                                                                | 0.000186527<br>0.044535                                  | 0.49<br>45                 | 0.49<br>45.21613312        | 0.16                  | 0.223287671<br>295.6       |
| toluene                                                                                                                                                                      | 0.554666667                                              | 1000                       | 1000                       |                       | 48.58143322                |
| vinyl chloride (chloroethylene)                                                                                                                                              | 0.0000056                                                | 0.02                       | 0.02                       |                       | 0.01216632                 |
| xylene (dimethylbenzene)                                                                                                                                                     | 0.2                                                      | 1000<br>2242.926156        | 1000<br>2242.926156        | 0.04<br>0.65          | 10.59039548                |
| benzoic acid<br>benzyl alcohol                                                                                                                                               | 0.64431792<br>0.055021137                                | 181.9923372                | 181.9923372                | 0.65                  |                            |
| dimethylphenol, 2,4-                                                                                                                                                         | 0.002026013                                              | 2.020624303                | 2.020624303                | 0.029                 |                            |
| methylphenol, 2- (o-cresol)                                                                                                                                                  | 0.00268544                                               | 7.110609481                | 7.110609481                | 0.063                 | 119.7783826                |
| methylphenol, 4- (p-cresol)                                                                                                                                                  | 0.022127496                                              | 77.18894009                | 77.18894009                | 0.67                  | 119.7783826                |
| pentachlorophenol<br>phenol (total)                                                                                                                                          | 0.00076784<br>0.02388097                                 | 0.219<br>78.35820896       | 0.209410987<br>78.35820896 | 0.36<br>0.42          | 0.044054054<br>54.62234043 |
| styrene (phenylethylene)                                                                                                                                                     | 0.080446667                                              | 100                        | 100                        | Ü                     | 1.073357349                |
| Tributyltin                                                                                                                                                                  | 2.12133E-06                                              |                            | 0.072                      | 0.073                 | 100                        |
|                                                                                                                                                                              |                                                          | 3                          | 0.558429298                |                       |                            |

| MEDIA - MTCA Standard                                                                                                                                                        | Soil Standard to<br>Protect ALL Waters<br>for Potability | GW MOST<br>STRINGENT       | SW MOST<br>STRINGENT       | SEDIMENT<br>MOST<br>STRINGENT** | AIR MOST<br>STRINGENT      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into<br>These Screening Levels Because They<br>Are Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels                                      | Screening<br>Levels        | Screening<br>Levels        | Screening<br>Levels**           | Screening<br>Levels        |
| UNITS                                                                                                                                                                        | mg/kg                                                    | μg/L                       | μg/L                       | mg/kg DW                        | ppbv                       |
| Aluminum                                                                                                                                                                     | 0.014333333                                              | 50                         | 50                         | 7600                            | 2.075259451                |
| Antimony                                                                                                                                                                     | 0.17507732                                               | 3.865979381                | 3.865979381                | 3.1                             | 0.018314908                |
| Arsenic (III)                                                                                                                                                                | 7                                                        |                            |                            |                                 |                            |
| Arsenic (V)                                                                                                                                                                  | 10                                                       |                            |                            |                                 |                            |
| Arsenic (total)                                                                                                                                                              | 0.000157807                                              | 0.05                       | 0.005388353                | 0.39                            | 0.000186018                |
| Barium                                                                                                                                                                       | 0.082573333                                              | 2                          | <u>2</u><br>4              | 540                             | 0.040770771                |
| Beryllium<br>Cadmium                                                                                                                                                         | 3.161146667<br>0.0014672                                 | 4<br>0.21                  | 0.25                       | 3.7                             | 0.000193143<br>0.00030451  |
| Cadmium Chromium (VI)                                                                                                                                                        | 0.0014672                                                | 0.21                       | 0.25                       | 3.7                             | 5.17251E-06                |
| Chromium, total (or III)                                                                                                                                                     | 42                                                       | 50                         | 50                         | 1.6                             | 235.1142396                |
| Cobalt                                                                                                                                                                       | 0.49                                                     |                            | 70                         | 0                               | 0.000112023                |
| Copper                                                                                                                                                                       | 0.028972667                                              | 7.3                        | 2.4                        | 310                             | 38.4736428                 |
| Iron                                                                                                                                                                         | 0.086                                                    | 300                        | 300                        | 2300                            | 437.803284                 |
| Lead                                                                                                                                                                         | 5.4001548                                                | 2.5                        | 0.54                       | 40                              | 0.002088668                |
| Manganese                                                                                                                                                                    | 0.014333333                                              | 50                         | 50                         | 180                             | 0.01019158                 |
| Mercury Mercury (ergenia)                                                                                                                                                    | 0.000269883<br>0.0000018                                 | 0.005161594<br>0.00045     | 0.005161594<br>0.000454821 | 0.41                            | 0.003656713<br>1.133914621 |
| Mercury (organic) Molybdenum                                                                                                                                                 | 0.011466667                                              | 40                         | 40                         | 39                              | 1274.233896                |
| Nickel                                                                                                                                                                       | 0.326433333                                              | 8.2                        | 8.2                        | 140                             | 0.004164538                |
| Selenium                                                                                                                                                                     | 0.026433333                                              | 5                          | 5                          | 3                               | 6.502659574                |
| Silver                                                                                                                                                                       | 0.013156926                                              | 1.532250723                | 1.532250723                | 6.1                             | 2.26665925                 |
| Tin                                                                                                                                                                          | 50                                                       |                            |                            |                                 | 411.9976409                |
| Thallium                                                                                                                                                                     | 0.0171088                                                | 0.47                       | 0.24                       | 0.52                            | 11.96301008                |
| Vanadium                                                                                                                                                                     | 0.000321067                                              | 1.12                       | 1.12                       | 7.8                             | 0.047996231                |
| Zinc                                                                                                                                                                         | 2.028518377                                              | 32.56745762                | 32.56745762                | 410                             |                            |
| LPAH                                                                                                                                                                         |                                                          | 0.01                       | 0.01                       | 5.2                             |                            |
| HPAH                                                                                                                                                                         |                                                          | 0.01                       | 0.01                       | 12                              |                            |
| Total Petroleum Hydrocarbons                                                                                                                                                 | Site Specific                                            | No Sheen                   | No Sheen                   |                                 |                            |
| Gasoline                                                                                                                                                                     | 100                                                      | 1000                       | 1000                       |                                 | 300000                     |
| Gasoline (w/benzene)                                                                                                                                                         | 30                                                       | 800                        | 800                        |                                 |                            |
| Diesel                                                                                                                                                                       | 200                                                      | 500                        | 500                        |                                 |                            |
| Heavy Oil                                                                                                                                                                    | 2000                                                     | 500                        | 500                        |                                 |                            |
| 2,3,7,8-TCDD (Dioxin)                                                                                                                                                        | 3.02026E-11                                              | 2.06039E-10                | 2.06039E-10                | 0.0000039                       | 4.42682E-09                |
| 2,3,1,0-1000 (DIUXIII)                                                                                                                                                       | 3.02020E-11                                              | 2.00039E-10                | 2.00039E-10                | 0.0000039                       | 4.42082E-U9                |
| Aldrin                                                                                                                                                                       | 5.6837E-07                                               | 0.002573529                | 1.16061E-05                | 0.0095                          | 3.35014E-05                |
| alpha-BHC                                                                                                                                                                    | 2.30483E-06                                              | 0.013888889                | 0.001125041                |                                 | 0.000116768                |
| beta-BHC                                                                                                                                                                     | 9.55141E-06                                              | 0.048611111                | 0.003937642                |                                 | 0.000386734                |
| gamma-BHC                                                                                                                                                                    | 3.27733E-07                                              | 0.0002                     | 0.019                      | 0.01                            |                            |
| Chlordane                                                                                                                                                                    | 9.63356E-06                                              | 0.002                      | 0.000186709                | 0.0028                          | 0.001431918                |
| 4,4'-DDT                                                                                                                                                                     | 3.42909E-05                                              | 0.257352941                | 5.05602E-05                | 0.0012                          | 0.001677047                |
| 4,4'-DDE<br>4,4'-DDD                                                                                                                                                         | 4.38314E-06<br>3.30104E-06                               | 0.257352941<br>0.364583333 | 5.05602E-05<br>7.16269E-05 | 0.009<br>0.016                  | 0.002673885                |
| 4,4-DDD<br>Dieldrin                                                                                                                                                          | 3.30104E-06<br>3.18555E-07                               | 0.364583333                | 7.16269E-05<br>1.23315E-05 | 0.016                           | 3.40198E-05                |
| alpha-Endosulfan                                                                                                                                                             | 0.000020242                                              | 96                         | 0.056                      | 0.0019                          | J.+0190E-05                |
| beta-Endosulfan                                                                                                                                                              | 0.000020242                                              | 96                         | 0.056                      |                                 |                            |
| Endosulfan Sulfate                                                                                                                                                           | 0.000020242                                              | 96                         | 0.056                      |                                 |                            |
| Endrin                                                                                                                                                                       | 2.21953E-05                                              | 0.002                      | 0.002                      |                                 |                            |
| Endrin Aldehyde                                                                                                                                                              | 2.21953E-05                                              | 0.002                      | 0.002                      |                                 |                            |
| Heptachlor                                                                                                                                                                   | 1.79431E-07                                              | 0.0004                     | 1.82819E-05                | 0.0015                          | 0.000124431                |
| Heptachlor Epoxide                                                                                                                                                           | 7.54762E-07                                              | 0.0002                     | 9.04051E-06                |                                 | 5.90345E-05                |
| Toxaphene                                                                                                                                                                    | 5.73333E-08                                              |                            | 6.39423E-05                | 0.44                            | 0.000448841                |



|                                                                                                                                                                              | Soil Standard to           | GW MOST                    | SW MOST                    | SEDIMENT              | AUD 1122             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------|
| MEDIA - MTCA Standard                                                                                                                                                        | Protect Potable            | STRINGENT                  | STRINGENT                  | MOST                  | AIR MOST             |
|                                                                                                                                                                              | Surface Waters             | Non-Potable                | Potable                    | STRINGENT**           | STRINGENT            |
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into These<br>Screening Levels Because They Are<br>Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels        | Screening<br>Levels        | Screening<br>Levels        | Screening<br>Levels** | Screening<br>Levels  |
| UNITS                                                                                                                                                                        | mg/kg                      | μg/L                       | μg/L                       | mg/kg DW              | ppbv                 |
| acetone                                                                                                                                                                      | 1.731886                   | 110107                     | 6000                       |                       | 13658.27586          |
| acenaphthene                                                                                                                                                                 | 0.016749455                | 2.614379085                | 2.614379085                | 0.5                   | 13030.27300          |
| acenaphthylene                                                                                                                                                               | 0.069091503                | 10.78431373                | 10.78431373                | 0.56                  |                      |
| anthracene                                                                                                                                                                   | 0.223091503                | 10.78431373                | 10.78431373                | 0.96                  | 200                  |
| penzene                                                                                                                                                                      | 0.000359473                | 2.02819                    | 0.795                      |                       | 0.026297055          |
| penzo(g,h,i)perylene                                                                                                                                                         | 0.031003321                | 0.011584454                | 0.011584454                | 0.67                  |                      |
| penzo[a]anthracene                                                                                                                                                           | 4.78776E-05                | 0.000112155                | 0.000258331                | 0.062                 | 0.000931735          |
| penzo[a]pyrene                                                                                                                                                               | 5.18596E-06                | 6.5888E-06                 | 1.51762E-05                | 0.062                 | 0.000085086          |
| penzo[b]fluoranthene                                                                                                                                                         | 4.23316E-05                | 5.26914E-05                | 0.000121366                | 0.062                 |                      |
| penzo[k]fluoranthene                                                                                                                                                         | 4.34357E-05                | 5.51854E-05                | 0.00012711                 | 0.062                 |                      |
| bis(2-ethylhexyl) phthalate butyl benzyl phthalate                                                                                                                           | 0.047081657<br>0.003954085 | 0.284848485<br>0.523504274 | 0.284848485<br>0.409933862 | 1.3<br>0.063          |                      |
| carbon tetrachloride                                                                                                                                                         | 7.71205E-05                | 0.523504274                | 0.409933862                | 0.003                 | 0.009204519          |
| chlorobenzene                                                                                                                                                                | 0.011093333                | 270                        | 20                         |                       | 4.972513321          |
| chloroethane                                                                                                                                                                 |                            |                            | 0.41                       |                       | 236.4                |
| chloroform (trichloromethane)                                                                                                                                                | 0.001381798                | 4.3                        | 4.2952095                  |                       | 0.022320352          |
| chloromethane                                                                                                                                                                |                            |                            | 18.90068394                |                       | 19.89891089          |
| chrysene                                                                                                                                                                     | 0.000264903                | 0.001120636                | 0.002581193                | 0.062                 | 0.009317346          |
| dibenz[a,h]anthracene                                                                                                                                                        | 7.1198E-05                 | 2.71511E-05                | 6.25379E-05                | 0.062                 | 7.02586E-05          |
| dibenzofuran                                                                                                                                                                 | 0.015367257                | 1.327433628                | 1.327433628                | 0.54                  | 624                  |
| di-butyl phthalate (di-n-butyl phth.)                                                                                                                                        | 0.081356353                | 46.57806484                | 46.57806484                | 1.4                   | 439.7482014          |
| dichlorobenzene, 1,2-                                                                                                                                                        | 0.003788337                | 5.191873589                | 5.191873589                | 0.035                 | 15.2022449           |
| dichlorobenzene, 1,3-<br>dichlorobenzene, 1,4-                                                                                                                               | 0.002882667                | 7.142857143                | 320<br>4                   | 0.17<br>0.11          | 0.036591837          |
| dichloroethane, 1,1-                                                                                                                                                         | 0.002882887                | 33.26143751                | 1                          | 0.11                  | 0.370454545          |
| dichloroethane, 1,2-                                                                                                                                                         | 0.000125574                | 3.6                        | 0.38                       |                       | 0.023215152          |
| dichloroethylene, 1,1-                                                                                                                                                       | 1.83373E-05                | 2300                       | 0.057                      |                       | 0.012616099          |
| diethyl phthalate                                                                                                                                                            | 0.199783069                | 484.1269841                | 484.1269841                | 0.2                   | 550.6756757          |
| dimethyl phthalate                                                                                                                                                           | 0.093952381                | 142.8571429                | 142.8571429                | 0.071                 | 630.1546392          |
| di-n-octyl phthalate                                                                                                                                                         | 0.000548534                | 0.295918367                | 0.295918367                | 6.2                   |                      |
| ethylbenzene                                                                                                                                                                 | 0.001796951                | 800                        | 2.233717193                | 0.01                  | 0.223403353          |
| luoranthene                                                                                                                                                                  | 0.160534086                | 2.256699577                | 2.256699577                | 1.7                   |                      |
| luorene                                                                                                                                                                      | 0.023563127                | 2.03539823                 | 2.03539823                 | 0.54                  |                      |
| nexachlorobenzene                                                                                                                                                            | 2.42708E-07                | 0.112426036                | 6.61931E-05                | 0.022                 | 0.000455004          |
| nexachlorobutadiene<br>ndeno[1,2,3-cd]pyrene                                                                                                                                 | 0.000563273<br>6.0854E-05  | 3.923541247<br>2.27382E-05 | 0.44<br>5.23736E-05        | 0.011<br>0.062        | 0.0103125            |
| MEK (Methyl Ethyl Ketone;2-Butanone)                                                                                                                                         | 0.0004E-700                | 73000                      | 4800                       | 0.002                 |                      |
| methylene chloride (dichloromethane)                                                                                                                                         | 0.001427871                | 61                         | 4.6                        |                       | 0.748763251          |
| methylnaphthalene, 2-                                                                                                                                                        | 0.043212121                | 18.18181818                | 18.18181818                | 0.67                  | 3015                 |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                                                                                                                                          |                            |                            |                            |                       |                      |
| naphthalene                                                                                                                                                                  | 0.1142625                  | 53.80434783                | 53.80434783                | 2.1                   | 0.013731669          |
| nitrosodiphenylamine, N-                                                                                                                                                     | 0.008905288                | 1.593580667                | 1.382665579                | 0.028                 |                      |
| ocb mixtures                                                                                                                                                                 | 6.66052E-07                | 2.30915E-05                | 1.47662E-05                | 0.0000039             | 0.000291233          |
| ocb - Aroclor 1016                                                                                                                                                           | 1.75613E-06                | 0.0000641                  | 0.00042189                 |                       |                      |
| ocb - Aroclor 1221<br>ocb - Aroclor 1232                                                                                                                                     |                            | 2.30915E-05                | 2.30352E-05<br>0.014       |                       |                      |
| ocb - Aroclor 1232<br>ocb - Aroclor 1242                                                                                                                                     |                            | 2.30915E-05                | 2.30352E-05                |                       |                      |
| ocb - Aroclor 1248                                                                                                                                                           | 1.01785E-06                | 2.30915E-05                | 2.30352E-05                |                       |                      |
| cb - Aroclor 1254                                                                                                                                                            | 4.16425E-07                | 5.49145E-06                | 5.48457E-06                |                       |                      |
| cb - Aroclor 1260                                                                                                                                                            | 4.77489E-06                | 2.30915E-05                | 2.30352E-05                |                       |                      |
| henanthrene                                                                                                                                                                  | 0.101378205                | 4.807692308                | 4.807692308                | 1.5                   | 200                  |
| yrene                                                                                                                                                                        | 0.683027333                | 9.8                        | 9.828761139                | 2.6                   | 200                  |
| etrachloroethylene (perchloroethylene)                                                                                                                                       | 1.13219E-05                | 0.020523086                | 0.02060763                 | 0.057                 | 0.060461399          |
| richlorobenzene, 1,2,4-                                                                                                                                                      | 5.02642E-05                | 1.128133705                | 0.141842417                | 0.031                 | 0.12312562           |
| richlorethane, 1,1,1-                                                                                                                                                        | 0.067061333                | 46000                      | 200                        |                       | 419.7188906          |
| richlorethane, 1,1,2-                                                                                                                                                        | 0.000209076                | 2.326407578                | 0.59                       | 0.40                  | 0.027492504          |
| richloroethylene<br>rimethylbenzene, 1,3,5-                                                                                                                                  | 0.0002815<br>0.044535      | 0.74<br>45                 | 0.49<br>45.21613312        | 0.16                  | 0.223287671<br>295.6 |
| oluene                                                                                                                                                                       | 0.554666667                | 1300                       | 1000                       |                       | 48.58143322          |
| OIGOITO                                                                                                                                                                      |                            |                            |                            |                       |                      |
| rinyl chloride (chloroethylene)                                                                                                                                              | 6.11333E-06                | 2.4                        | 0.02                       |                       | 0.01216632           |

|                                                                                                                                                                              | 0.1104              | GW MOST             | CW MOCT              | SEDIMENT              |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|----------------------|-----------------------|---------------------|
| MEDIA MEGA Charadand                                                                                                                                                         | Soil Standard to    |                     | SW MOST<br>STRINGENT | _                     | AIR MOST            |
| MEDIA - MTCA Standard                                                                                                                                                        | Protect Potable     | STRINGENT           |                      | MOST                  | STRINGENT           |
|                                                                                                                                                                              | Surface Waters      | Non-Potable         | Potable              | STRINGENT**           | 01111102111         |
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into These<br>Screening Levels Because They Are<br>Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels | Screening<br>Levels | Screening<br>Levels  | Screening<br>Levels** | Screening<br>Levels |
|                                                                                                                                                                              |                     |                     |                      |                       |                     |
| UNITS                                                                                                                                                                        | mg/kg               | μg/L                | μg/L                 | mg/kg DW              | ppbv                |
| benzoic acid                                                                                                                                                                 | 0.64431792          | 2242.926156         | 2242.926156          | 0.65                  |                     |
| benzyl alcohol                                                                                                                                                               | 0.055021137         | 181.9923372         | 181.9923372          | 0.057                 |                     |
| dimethylphenol, 2,4-                                                                                                                                                         | 0.002026013         | 2.020624303         | 2.020624303          | 0.029                 |                     |
| methylphenol, 2- (o-cresol)                                                                                                                                                  | 0.00268544          | 7.110609481         | 7.110609481          | 0.063                 | 119.7783826         |
| methylphenol, 4- (p-cresol)                                                                                                                                                  | 0.022127496         | 77.18894009         | 77.18894009          | 0.67                  | 119.7783826         |
| pentachlorophenol                                                                                                                                                            | 0.00076784          | 5.325443787         | 0.209410987          | 0.36                  | 0.044054054         |
| phenol (total)                                                                                                                                                               | 0.02388097          | 78.35820896         | 78.35820896          | 0.42                  | 54.62234043         |
| styrene (phenylethylene)                                                                                                                                                     |                     |                     | 100                  |                       | 1.073357349         |
| Tributyltin                                                                                                                                                                  |                     |                     | 0.072                | 0.073                 | 100                 |
| Trichlorophenol, 2,4,6-                                                                                                                                                      |                     |                     | 0.558429298          |                       | 0.096562025         |
|                                                                                                                                                                              |                     |                     |                      |                       |                     |
| Aluminum                                                                                                                                                                     |                     |                     | 50                   | 7600                  | 2.075259451         |
| Antimony                                                                                                                                                                     | 0.17507732          | 3.865979381         | 3.865979381          | 3.1                   | 0.018314908         |
| Arsenic (III)                                                                                                                                                                |                     |                     |                      |                       |                     |
| Arsenic (V)                                                                                                                                                                  |                     |                     |                      |                       |                     |
| Arsenic (total)                                                                                                                                                              | 0.000157807         | 7.3                 | 0.005388353          | 0.39                  | 0.000186018         |
| Barium                                                                                                                                                                       | 0.082573333         | 120                 | 2                    | 540                   | 0.040770771         |
| Beryllium                                                                                                                                                                    | 3.161146667         | 120                 | 4                    |                       | 0.000193143         |
| Cadmium                                                                                                                                                                      | 0.0014672           | 0.21                | 0.25                 | 3.7                   | 0.00030451          |
| Chromium (VI)                                                                                                                                                                | 0.002221362         | 0.58                | 0.115176043          | -                     | 5.17251E-06         |
| Chromium, total (or III)                                                                                                                                                     | 42                  | 305.8823529         | 50                   | 1.6                   | 235.1142396         |
| Cobalt                                                                                                                                                                       |                     |                     |                      | -                     | 0.000112023         |
| Copper                                                                                                                                                                       | 0.028972667         | 7.3                 | 2.4                  | 310                   | 38.4736428          |
| Iron                                                                                                                                                                         |                     |                     | 300                  | 2300                  | 437.803284          |
| Lead                                                                                                                                                                         | 5.4001548           | 2.5                 | 0.54                 | 40                    | 0.002088668         |
| Manganese                                                                                                                                                                    | 0.014333333         | 2000                | 50                   | 180                   | 0.01019158          |
| Mercury                                                                                                                                                                      | 0.000269883         | 0.005161594         | 0.005161594          | 0.41                  | 0.003656713         |
| Mercury (organic)                                                                                                                                                            |                     | 0.00045             | 0.000454821          |                       | 1.133914621         |
| Molybdenum                                                                                                                                                                   |                     |                     | 40                   | 39                    | 1274.233896         |
| Nickel                                                                                                                                                                       | 0.326433333         | 8.2                 | 8.2                  | 140                   | 0.004164538         |
| Selenium                                                                                                                                                                     | 0.026433333         | 5                   | 5                    | 3                     | 6.502659574         |
| Silver                                                                                                                                                                       | 0.013156926         | 1.532250723         | 1.532250723          | 6.1                   | 2.26665925          |
| Tin                                                                                                                                                                          |                     |                     |                      |                       | 411.9976409         |
| Thallium                                                                                                                                                                     | 0.0171088           | 0.47                | 0.24                 | 0.52                  | 11.96301008         |
| Vanadium                                                                                                                                                                     |                     |                     | 1.12                 | 7.8                   | 0.047996231         |
| Zinc                                                                                                                                                                         | 2.028518377         | 32.56745762         | 32.56745762          | 410                   | 0.0 00020 .         |
| -                                                                                                                                                                            |                     |                     |                      |                       |                     |
| LPAH                                                                                                                                                                         |                     |                     | 0.01                 | 5.2                   |                     |
| HPAH                                                                                                                                                                         |                     |                     | 0.01                 | 12                    |                     |
| Total Petroleum Hydrocarbons                                                                                                                                                 | Site Specific       | No Sheen            | No Sheen             |                       |                     |
| Gasoline                                                                                                                                                                     | 100                 |                     | 1000                 |                       | 300000              |
| Gasoline (w/benzene)                                                                                                                                                         | 30                  |                     | 800                  |                       |                     |
| Diesel                                                                                                                                                                       | 2000                |                     | 500                  |                       |                     |
| Heavy Oil                                                                                                                                                                    | 2000                |                     | 500                  |                       |                     |
|                                                                                                                                                                              |                     |                     |                      |                       |                     |
| 2,3,7,8-TCDD (Dioxin)                                                                                                                                                        | 3.02026E-11         | 2.06039E-10         | 2.06039E-10          | 0.000039              | 4.42682E-09         |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                      |                     |                     |                      |                       |                     |

|                                                     | Soil Standard to           | CW MOST                    | SW MOST                    | SEDIMENT       |                          |
|-----------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------|--------------------------|
| MEDIA - MTCA Standard                               | Protect Potable            | GW MOST<br>STRINGENT       | STRINGENT                  | MOST           | AIR MOST                 |
| MEDIA - MTCA Standard                               | Ground Waters              | POTABLE                    |                            | STRINGENT**    | STRINGENT                |
|                                                     | Ground Waters              | TOTABLE                    | Non-Potable                | STRINGENT      |                          |
| Note: Natural Background and PQL's                  |                            |                            |                            |                |                          |
| Have Not Been Incorporated Into These               | Screening                  | Screening                  | Screening                  | Screening      | Screening                |
| Screening Levels Because They Are                   | Levels                     | Levels                     | Levels                     | Levels**       | Levels                   |
| Site Specific And Have Not Been                     | Levels                     | Leveis                     | Levels                     | Levels         | Levels                   |
| Determined By Ecology                               |                            |                            |                            |                |                          |
|                                                     |                            |                            |                            |                |                          |
| UNITS                                               | mg/kg                      | μg/L                       | μg/L                       | mg/kg DW       | ppbv                     |
| ONTO                                                | mgrkg                      | μg/ <b>–</b>               | <b>μ</b> 9/ <b>-</b>       | mg/kg D ii     | ppov                     |
|                                                     |                            |                            |                            |                |                          |
| acetone                                             | 1.731886                   | 6000                       | 110107.0077                |                | 13658.27586              |
| acenaphthene                                        | 0.016749455                | 2.614379085                | 2.614379085                | 0.5            |                          |
| acenaphthylene                                      | 0.069091503                | 10.78431373                | 10.78431373                | 0.56           |                          |
| anthracene                                          | 0.223091503                | 10.78431373                | 10.78431373                | 0.96           | 200                      |
| benzene                                             | 0.00021                    | 0.795                      | 2.028193577                |                | 0.026297055              |
| benzo(g,h,i)perylene                                | 0.031003321                | 0.011584454                | 0.011584454                | 0.67           | 0.000557=5=              |
| benzo[a]anthracene                                  | 4.78776E-05                | 0.000112155                | 0.000258331                | 0.062          | 0.000931735              |
| benzo[a]pyrene                                      | 5.18596E-06                | 6.5888E-06<br>5.26914E-05  | 1.51762E-05                | 0.062          | 0.000085086              |
| benzo[b]fluoranthene                                | 4.23316E-05<br>4.34357E-05 | 5.26914E-05<br>5.51854E-05 | 0.000121366<br>0.00012711  | 0.062          |                          |
| benzo[k]fluoranthene<br>bis(2-ethylhexyl) phthalate | 4.34357E-05<br>0.047081657 | 0.284848485                | 0.00012711                 | 0.062<br>1.3   |                          |
| butyl benzyl phthalate                              | 0.047081657                | 0.523504274                | 0.284848485                | 0.063          |                          |
| carbon tetrachloride                                | 8.30969E-05                | 0.247823653                | 0.247823653                | 0.003          | 0.009204519              |
| chlorobenzene                                       | 0.011093333                | 100                        | 20                         |                | 4.972513321              |
| chloroethane                                        | 0.010553827                | 21000                      | 34                         |                | 236.4                    |
| chloroform (trichloromethane)                       | 0.000053                   | 4.3                        | 4.2952095                  |                | 0.022320352              |
| chloromethane                                       | 0.006094796                | 190                        | 20.25073279                |                | 19.89891089              |
| chrysene                                            | 0.000264903                | 0.001120636                | 0.002581193                | 0.062          | 0.009317346              |
| dibenz[a,h]anthracene                               | 7.1198E-05                 | 2.71511E-05                | 6.25379E-05                | 0.062          | 7.02586E-05              |
| dibenzofuran                                        | 0.015367257                | 1.327433628                | 1.327433628                | 0.54           | 624                      |
| di-butyl phthalate (di-n-butyl phth.)               | 0.081356353                | 46.57806484                | 46.57806484                | 1.4            | 439.7482014              |
| dichlorobenzene, 1,2-                               | 0.003788337                | 5.191873589                | 5.191873589                | 0.035          | 15.2022449               |
| dichlorobenzene, 1,3-                               | 0.2752                     | 600                        | 960                        | 0.17           |                          |
| dichlorobenzene, 1,4-                               | 0.00041                    | 4                          | 4                          | 0.11           | 0.036591837              |
| dichloroethane, 1,1-                                | 0.000321707                | 1                          | 33.26143751                |                | 0.370454545              |
| dichloroethane, 1,2-                                | 0.000042                   | 0.48                       | 3.552760138                |                | 0.023215152              |
| dichloroethylene, 1,1-                              | 0.000234524                | 0.729                      | 3.2                        |                | 0.012616099              |
| diethyl phthalate                                   | 0.199783069                | 484.1269841                | 484.1269841                | 0.2            | 550.6756757              |
| dimethyl phthalate                                  | 0.093952381                | 142.8571429                | 142.8571429                | 0.071          | 630.1546392              |
| di-n-octyl phthalate                                | 0.000548534                | 0.295918367                | 0.295918367                | 6.2            | 0.000.4000.50            |
| ethylbenzene                                        | 0.0017                     | 700                        | 2.233717193                | 0.01           | 0.223403353              |
| fluoranthene                                        | 0.160534086                | 2.256699577<br>2.03539823  | 2.256699577                | 1.7            |                          |
| fluorene                                            | 0.023563127<br>2.42708E-07 | <u> </u>                   | 2.03539823                 | 0.54           | 0.000455004              |
| hexachlorobenzene<br>hexachlorobutadiene            | 0.00115215                 | 0.05<br>0.9                | 6.61931E-05<br>3.923541247 | 0.022<br>0.011 | 0.000455004<br>0.0103125 |
| indeno[1,2,3-cd]pyrene                              | 6.0854E-05                 | 2.27382E-05                | 5.23736E-05                | 0.062          | 0.0103123                |
| MEK (Methyl Ethyl Ketone;2-Butanone)                | 1.376                      | 4800                       | 4800                       | 0.002          |                          |
| methylene chloride (dichloromethane)                | 0.0012                     | 5                          | 61.42722279                |                | 0.748763251              |
| methylnaphthalene, 2-                               | 0.043212121                | 18.18181818                | 18.18181818                | 0.67           | 3015                     |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                 | 0.183466667                | 640                        | 13.10.1010                 | 0.0.           | 55.5                     |
| naphthalene                                         | 0.00047                    | 53.80434783                | 53.80434783                | 2.1            | 0.013731669              |
| nitrosodiphenylamine, N-                            | 0.008905288                | 1.593580667                | 1.382665579                | 0.028          |                          |
| pcb mixtures                                        | 6.66052E-07                | 2.30915E-05                | 1.47662E-05                | 0.0000039      | 0.000291233              |
| pcb - Aroclor 1016                                  | 1.75613E-06                | 0.0000641                  | 0.00042189                 |                |                          |
| pcb - Aroclor 1221                                  | 2.44557E-07                | 2.30915E-05                | 2.30352E-05                |                |                          |
| pcb - Aroclor 1232                                  | 0.00012                    |                            | 0.014                      |                |                          |
| pcb - Aroclor 1242                                  | 1.69278E-08                | 2.30915E-05                | 2.30352E-05                |                |                          |
| pcb - Aroclor 1248                                  | 1.01785E-06                | 2.30915E-05                | 2.30352E-05                |                |                          |
| pcb - Aroclor 1254                                  | 4.16425E-07                | 5.49145E-06                | 5.48457E-06                |                |                          |
| pcb - Aroclor 1260                                  | 4.77489E-06                | 2.30915E-05                | 2.30352E-05                |                |                          |
| phenanthrene                                        | 0.101378205                | 4.807692308                | 4.807692308                | 1.5            | 200                      |
| pyrene                                              | 0.683027333                | 9.8                        | 9.828761139                | 2.6            | 200                      |
| tetrachloroethylene (perchloroethylene)             | 1.13219E-05                | 0.020523086                | 0.02060763                 | 0.057          | 0.060461399              |
| trichlorobenzene, 1,2,4-                            | 5.02642E-05                | 1.128133705                | 0.141842417                | 0.031          | 0.12312562               |

|                                                                                                                                                                              | Soil Standard to    | GW MOST             | SW MOST             | SEDIMENT              | AID MOOT            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|-----------------------|---------------------|
| MEDIA - MTCA Standard                                                                                                                                                        | Protect Potable     | STRINGENT           | STRINGENT           | MOST                  | AIR MOST            |
| WEBIA WITOA Glandard                                                                                                                                                         | Ground Waters       | POTABLE             | Non-Potable         | STRINGENT**           | STRINGENT           |
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into These<br>Screening Levels Because They Are<br>Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels | Screening<br>Levels | Screening<br>Levels | Screening<br>Levels** | Screening<br>Levels |
| UNITS                                                                                                                                                                        | mg/kg               | μg/L                | μg/L                | mg/kg DW              | ppbv                |
| trichlorethane, 1,1,1-                                                                                                                                                       | 0.067061333         | 200                 | 46023.56406         |                       | 419.7188906         |
| trichlorethane, 1,1,2-                                                                                                                                                       | 0.000078            | 0.768               | 2.335991132         |                       | 0.027492504         |
| trichloroethylene                                                                                                                                                            | 0.000186527         | 0.49                | 0.739493051         | 0.16                  | 0.223287671         |
| trimethylbenzene, 1,3,5-                                                                                                                                                     | 0.044535            | 45                  | 45.21613312         |                       | 295.6               |
| toluene                                                                                                                                                                      | 0.554666667         | 1000                | 1294.051676         |                       | 48.58143322         |
| vinyl chloride (chloroethylene)                                                                                                                                              | 0.0000056           | 0.02                | 0.53322242          |                       | 0.01216632          |
| xylene (dimethylbenzene)                                                                                                                                                     | 0.2                 | 1000                | 1577.950768         | 0.04                  | 10.59039548         |
| benzoic acid                                                                                                                                                                 | 0.64431792          | 2242.926156         | 2242.926156         | 0.65                  |                     |
| benzyl alcohol                                                                                                                                                               | 0.055021137         | 181.9923372         | 181.9923372         | 0.057                 |                     |
| dimethylphenol, 2,4-                                                                                                                                                         | 0.002026013         | 2.020624303         | 2.020624303         | 0.029                 |                     |
| methylphenol, 2- (o-cresol)                                                                                                                                                  | 0.00268544          | 7.110609481         | 7.110609481         | 0.063                 | 119.7783826         |
| methylphenol, 4- (p-cresol)                                                                                                                                                  | 0.050166667         | 77.18894009         | 77.18894009         | 0.67                  | 119.7783826         |
| pentachlorophenol                                                                                                                                                            | 0.000803            | 0.219               | 0.698036623         | 0.36                  | 0.044054054         |
| phenol (total)                                                                                                                                                               | 0.02388097          | 78.35820896         | 78.35820896         | 0.42                  | 54.62234043         |
| styrene (phenylethylene)                                                                                                                                                     | 0.080446667         | 100                 | 0.0074              | 0.070                 | 1.073357349         |
| Tributyltin                                                                                                                                                                  | 0.00000000          | 2                   | 0.0074              | 0.073                 | 100                 |
| Trichlorophenol, 2,4,6-                                                                                                                                                      | 0.00082238          | 3                   | 0.558429298         |                       | 0.096562025         |
| A Lorentino com                                                                                                                                                              | 4.50000007          | 50                  |                     | 7000                  | 0.075050454         |
| Aluminum                                                                                                                                                                     | 4.586666667         | 50                  | 2.005070204         | 7600                  | 2.075259451         |
| Antimony                                                                                                                                                                     | 0.17507732          | 3.865979381         | 3.865979381         | 3.1                   | 0.018314908         |
| Arsenic (III)                                                                                                                                                                | 7                   |                     |                     |                       |                     |
| Arsenic (V) Arsenic (total)                                                                                                                                                  | 10<br>0.000157807   | 0.05                | 0.005388353         | 0.39                  | 0.000186018         |
| Barium                                                                                                                                                                       | 0.082573333         | 2                   | 122.1478478         | 540                   | 0.040770771         |
| Beryllium                                                                                                                                                                    | 3.161146667         | 4                   | 12.47090123         | 540                   | 0.000193143         |
| Cadmium                                                                                                                                                                      | 0.0014672           | 0.21                | 0.25                | 3.7                   | 0.000193143         |
| Chromium (VI)                                                                                                                                                                | 0.00083             | 0.58                | 0.115176043         | 5.7                   | 5.17251E-06         |
| Chromium, total (or III)                                                                                                                                                     | 42                  | 50                  | 74                  | 1.6                   | 235.1142396         |
| Cobalt                                                                                                                                                                       | 0.49                | 30                  | - 17                | 1.0                   | 0.000112023         |
| Copper                                                                                                                                                                       | 0.053488            | 7.3                 | 3.1                 | 310                   | 38.4736428          |
| Iron                                                                                                                                                                         | 0.035466            | 300                 | J. 1                | 2300                  | 437.803284          |
| Lead                                                                                                                                                                         | 5.4001548           | 2.5                 | 0.54                | 40                    | 0.002088668         |
| Manganese                                                                                                                                                                    | 0.014333333         | 50                  | 100                 | 180                   | 0.01019158          |
| Mercury                                                                                                                                                                      | 0.000269883         | 0.005161594         | 0.005161594         | 0.41                  | 0.003656713         |
| Mercury (organic)                                                                                                                                                            | 0.0000018           | 0.00045             | 0.000454821         |                       | 1.133914621         |
| Molybdenum                                                                                                                                                                   | 0.011466667         | 40                  |                     | 39                    | 1274.233896         |
| Nickel                                                                                                                                                                       | 0.326433333         | 8.2                 | 8.2                 | 140                   | 0.004164538         |
| Selenium                                                                                                                                                                     | 0.026433333         | 5                   | 5                   | 3                     | 6.502659574         |
| Silver                                                                                                                                                                       | 0.013156926         | 1.532250723         | 1.532250723         | 6.1                   | 2.26665925          |
| Tin                                                                                                                                                                          | 50                  |                     |                     |                       | 411.9976409         |
| Thallium                                                                                                                                                                     | 0.033504733         | 0.47                | 0.47                | 0.52                  | 11.96301008         |
| Vanadium                                                                                                                                                                     | 0.000321067         | 1.12                |                     | 7.8                   | 0.047996231         |
| Zinc                                                                                                                                                                         | 2.028518377         | 32.56745762         | 32.56745762         | 410                   |                     |
|                                                                                                                                                                              |                     |                     |                     |                       |                     |
| LPAH                                                                                                                                                                         |                     | 0.01                | 0.01                | 5.2                   |                     |
| HPAH                                                                                                                                                                         |                     | 0.01                | 0.01                | 12                    |                     |
| Total Petroleum Hydrocarbons                                                                                                                                                 | Site Specific       | No Sheen            | No Sheen            |                       |                     |
| Gasoline                                                                                                                                                                     | 100                 | 1000                | 1000                |                       | 300000              |
| Gasoline (w/benzene)                                                                                                                                                         | 30                  | 800                 | 800                 |                       |                     |
| Diesel                                                                                                                                                                       | 200                 | 500                 | 500                 |                       |                     |
| Heavy Oil                                                                                                                                                                    | 2000                | 500                 | 500                 |                       |                     |
| 0.0.7.0.TODD (D:)                                                                                                                                                            | 0.00055=            | 0.00000= 10         | 0.000007 /0         | 0.005                 | 4 40000 - 00        |
| 2,3,7,8-TCDD (Dioxin)                                                                                                                                                        | 3.02026E-11         | 2.06039E-10         | 2.06039E-10         | 0.0000039             | 4.42682E-09         |

| MEDIA - MTCA Standard                                                                                                                                                        | Soil Standard to<br>Protect Potable<br>Ground Waters | GW MOST<br>STRINGENT<br>POTABLE | SW MOST<br>STRINGENT<br>Non-Potable | SEDIMENT<br>MOST<br>STRINGENT** | AIR MOST<br>STRINGENT |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|-------------------------------------|---------------------------------|-----------------------|
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into These<br>Screening Levels Because They Are<br>Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels                                  | Screening<br>Levels             | Screening<br>Levels                 | Screening<br>Levels**           | Screening<br>Levels   |
| UNITS                                                                                                                                                                        | mg/kg                                                | μg/L                            | μg/L                                | mg/kg DW                        | ppbv                  |
| Aldrin                                                                                                                                                                       | 5.6837E-07                                           | 0.002573529                     | 1.16061E-05                         | 0.0095                          | 3.35014E-05           |
| alpha-BHC                                                                                                                                                                    | 2.30483E-06                                          | 0.013888889                     | 0.001125041                         |                                 | 0.000116768           |
| beta-BHC                                                                                                                                                                     | 9.55141E-06                                          | 0.048611111                     | 0.003937642                         |                                 | 0.000386734           |
| gamma-BHC                                                                                                                                                                    | 3.27733E-07                                          | 0.0002                          | 0.063                               | 0.01                            |                       |
| Chlordane                                                                                                                                                                    | 9.63356E-06                                          | 0.002                           | 0.000186709                         | 0.0028                          | 0.001431918           |
| 4,4'-DDT                                                                                                                                                                     | 3.42909E-05                                          | 0.257352941                     | 5.05602E-05                         | 0.0012                          | 0.001677047           |
| 4,4'-DDE                                                                                                                                                                     | 4.38314E-06                                          | 0.257352941                     | 5.05602E-05                         | 0.009                           |                       |
| 4,4'-DDD                                                                                                                                                                     | 3.30104E-06                                          | 0.364583333                     | 7.16269E-05                         | 0.016                           | 0.002673885           |
| Dieldrin                                                                                                                                                                     | 3.18555E-07                                          | 0.00546875                      | 1.23315E-05                         | 0.0019                          | 3.40198E-05           |
| alpha-Endosulfan                                                                                                                                                             | 0.000020242                                          | 96                              | 0.0087                              |                                 |                       |
| beta-Endosulfan                                                                                                                                                              | 0.000020242                                          | 96                              | 0.0087                              |                                 |                       |
| Endosulfan Sulfate                                                                                                                                                           | 0.000020242                                          | 96                              | 0.0087                              |                                 |                       |
| Endrin                                                                                                                                                                       | 2.21953E-05                                          | 0.002                           | 0.002                               |                                 |                       |
| Endrin Aldehyde                                                                                                                                                              | 2.21953E-05                                          | 0.002                           | 0.002                               |                                 |                       |
| Heptachlor                                                                                                                                                                   | 1.79431E-07                                          | 0.0004                          | 1.82819E-05                         | 0.0015                          | 0.000124431           |
| Heptachlor Epoxide                                                                                                                                                           | 7.54762E-07                                          | 0.0002                          | 9.04051E-06                         |                                 | 5.90345E-05           |
| Toxaphene                                                                                                                                                                    | 5.73333E-08                                          |                                 | 6.39423E-05                         | 0.44                            | 0.000448841           |
|                                                                                                                                                                              |                                                      |                                 |                                     |                                 |                       |

| I |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

I

| · |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

|                                          |                            | OW MOST                    | OW MOST                    | CEDIMENT      |                                         |
|------------------------------------------|----------------------------|----------------------------|----------------------------|---------------|-----------------------------------------|
| MEDIA MEDA O                             | Soil Standard -            | GW MOST                    | SW MOST                    | SEDIMENT      | AIR MOST                                |
| MEDIA - MTCA Standard                    | Do Not Protect Any         | STRINGENT                  | STRINGENT                  | MOST          | STRINGENT                               |
|                                          | Potable Waters             | Non-Potable                | Non-Potable                | STRINGENT**   | • • • • • • • • • • • • • • • • • • • • |
| Note: Natural Background and PQL's       |                            |                            |                            |               |                                         |
| Have Not Been Incorporated Into These    | Screening                  | Screening                  | Screening                  | Screening     | Screening                               |
| Screening Levels Because They Are        |                            | _                          | _                          |               | _                                       |
| Site Specific And Have Not Been          | Levels                     | Levels                     | Levels                     | Levels**      | Levels                                  |
| Determined By Ecology                    |                            |                            |                            |               |                                         |
|                                          |                            |                            |                            |               |                                         |
| UNITS                                    | mg/kg                      | ual)                       | uall                       | mg/kg DW      | ppbv                                    |
| UNITS                                    | ilig/kg                    | μg/L                       | μg/L                       | IIIg/kg DW    | hhna                                    |
|                                          |                            |                            |                            |               |                                         |
| acetone                                  | 31.78212863                | 110107                     | 110107.0077                |               | 13658.27586                             |
| acenaphthene                             | 0.016749455                | 2.614379085                | 2.614379085                | 0.5           |                                         |
| acenaphthylene                           | 0.069091503                | 10.78431373                | 10.78431373                | 0.56          |                                         |
| anthracene                               | 0.223091503                | 10.78431373                | 10.78431373                | 0.96          | 200                                     |
| benzene<br>benzo(q,h,i)perylene          | 0.00091708<br>0.031003321  | 2.02819<br>0.011584454     | 2.028193577<br>0.011584454 | 0.67          | 0.026297055                             |
| benzo[a]anthracene                       | 4.78776E-05                | 0.000112155                | 0.000258331                | 0.062         | 0.000931735                             |
| benzo[a]pyrene                           | 5.18596E-06                | 6.5888E-06                 | 1.51762E-05                | 0.062         | 0.000931733                             |
| benzo[b]fluoranthene                     | 4.23316E-05                | 5.26914E-05                | 0.000121366                | 0.062         | 2.2000000                               |
| benzo[k]fluoranthene                     | 4.34357E-05                | 5.51854E-05                | 0.00012711                 | 0.062         |                                         |
| bis(2-ethylhexyl) phthalate              | 0.047081657                | 0.284848485                | 0.284848485                | 1.3           |                                         |
| butyl benzyl phthalate                   | 0.003954085                | 0.523504274                | 0.409933862                | 0.063         |                                         |
| carbon tetrachloride                     | 8.30969E-05                | 0.247823653                | 0.247823653                |               | 0.009204519                             |
| chlorobenzene                            | 0.011093333                | 270                        | 20                         |               | 4.972513321                             |
| chloroethane                             | 0.010553827                |                            | 34                         |               | 236.4                                   |
| chloroform (trichloromethane)            | 0.001381798                | 4.3                        | 4.2952095                  |               | 0.022320352                             |
| chloromethane                            | 0.006094796                |                            | 20.25073279                |               | 19.89891089                             |
| chrysene                                 | 0.000264903                | 0.001120636                | 0.002581193                | 0.062         | 0.009317346                             |
| dibenz[a,h]anthracene<br>dibenzofuran    | 7.1198E-05<br>0.015367257  | 2.71511E-05<br>1.327433628 | 6.25379E-05<br>1.327433628 | 0.062<br>0.54 | 7.02586E-05<br>624                      |
| di-butyl phthalate (di-n-butyl phth.)    | 0.015367257                | 46.57806484                | 46.57806484                | 1.4           | 439.7482014                             |
| dichlorobenzene, 1,2-                    | 0.001330333                | 5.191873589                | 5.191873589                | 0.035         | 15.2022449                              |
| dichlorobenzene, 1,3-                    | 0.2752                     | 0.101010000                | 960                        | 0.17          | 10.2022443                              |
| dichlorobenzene, 1,4-                    | 0.002882667                | 7.142857143                | 4                          | 0.11          | 0.036591837                             |
| dichloroethane, 1,1-                     | 0.010700426                | 33.26143751                | 33.26143751                |               | 0.370454545                             |
| dichloroethane, 1,2-                     | 0.001174033                | 3.6                        | 3.552760138                |               | 0.023215152                             |
| dichloroethylene, 1,1-                   | 0.001029461                | 2300                       | 3.2                        |               | 0.012616099                             |
| diethyl phthalate                        | 0.199783069                | 484.1269841                | 484.1269841                | 0.2           | 550.6756757                             |
| dimethyl phthalate                       | 0.093952381                | 142.8571429                | 142.8571429                | 0.071         | 630.1546392                             |
| di-n-octyl phthalate                     | 0.000548534                | 0.295918367                | 0.295918367                | 6.2           |                                         |
| ethylbenzene                             | 0.001796951                | 800                        | 2.233717193                | 0.01          | 0.223403353                             |
| fluoranthene                             | 0.160534086<br>0.023563127 | 2.256699577<br>2.03539823  | 2.256699577                | 1.7           |                                         |
| fluorene<br>hexachlorobenzene            | 2.42708E-07                | 0.112426036                | 2.03539823<br>6.61931E-05  | 0.54<br>0.022 | 0.000455004                             |
| hexachlorobutadiene                      | 0.005022787                | 3.923541247                | 3.923541247                | 0.022         | 0.000455004                             |
| indeno[1,2,3-cd]pyrene                   | 6.0854E-05                 | 2.27382E-05                | 5.23736E-05                | 0.062         | 0.0100120                               |
| MEK (Methyl Ethyl Ketone;2-Butanone)     | 300                        | 73000                      | 4800                       |               |                                         |
| methylene chloride (dichloromethane)     | 0.018934807                | 61                         | 61.42722279                |               | 0.748763251                             |
| methylnaphthalene, 2-                    | 0.043212121                | 18.18181818                | 18.18181818                | 0.67          | 3015                                    |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)      |                            |                            |                            |               |                                         |
| naphthalene                              | 0.1142625                  | 53.80434783                | 53.80434783                | 2.1           | 0.013731669                             |
| nitrosodiphenylamine, N-                 | 0.008905288                | 1.593580667                | 1.382665579                | 0.028         |                                         |
| pcb mixtures                             | 6.66052E-07                | 2.30915E-05                | 1.47662E-05                | 0.0000039     | 0.000291233                             |
| pcb - Arcelor 1016                       | 1.75613E-06                | 0.0000641                  | 0.00042189                 |               |                                         |
| pcb - Aroclor 1221<br>pcb - Aroclor 1232 | 2.44557E-07<br>0.000148633 | 2.30915E-05                | 2.30352E-05<br>0.014       |               |                                         |
| pcb - Aroclor 1232<br>pcb - Aroclor 1242 | 1.69278E-08                | 2.30915E-05                | 2.30352E-05                |               |                                         |
| pcb - Aroclor 1242<br>pcb - Aroclor 1248 | 1.01785E-06                | 2.30915E-05                | 2.30352E-05                |               |                                         |
| pcb - Aroclor 1254                       | 4.16425E-07                | 5.49145E-06                | 5.48457E-06                |               |                                         |
| pcb - Aroclor 1260                       | 4.77489E-06                | 2.30915E-05                | 2.30352E-05                |               |                                         |
| phenanthrene                             | 0.101378205                | 4.807692308                | 4.807692308                | 1.5           | 200                                     |
| pyrene                                   | 0.683027333                | 9.8                        | 9.828761139                | 2.6           | 200                                     |
| tetrachloroethylene (perchloroethylene)  | 1.13219E-05                | 0.020523086                | 0.02060763                 | 0.057         | 0.060461399                             |
| trichlorobenzene, 1,2,4-                 | 5.02642E-05                | 1.128133705                | 0.141842417                | 0.031         | 0.12312562                              |
| trichlorethane, 1,1,1-                   | 2                          | 46000                      | 46023.56406                |               | 419.7188906                             |
| trichlorethane, 1,1,2-                   | 0.000824401                | 2.326407578                | 2.335991132                | 0.40          | 0.027492504                             |
| trichloroethylene                        | 0.0002815                  | 0.74                       | 0.739493051                | 0.16          | 0.223287671                             |

|                                            | Soil Standard -                      | GW MOST     | SW MOST                    | SEDIMENT    |                            |
|--------------------------------------------|--------------------------------------|-------------|----------------------------|-------------|----------------------------|
| MEDIA - MTCA Standard                      |                                      | STRINGENT   | STRINGENT                  | MOST        | AIR MOST                   |
| MEDIA - MTCA Standard                      | Do Not Protect Any<br>Potable Waters | Non-Potable | Non-Potable                |             | STRINGENT                  |
|                                            | Potable Waters                       | Non-Potable | Non-Potable                | STRINGENT** |                            |
| Note: Natural Background and PQL's         |                                      |             |                            |             |                            |
| Have Not Been Incorporated Into These      | Screening                            | Screening   | Screening                  | Screening   | Screening                  |
| Screening Levels Because They Are          | Levels                               | Levels      | Levels                     | Levels**    | Levels                     |
| Site Specific And Have Not Been            | Leveis                               | Leveis      | Leveis                     | Leveis      | Leveis                     |
| Determined By Ecology                      |                                      |             |                            |             |                            |
|                                            |                                      |             |                            |             |                            |
| UNITS                                      | mg/kg                                | μg/L        | μg/L                       | mg/kg DW    | ppbv                       |
| 5,45                                       | mgmg                                 | pg-         | rg/=                       | mgmg = 11   | ррэч                       |
| 1                                          |                                      | 4-          |                            |             |                            |
| trimethylbenzene, 1,3,5-                   | 0.044535                             | 45<br>1300  | 45.21613312                |             | 295.6                      |
| toluene<br>vinyl chloride (chloroethylene) | 0.71776733<br>0.000162988            | 2.4         | 1294.051676<br>0.53322242  |             | 48.58143322<br>0.01216632  |
| xylene (dimethylbenzene)                   | 0.948696667                          | 1300        | 1577.950768                | 0.04        | 10.59039548                |
| benzoic acid                               | 0.64431792                           | 2242.926156 | 2242.926156                | 0.65        | 10.03003040                |
| benzyl alcohol                             | 0.055021137                          | 181.9923372 | 181.9923372                | 0.057       |                            |
| dimethylphenol, 2,4-                       | 0.002026013                          | 2.020624303 | 2.020624303                | 0.029       |                            |
| methylphenol, 2- (o-cresol)                | 0.00268544                           | 7.110609481 | 7.110609481                | 0.063       | 119.7783826                |
| methylphenol, 4- (p-cresol)                | 0.022127496                          | 77.18894009 | 77.18894009                | 0.67        | 119.7783826                |
| pentachlorophenol                          | 0.002559468                          | 5.325443787 | 0.698036623                | 0.36        | 0.044054054                |
| phenol (total)                             | 0.02388097                           | 78.35820896 | 78.35820896                | 0.42        | 54.62234043                |
| styrene (phenylethylene)                   | 33                                   |             |                            |             | 1.073357349                |
| Tributyltin                                | 2.12133E-06                          |             | 0.0074                     | 0.073       | 100                        |
| Trichlorophenol, 2,4,6-                    | 0.00082238                           |             | 0.558429298                |             | 0.096562025                |
|                                            |                                      |             |                            |             |                            |
| Aluminum                                   | 77000                                |             |                            | 7600        | 2.075259451                |
| Antimony                                   | 0.17507732                           | 3.865979381 | 3.865979381                | 3.1         | 0.018314908                |
| Arsenic (III)                              | 7                                    |             |                            |             |                            |
| Arsenic (V)                                | 10                                   | 7.3         | 0.005200252                | 0.00        | 0.000400040                |
| Arsenic (total) Barium                     | 0.000157807<br>4.9544                | 120         | 0.005388353<br>122.1478478 | 0.39<br>540 | 0.000186018<br>0.040770771 |
| Beryllium                                  | 9.855586963                          | 120         | 12.47090123                | 540         | 0.000193143                |
| Cadmium                                    | 0.0014672                            | 0.21        | 0.25                       | 3.7         | 0.000133143                |
| Chromium (VI)                              | 0.002221362                          | 0.58        | 0.115176043                | 0           | 5.17251E-06                |
| Chromium, total (or III)                   | 42                                   | 305.8823529 | 74                         | 1.6         | 235.1142396                |
| Cobalt                                     | 2.3                                  |             |                            |             | 0.000112023                |
| Copper                                     | 0.053488                             | 7.3         | 3.1                        | 310         | 38.4736428                 |
| Iron                                       | 0.086                                |             |                            | 2300        | 437.803284                 |
| Lead                                       | 5.4001548                            | 2.5         | 0.54                       | 40          | 0.002088668                |
| Manganese                                  | 0.014333333                          | 2000        | 100                        | 180         | 0.01019158                 |
| Mercury                                    | 0.000269883                          | 0.005161594 | 0.005161594                | 0.41        | 0.003656713                |
| Mercury (organic)                          | 0.0000018                            | 0.00045     | 0.000454821                |             | 1.133914621                |
| Molybdenum                                 | 2                                    | 0.0         | 0.0                        | 39          | 1274.233896                |
| Nickel<br>Selenium                         | 0.326433333<br>0.026433333           | 8.2<br>5    | 8.2<br>5                   | 140<br>3    | 0.004164538<br>6.502659574 |
| Silver                                     | 0.026433333                          | 1.532250723 | 1.532250723                | 6.1         | 2.26665925                 |
| Tin                                        | 50                                   | 1100ZE001Z0 | 1.002200120                | 0.1         | 411.9976409                |
| Thallium                                   | 0.033504733                          | 0.47        | 0.47                       | 0.52        | 11.96301008                |
| Vanadium                                   | 2                                    |             |                            | 7.8         | 0.047996231                |
| Zinc                                       | 2.028518377                          | 32.56745762 | 32.56745762                | 410         |                            |
|                                            |                                      |             |                            |             | -                          |
| LPAH                                       |                                      |             |                            | 5.2         |                            |
| HPAH                                       |                                      |             |                            | 12          |                            |
| Total Petroleum Hydrocarbons               | Site Specific                        | No Sheen    | No Sheen                   |             |                            |
| Gasoline                                   | 100                                  | 1000        | 1000                       |             | 300000                     |
| Gasoline (w/benzene)                       | 30                                   | 800         | 800                        |             |                            |
| Diesel<br>Heavy Oil                        | 200<br>2000                          | 500<br>500  | 500<br>500                 |             |                            |
| I IGAVY OII                                | 2000                                 | 300         | 300                        |             |                            |
| 2,3,7,8-TCDD (Dioxin)                      | 3.02026E-11                          | 2.06039E-10 | 2.06039E-10                | 0.000039    | 4.42682E-09                |
| -,-,-,0 . 000 (Dioxili)                    | 0.02020211                           |             |                            | 5.000000    |                            |
| Aldrin                                     | 5.6837E-07                           | 1.16061E-05 | 1.16061E-05                | 0.0095      | 3.35014E-05                |
| alpha-BHC                                  | 2.30483E-06                          | 0.001125041 | 0.001125041                | 5.5555      | 0.000116768                |
| beta-BHC                                   | 9.55141E-06                          | 0.003937642 | 0.003937642                |             | 0.000386734                |
| gamma-BHC                                  | 3.11347E-05                          | 0.019       | 0.063                      | 0.01        |                            |
| Chlordane                                  | 9.63356E-06                          | 0.000186709 | 0.000186709                | 0.0028      | 0.001431918                |
| 4,4'-DDT                                   | 3.42909E-05                          | 5.05602E-05 | 5.05602E-05                | 0.0012      | 0.001677047                |

| MEDIA - MTCA Standard                                                                                                                                                        | Soil Standard -<br>Do Not Protect Any<br>Potable Waters | GW MOST<br>STRINGENT<br>Non-Potable | SW MOST<br>STRINGENT<br>Non-Potable | SEDIMENT<br>MOST<br>STRINGENT** | AIR MOST<br>STRINGENT |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------|-----------------------|
| Note: Natural Background and PQL's<br>Have Not Been Incorporated Into These<br>Screening Levels Because They Are<br>Site Specific And Have Not Been<br>Determined By Ecology | Screening<br>Levels                                     | Screening<br>Levels                 | Screening<br>Levels                 | Screening<br>Levels**           | Screening<br>Levels   |
| UNITS                                                                                                                                                                        | mg/kg                                                   | μg/L                                | μg/L                                | mg/kg DW                        | ppbv                  |
| 4,4'-DDE                                                                                                                                                                     | 4.38314E-06                                             | 5.05602E-05                         | 5.05602E-05                         | 0.009                           |                       |
| 4,4'-DDD                                                                                                                                                                     | 3.30104E-06                                             | 7.16269E-05                         | 7.16269E-05                         | 0.016                           | 0.002673885           |
| Dieldrin                                                                                                                                                                     | 3.18555E-07                                             | 1.23315E-05                         | 1.23315E-05                         | 0.0019                          | 3.40198E-05           |
| alpha-Endosulfan                                                                                                                                                             | 0.000020242                                             | 0.056                               | 0.0087                              |                                 |                       |
| beta-Endosulfan                                                                                                                                                              | 0.000020242                                             | 0.056                               | 0.0087                              |                                 |                       |
| Endosulfan Sulfate                                                                                                                                                           | 0.000020242                                             | 0.056                               | 0.0087                              |                                 |                       |
| Endrin                                                                                                                                                                       | 2.21953E-05                                             | 0.002                               | 0.002                               |                                 |                       |
| Endrin Aldehyde                                                                                                                                                              | 2.21953E-05                                             | 0.002                               | 0.002                               |                                 |                       |
| Heptachlor                                                                                                                                                                   | 1.79431E-07                                             | 1.82819E-05                         | 1.82819E-05                         | 0.0015                          | 0.000124431           |
| Heptachlor Epoxide                                                                                                                                                           | 7.54762E-07                                             | 9.04051E-06                         | 9.04051E-06                         |                                 | 5.90345E-05           |
| Toxaphene                                                                                                                                                                    | 5.73333E-08                                             | 6.39423E-05                         | 6.39423E-05                         | 0.44                            | 0.000448841           |
|                                                                                                                                                                              |                                                         |                                     |                                     |                                 |                       |

v14

<sup>\*\*</sup> Sediment 'Most Stringent' values may include HH-direct contact and DMMP open-water disposal values that may not apply to every site. Therefore, the values in this column were not used when calculating the soil and water concentrations that are protective of sediments; only SQS/CSL values were used when calculating the soil and water concentrations that are protective of sediments within the respective worksheets. After comparing these values to SMS SQS/CSL values, additional calculations to be protective of these 'Most Stringent' values may be appropriate.

| MEDIA - MTCA Standard                                                                                                   | SOIL Method A SOIL Method B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOIL Method C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IL PATHWAY EVALUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |                                                          |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                         | Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., Sol., | Sol Terretrial   Method B Ecol.   Sol. Direct Contact   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H   Method C-H | Midd Sud Discor Course Sud Discor Course Sul Discor Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Method B- Soil to Meth | nii In Matheri C. Seil in Matheri C. Seil in Matheri C. Seil in Matheri C. Seil in Matheri C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Soil to Sedimon Soil to Sedimer                                                                          | t Soil to Sediment                               | Soil to Surface Soil to Surface Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Protection Water Pr | Soil to Surface Soil to Surface Water<br>Water Protection Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil to Surface<br>Water Protection                                   | nil In Surface Water Soil In Surface Water Soil to Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soil to Surface Soil to Surface Soil to Surface Soil to Surface Soil to Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notice Soil to Surface Water Soil to Surface Wat                                                                                                                         | ter Soil to Surface Water                                |
| PATHWAYS HH - Human Health Ecol- Ecological                                                                             | Martinick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WAC 173-340-<br>40(3)(b)(ii): WAC<br>173-340-7493 WAC 173-340-<br>7ab(e 749-3) 745(5)(b)(ii)(B)(II) 745(5)(b)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H, Method C-HH, Method C-HH, Method C-HH, Carcinogen, Non-carcinogen, WAC 173-340- WAC 173-340- WAC 173-340- WAC 173-340- WAC 173-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- WAC 175-340- | Soi to Martinod B.  Hi-fl Coundwasser Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Protection - MC, Pr | H. Groundwaler H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. Groundwaler H. H. H. Groundwaler H. H. H. Groundwaler H. H. H. Groundwaler H. H. H. Groundwaler H. H. H. H. H. H. H. H. H. H. H. H. H. | Protection Ecology Protection Ecology CSL WAC 173-340- WAC 173-340- 740(1)(f)                            | Protection Ecology<br>SQS<br>WAC 173-340-        | Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to Sufficient   Sect to   | Aquatic Life Aquatic Life SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS:RCW 90-48; SWQS | Aquatic Life<br>WQS: RCW 90-48; F<br>Dh. 173-201A-240<br>per MTCA     | Maior Protection   WAC 173   Water Protection   WAC 173   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WAC 173 - 340   WA | Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Surface   Soil to Su   | Nater                                                                                                                                                                    |                                                          |
| Ecol- Ecological                                                                                                        | 74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(9)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)(7)         74/2(7)         74/2(7)         74/2(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wildlife (Site-Specific TEE)   Ingestion Only CLARC Database EQ. 745-2   EQ. 745-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/   | Vadose Soil Saturated Soil Vadose Soil Saturated Soil Vadose Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FQ. 747-1/ 747-2<br>Vadose Soil Saturated Soil                                                           | 740(1)(d)<br>2 EQ. 747-1/747-2<br>Saturated Soil | \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) \(\text{VAC 173-340}\) | WAC 173-340-<br>730(2)(b)(i)(A) 730(2)(b)(i)(A)<br>Marine - Acute Marine - Chronic  <br>Saturated Soil Vadose Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WAC 173-340-<br>730(2)(b)(i)(A)<br>Marine - Chronic<br>Seturated Soil | EQ. 747-1/747-2<br>Vadose Soil 747-1/747-2<br>Saturated Soil EQ. 747-1/747-2<br>Vadose Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chronic   Freshwater Acute   Freshwater Acute   Freshwater Chronic   EQ. 747-1/147-2   EQ. 747-1/147-2   EQ. 747-1/147-2   EQ. 747-1/147-2   EQ. 747-1/147-2   EQ. 747-1/147-2   Vadose Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil   Saturated Soil      | 7-2   EQ. 747-1/747-2   EQ. 747-1/747-2   EQ. 747-1/747-2   Saturated Soil                                                                                               | Organisms EQ.<br>747-1/747-2 Vadose<br>Soil              |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| LINITS                                                                                                                  | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg mg/kg                                                                                              | mg/kg                                            | mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                 | mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg mg/kg                                                                                                                                                              | mg/kg                                                    |
| acenaphthene (CAS 83-29-9)<br>acenaphthylene (CAS 208-96-8)<br>anthracene                                               | 46900 200<br>200<br>0.003 0.000 15.19 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 210001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.4086308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 155.5813799 13.4603 1.17739349 1.362247471 1532.043361 227.553333 24.23556118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.330496418                                                                                              | 0.069091503                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.73310692 4.294476667<br>3419.632718 171.6993333                                                                                                                       |                                                          |
| benzene<br>benzo(g,h.i)perylene<br>benzo(a)anthracene                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.42465753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.102432 0.00512264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.539243837 0.031651667 0.061242693 0.003594725<br>6.422880003 0.3211544 1.560116593<br>1.024200004 0.0612264 5.402532267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.620046338 0.078008356<br>2.201031664 0.270181435                                                       | 5 0.031003321<br>5 0.110073918                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.016947663 0.000994767<br>0.0324368 0.001622169                                                                                                                         | 16480.15768<br>0.392877653<br>0.153648001                |
| benzo(a)byrene<br>benzo(b)fluoranthene<br>benzo(k)fluoranthene<br>bis(2-etry/hexyl) prithalate                          | 0.1 30 2 300 0.14 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 18 12 180 12 1800 275 70000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.342465753 - 3.42465753 - 34.2465753 - 178.5714286 13333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18888 0.00944504<br>0.192792001 0.00964064<br>0.18888 0.00944504<br>20.70000012 1.035541667 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0524366 0.001622169<br>0.059812 0.002990929<br>0.0610508 0.003052869<br>0.059812 0.002990929<br>3.974400023 0.198824<br>286.770134 14.4685<br>0.001662011 7.771205E-05 | 0.283320001<br>0.289188001<br>0.283320001<br>7.286400042 |
| butyl benzyl phthalate<br>carbon tetrachloride                                                                          | \$26 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69100 700001<br>1880 14000<br>70000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178.57 133333 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 611.7762859 30.86613333 11<br>0.231236267 0.010729813 0.004516333 0.000209567 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 338.260625 67.51966667 1.30735747<br>.505829333 0.023471467 0.045163333 0.002095667<br>.353172373 0.194133333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100094556 0.065960114                                                                                  | 0.005050071                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 286.770134 14.4685<br>0.001662011 7.71205E-05<br>1.245464024 0.072106667                                                                                                 | 363.2421697<br>0.011561813<br>15.32878799                |
| chibrobenzene<br>chibroethane (ethyl chioride)<br>chibroform (trichibromethane)<br>chibromethane (methyl chibride)      | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.868174182 0.056298667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.028277673                                                                                                                                                              | 2.331667802                                              |
| chrysene<br>dibenz[a,h]anthracene<br>dibenzofuran<br>di-butyl phthalate (di-n-butyl phth.)                              | 140 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 18000<br>12 17.98<br>3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 342,4657534 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.956712004 0.00283664 0.<br>0.629328 0.03146744 8.<br>3.67704162 0.185226667 8.<br>53.12020532 2.794666667 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.293280001 0.3146744 0.660050382<br>1.043528544 0.405183333 1.180620386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.201864606 0.460558757<br>0.240018321 0.033003611<br>0.305332858 0.059471386<br>5.002762027 2.033789954 | 0.012001313<br>0.015380531                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1992872 0.009964689                                                                                                                                                    | 0.943992                                                 |
| dichlorobenzene, 1,2-<br>dichlorobenzene, 1.3-                                                                          | 7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35000i<br>31500i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.267034562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.067582619 0.003788337<br>0.091978571 0.0149447                                                         | 0.003788337                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.40025665 3.49333333<br>5.459212073 0.306502<br>1.28 0.091733333<br>0.8096508 0.045402                                                                                 | 16.89756118<br>3.84<br>2.441804                          |
| dichloroethane, 1,1-<br>dichloroethane, 1,1-<br>dichloroethane, 1,2-<br>dichloroethylene, 1,1-                          | 11 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 700001<br>1442<br>180001<br>280000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.079396996         0.257365333         8.           0.793513525         0.052873067         0.002380541         0.000158619         1.           0.471688949         0.02316288         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .923680929 0.562986667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001884595 0.000125574<br>2.161907685 0.1061632<br>110.9087367 7.018733333<br>1080 77.4                                                                                 | 0.183500003<br>46.5137714                                |
| diethyl phthalate<br>dimethyl phthalate<br>di-n-octyl phthalate                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + + + :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.631429797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.156532046 0.36026455<br>1.631429797 0.093952381<br>1.161183736 4.506581633                             | 0.093952381                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.9087367 7.018733333<br>1080 77.4                                                                                                                                     | 287.0579067<br>4400                                      |
| ethylbenzene<br>fluoranthene<br>fluorene                                                                                | 6 6 8 8000 · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 350001<br>140001<br>140001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26667 ° 26667 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.93174041 0.643573333 22<br>909.440402 45.52746667 11<br>147.076365 7.409066667 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.10068216     1.407816667       1989.400879     199.59133333       24.06771324       21.7295485     16.20733333       16.08019552       2.08197333     0.00205667       0.08197333     0.002005667       0.048876479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.209028432 1.204851904<br>0.468157591 0.08100413<br>0.008065331 0.002495065                             | 0.160646921                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.904778025 0.426367333<br>184.7300817 9.247766667<br>252.7875024 12.73433333<br>2.0082E-05 1,02667E-06<br>0.042633732 0,000563273<br>0.2033912 0,010169888              | 31.32081859<br>198.9400879<br>1217.976148                |
| hexachlorobutadiene<br>indeno(1,2,3-cd pyrene<br>MEK (Methyl Ethyl Ketone;2-Butanone)                                   | 31 31 80 · · · 1.4 800 · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 180 210000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.775158765 0.010241333 0.642288 0.03211544 19.2 1.376 0.028229158 0.001809671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.096997787 0.007988062                                                                                  | 0.005024748                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| methylene chloride (dichloromethane)<br>methylnaphthalene, 2-<br>MIBK (M-Isobutyl-K;4-M,2-Pentanone)                    | 1.4 48000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.403786411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.833498182 0.072778309                                                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.022273435 0.001427871                                                                                                                                                  | 2.856810188                                              |
| naphthalene<br>nitrosodiphenylamine, N-<br>pcb mixtures<br>pcb - Aroctor 1016                                           | 5 5 1600 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 280000<br>70000<br>26786<br>0.65 65.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.039618668 0.001984693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.197154348 0.196485507<br>0.227829375 0.011561091<br>0.241078929 0.065415923<br>0.241783616 0.065687577 | 7 0.114423913<br>I 0.011561091<br>B 0.012076786  | 1.800848533 0.090213333 0.01260594 0.000631493 9.004242667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.451066667 0.027012728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0013532                                                             | 0.027012728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0013532 0.01260594 0.0006314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41936428 0.0212542<br>93 5.76272E-05 2.88683E-06                                                                                                                       | 0.76248051<br>5.76272E-05                                |
| pcb - Aroclor 1221<br>pcb - Aroclor 1232                                                                                | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.611759881 0.030684267 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.33822474 0.067121833 1.309661255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.241783616 0.065687577                                                                                  | 0.012126937                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| pcb - Araclor 1242<br>pcb - Araclor 1248<br>pcb - Araclor 1254<br>pcb - Araclor 1260                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.485382421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .061774045 0.053148667 1.303463228 1.301264831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.241101048                                                                                              | 0.01207836<br>3 0.012045503<br>5 0.012016618     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| phenanthrene<br>pyrene                                                                                                  | 2490 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105001<br>35000<br>4530 35000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 668.256405 33.4544 1.<br>0.848554667 0.044133333 0.008172744 0.000535094 0.<br>44.65615697 2.446208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.692387538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.019247404 0.486615385<br>20.05765092 1.405782901                                                       | 0.101378205<br>1 1.004130644                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1155.5267 57.84823333<br>0.005099716 0.000271492                                                                                                                         | 5568.803375<br>0.024389947                               |
| tetrachloroethylene (perchloroethylene)<br>trichlorobenzene, 1,2,4-<br>trichlorethane, 1,1,1-<br>trichlorethane, 1,1,2- | 2400 · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 682.59609 33.5454 (682.59609 33.5454 (682.59609 33.5454 (682.59609 33.5454 (682.59609 33.5454 (682.59609 33.5454 (682.59609 33.5454 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33.5654 (682.59609 33. | 3847172333 0.062014167 0.081727441 0.005350937 0.046319164<br>17.83745558 5.297845333 0.378869391 0.024805667 0.041567385 0.002721536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020843624                                                                                              | 3 0.001133398                                    | 7.13.74.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.189434467 0.012402833<br>0.003193328 0.000209076                                                                                                                       | 0.378868933                                              |
| trichloroethylene<br>trimethylbenzene, 1,3,5-<br>toluene<br>vinyl chloride (chloroethylene)                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1050<br>35000<br>87.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01586752 0.0009136 0.003239619 0.000186527 0.<br>1.494541973 0.079173333 3.<br>15.5630186 0.887466667 11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .035940773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.015130861 0.000885917<br>12.64542651 0.721066667<br>0.000161144 7.76017E-06                                                                                            | 145 9097675                                              |
| xylene (dimethylbenzene)<br>benzoic acid<br>benzyl alcohol                                                              | 9 9 9 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.621710689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.621710689 0.675472165<br>0.784973702 0.070465666                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| dimethylphenol, 2,4-<br>methylphenol, 2- (o-cresol)<br>methylphenol, 4- (p-cresol)                                      | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35000<br>70000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.037082633<br>0.18514863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.037082633 0.002029246<br>0.091443043 0.005188375<br>0.978761233 0.055627496<br>0.381301784 0.037426036 | 0.002029246<br>0.005188375                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.961625688 0.381013333                                                                                                                                                  | 15.57205746                                              |
| pentacrioropinenoi<br>phenol (total)<br>styrene (phenylethylene)                                                        | 24000 ° ° 70 30<br>16000 ° ° 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5 328 17500<br>105000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.728000139 0.293333333 0.0156804 0.000803 1<br>10.47014422 0.73144 22<br>23.2815508 1.287146667 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.5300003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.381301784 0.037426036<br>0.733434683 0.124179104                                                       | 0.019526627<br>0.043462687                       | 0.930800023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.047666667 0.565640014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.028966667                                                           | 0.930800023 0.047666667 0.565640014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.028966667 1.360400033 0.069666667 1.074000026 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019332 0.00099<br>43.62560094 3.047666667                                                                                                                              | 0.214800005<br>3751.80168                                |
| Tributyltin (oxide) Trichlorophenol, 2,4,6-                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1050<br>3500<br>350000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.221761475 0.011781333 0.110880737 0.005890667 0.<br>64 4.58666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.485103226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 0.0001204 0.0000296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.12133E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 0.038808258 0.002061733                                                                                                                                                | 0.066528442                                              |
| Antimony<br>Arsenic (III)<br>Arsenic (V)                                                                                | 20 20 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0624 0.253605333                                                                                                                                                       |                                                          |
| Arsenic (total)<br>Barium<br>Beryllum                                                                                   | 15   260   27   280   - 10   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | 87.5 1050<br>102 70000<br>700 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.33 400 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.8032 0.140576 0.0340472 0.001707413<br>461.44 23.12053333 505.728 25.28917333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5768 289.0066667<br>1106.28 55.32006667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                  | 210.24 10.5432 110.96 5.564466667 40.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.02078 21.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.05432                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010512 0.00052716<br>824 41.28666667                                                                                                                                   | 0.08176                                                  |
| Chromium (VI) Chromium, total (or III)                                                                                  | z         25         z         36         "         4         20           19         240         "         "         42         20           2000         42         2000         135         120000         "         "         42         42         42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 10500<br>67 525000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.208 0.111780607<br>18.432 0.92576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.83 0.244533333 33.67271<br>40.32 2.0251 5401.270588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.63146582 1.683926523<br>5201.223529 270.0910588                                                       | 3 1.281794816                                    | 5.76 0.2893 3.84 0.192866667 422.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.29344 1.2834<br>21.21533333 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.964333333                                                           | 5.52 0.279466667 1.2144<br>422.4 21.21533333 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11402.28 570.1634 1480.296 74.021213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                          |
| Copper<br>Iron<br>Lead                                                                                                  | 100 550 3200 · · · 100 50 250 500 · · · 50 500 500 500 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 217 14000<br>245000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49333 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 621.6 31.20133333 780.4933153<br>98 7.023333333 1334.514188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 780.4933153 39.03535426<br>1133.078085 66.72686322                                                       | 39.03535426<br>2 56.6548838A                     | 5.0616 0.254068 2.1312<br>500.01 25.00071667 42000.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.106976 1.3764<br>2100.0602 1620.0324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.069088667<br>81.002322                                              | 2.1312 0.106976 1.3764<br>42000.84 2100.0602 1620.0324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.069088667 5.772 0.289726667 3.996 0.20058<br>4 0.2866666<br>81.002322 13000.26 650.0186333 500.01 25.000716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 1.2 0.086<br>57                                                                                                                                                       |                                                          |
| Manganese<br>Mercury<br>Mercury (organic)                                                                               | 250 220 1000 230 150000 · · · 50 500<br>2 10 2,5500 · · · 150 500<br>2 9 2 9 · · · 150 60<br>2 0,7 0,7 0,7 · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1500<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6389.6 319.9046667 0.591436697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.410998383 0.029572176                                                                                  | 0.020550156                                      | 2.1924 0.109802 0.012528 0.00062744 1.8792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.049149467 1.4616 0.073201333 0.80388 0.0402607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                      | 0.4                                                      |
| Molybdenum<br>Nickel<br>Selenium                                                                                        | 71 2 2 30 200 1650 - 30 200 0.8 0.8 400 - 1 1 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 980 70000<br>0.3 17500<br>17500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26667 * 6667 * 6667 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 417.28 20.89173333<br>8.32 0.422933333<br>13.6 0.686933333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7 0.050166667<br>912.8 45.70066667<br>18.2 0.25166667<br>29.75 1.50266667 12.206129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.206129 0.610439245                                                                                    | 0.640420245                                      | 2.08 0.105733333 0.52 0.026433333 30.16<br>0.322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.831213333 10.6928<br>1.533133333 7.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.535350667<br>0.375353333                                            | 96.496 4.831213333 10.6928<br>30.16 1.533133333 7.384<br>0.323 0.016314667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.535350667 612.88 30.68473333 67.808 3.3949066<br>0.375353333 0.544 0.027477333 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57 795.44 39.82486667<br>33 17.68 0.898733333                                                                                                                            | 5998.4<br>436.8                                          |
| Tin<br>Thallum                                                                                                          | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.206129 0.610439245                                                                                    | 0.610439245                                      | 0.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34176 0.0171088                                                                                                                                                        |                                                          |
| Zinc                                                                                                                    | 26 5.6 · · · 2<br>270 570 24600 · · · 86 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 245<br>360 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.40448 1.120321067<br>5971.2 298.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.0098 2.450702333 13062 654.01 764.6707895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 326.5781497 38.24014829                                                                                  | 16.33173                                         | 129.376 6.477813333 111.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6058 100.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.04522                                                               | 111.96 5.6058 100.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.04522 149.28 7.4744 149.28 7.4744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9205.6 460.9213333                                                                                                                                                       | 32344                                                    |
| HPAH<br>Total Petroleum Hydrocarbons<br>Gasoline                                                                        | 100 200 100 12000 ' ' 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| Gasoline (wbenzene)<br>Diesel<br>Heavy Oil                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| 2,3,7,8-TCDD (Dioxin)                                                                                                   | 0.00005 0.000011 · · · 0.000002 0.000002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0015<br>0.1 7.720588235 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6994E-06 8.50203E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6994E-05 8.50203E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                  | 2.444280203 0.122429167 0.001857653 9.30462E-05 0.694175578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.034769883 0.004957653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.30462E-05                                                           | 1271025706 0.063553167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.933136244 0.146915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.465E-08 7.32933E-10<br>4.79079E-05 2.39961E-06                                                                                                                         | 4 99956E-05                                              |
| alpha-BHC (Benzene HexaChloride)<br>beta-BHC<br>gamma-BHC (Lindane)                                                     | 10 0.158730159 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 20.83333333<br>6 72.91666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2346509 0.0117532 0.00251617 0.00012603 0.<br>0.00054501 2.84537E-05 0.00227403 0.000117914 0.0148996776 0.0078656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.005450105 0.000284537<br>0.022740303 0.001179144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000102026 5.32653E-06<br>0.000425699 2.20736E-05                                                                                                                       | 0.00019228                                               |
| 4,4'-DDT                                                                                                                | 1 2.857142857 40 1 1 2.85174287 40 1 1 1 2.85174287 40 1 1 1 2.85174271 40 1 1 1 2.85174271 1 1 1 2.85174271 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 1050<br>2.7 375 1750<br>0.75 386.0294118 1750<br>0.75 386.0294118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.148996776         0.0078656         0.           8.241627595         0.412773333         0.257550862         0.012899167         11           108.5014446         5.425765333         3.490395734         0.174542083         23           0.445761413         0.022310355         3.490396734         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.3469101 11.86886167 34.90395737 1.745420833 4.457614135 0.223103554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                  | 2.472488278         0.123832         0.004429875         0.000221866         0.09271831           14.91894863         0.746042733         0.013562681         0.000678221         1.763148475           1.905311642         0.095360833         0.001732101         8.66917E-05         0.225173194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0046437 0.004120814<br>0.088168687 0.013562681<br>0.011269917 0.001732101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000206387<br>0.000678221<br>8.66917E-05                             | 0.09271831 0.0046437 0.004120814<br>1.763148475 0.088168687 0.013562681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0020488945         0.001556733           0.000205387         2.472489278         0.123832         0.004429875         0.0002218           0.000678221         14.91894863         0.746042733         0.013562681         0.0006782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000824163 4.12773E-05<br>0.00298379 0.000149209<br>0.000381062 1.90722E-05                                                                                             | 0.000834465<br>0.00298379<br>0.000381062                 |
| 4,4:DDD  Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endoin                                            | 1 4.1667 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75 546.875<br>0.07 8.203125 175<br>21000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.33541677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.354167703 0.168024306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                  | 1.012000313 0.050695333 0.00092 4.6086/E-05 0.119600037<br>1.287302682 0.064581667 0.00097835 4.90821E-05 0.365593962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005991267 0.00092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.60867E-05<br>4.90821F-05                                            | 0.365593962 0.018341193 0.00097835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002852 1.42869E-05<br>29 2.67759E-05 1.3433E-06                                                                                                                       | 0.0002852<br>2.78057F+05                                 |
| beta-Endosulfan<br>Endosulfan Sulfate<br>Endrin<br>Endrin Aldehyde                                                      | 460 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21000<br>21000<br>21000<br>21000<br>0.2 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.300876378 0.22336 9.<br>4.300876378 0.22336 9.<br>1.057058563 0.0532688 2.<br>1.057058563 0.0532688 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |
| Heptachlor Epoxide Toxaphene                                                                                            | 0.6 0.2222222 49 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2<br>0.4 29.1666667 1750<br>0.4 14.42307692 45.5<br>119.3181818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.057058563 0.0532688 2.<br>1.55709984 0.078517333 0.003784618 0.000190841 3.<br>0.17347207 0.008582613 0.008019234 0.000401378 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4061559 0.171756667 0.037846177 0.001908407<br>.379470154 0.018993217 0.08019234 0.004013782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                  | 0.10121149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000520177 0.000700695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.53328E-05                                                           | 0.010315786         0.000520177         0.00070695           0.088404036         0.004424793         0.006004802           0.0084         0.000602         0.000008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.552466-05 U.01993996 U.00094399 U.007327399 U.0003995 U.552466-05 U.01993996 U.00094399 U.007327399 U.0003995 U.0033286-05 U.01921149 U.00503052 U.0032052 3.72957E-0.000300552 0.867360352 0.043413067 0.06033340 0.00031755 U.003336-08 0.00292 U.000209267 U.0000008 5.73333E-08 U.00292 U.000209267 U.0000008 5.73333E-08 U.00292 U.000209267 U.0000008 U.0033365 U.0034750 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035650 U.0035 | 1.53764E-05 7.75359E-07<br>49 6.5052E-05 3.25598E-06<br>18 0.00000112 8.02667E-08                                                                                        | 1.53764E-05<br>6.5052E-05<br>0.00000112                  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                |                                                                       |                                                                          |                                                                                                                                                                        |                                                                                                      | SOIL POTENTI    | IAL ARAR's           |                                                      |                                                                                                    |                                                                    | AA                                                | valye Applica                                  | ble                                     | EPA<br>MÉTHOD                                                         | SOIL MOST<br>STRINGENT                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bol to Surface Water Protection WAC 179 Scal to Surface Valver SAS-NAC (1986 Protection Again: Protection Again: Protection Again Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communicatio | r Soil to Surface Water<br>Protection Aquatic<br>Life Fresh/Ortonic,<br>6 NTR - 40 CFR 191.36<br>Vadose Soil | Protection Aquatic                        | Soil to Surface Water<br>Protection Aquatic<br>Life Marina/Acte,<br>NTR - 40 CFR 131.36<br>Vadose Soil | Soil to Surface Water<br>Protection Aquatic<br>Life Marine/Acute,<br>NTR - 40 CFR 131.31<br>Saturated Soil | Soil to Surface Water Protection Aquatic Life Marinal Chemic, NTR - 40 CFR 131.36 Various Soil | Soil to Surface Water<br>Protection<br>Aquatic Life<br>Marine/Chronic,<br>NTR - 40 CFR 131.36<br>Saturated Soil | Soil to Surface Water<br>Protection HH-Freal<br>Water Water &<br>Organism<br>Consumption NTR<br>40 CFR 131.36<br>(WAC 173-201A-<br>040(5)) HH-<br>10* Carc Risk<br>Vadose Soil | Organism Consumption NTR                           | <ul> <li>Consumption Only<br/>NTR - 40 CFR 131.3<br/>(WAC 173-201A-<br/>040(5)) Hi</li> </ul> | 6 NTR - 40 CFR 131.36<br>(WAC 173-201A-   | Soil Protective of S<br>Vapor, Direct<br>Contact, WAC<br>173-340<br>740(3)(b)(iii)C | Soil Protective of Vapor, Indoor(Ambient Exposure WAC 173-340-740(3)(c)(iv)(B) | RCLA EPA<br>ional Screening<br>rel (RSL; May,<br>2010)<br>Residential | CERCLA EPA<br>Regional Screening<br>Level (RSL; May,<br>2010) Industrial | CERCLA - National Oli<br>8 Hazardous<br>Substances Pollution<br>Cortingency Plan<br>(NCP) - 40 CFR 300<br>Preliminary<br>Remediatori / Cisarup<br>Goals (PRG's) (2007) | Soil Protection of<br>Surface Water<br>HH – Organoleptic<br>Effects<br>CWA 5304 NRWQC<br>Vadose Soil | Organoleptic    | Exposure Industr     | PA OEHHA<br>ect Exposure<br>rial Screening<br>Levels | Soil - Toxics Substances Substances Correct Act (19CA) 40 CFR 751.51 Saturated Soil Saturated Soil | PA LDI<br>Plant 2 TMCL's<br>Proundwater Protection<br>(Risk Based) | Natural<br>Background<br>Levek<br>Ch. 173-340 WAI | Applicable<br>DL (MDL)<br>Ch. 173-340<br>C WAC | Applicable<br>PQL<br>Ch. 173-340<br>WAC | Analytical Method                                                     | Screening Level (Includes to Protect Potable GW & SW)    | (Groundwater Standards are Highlighted When Most Applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                        | mg/kg                                     | mg/kg                                                                                                  | mg/kg                                                                                                      | mg/kg                                                                                          | mg/kg                                                                                                           | mg/kg                                                                                                                                                                          | mg/kg                                              | mg/kg                                                                                         | mg/kg                                     | mg/kg                                                                               | mg/kg                                                                          | mg/kg                                                                 | mg/kg                                                                    | mg/kg                                                                                                                                                                  | mg/kg                                                                                                | mg/kg           | mg/kg n              | ng/kg                                                | mg/kg mg/kg                                                                                        | mg/kg                                                              | mg/kg                                             | mg/kg                                          | mg/kg                                   | METHOD                                                                | mg/kg                                                    | Regulatory Framework For Most Stringent Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.34557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 3400                                                                  | 630000<br>33000                                                          |                                                                                                                                                                        | 2.529346475                                                                                          | 0.128193333     |                      |                                                      | 4.5<br>22                                                                                          | 445.50396<br>12.06543591<br>66                                     |                                                   | 0.00203<br>0.0005<br>0.0003                    |                                         | 8260B-Low Soi<br>8270D-SIM<br>8270D-SIM                               | 0.016749455<br>0.069091503                               | Protect Groundwater   Method B+HH   WAC (173-340-740())(b)(ii)(A) EQ. (274-1/147-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 827.466667<br>0.0230605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 3955.237842<br>0.00924418                                                                                                                                                      | 198.592<br>0.0005426                               | 45320.43361<br>0.546947321                                                                    | 2275.533333<br>0.032103833                |                                                                                     |                                                                                | 1.1                                                                   | 170000<br>5.4                                                            |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 360<br>0.00021                                                                                     | 66.2409256<br>0.0146224                                            |                                                   | 0.0023<br>0.00022<br>0.0013                    | 0.001                                   | 8270D-SIM<br>8260B-Low Soi<br>8270D-SIM                               | 0.223091503<br>II 0.00021<br>0.031003321                 | Potest Gediment SDS: WAC 173-367-2011(d) EQ. 747-1/747 2 Saturated Soil  EAR SECTION OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONT |
| 0.00768396<br>0.01416756<br>0.01446096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.044072<br>0.0449848                                                                                                                                                          | 0.001195283<br>0.002203843<br>0.002249483          | 0.487940001<br>0.498046001                                                                    | 0.024399687<br>0.024904987                |                                                                                     |                                                                                | 0.015                                                                 | 2.1<br>0.21<br>2.1                                                       |                                                                                                                                                                        |                                                                                                      |                 | 0.038                | 0.13                                                 | 0.01<br>0.0035<br>0.035                                                                            |                                                                    |                                                   | 0.002<br>0.0003<br>0.003                       |                                         | 8270D-SIM<br>8270D-SIM<br>8270D-SIM                                   | 0.00039655<br>7.72944E-05<br>0.000630756                 | Protect Groundwater to Surface Water -Tribal HH - EPA Plant 2 TMCL (MTCA EO 747-1)  Protect Groundwater to Surface Water -Tribal HH - EPA Plant 2 TMCL MTCA EO 747-1)  Protect Groundwater to Surface Water -Tribal HH - EPA Plant 2 TMCL MTCA EO 747-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.01416756<br>0.364510667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.044072<br>5.961600034                                                                                                                                                        | 0.002203843<br>0.298236                            | 0.487940001<br>19.54080011                                                                    | 0.024399687<br>0.977551333                |                                                                                     |                                                                                | 1.5                                                                   | 21<br>120                                                                |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 1.1                                                                                                | 0.000647389<br>2.875200009<br>0.060311037                          |                                                   | 0.02<br>0.004<br>0.004                         | 0.02                                    | 8270D-SIM<br>8270D-SIM<br>8270D-SIM                                   | 0.000647389<br>0.047081657<br>0.005050071                | Protect Gorundwater to Surface Water Titheal 1941 - EPA Plant 2 TMC, MITCA EQ 747-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18.32676667<br>0.000536491<br>0.887466667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 6.514734897<br>0.002157324                                                                                                                                                     | 8.38267E-05<br>0.377173333<br>0.000127267          | 201.1903424<br>0.178900071                                                                    | 11.648<br>0.010553827                     |                                                                                     |                                                                                | 0.61<br>290<br>15000                                                  | 910<br>3<br>1400<br>610000                                               |                                                                                                                                                                        | 0.19160985                                                                                           | 0.011093333     |                      |                                                      | 0.062<br>5.9                                                                                       | 0.060311037<br>0.001717233<br>2.414196<br>106.25972                |                                                   | 0.00054<br>0.00047                             | 0.001                                   | 8270D-SIM<br>8260B-Low Soi<br>8260B-Low Soi<br>8260B-Low Soi          | 7.71205E-05<br>I 0.011093333<br>I 0.000127267            | Protect Surface Water: HH - Organoleptic Effects: CWA §304 NRWOC Saturated Soil  Protect Surface Water: HH - Fresh Water Water & Organism Consumption NTR: 40 CFR 131.36: (WAC 173-201A-040ISI) HH - 10-6 Carc Risk Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.151202133<br>0.00425496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.028277673                                                                                                                                                                    | 0.001833728                                        | 2.331667802                                                                                   | 0.151202133                               |                                                                                     |                                                                                | 0.29<br>120<br>15                                                     | 1.5<br>500<br>210                                                        |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.000053<br>0.049<br>1.1                                                                           | 0.02105452<br>9.29059E-01<br>0.004042807                           |                                                   |                                                |                                         | 8260B-Low Soi<br>8260B-Low Soi<br>8270D-SIM                           | 0.000053<br>0.0049<br>0.000661883                        | EPA RSL - Groundwater Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.04720116<br>7.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.1468432                                                                                                                                                                      | 0.007342403                                        | 1.625764                                                                                      | 0.081290887                               |                                                                                     |                                                                                | 78                                                                    | 0.21<br>1000<br>62000                                                    |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.011<br>0.68<br>9.2                                                                               | 0.001036527<br>15<br>1.646068814                                   |                                                   | 0.0004                                         | 0.02                                    | 8270D-SIM<br>8270D-SIM<br>8270D-SIM<br>8260B-Low Soi                  | 0.001036527<br>0.015380531<br>0.263196347                | Points Candine Water, HH. Fresh Water Water & Organism Consumption WHF. 40 CFR 3.11 M. WASC UT3-2014-040501 HH - 10-6 Case Bios. Seasurated Soft Transic Classroothers to Softence Water Final HH. EPA Plant (MTCA, EQ 27 CH).  Protect Classroothers to Softence Water Final HH. EPA Plant (MTCA, EQ 27 CH).  Protect Classroothers Soft (MTCA) (MTCA, EQ 27 CH) (MTCA, EQ 27 CH).  Protect Classroothers (SG) WAG (TT3-36-97-0401)(B) EQ 247-1/1747 Statutated Soft (MTCA, EQ 27 CH).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.948696667<br>0.2752<br>0.136926667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 35.09493476<br>1.6<br>5.14064                                                                                                                                                  | 4.716<br>1.97037<br>0.114666667<br>0.288266667     | 220.9681077<br>10.4<br>33.41416                                                               | 12.40603333<br>0.745333333<br>1.873733333 |                                                                                     |                                                                                | 1900                                                                  | 9800<br>12<br>17                                                         |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.36                                                                                               | 5.188931733                                                        |                                                   | 0.00055                                        | 0.001                                   | 8260B-Low Soi<br>8260B-Low Soi<br>8260B-Low Soi<br>8260B-Low Soi      | 0.003788337<br>0.091733333<br>0.00041<br>0.00069         | Protect Sunace Water PH-Consumption: Water & Organisms NRWQC (WAC 173-340-740(1)(d)) EQ. 747-17747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.012226897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.004884505                                                                                                                                                                    | 0.0004.05574                                       | 0.400005404                                                                                   | 0.03374534                                |                                                                                     |                                                                                | 3.3<br>0.43<br>240                                                    | 17<br>2.2<br>1100<br>490000                                              |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.00041<br>0.00069<br>0.00042<br>0.12                                                              | 0.166786484<br>0.017271767<br>14.92945333                          |                                                   |                                                |                                         |                                                                       | 0.000042                                                 | FPA RSI - Groundwater Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.284117333<br>18.16613333<br>315.3333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                | 1.83373E-05<br>9.495933333<br>89.72666667          |                                                                                               |                                           |                                                                                     |                                                                                | 49000                                                                 | 490000                                                                   |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.12<br>12                                                                                         | 112.2612678                                                        |                                                   | 0.008<br>0.005<br>0.003                        | 0.02<br>0.02<br>0.02                    | 8260B-Low Soi<br>8270D-SIM<br>8270D-SIM<br>8270D-SIM<br>8260B-Low Soi | 0.199783069<br>0.093952381<br>0.05808483                 | Protect Sediment SQS WAC 173-340-740(1)(d) EQ. 747-1/747-2 Saturated Soil  Protect Sediment SQS WAC 173-340-740(1)(d) EQ. 747-1/747-2 Saturated Soil  Protect Sediment SQS WAC 173-340-740(1)(d) EQ. 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.68938<br>9.959133333<br>61.35633333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 46.23549411<br>426.3001884<br>298.7488665                                                                                                                                      | 2.493846667<br>21.341<br>15.04966667<br>0.00000275 | 432.52559<br>525.7702324<br>3217.295485                                                       | 23.32953333<br>26.32056667<br>162.0733333 |                                                                                     |                                                                                | 5.4<br>2300<br>2300                                                   | 27<br>22000<br>22000<br>1.1                                              |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.0017<br>160<br>27<br>0.00053                                                                     | 5.4<br>12.24301258<br>8.42420358                                   |                                                   | 0.00009<br>0.0003<br>0.0005                    | 0.001                                   | 8260B-Low Soi<br>8270D-SIM<br>8270D-SIM<br>8270D-SIM                  | 0.0017<br>0.160646921<br>0.023583481                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.06333E-06<br>0.023043<br>0.04817316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.042633732                                                                                                                                                                    | 0.00000275<br>0.000563273<br>0.007493603           | 4.844742281                                                                                   | 0.064008333                               |                                                                                     |                                                                                | 0.3<br>6.2<br>0.15                                                    | 1.1<br>22<br>2.1                                                         |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.00053<br>0.0017<br>0.12                                                                          |                                                                    |                                                   | 0.004                                          | 0.02                                    | 8270D-SIM<br>8270D-SIM                                                | 0.000563273                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.183139933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                | 0.001458911                                        |                                                                                               |                                           |                                                                                     |                                                                                | 28000                                                                 | 200000<br>53<br>4100                                                     |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 1.5<br>0.0012                                                                                      |                                                                    |                                                   | 0.005<br>0.00051<br>0.0007                     | 0.01<br>0.0035<br>0.01                  | 8260<br>8260B-Low Soil<br>8270D-SIM                                   | 1.376                                                    | Protect Groundwater Method B-HH WAC 173-340-740(3)(b)(iii)(A) EQ. 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.038644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.635400425                                                                                                                                                                    | 0.032203333                                        | 2.033281359                                                                                   | 0.103050667                               |                                                                                     |                                                                                |                                                                       |                                                                          |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.45<br>0.00047<br>0.075                                                                           | 3.912406992<br>0.090354028                                         |                                                   | 0.005                                          | 0.01                                    | 8260                                                                  | 0.183466667<br>II 0.00047<br>0.011528793                 | Protect Groundwater Method B-HH WAC 173-340-740(3)(b)(iii)(A) EQ. 747-1/747-2 Saturated Soil EPA RSL - Groundwater Protection Protect Groundwater Method C+HH WAC 173-340-740(3)(b)(iii)(A) EQ. 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.038644<br>2.88683E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.007646999<br>0.002949131                                                                                   |                                           |                                                                                                        |                                                                                                            | 0.016386425<br>0.006319565                                                                     |                                                                                                                 |                                                                                                                                                                                | 0.032203333<br>7.66813E-06                         | 0.000153072                                                                                   | 7.66813E-06                               |                                                                                     |                                                                                | 0.22<br>3.9<br>0.14                                                   | 18<br>350<br>0.74<br>21<br>0.54                                          |                                                                                                                                                                        |                                                                                                      |                 | 0.089                | 0.3                                                  | 0.092                                                                                              | 6.14091E-05                                                        |                                                   | 0.00202                                        | 0.1                                     | 8270D-SIM<br>8082/1668A<br>8082<br>8082                               | 2.88683E-06<br>6.14091E-05<br>3.97083E-06                | 19A 193. Lifection (1997) 194. 195. Lifection (1997) 195. Statement Soil  Detect Convolution (1997) 195. Statement Soil  EARL Convolution (1997) 195. Statement Soil  EARL Convolution (1997) 195. Statement Soil  EARL Convolution (1997) 195. Statement Soil  EARL Convolution (1997) 195. Statement Soil  EARL CONVOLUTION (1997) 195. Statement Soil  Final Social Social Social (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convolution (1997) 195. Statement Soil  Pointed Convo |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002949131<br>0.002949131<br>0.000181685<br>0.012348437                                                     | 1.02881E-05                               |                                                                                                        |                                                                                                            | 0.000389324                                                                                    | 0.0003185<br>0.0003185<br>0.000022046<br>0.0013256                                                              |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 0.22                                                                  | 0.54<br>0.54<br>0.74<br>0.74                                             |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      |                                                                                                    | 3.97083E-06<br>3.61618E-05<br>0.22                                 |                                                   | 0.033<br>0.033<br>0.033                        | 0.1<br>0.1                              | 8082<br>8082<br>8082<br>8082                                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.021235481<br>0.058016334                                                                                   |                                           |                                                                                                        |                                                                                                            |                                                                                                | 0.0022778<br>0.0062186                                                                                          |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 0.22                                                                  | 0.74<br>0.74                                                             |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.0088<br>0.024                                                                                    | 1.43548E-05<br>0.000161595                                         |                                                   | 0.00209                                        | 0.1                                     | 8082<br>8082<br>8270                                                  | 1.43548E-05<br>0.000161595<br>0.101378205                | Protect Groundwater to Surface Water - Tribal Adult HH - EPA Plant 2 TMCL (MTCA EQ 747-1)  Protect Groundwater to Surface Water - Tribal HH - EPA Plant 2 TMCL (MTCA EQ 747-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 278.7866667<br>0.00129844<br>0.024805667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 1336.51281<br>0.005912714                                                                                                                                                      | 66.9088<br>0.000314773                             | 15314.20928<br>0.065409403                                                                    | 766.6633333<br>0.00348218                 |                                                                                     |                                                                                | 0.55                                                                  | 17000<br>2.6<br>99                                                       |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 120<br>0.000049<br>0.0068                                                                          | 10.68984766<br>0.000147884<br>0.499528533                          |                                                   | 0.0028<br>0.0004<br>0.00058                    | 0.001                                   | 8270<br>8260B-Low Soi<br>8260B-Low Soi                                |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.005669867<br>0.010631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                | 0.00021262<br>0.00095679                           | 0.227321635                                                                                   |                                           |                                                                                     |                                                                                | 8700<br>1.1<br>2.8                                                    | 38000<br>5.3<br>14                                                       |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 3.2<br>0.000078<br>0.00072                                                                         | 280.5908<br>0.012279089                                            |                                                   | 0.00056                                        | 0.001                                   | 8260B-Low Soi                                                         | 1 2<br>1 0.000078<br>1 0.000186527                       | Potest Sediment SQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8.32<br>0.000744976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 66.14530792                                                                                                                                                                    | 3.771733333<br>0.000620813                         | 1945.450233                                                                                   | 110.9333333                               |                                                                                     |                                                                                | 780<br>5000                                                           | 10000<br>45000<br>1.7                                                    |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 0.52<br>1.6                                                                                        | 0.74685<br>11.89430667<br>0.01526064                               |                                                   | 0.00055<br>0.00054                             | 0.001                                   | 8260B-Low Soil<br>8260B-Low Soil<br>8260B-Low Soil                    | 0.721066667                                              | Protect Groundwater Method B-HH WAC 173-340-740(3)(b)(iii)(A) EQ. 747-11/747-2 Saturated Soil  Protect Surface Water HH-Consumption: Water & Organisms NRVICC (WAC 173-340-740(1)(d)) EQ. 747-11/747-2 Saturated Soil  EQ. 747-11/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.000144370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.012031024                                                                                                                                                                    | 0.000010                                           | 5.554024575                                                                                   | 0.1025055                                 |                                                                                     |                                                                                | 630<br>240000                                                         | 2700<br>2500000<br>62000                                                 |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      |                                                                                                    | 15.63605333                                                        |                                                   | 0.00168                                        | 0.002                                   | 8260B-Low Soi<br>8270D-SIM<br>8270D-SIM                               | 0.2                                                      | EPA RSL - Groundwater Protection  Protect Sediment SQS WAC 173-340-740(1)(d) EQ. 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.852266667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 1200<br>3100                                                          | 12000<br>31000                                                           |                                                                                                                                                                        | 7.32802704                                                                                           | 0.401066667     |                      |                                                      | 0.86<br>1.5                                                                                        | 9.066142408<br>30.93420286<br>3.341186422                          |                                                   | 0.02                                           | 0.02                                    | 8270D-SIM<br>8270D-SIM                                                | 0.002029246                                              | Protect Sediment SQS WAC 173-340-740/11/d) FQ 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.011 1.432000035 0.073333333<br>262.0993333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.930800023                                                                                                  | 0.047666667                               | 0.930800023                                                                                            | 0.047666667                                                                                                | 0.565640014                                                                                    | 0.028966667                                                                                                     | 0.020048<br>91.61376196                                                                                                                                                        | 0.001026667<br>6.4001                              | 0.587120014<br>20067.77643                                                                    | 0.030066667<br>1401.926667                |                                                                                     |                                                                                | 3<br>18000                                                            | 3100<br>9<br>180000<br>36000                                             |                                                                                                                                                                        | 2.148000052<br>1.308768028                                                                           | 0.11<br>0.09143 | 4.4                  | 13                                                   | 0.15<br>0.0057<br>6.3<br>1.8                                                                       | 315.1395111                                                        |                                                   | 0.004<br>0.061<br>0.002                        | 0.02<br>0.1<br>0.02                     | 8270D-SIM<br>8270D-SIM<br>8270D-SIM<br>8260B-Low Soi                  | 0.000803<br>0.043462687                                  | Potent Educations (SSE, WM.C 173-300-7001)(6)   EQ. 747-1/747 2 Statutents Soil   Potent Educations Method CHM   WW.D.79-306-7000(600)(M. EQ. 747-1/747 2 Statutents Soil   Potent Educations   Method CHM   WW.D.79-306-7000(600)(M. EQ. 747-1/747 2 Statutent Soil   Potent Educations (SSE WM.C 173-306-7401)(d)   EQ. 747-1/747 2 Statutent Soil   Potent Educations (Method EHM   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutent Soil   Potent Educations (Method EHM   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutent Soil   Potent Educations (Method EHM   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   Potent Educations (Method EHM   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   Potent Educations (Method EHM   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   Potent Education (Method EHM   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300-700(600)(M. EQ. 747-1/747 2 Statutents Soil   WW.D.79-300(600)(M. EQ. 747-1/747 2    |
| 0.0035344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.058212387                                                                                                                                                                    | 0.0030926                                          | 0.180181198                                                                                   | 0.009572333                               |                                                                                     |                                                                                | 18<br>44                                                              | 180<br>160                                                               |                                                                                                                                                                        | 0.055440369                                                                                          | 0.002945333     |                      |                                                      | 0.024<br>0.023                                                                                     |                                                                    |                                                   | 0.016                                          | 0.1                                     | Krone et al<br>8270C                                                  | 2.12133E-06<br>0.002061733                               | Protect Surface Water HH-Consumption: Water & Organisms NRWOC (WAC 173-340-740(1)(d)) EQ. 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28.98346667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 12.656                                                                                                                                                                         | 0.634013333                                        | 3887.2                                                                                        | 194.7326667                               |                                                                                     |                                                                                | 77000<br>31                                                           | 990000<br>410                                                            |                                                                                                                                                                        |                                                                                                      |                 | 30                   | 380                                                  | 55000<br>0.66                                                                                      | 3.494845361                                                        | 5                                                 |                                                |                                         | 6010B/6020                                                            | 4.586666667<br>0.253605333                               | Protect Groundwater Method B-HH WAC 173-340-740(3)(b)(iii)/A) EQ. 747-17-747-2 Saturated Soil Protect Surface Water, HH -Frish Water Water & Organism Consumption NTR: 40 CFR 173.30 (WAC 173-201A-04(5)) HH -10-6 Carc Risk Saturated Soil Soil, Method E-Friential Ecological WAC 173-340-74(5)(b)(b)(ii) WAC 173-340-74(3) Table 749-3 Widdle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.004100133 210.24 10.5432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.96                                                                                                       | 5.564466667                               | 40.296                                                                                                 | 2.02078                                                                                                    | 21.024                                                                                         | 1.05432                                                                                                         | 0.010512                                                                                                                                                                       | 0.00052716                                         | 0.08176                                                                                       | 0.004100133                               |                                                                                     |                                                                                |                                                                       | 1.6                                                                      |                                                                                                                                                                        |                                                                                                      |                 | 0.07                 | 0.24                                                 | 0.0013                                                                                             | 7.3                                                                | 7                                                 | 0.07                                           | 0.5                                     | 6010B/6020                                                            | 10<br>0.00052716                                         | Soil. Method B-Terrestrial Ecological WAC 173-340-740(3)(b)(ii): WAC 173-340-7493 Table 749-3 Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5106 0.025950667<br>5.76 0.2893<br>11002.2 550.1576667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.138                                                                                                        | 0.006986667                               | 5.796                                                                                                  | 0.29344<br>21.21533333                                                                                     | 1.2834                                                                                         | 0.064976<br>0.964333333                                                                                         |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 160<br>70                                                             | 190000<br>2000<br>800<br>5.6                                             |                                                                                                                                                                        |                                                                                                      |                 | 5200 6<br>150<br>1.7 | 1700<br>7.5                                          | 300<br>58<br>1.4<br>0.00083                                                                        | 100.6498266<br>140<br>0.77                                         | 1.                                                | 0.039                                          | 0.2                                     | 6010B/6020                                                            | 23.12053333<br>10<br>0.001746867<br>0.00083              | Protect Surface Water 1841-Consumption: Water & Diginarisms NFWOC WACK 173-340-740(1)(d)) EQ. 747-1747-2 Saturated Soil Protect Groundwater Method B4-ff wat AQC 173-340-740(1)(d)) EQ. 747-1747-2 Saturated Soil Protect Surface Water Method B4-ff water 184-740(1)(d)) EQ. 747-1747-2 Saturated Soil Soil, Method B4-ff water 184-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water WACK 173-340-740(1)(d)) WACK 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water WACK 173-340-740(1)(d) WACK 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water WACK 173-340-740(1)(d) WACK 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water WACK 173-340-740(1)(d) WACK 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water Water 173-340-740(1)(d) WACK 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340-740(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340(1)(d) EQ. 747-1747-2 Saturated Soil Protect Surface Water 173-340(1)(d) EQ. 747-1747-2 Saturated Soil Prote |
| 5.76 0.293<br>11002.2 550.1576667<br>7.548 0.378873333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                | 0.964333333                                                                                                     |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 120000<br>2.3                                                         | 1500000<br>300<br>41000                                                  |                                                                                                                                                                        | 444                                                                                                  |                 |                      | 37<br>00000<br>3200<br>38000                         | 77000000<br>0.49                                                                                   | 0.22                                                               |                                                   |                                                |                                         | 6010B/6020<br>6010B/6020                                              | 0.0083<br>42<br>0.49<br>0.053488                         | EPA KS GOUNDWARDER PROTECTION  SOI, Method E-Trenstral Ecological WAC 173-340-740(3)(b)(ii): WAC 173-340-7493 Table 749-3 Plants/Soil Biota  EPA RSL - Groundwater Protection  Protect Surface Water WAC 173-340-740(1)(j) NRWGC Sattwater Chronic EQ, 747-1/1/472 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13000.26 650.0186333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500.01                                                                                                       | 25.00071667                               | 42000.84                                                                                               | 2100.0602                                                                                                  | 1620.0324                                                                                      | 81.002322                                                                                                       |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 55000<br>400                                                          | 720000<br>800                                                            |                                                                                                                                                                        | 444                                                                                                  |                 |                      | 3500                                                 | 51<br>640                                                                                          | 250<br>1700                                                        |                                                   |                                                |                                         | 6010B/6020<br>6010B/6020                                              | 0.086<br>25.00071667                                     | Protect Surface Water Aquatic Life SWQS:RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Acute Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.028666667 2.1924 0.109802 0.000086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                            | 8.365866667                               |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 5.6<br>7.8                                                            | 34                                                                       |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      | 57<br>0.03                                                                                         | 1700<br>0.07<br>0.0000018                                          | 0.07                                              | 0.005                                          | 0.05                                    | 7470A/7471A                                                           | 0.0000018                                                | Protect Surface Water Aquatic Life SWQS:RCW 99-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Fresh - Chronic Saturated Scil  Protect Groundwater to Surface Water - Tribal HH - EPA Fisher 2 TMC, URICA EO 747-1)  Protect Groundwater to Surface Water - Tribal HH - EPA Fisher 2 TMC, URICA EO 747-1)  Protect Groundwater Mathematic Allel Man A 27-340-740(3)(b)(ii)(ii)(iii) EPA 747-1747, September Scil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 300.3186667 1825.6 91.40133333<br>22.204 2.08 0.105733333<br>0.578 0.029194667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.52                                                                                                         | 0.326433333                               | 96.496<br>30.16                                                                                        | 4.831213333<br>1.533133333<br>0.016314667                                                                  | 10.6928<br>7.384                                                                               | 0.535350667<br>0.375353333                                                                                      | 795.44                                                                                                                                                                         | 39.82486667                                        | 5998.4                                                                                        | 300.3186667                               |                                                                                     |                                                                                | 3700<br>390                                                           | 5100<br>44000<br>5100                                                    |                                                                                                                                                                        |                                                                                                      |                 | 1600 1<br>380        | 16000<br>4800<br>4800                                | 48<br>0.95                                                                                         | 38<br>0.52                                                         | 38                                                | 0.1                                            |                                         | 6010B/6020                                                            | 0.050166667<br>0.326433333<br>0.026433333<br>0.016314667 | Protect Guidence Water August Lies SWGS RCW 96-86, LTT 22-01-32 pp 4 Hz AVE / MAY 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 Ave 147-44 |
| 0.033504733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           | 0.323                                                                                                  | J.01031406/                                                                                                |                                                                                                |                                                                                                                 | 2.4208                                                                                                                                                                         | 0.121187333                                        | 8.9712                                                                                        | 0.449106                                  |                                                                                     |                                                                                |                                                                       | 5100<br>610000                                                           |                                                                                                                                                                        |                                                                                                      |                 |                      | 63                                                   | 1.6<br>5500                                                                                        | 3.1                                                                |                                                   | 0.1                                            | 0.5                                     | 00100/0020                                                            | 50                                                       | Priest Sufficient Water — Might City ST (1994) Wild (2017) 25-010-1010 feet Might. WALL 175-369 ASS/(2019)), Inserte — Curron: Samanane Sail Priest Sufficient Water — HE-Contemption: Water & Organisms — NRWGC — (MCR 175-369) ASS/(2019)), Inserte — Curron: Samanane Sail Priest Sufficient Water — HE-Contemption: Water & Organisms — NRWGC — (MCR 175-369) ASS/(2019)), Inserte — Curron: Samanane Sail Priest Sufficient Water — Apartic Lies — Song ROW 96-96, A 177-220-14-36 per Might. A WAC 173-369-7902(30)(30)(4) Might — Chronic Samanane Sail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1619.453333 136.84 6.851533333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124.4                                                                                                        | 6.228666667                               | 111.96                                                                                                 | 5.6058                                                                                                     | 100.764                                                                                        | 5.04522                                                                                                         |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                | 390<br>23000                                                          | 5200<br>310000                                                           |                                                                                                                                                                        | 6220                                                                                                 | 311.4333333     | 5<br>530<br>23000 1  | 6700<br>00000                                        | 680                                                                                                | 85                                                                 | 86                                                | 0.66                                           |                                         | 6010B/6020                                                            | 5.04522                                                  | Protect Surface Water Aquatic Life SWQS.RCW 90-48; Ch. 173-201A-240 per MTCA WAC 173-340-730(2)(b)(i)(A) Marine - Chronic Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                |                                                                       |                                                                          |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      |                                                                                                    |                                                                    |                                                   |                                                |                                         |                                                                       |                                                          | Col. IM Mathed & Tomorised and the WACKES SECTION (CASE Day). THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    |                                                                                               |                                           |                                                                                     |                                                                                |                                                                       |                                                                          |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      |                                                                                                    |                                                                    |                                                   | 1.6                                            | 10                                      |                                                                       | 30<br>200<br>2000                                        | Soi, 141-Method A, Urrestricted Land Use WAC 173-340-740((3)(6)(6)) CLARC Distribuse Method B Temestrial Ecological Table 749-3. Soil Biota Soil, 141-Method A, Urrestricted Land Use WAC 173-340-740((5)(6)(6)) CLARC Distribuse Method B Temestrial Ecological WAC 173-340-740((5)(6)(6)) CLARC Distribuse Method B Temestrial Ecological WAC 173-340-740((5)(6)(6)) CLARC Distribuse Table 749-3. Soil Biota Soil, 141-Method A, Urrestricted Land Use WAC 173-340-740((5)(6)(6)) CLARC Distribuse Table 749-3. Soil Biota Soil, 141-Method A, Urrestricted Land Use WAC 173-340-740((5)(6)(6)) CLARC Distribuse Table 749-3. Soil Biota Soil, 141-Method A, Urrestricted Land Use WAC 173-340-740((5)(6)(6)(6) CLARC Distribuse Table 749-3. Soil Biota Soil, 141-Method A, Urrestricted Land Use WAC 173-340-740((5)(6)(6)(6) CLARC Distribuse Method B Temestrial Ecological Table 749-3. Soil Biota Soil, 141-Method A, Urrestribuse Land Use WAC 173-340-740((5)(6)(6)(6) CLARC Distribuse Method B Temestrial Ecological Table 749-3. Soil Biota Soil, 141-Method A, Urrestribuse Land Use WAC 173-340-740((6)(6)(6)(6)(6) CLARC Distribuse Method B Temestrial Ecological Table 749-3. Soil Biota Soil, 141-Method A, Urrestribuse Land Use WAC 173-340-740((6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.47592E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 3.809E-08                                                                                                                                                                      | 1.90563E-09                                        | 4.102E-08                                                                                     | 2.05221E-09                               |                                                                                     |                                                                                | 0.0000045                                                             | 0.000018                                                                 | 0.000072                                                                                                                                                               |                                                                                                      |                 |                      | 000019                                               | 0.0000026                                                                                          | 0.0000045                                                          | 0.0000052                                         | 3.19<br>0.000000008                            | 25                                      | 1613B                                                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.44858E-06 2.933136244 0.146915<br>1.00385E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                           | 1.271025706                                                                                            | 0.063663167                                                                                                |                                                                                                |                                                                                                                 | 0.000153039                                                                                                                                                                    | 6.36632E-06<br>7.9898E-06                          | 0.00051013                                                                                    | 2.66327E-05                               |                                                                                     |                                                                                | 0.029                                                                 | 0.1<br>0.27                                                              |                                                                                                                                                                        |                                                                                                      |                 | 0.033                | 0.13                                                 | 0.00065<br>0.000062                                                                                |                                                                    |                                                   | 0.0000069                                      | 0.00005                                 | 8081B<br>8081B<br>8081B                                               | 2.39961E-06<br>5.32653E-06                               | Protect Surface Water HH-Consumption: Water & Organisms NRWGC (WAC 173-340-740(1)(d)) EQ. 747-1/747-2 Saturated Soil Protect Surface Water HH-Consumption: Water & Organisms NRWGC (WAC 173-340-740(1)(d)) EQ. 747-1/747-2 Saturated Soil Water Surface Water HH-Consumption: Water & Organisms NRWGC (WAC 173-340-740(1)(d)) EQ. 747-1/747-2 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.12363E-05<br>0.0029496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00248328<br>0.004429875                                                                                    | 0.000131093<br>0.000221866                | 0.004966559<br>0.09271831                                                                              | 0.000262187<br>0.0046437                                                                                   | 0.004120814                                                                                    | 0.000206387                                                                                                     | 0.000589779                                                                                                                                                                    | 3.39593E-05<br>3.11347E-05<br>2.94101E-05          | 0.001955583                                                                                   | 0.000103236                               |                                                                                     |                                                                                | 0.52                                                                  | 0.96<br>2.1<br>6.5                                                       |                                                                                                                                                                        |                                                                                                      |                 | 0.038                | 1.7                                                  | 0.00022<br>0.00036<br>0.013                                                                        |                                                                    |                                                   | 0.000011                                       | 0.00005                                 | 8081B<br>8081B                                                        | 3.11347E-05<br>2.94101E-05                               | Protect Surface Water, HH -Fresh Water Water & Organism Consumption NTR - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk Saturated Soil Protect Surface Water, HH -Fresh Water Water & Organism Consumption NTR - 40 CFR 131.36 (WAC 173-201A-040[5]) HH - 10-6 Carc Risk Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.000149209 14.91894863 0.746042733<br>1.90722E-05 1.42869E-05 1.32869E-05 1.287302682 0.064581667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 | 0.00102194                                                                                                                                                                     | 5.11481E-05                                        | 0.00102194                                                                                    | 5.11481E-05                               |                                                                                     |                                                                                | 1.7                                                                   | 7<br>5.1<br>7.2<br>0.11                                                  |                                                                                                                                                                        |                                                                                                      |                 | 1.6                  | 6.3<br>9<br>0.13                                     | 0.067<br>0.047<br>0.066<br>0.00017                                                                 |                                                                    |                                                   | 0.0000055                                      | 0.00005                                 | 8081B<br>8081B<br>8081B<br>8081B                                      |                                                          | Protect Surface Water   HH-Consumption: Water & Opanisims   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   Protect Surface Water   HH-Consumption: Water & Opanisims   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   Protect Surface Water   HH-Consumption: Water & Opanisims   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   NRVOC   WAC 173-340-740/1(8)   E0, 747-1/1472 Saturated Soil   WAC 1841-140-140-140-140-140-140-140-140-140-1                                                         |
| 1.39496E-06 1.287302682 0.064581667<br>0.207073333 0.009856175 0.000511867<br>0.207073333 0.009856175 0.000511867<br>0.207073333 0.009856175 0.000511867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00097835<br>0.002508845<br>0.002508845                                                                     | 4.90821E-05<br>0.000130293<br>0.000130293 | 0.365593962<br>0.001523227<br>0.001523227                                                              | 0.018341193<br>7.91067E-05<br>7.91067E-05                                                                  | 0.00097835<br>0.000389767<br>0.000389767                                                       | 4.90821E-05<br>0.000020242<br>0.000020242                                                                       | 7.2089E-05                                                                                                                                                                     | 3.61657E-06                                        | 7.2089E-05                                                                                    | 3.61657E-06                               |                                                                                     |                                                                                | 0.03<br>370<br>370                                                    | 0.11<br>3700<br>3700<br>3700                                             |                                                                                                                                                                        |                                                                                                      |                 | U.035                | u.13                                                 | 0.00017<br>3<br>3                                                                                  |                                                                    |                                                   | 0.000043<br>0.000043                           | 0.0002<br>0.0001                        | 8081B<br>8081B                                                        | 1.3433E-06<br>0.000020242<br>0.000020242                 | Protect Surface Water Aquatic Life Marine/Chronic NTR - 40 CFR 131.36 Saturated Soil  Protect Surface Water Aquatic Life Marine/Chronic NTR - 40 CFR 131.36 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.00066586 0.039639696 0.00199758<br>0.0033293 0.039639696 0.00199758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000506507<br>0.000506507                                                                                   | 2.55246E-05<br>2.55246E-05                | 0.00814816<br>0.00814816                                                                               | 0.000410614<br>0.000410614                                                                                 | 0.000506507                                                                                    | 2.55246E-05<br>2.55246E-05                                                                                      | 0.016736761<br>0.016736761                                                                                                                                                     | 0.000843423<br>0.000843423                         | 0.178378632<br>0.178378632                                                                    | 0.00898911<br>0.00898911                  |                                                                                     |                                                                                | 18<br>18                                                              | 180<br>180                                                               |                                                                                                                                                                        |                                                                                                      |                 | 21                   | 230<br>230                                           | 3<br>0.44<br>0.44                                                                                  |                                                                    |                                                   | 0.000017<br>0.000045<br>0.000051               | 0.00005<br>0.0002<br>0.0001             | 8081B<br>8081B<br>8081B                                               | 2.55246E-05<br>2.55246E-05                               | Protect Surface Water Aquatic Life Marine/Chronic NTR - 40 CFR 131.36 Saturated Soil  Protect Surface Water Aquatic Life Marine/Chronic NTR - 40 CFR 131.36 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.75359E-07 0.10121149 0.005103627<br>3.25598E-06 0.867360352 0.043413067<br>8.02667E-08 0.00292 0.000209267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000739622                                                                                                  | 3.72957E-05<br>0.000317249                | 0.010315786                                                                                            | 0.000520177                                                                                                | 0.000700695                                                                                    | 3.53328E-05<br>0.000300552                                                                                      | 4.08739E-05<br>0.0001668                                                                                                                                                       | 2.06108E-06                                        | 4.08739E-05                                                                                   | 2.06108E-06                               |                                                                                     |                                                                                | 0.053                                                                 | 0.38<br>0.19<br>1.6                                                      |                                                                                                                                                                        |                                                                                                      |                 | 0.13                 | 0.52<br>0.52<br>1.8                                  | 0.0012<br>0.00015<br>0.0094                                                                        |                                                                    |                                                   |                                                | 0.00001                                 | 8081B<br>8081B<br>8081B                                               | 3.25598E-06                                              | Protect Surface Water HH-Consumption: Organisms NRWOC (NVAC 173-340-74011(d)) EQ. 747-1/ 747-2 Saturated Soil   Protect Surface Water H-Consumption: Organisms NRWOC (NVAC 173-340-74011(d)) EQ. 747-1/ 747-2 Saturated Soil   Protect Surface Water Aquatic Uter Marine/Chronic NTR - 40 CPR 131.36 Saturated Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                           |                                                                                                        |                                                                                                            |                                                                                                |                                                                                                                 |                                                                                                                                                                                |                                                    | L                                                                                             |                                           |                                                                                     |                                                                                | _                                                                     |                                                                          |                                                                                                                                                                        |                                                                                                      |                 |                      |                                                      |                                                                                                    | _                                                                  |                                                   |                                                |                                         |                                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| MEDIA - MTCA Standard                                        |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   | GW Method A                                                                                                              | ۸ .                                                                                                    |                                                                                                        |                                                                                            |                                                                                                    | GW Method B                                                                                                                 |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | G                                                                               |                                                                                                                      |                                                                                                                      |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological                  | Ground Water,<br>Method A-HH,<br>Potable<br>(Table 720-1)<br>WAC 173-340-<br>720(3)(b)(i) | Ground Water<br>Method A - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(3)(b)(ii) | Groundwater<br>State Quality<br>Criteria<br>WAC 173-340-<br>720(3)(b)(ii);<br>WAC 173-200-<br>040(3)<br>Table 9.1 | Ground Water<br>Method A-HH-<br>Potable<br>Safe Drinking Water<br>Act, 40 CFR<br>141: WAC 173-<br>290-310; WAC 173<br>340-720(3)(b)(ii)(A)<br>MCL | Ground Water Safe Drinking Water Act, 40 CFR 141: WAC 173- 290-310; WAC 173-340- 720(3)(b)(ii)(B) MCLG (Non- Zero Goals) | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCL | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCG | Ground Water<br>Method A -<br>Potable<br>No Table Values<br>WAC 173-340-<br>720(3)(b)(iii) | Ground Water,<br>Method A-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(3)(b)(iv) | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)b(i)<br>Safe Drinking Water<br>Standards -<br>MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>Safe Drinking Water<br>Standards -<br>MCGs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>State Department of<br>Health Stanadrds -<br>MCLs | Ground Water Method B - HH Potable ARAR's WAC 173-340- 720(4)(b)(i) State Department of Health Standards - MCGs | Ground Water,<br>Method B-HH,<br>Non-carcinogenic/<br>Potable<br>WAC 173-340-<br>720(4)(b)(iii)(A)<br>EQ. 720-1<br>CLARC Database | Ground Water, Method B-HH, Carcinogen/ Potable WAC 173-340- 720(4)(b)(iii)(B) EO. 720-2 CLARC Database | Ground Water, Method B-HH, Potable, Petroleum Mixture WAC 173-340- 720(4)(b)(iii)(C) EQ. 720-3 (4-Phase Model) | Ground Water<br>Method C - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(5)(b)(i) | Ground Water,<br>Method C-HH,<br>Protect Surface<br>Water Highest<br>Beneficial Use<br>WAC 173-340-<br>720(5)(b)(ii) | Ground Water,<br>Method C-HH,<br>Non-carcinogenic/<br>Potable<br>WAC 173-340-<br>720(5)(b)(iii)(A)<br>CLARC Database |
| UNITS                                                        | μg/L                                                                                      | μg/L                                                                             | μg/L                                                                                                              | μg/L                                                                                                                                              | μg/L                                                                                                                     | μg/L                                                                                                   | μg/L                                                                                                   | μg/L                                                                                       | μg/L                                                                                               | μg/L                                                                                                                        | µg/L                                                                                                                          | µg/L                                                                                                                                 | µg/L                                                                                                            | μg/L                                                                                                                              | μg/L                                                                                                   | μg/L                                                                                                           | μg/L                                                                            | μg/L                                                                                                                 | μg/L                                                                                                                 |
| acetone                                                      |                                                                                           | 6000                                                                             |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 7200                                                                                                                              |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 15800                                                                                                                |
| acenaphthene                                                 |                                                                                           | 400                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 960                                                                                                                               |                                                                                                        | •                                                                                                              | *                                                                               |                                                                                                                      | 2100                                                                                                                 |
| acenaphthylene                                               |                                                                                           | 2000                                                                             |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 4800                                                                                                                              |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |
| anthracene<br>benzene                                        | 5                                                                                         | 2000                                                                             | 1                                                                                                                 | 5                                                                                                                                                 | *0                                                                                                                       | 5                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 5                                                                                                                           | *0                                                                                                                            | 5                                                                                                                                    | *0                                                                                                              | 4800<br>32                                                                                                                        | 0.795                                                                                                  |                                                                                                                | *                                                                               | *                                                                                                                    | 11000<br>70                                                                                                          |
| benzo(g,h,i)perylene                                         |                                                                                           |                                                                                  |                                                                                                                   | ,                                                                                                                                                 | ·                                                                                                                        |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  | ,                                                                                                                           | ·                                                                                                                             | J                                                                                                                                    |                                                                                                                 | 32                                                                                                                                | 0.733                                                                                                  | *                                                                                                              | *                                                                               |                                                                                                                      | 70                                                                                                                   |
| benzo[a]anthracene                                           |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   | 0.12                                                                                                   |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| benzo[a]pyrene                                               |                                                                                           | •                                                                                | 0.008                                                                                                             | 0.2                                                                                                                                               | *0                                                                                                                       | 0.2                                                                                                    | *0                                                                                                     | *                                                                                          | *                                                                                                  | 0.2                                                                                                                         | *0                                                                                                                            | 0.2                                                                                                                                  | *0                                                                                                              |                                                                                                                                   | 0.012                                                                                                  |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| benzo[b]fluoranthene                                         |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          |                                                                                                    |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   | 0.012                                                                                                  |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |
| benzo[k]fluoranthene                                         |                                                                                           |                                                                                  | 6                                                                                                                 | 6                                                                                                                                                 | *0                                                                                                                       | 6                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 6                                                                                                                           | *0                                                                                                                            | 6                                                                                                                                    | *0                                                                                                              | 320                                                                                                                               | 1.2<br>6.25                                                                                            |                                                                                                                | *                                                                               |                                                                                                                      | 700                                                                                                                  |
| bis(2-ethylhexyl) phthalate<br>butyl benzyl phthalate        |                                                                                           | 100                                                                              | ь                                                                                                                 | ь                                                                                                                                                 | -0                                                                                                                       | 0                                                                                                      | ·U                                                                                                     | *                                                                                          | *                                                                                                  | 6                                                                                                                           | - U                                                                                                                           | •                                                                                                                                    | -U                                                                                                              | 320<br>3200                                                                                                                       | 6.25                                                                                                   |                                                                                                                | *                                                                               |                                                                                                                      | 700                                                                                                                  |
| carbon tetrachloride                                         |                                                                                           |                                                                                  | 0.3                                                                                                               | 5                                                                                                                                                 | *0                                                                                                                       | 5                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 5                                                                                                                           | *0                                                                                                                            | 5                                                                                                                                    | *0                                                                                                              | 3200                                                                                                                              | 0.625                                                                                                  |                                                                                                                | *                                                                               | *                                                                                                                    | 7000                                                                                                                 |
| chlorobenzene                                                |                                                                                           |                                                                                  |                                                                                                                   | 100                                                                                                                                               | 100                                                                                                                      | 100                                                                                                    | 100                                                                                                    | *                                                                                          | *                                                                                                  | 100                                                                                                                         | 100                                                                                                                           | 100                                                                                                                                  | 100                                                                                                             | 160                                                                                                                               |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    | 350                                                                                                                  |
| chloroethane (ethyl chloride)                                |                                                                                           | •                                                                                |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |
| chloroform (trichloromethane)                                |                                                                                           |                                                                                  | 7                                                                                                                 |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 80                                                                                                                                |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 175                                                                                                                  |
| chloromethane (methyl chloride)                              |                                                                                           | :                                                                                |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   | 40                                                                                                     |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |
| chrysene<br>dibenz[a,h]anthracene                            |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   | 12<br>0.012                                                                                            | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |
| dibenzofuran                                                 |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 16                                                                                                                                | 0.012                                                                                                  |                                                                                                                | *                                                                               | *                                                                                                                    | 35                                                                                                                   |
| di-butyl phthalate (di-n-butyl phth.)                        |                                                                                           | 700                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 1600                                                                                                                              |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 3500                                                                                                                 |
| dichlorobenzene, 1,2-                                        |                                                                                           | •                                                                                |                                                                                                                   | 600                                                                                                                                               | 600                                                                                                                      | 600                                                                                                    | 600                                                                                                    | *                                                                                          | *                                                                                                  | 600                                                                                                                         | 600                                                                                                                           | 600                                                                                                                                  | 600                                                                                                             | 720                                                                                                                               |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    | 1580                                                                                                                 |
| dichlorobenzene, 1,3-                                        |                                                                                           | 600                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |
| dichlorobenzene, 1,4-                                        |                                                                                           |                                                                                  | 1                                                                                                                 | 75                                                                                                                                                | 75                                                                                                                       | 75                                                                                                     | 75                                                                                                     | *                                                                                          | *                                                                                                  | 75                                                                                                                          | 75                                                                                                                            | 75                                                                                                                                   | 75                                                                                                              | 800                                                                                                                               |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 4750                                                                                                                 |
| dichloroethane, 1,1-<br>dichloroethane, 1,2-                 | 5                                                                                         |                                                                                  | 0.5                                                                                                               | 5                                                                                                                                                 | *0                                                                                                                       | 5                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 5                                                                                                                           | *0                                                                                                                            | 5                                                                                                                                    | *0                                                                                                              | 160                                                                                                                               | 0.48                                                                                                   | *                                                                                                              | *                                                                               | *                                                                                                                    | 1750<br>350                                                                                                          |
| dichloroethylene, 1,1-                                       |                                                                                           |                                                                                  | 0.0                                                                                                               | 7                                                                                                                                                 | 7                                                                                                                        | 7                                                                                                      | 7                                                                                                      | *                                                                                          | *                                                                                                  | 7                                                                                                                           | 7                                                                                                                             | 7                                                                                                                                    | 7                                                                                                               | 72                                                                                                                                | 0.40                                                                                                   | *                                                                                                              | *                                                                               | *                                                                                                                    | 158                                                                                                                  |
| diethyl phthalate                                            |                                                                                           | 6000                                                                             |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 13000                                                                                                                             |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    | 28000                                                                                                                |
| dimethyl phthalate                                           |                                                                                           | •                                                                                |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| di-n-octyl phthalate                                         |                                                                                           | •                                                                                |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| ethylbenzene                                                 | 700                                                                                       | 300                                                                              |                                                                                                                   | 700                                                                                                                                               | 700                                                                                                                      | 700                                                                                                    | 700                                                                                                    | *                                                                                          | *                                                                                                  | 700                                                                                                                         | 700                                                                                                                           | 700                                                                                                                                  | 700                                                                                                             | 800<br>640                                                                                                                        |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 1750<br>1400                                                                                                         |
| fluoranthene<br>fluorene                                     |                                                                                           | 300                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 640                                                                                                                               |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 1400                                                                                                                 |
| hexachlorobenzene                                            |                                                                                           | •                                                                                | 0.05                                                                                                              | 1                                                                                                                                                 | *0                                                                                                                       | 1                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 1                                                                                                                           | *0                                                                                                                            | 1                                                                                                                                    | *0                                                                                                              | 040                                                                                                                               |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 28                                                                                                                   |
| hexachlorobutadiene                                          |                                                                                           | 0.9                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 8                                                                                                                                 |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 17.5                                                                                                                 |
| indeno[1,2,3-cd]pyrene                                       |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   | 0.12                                                                                                   |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| MEK (Methyl Ethyl Ketone;2-Butanone)                         | _                                                                                         |                                                                                  | -                                                                                                                 | _                                                                                                                                                 |                                                                                                                          | _                                                                                                      |                                                                                                        | *                                                                                          |                                                                                                    |                                                                                                                             |                                                                                                                               | <u> </u>                                                                                                                             | 4-                                                                                                              | 4800                                                                                                                              |                                                                                                        | -                                                                                                              | *                                                                               |                                                                                                                      | 11000                                                                                                                |
| methylene chloride (dichloromethane)                         | 5                                                                                         | 30<br>30                                                                         | 5                                                                                                                 | 5                                                                                                                                                 | *0                                                                                                                       | 5                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 5                                                                                                                           | *0                                                                                                                            | 5                                                                                                                                    | *0                                                                                                              |                                                                                                                                   | 5.83                                                                                                   | - :                                                                                                            | *                                                                               | *                                                                                                                    |                                                                                                                      |
| methylnaphthalene, 2-<br>MIBK (M-Isobutyl-K;4-M,2-Pentanone) |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        |                                                                                            |                                                                                                    |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 640                                                                                                                               |                                                                                                        |                                                                                                                |                                                                                 |                                                                                                                      | 1400                                                                                                                 |
| naphthalene                                                  | 160                                                                                       | 100                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        |                                                                                            |                                                                                                    |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 160                                                                                                                               |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 350                                                                                                                  |
| nitrosodiphenylamine, N-                                     |                                                                                           | 7                                                                                |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | / /                                                                                        |                                                                                                    |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |
| pcb mixtures                                                 | 0.1                                                                                       |                                                                                  | 0.01                                                                                                              | 0.5                                                                                                                                               |                                                                                                                          | 0.5                                                                                                    | *0                                                                                                     | /_/_                                                                                       |                                                                                                    | 0.5                                                                                                                         |                                                                                                                               | 0.5                                                                                                                                  | *0                                                                                                              |                                                                                                                                   | 0.044                                                                                                  |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |
| pcb - Aroclor 1016                                           |                                                                                           | 0.5                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | $\sim$                                                                                     | -/-/                                                                                               | _                                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 1.12                                                                                                                              |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 2.45                                                                                                                 |
| pcb - Aroclor 1221<br>pcb - Aroclor 1232                     |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | M                                                                                                  |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| pcb - Aroclor 1232<br>pcb - Aroclor 1242                     |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | × 1/                                                                                               |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| pcb - Aroclor 1248                                           |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          |                                                                                                    | SII                                                                                                                         |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |
| pcb - Aroclor 1254                                           |                                                                                           | 0.1                                                                              |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  | U/N                                                                                                                         | 70                                                                                                                            |                                                                                                                                      |                                                                                                                 | 0.32                                                                                                                              |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    | 0.7                                                                                                                  |
| pcb - Aroclor 1260                                           |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  | -0-                                                                                                                         | 11                                                                                                                            |                                                                                                                                      |                                                                                                                 |                                                                                                                                   | 1                                                                                                      | :                                                                                                              | *                                                                               | *                                                                                                                    | 1                                                                                                                    |
| phenanthrene                                                 |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   | -                                                                                                                        |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  | - 1                                                                                                                         | u                                                                                                                             | -                                                                                                                                    |                                                                                                                 | 400                                                                                                                               |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 4050                                                                                                                 |
| pyrene<br>tetrachloroethylene (perchloroethylene)            | 5                                                                                         | 70                                                                               | 0.8                                                                                                               | 5                                                                                                                                                 | *0                                                                                                                       | 5                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 5                                                                                                                           | *0                                                                                                                            | 5                                                                                                                                    | *0                                                                                                              | 480<br>80                                                                                                                         |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 1050<br>180                                                                                                          |
| trichlorobenzene, 1,2,4-                                     | ,                                                                                         |                                                                                  | 3.0                                                                                                               | 70                                                                                                                                                | 70                                                                                                                       | 70                                                                                                     | 70                                                                                                     | *                                                                                          | *                                                                                                  | 70                                                                                                                          | 70                                                                                                                            | 70                                                                                                                                   | 70                                                                                                              | - 30                                                                                                                              | 1.51                                                                                                   |                                                                                                                | *                                                                               | *                                                                                                                    | 175                                                                                                                  |
| trichlorethane, 1,1,1-                                       | 200                                                                                       |                                                                                  | 200                                                                                                               | 200                                                                                                                                               | 200                                                                                                                      | 200                                                                                                    | 200                                                                                                    | *                                                                                          | *                                                                                                  | 200                                                                                                                         | 200                                                                                                                           | 200                                                                                                                                  | 200                                                                                                             | 7200                                                                                                                              |                                                                                                        | *                                                                                                              | *                                                                               |                                                                                                                      | 15800                                                                                                                |
| trichlorethane, 1,1,2-                                       |                                                                                           | •                                                                                |                                                                                                                   | 5                                                                                                                                                 | 3                                                                                                                        | 5                                                                                                      | 3                                                                                                      | *                                                                                          | *                                                                                                  | 5                                                                                                                           | 3                                                                                                                             | 5                                                                                                                                    | 3                                                                                                               |                                                                                                                                   | 0.768                                                                                                  | *                                                                                                              | *                                                                               | *                                                                                                                    | 70                                                                                                                   |
| trichloroethylene                                            | 5                                                                                         | :                                                                                | 3                                                                                                                 | 5                                                                                                                                                 | *0                                                                                                                       | 5                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 5                                                                                                                           | *0                                                                                                                            | 5                                                                                                                                    | *0                                                                                                              | 2.4                                                                                                                               | 0.49                                                                                                   |                                                                                                                | *                                                                               | *                                                                                                                    | 5.3                                                                                                                  |
| trimethylbenzene, 1,3,5-                                     |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        | 4000                                                                                                   | *                                                                                          |                                                                                                    |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 | 80                                                                                                                                |                                                                                                        | *                                                                                                              |                                                                                 | -                                                                                                                    | 175                                                                                                                  |
|                                                              | 40                                                                                        |                                                                                  |                                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                        |                                                                                                        |                                                                                            |                                                                                                    |                                                                                                                             |                                                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                   |                                                                                                        |                                                                                                                |                                                                                 |                                                                                                                      |                                                                                                                      |
| toluene<br>vinyl chloride (chloroethylene)                   | 1000<br>0.2                                                                               | •                                                                                | 0.02                                                                                                              | 1000                                                                                                                                              | 1000<br>*0                                                                                                               | 1000                                                                                                   | 1000<br>*0                                                                                             | *                                                                                          | *                                                                                                  | 1000                                                                                                                        | 1000<br>*0                                                                                                                    | 1000                                                                                                                                 | 1000<br>*0                                                                                                      | 1600<br>24                                                                                                                        | 0.029                                                                                                  |                                                                                                                | *                                                                               |                                                                                                                      | 1400<br>53                                                                                                           |

| Method C                                                                                                    |                                                                                                                                      | G                                                                                                  | W PATHWAY                                                                              | EVALUATIO                                                                         | N                                                                                | AR                      | AR's                             | ARAR's<br>(Not Applied)                                             | <b>A</b> 356                                          | ays Applica                         | ible                                | EPA Method             | POTABLE GW<br>MOST<br>STRINGENT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------|----------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-------------------------------------|------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground Water,<br>Method C-HH,<br>Carcinogen/ Potable<br>WAC 173-340-<br>720(5)(b)(iii)(B)<br>CLARC Database | Ground Water,<br>Method C-HH,<br>Potable,<br>Petroleum Mixture<br>WAC 173-340-<br>720(5)(b)(iii)(C)<br>EQ. 720-3 (4-<br>Phase Model) | Ground Water,<br>Method B-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(4)(b)(ii) | Ground Water,<br>Non-Potable,<br>Surface Water<br>Protection<br>WAC 173-340-<br>720(6) | Groundwater to<br>Sediment<br>Protection Ecology<br>CSL WAC 173-340-<br>720(1)(c) | Groundwater to<br>Sediment<br>Protection Ecology<br>SQS WAC 173-340<br>720(1)(c) | EPA CERCLA<br>LDW/T-117 | EPA RCRA<br>LDW/Plant 2<br>TMCLs | EPA Tap Water<br>Residential<br>Screening Levels<br>(RSL's, 5/2010) | Natural<br>Background<br>Levels<br>Ch. 173-340<br>WAC | Applicable DL (MDL) Ch. 173-340 WAC | Applicable PQL (RL) Ch. 173-340 WAC | Analytical Methods     | Screening<br>Levels             | POTABLE GROUNDWATER (Screening Levels Including Potable Groundwater Regulations When Applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/L                                                                                                        | μg/L                                                                                                                                 | μg/L                                                                                               | μg/L                                                                                   | μg/L                                                                              | μg/L                                                                             | μg/L                    | μg/L                             | μg/L                                                                | μg/L                                                  | μg/L                                | μg/L                                |                        | μg/L                            | Regulatory Framework For Most Stringent Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 110107                           | 22000                                                               |                                                       | 2.954                               | 10                                  | 8260B                  | 6000                            | HH -Method A, Non-carcinogenic/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  |                                                                                        | 9.31372549                                                                        | 2.614379085                                                                      |                         | 115.4023696                      | 2200                                                                |                                                       | 0.0205                              | 0.1                                 | 8270D-SIM<br>8270D-SIM | 2.614379085<br>10.78431373      | Protection - Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                             | *                                                                                                                                    |                                                                                                    |                                                                                        | 10.78431373<br>58.82352941                                                        | 10.78431373                                                                      |                         | 200                              | 11000                                                               |                                                       | 0.0153                              | 0.1                                 | 8270D-SIM<br>8270D-SIM | 10.78431373                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)  Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.95                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 30.02332341                                                                       | 10.70431373                                                                      |                         | 2.02819                          | 0.41                                                                |                                                       | 0.0333                              | 1                                   | 8260B                  | 0.795                           | HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.12                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 0.029147982                                                                       | 0.011584454                                                                      |                         |                                  |                                                                     |                                                       | 0.0492                              | 0.1                                 | 8270D-SIM              | 0.011584454                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.2                                                                                                         | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 0.632911392                                                                       | 0.257852789                                                                      | 0.018                   | 0.000112155                      |                                                                     |                                                       | 0.004                               | 0.01                                | 8270D-SIM              | 0.000112155                     | HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.12                                                                                                        | •                                                                                                                                    | - :                                                                                                |                                                                                        | 0.266903915                                                                       | 0.125826131                                                                      | 0.018                   | 6.5888E-06                       |                                                                     |                                                       | 0.032                               | 0.1                                 | 8270D-SIM              | 6.5888E-06<br>5.26914E-05       | HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                         | *                                                                                                                                    |                                                                                                    | *                                                                                      | 0.560398506<br>0.571791614                                                        | 0.286425903                                                                      | 0.018                   | 5.26914E-05<br>5.51854E-05       | <u> </u>                                                            |                                                       | 0.006                               | 0.01                                | 8270D-SIM<br>8270D-SIM | 5.51854E-05                     | HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 62.5                                                                                                        | *                                                                                                                                    |                                                                                                    | *                                                                                      | 0.472727273                                                                       | 0.284848485                                                                      | 2.2                     | 1.2                              | 4.8                                                                 |                                                       | 0.451                               | 1                                   | 8270D-SIM              | 0.284848485                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 460                                                                                                         | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 6.837606838                                                                       | 0.523504274                                                                      |                         |                                  | 35                                                                  |                                                       | 0.025                               |                                     | 8270D-SIM              | 0.523504274                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6.25                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 0.247823653                      | 0.2                                                                 |                                                       | 0.233                               | 1                                   | 8260B                  | 0.247823653                     | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             |                                                                                                                                      |                                                                                                    | *                                                                                      |                                                                                   |                                                                                  |                         | 270<br>21000                     | 91<br>21000                                                         |                                                       | 0.145                               | 1                                   | 8260B<br>8260B         | 100<br>21000                    | HH -Method B Potable WAC 173-340-720(4)(b)(i); Safe Drinking Water Standards - MCLs  EPA Tap Water RSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  |                                                                                        |                                                                                   |                                                                                  |                         | 4.3                              | 0.19                                                                |                                                       | 0.192                               | 1                                   | 8260B                  | 4.3                             | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 190                              | 190                                                                 |                                                       | 0.134                               | 1                                   | 8260B                  | 190                             | HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120                                                                                                         | *                                                                                                                                    |                                                                                                    | *                                                                                      | 1.949152542                                                                       | 0.466101695                                                                      | 0.018                   | 0.001120636                      |                                                                     |                                                       | 0.0314                              | 0.01                                | 8270D-SIM              | 0.001120636                     | HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.12                                                                                                        | *                                                                                                                                    | :                                                                                                  | *                                                                                      | 0.01259542                                                                        | 0.004580153                                                                      | 0.018                   | 2.71511E-05                      |                                                                     |                                                       | 0.0064                              | 0.1                                 | 8270D-SIM              | 2.71511E-05<br>1.327433628      | HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             |                                                                                                                                      |                                                                                                    | *                                                                                      | 5.132743363<br>1164.383562                                                        | 1.327433628<br>150.6849315                                                       |                         | 46.57806484                      | 3700                                                                |                                                       | 0.0366                              | 0.1                                 | 8270D-SIM<br>8260B     | 1.327433628<br>46.57806484      | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)  HH - Tribal Fish (w/o Salmon) Consumption, Non-Carc - Child, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      | 5,191873589                                                                       | 5.191873589                                                                      |                         | 440                              | 3700                                                                |                                                       | 0.456                               | 1                                   | 8260B                  | 5.191873589                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         |                                  |                                                                     |                                                       | 0.285                               | 1                                   | 8260B                  | 600                             | HH -Method A Potable ARAR's WAC 173-340-720(3)(b)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 20.73732719                                                                       | 7.142857143                                                                      |                         |                                  |                                                                     |                                                       | 0.281                               | 1                                   | 8260B                  | 4                               | State Water Quality Criteria WAC 173-340-720(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 33.26143751                      | 2.4                                                                 |                                                       |                                     | 0.2                                 | 8260B                  | 0.48                            | State Water Quality Criteria WAC 173-340-720(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.81<br>0.729                                                                                               |                                                                                                                                      |                                                                                                    |                                                                                        |                                                                                   |                                                                                  |                         | 3.6<br>2300                      | 0.15<br>340                                                         |                                                       | 0.244                               | 0.2                                 | 8260B<br>8260B         | 0.48                            | HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.729                                                                                                       |                                                                                                                                      |                                                                                                    | *                                                                                      | 873.015873                                                                        | 484,1269841                                                                      |                         | 18409.42563                      | 29000                                                               |                                                       | 0.496                               | 0.2                                 | 8270D-SIM              | 484.1269841                     | HH -Method C, Carcinogen/Potable WAC 173-340-720(5)(b)(iii)(B); CLARC Database  Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 142.8571429                                                                       | 142.8571429                                                                      |                         | 1100000                          |                                                                     |                                                       | 0.486                               | 1                                   | 8270D-SIM              | 142.8571429                     | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 22.95918367                                                                       | 0.295918367                                                                      |                         |                                  |                                                                     |                                                       | 0.513                               | 1                                   | 8270D-SIM              | 0.295918367                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      |                                                                                   |                                                                                  |                         | 800                              | 1.5                                                                 |                                                       | 0.182                               | 1                                   | 8260B                  | 700                             | HH -Method A Potable Safe Drinking Water Act, 40 CFR 141: WAC 173-340-720(3)(b)(ii)(A); MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      | 16.92524683<br>6.991150442                                                        | 2.256699577<br>2.03539823                                                        |                         | 11<br>45                         | 1500<br>1500                                                        |                                                       | 0.029<br>0.0218                     | 0.1                                 | 8270D-SIM<br>8270D-SIM | 2.256699577                     | Protection - Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)  Protection - Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.547                                                                                                       | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 0.680473373                                                                       | 0.112426036                                                                      |                         | 40                               | 1500                                                                |                                                       | 0.0218                              | 0.1                                 | 8270D-SIM              | 0.05                            | State Water Quality Criteria WAC 173-340-720(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.61                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 6.237424547                                                                       | 3.923541247                                                                      |                         |                                  |                                                                     |                                                       | 0.02                                |                                     | 8260B                  | 0.9                             | HH -Method A Potable ARAR's WAC 173-340-720(3)(b)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2                                                                                                         | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 0.032835821                                                                       | 0.012686567                                                                      | 0.018                   | 2.27382E-05                      |                                                                     |                                                       | 0.011                               | 0.1                                 | 8270D-SIM              | 2.27382E-05                     | HH - Total Tribal Fish (w/o Salmon) Consumption including Early Life, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      |                                                                                   |                                                                                  |                         | 73000                            | 7100                                                                |                                                       | 0.40                                |                                     | 8260B                  | 4800                            | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 58.3                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 30.62200957                                                                       | 18.18181818                                                                      |                         | 61<br>150                        | 4.8<br>150                                                          |                                                       | 0.19<br>0.0244                      | 0.1                                 | 8260B<br>8260B         | 5<br>18.18181818                | HH -Method B Potable WAC 173-340-720(4)(b)(i); Safe Drinking Water Standards - MCLs  Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                             |                                                                                                                                      | *                                                                                                  |                                                                                        | 55.52200357                                                                       |                                                                                  |                         | .50                              | .50                                                                 |                                                       | 5.5244                              | 3.1                                 | 8260B                  | 640                             | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 92.39130435                                                                       | 53.80434783                                                                      |                         | 112.0573734                      | 0.14                                                                |                                                       | 0.0377                              | 0.1                                 | 8270D-SIM              | 53.80434783                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.79                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 1.957295374                                                                       | 1.957295374                                                                      |                         | 1.593580667                      | 14                                                                  |                                                       | 0.46                                | 1                                   | 8270D-SIM              | 1.593580667<br>2.30915E-05      | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.44                                                                                                        |                                                                                                                                      |                                                                                                    | *                                                                                      | 1.450892857<br>2.398523985                                                        | 0.267857143<br>0.442804428                                                       | 0.000064                | 2.30915E-05<br>0.0000641         | 0.96                                                                |                                                       | 0.1                                 | 0.01                                | 8082/8270/1668<br>8082 | 0.0000641                       | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA  Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      | 2.390323983                                                                       | J.4420U4428                                                                      |                         | 0.0000641<br>2.30915E-05         | 0.96                                                                |                                                       | 0.0036                              | 0.01                                | 8082                   | 2.30915E-05                     | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         |                                  |                                                                     |                                                       |                                     | 0.01                                | 8082                   |                                 | , and a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |
| ·                                                                                                           | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 2.30915E-05                      | 0.034                                                               |                                                       |                                     | 0.01                                | 8082                   | 2.30915E-05                     | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | •                                                                                                                                    | - :                                                                                                | *                                                                                      | 1.480637813                                                                       | 0.273348519                                                                      |                         | 2.30915E-05                      | 0.034                                                               |                                                       | 0.1                                 | 0.01                                | 8082                   | 2.30915E-05<br>5.49145E-06      | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 0.85978836                                                                        | 0.158730159                                                                      |                         | 5.49145E-06<br>2.30915E-05       | 0.034                                                               |                                                       | 0.1                                 | 0.01                                | 8082<br>8082           | 5.49145E-06<br>2.30915E-05      | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA<br>HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 23.07692308                                                                       | 4.807692308                                                                      |                         | 2.30013E=03                      | 0.034                                                               |                                                       | 0.453                               | 1                                   | 8270D-SIM              | 4.807692308                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      | 20.17291066                                                                       | 14.4092219                                                                       |                         | 9.8                              | 1100                                                                |                                                       | 0.344                               | 1                                   | 8270D-SIM              | 9.8                             | HH - Tribal Fish (w/o Salmon) Consumption, Non-Carc - Child, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 0.020523086                      | 0.1                                                                 |                                                       | 0.091                               | 0.2                                 | 8260B                  | 0.020523086                     | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15.1                                                                                                        |                                                                                                                                      |                                                                                                    |                                                                                        | 2.506963788                                                                       | 1.128133705                                                                      |                         | 16<br>46000                      | 2.3<br>9100                                                         |                                                       | 0.02                                | 0.0                                 | 8260B<br>8260B         | 1.128133705<br>200              | Protection - Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.68                                                                                                        | *                                                                                                                                    |                                                                                                    | *                                                                                      |                                                                                   |                                                                                  |                         | 46000<br>2.326407578             | 9100                                                                |                                                       | 0.183                               | 0.2                                 | 8260B<br>8260B         | 0.768                           | HH -Method B Potable WAC 173-340-720(4)(b)(i); Safe Drinking Water Standards - MCLs  HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                                                                                           | *                                                                                                                                    |                                                                                                    | *                                                                                      |                                                                                   |                                                                                  |                         | 0.74                             | 2                                                                   |                                                       |                                     | 0.2                                 | 8260B                  | 0.49                            | HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 45                               | 370                                                                 |                                                       |                                     |                                     | 8260B                  | 45                              | HH - Tribal Fish (w/o Salmon) Consumption, Non-Carc - Child, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                   |                                                                                  |                         | 1300                             | 2300                                                                |                                                       |                                     |                                     | 8260B                  | 1000                            | HH -Method B Potable WAC 173-340-720(4)(b)(i); Safe Drinking Water Standards - MCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.29                                                                                                        | *                                                                                                                                    | - :                                                                                                |                                                                                        |                                                                                   |                                                                                  |                         | 2.4<br>1300                      | 0.016<br>200                                                        |                                                       | 0.249                               | 0.2                                 | 8260B<br>8260B         | 0.02<br>1000                    | State Water Quality Criteria WAC 173-340-(3)(b)(iii); WAC 173-200-040(3) Table 9.1  HH -Method A, Potable (Table 720-1) WAC 173-340-720(3)(b)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                             | l                                                                                                                                    | 1                                                                                                  | l                                                                                      | 1                                                                                 |                                                                                  |                         | 1300                             | 200                                                                 |                                                       | 0.337                               |                                     | 020UD                  | .300                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### GW MOST STRINGENT

#### Adjusted Screening Levels

#### μg/L

110107 2.614379085 10.78431373 10.78431373

2.02819 0.011584454

0.000112155 6.5888E-06

5.26914E-05 5.51854E-05

0.284848485 0.523504274

> 0.247823653 270

NA 4.3

0.001120636 2.71511E-05

1.327433628

46.57806484 5.191873589

7.142857143 33.26143751

3.6 2300

484.1269841

142.8571429

0.295918367

800

2.256699577

2.03539823 0.112426036 3.923541247

2.27382E-05

73000

61 18.18181818

53.80434783 1.593580667

2.30915E-05

0.0000641 2.30915E-05

2.30915E-05

2.30915E-05

5.49145E-06 2.30915E-05

4.807692308 9.8

0.020523086

1.128133705 46000

2.326407578

0.74 45

1300

2.4 1300

| MEDIA - MTCA Standard                                      |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            | GW Method                                                                                                               | 4                                                                                                      |                                                                                                        |                                                                                            |                                                                                                    |                                                                                                                               | GW Method B                                                                                                                   |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                |                                                                                 |                                                                                                                      |                                                                                                                      |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| PATHWAYS HH - Human Health Ecol- Ecological                | Ground Water,<br>Method A-HH,<br>Potable<br>(Table 720-1)<br>WAC 173-340-<br>720(3)(b)(i) | Ground Water<br>Method A - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(3)(b)(ii) | Groundwater<br>State Quality<br>Criteria<br>WAC 173-340-<br>720(3)(b)(ii);<br>WAC 173-200-<br>040(3)<br>Table 9.1 | Ground Water<br>Method A-HH-<br>Potable<br>Safe Drinking Water<br>Act, 40 CFR<br>141: WAC 173-<br>290-310; WAC 173<br>340-720(3)(b)(ii)(A) | Ground Water Safe Drinking Water Act, 40 CFR 141: WAC 173- 290-310; WAC 173-340- 720(3)(b)(ii)(B) MCLG (Non Zero Goals) | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCL | Ground Water<br>State Board<br>Health, Ch. 246-<br>290 WAC: WAC<br>173-340-<br>720(3)(b)(ii)(C)<br>MCG | Ground Water<br>Method A -<br>Potable<br>No Table Values<br>WAC 173-340-<br>720(3)(b)(iii) | Ground Water,<br>Method A-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(3)(b)(iv) | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>Safe Drinking Water<br>Standards -<br>MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>Safe Drinking Water<br>Standards -<br>MCGs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>State Department of<br>Health Stanadrds -<br>MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>State Department of<br>Health Stanadrds -<br>MCGs | Ground Water,<br>Method B-HH,<br>Non-carcinogenic/<br>Potable<br>WAC 173-340-<br>720(4)(b)(iii)(A)<br>EQ. 720-1<br>CLARC Database | Ground Water, Method B-HH, Carcinogen/ Potable WAC 173-340- 720(4)(b)(iii)(B) EO. 720-2 CLARC Database | Ground Water, Method B-HH, Potable, Petroleum Mixture WAC 173-340- 720(4)(b)(iii)(C) EQ. 720-3 (4-Phase Model) | Ground Water<br>Method C - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(5)(b)(i) | Ground Water,<br>Method C-HH,<br>Protect Surface<br>Water Highest<br>Beneficial Use<br>WAC 173-340-<br>720(5)(b)(ii) | Ground Water,<br>Method C-HH,<br>Non-carcinogenic/<br>Potable<br>WAC 173-340-<br>720(5)(b)(iii)(A)<br>CLARC Database |  |  |
| UNITS                                                      | μg/L                                                                                      | μg/L                                                                             | µg/L                                                                                                              | μg/L                                                                                                                                       | μg/L                                                                                                                    | μg/L                                                                                                   | µg/L                                                                                                   | μg/L                                                                                       | μg/L                                                                                               | μg/L                                                                                                                          | μg/L                                                                                                                          | μg/L                                                                                                                                 | µg/L                                                                                                                                 | μg/L                                                                                                                              | μg/L                                                                                                   | μg/L                                                                                                           | μg/L                                                                            | μg/L                                                                                                                 | μg/L                                                                                                                 |  |  |
| benzoic acid                                               |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| benzyl alcohol                                             |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      | 800                                                                                                                               |                                                                                                        | •                                                                                                              | *                                                                               | *                                                                                                                    | 1750                                                                                                                 |  |  |
| dimethylphenol, 2,4-                                       |                                                                                           | 100                                                                              |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |  |  |
| methylphenol, 2- (o-cresol)<br>methylphenol, 4- (p-cresol) |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 1750<br>175                                                                                                          |  |  |
| pentachlorophenol                                          |                                                                                           |                                                                                  |                                                                                                                   | 1                                                                                                                                          | *0                                                                                                                      | 1                                                                                                      | *0                                                                                                     | *                                                                                          | *                                                                                                  | 1                                                                                                                             | *0                                                                                                                            | 1                                                                                                                                    | *0                                                                                                                                   | 80                                                                                                                                | 0.219                                                                                                  |                                                                                                                | *                                                                               | *                                                                                                                    | 175                                                                                                                  |  |  |
| phenol (total)                                             |                                                                                           | 2000                                                                             |                                                                                                                   |                                                                                                                                            | ·                                                                                                                       |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      | 2400                                                                                                                              | 0.213                                                                                                  |                                                                                                                | *                                                                               | *                                                                                                                    | 5250                                                                                                                 |  |  |
| styrene (phenylethylene)                                   |                                                                                           |                                                                                  |                                                                                                                   | 100                                                                                                                                        | 100                                                                                                                     | 100                                                                                                    | 100                                                                                                    | *                                                                                          | *                                                                                                  | 100                                                                                                                           | 100                                                                                                                           | 100                                                                                                                                  | 100                                                                                                                                  | 1600                                                                                                                              |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 3500                                                                                                                 |  |  |
| Tributyltin                                                |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Trichlorophenol, 2,4,6-                                    |                                                                                           | 3                                                                                | 4                                                                                                                 |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      | 8                                                                                                                                 | 4                                                                                                      | *                                                                                                              | *                                                                               | *                                                                                                                    | 17.5                                                                                                                 |  |  |
|                                                            |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Aluminum                                                   |                                                                                           | :                                                                                | -                                                                                                                 | 50<br>6                                                                                                                                    | 6                                                                                                                       | 6                                                                                                      | 6                                                                                                      | *                                                                                          | *                                                                                                  | 50                                                                                                                            | 6                                                                                                                             | 6                                                                                                                                    | 6                                                                                                                                    | 16000                                                                                                                             |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 35000                                                                                                                |  |  |
| Antimony<br>Arsenic (III)                                  |                                                                                           |                                                                                  |                                                                                                                   | 6                                                                                                                                          | 6                                                                                                                       | 6                                                                                                      | б                                                                                                      | *                                                                                          | *                                                                                                  | 6                                                                                                                             | 6                                                                                                                             | 6                                                                                                                                    | 6                                                                                                                                    |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Arsenic (III)                                              |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Arsenic (total)                                            | 5                                                                                         |                                                                                  | 0.05                                                                                                              | 10                                                                                                                                         | *0                                                                                                                      | 10                                                                                                     | *0                                                                                                     | *                                                                                          | *                                                                                                  | 10                                                                                                                            | *0                                                                                                                            | 10                                                                                                                                   | *0                                                                                                                                   | 4.8                                                                                                                               | 0.0583                                                                                                 |                                                                                                                | *                                                                               | *                                                                                                                    | 11                                                                                                                   |  |  |
| Barium                                                     |                                                                                           |                                                                                  | 1000                                                                                                              | 2000                                                                                                                                       | 2000                                                                                                                    | 2                                                                                                      | 2                                                                                                      | *                                                                                          | *                                                                                                  | 2000                                                                                                                          | 2000                                                                                                                          | 2                                                                                                                                    | 2                                                                                                                                    | 560                                                                                                                               |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    | 7000                                                                                                                 |  |  |
| Beryllium                                                  |                                                                                           | •                                                                                |                                                                                                                   | 4                                                                                                                                          | 4                                                                                                                       | 4                                                                                                      | 4                                                                                                      | *                                                                                          | *                                                                                                  | 4                                                                                                                             | 4                                                                                                                             | 4                                                                                                                                    | 4                                                                                                                                    | 32                                                                                                                                |                                                                                                        | •                                                                                                              | *                                                                               | *                                                                                                                    | 70                                                                                                                   |  |  |
| Cadmium                                                    | 5                                                                                         |                                                                                  | 10                                                                                                                | 5                                                                                                                                          | 5                                                                                                                       | 5                                                                                                      | 5                                                                                                      |                                                                                            |                                                                                                    | 5                                                                                                                             | 5                                                                                                                             | 5                                                                                                                                    | 5                                                                                                                                    | 16                                                                                                                                |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 35                                                                                                                   |  |  |
| Chromium (VI)<br>Chromium, total (or III)                  | 50                                                                                        | 20<br>10000                                                                      | 50                                                                                                                | 100                                                                                                                                        | 100                                                                                                                     | 100                                                                                                    | 100                                                                                                    | *                                                                                          | *                                                                                                  | 100                                                                                                                           | 100                                                                                                                           | 100                                                                                                                                  | 100                                                                                                                                  | 48                                                                                                                                |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 105                                                                                                                  |  |  |
| Cobalt                                                     | 50                                                                                        | *                                                                                | 50                                                                                                                | 100                                                                                                                                        | 100                                                                                                                     | 100                                                                                                    | 100                                                                                                    | *                                                                                          | *                                                                                                  | 100                                                                                                                           | 100                                                                                                                           | 100                                                                                                                                  | 100                                                                                                                                  |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Copper                                                     |                                                                                           |                                                                                  | 1000                                                                                                              | 1000                                                                                                                                       | 1300                                                                                                                    | 1300                                                                                                   | 1300                                                                                                   | *                                                                                          | *                                                                                                  | 1000                                                                                                                          | 1300                                                                                                                          | 1300                                                                                                                                 | 1300                                                                                                                                 | 640                                                                                                                               |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 1400                                                                                                                 |  |  |
| Iron                                                       |                                                                                           |                                                                                  | 300                                                                                                               | 300                                                                                                                                        |                                                                                                                         | 300                                                                                                    |                                                                                                        | *                                                                                          | *                                                                                                  | 300                                                                                                                           |                                                                                                                               | 300                                                                                                                                  |                                                                                                                                      | 11200                                                                                                                             |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 24500                                                                                                                |  |  |
| Lead                                                       | 15                                                                                        |                                                                                  | 50                                                                                                                | 15                                                                                                                                         | *0                                                                                                                      | 15                                                                                                     | *0                                                                                                     | *                                                                                          | *                                                                                                  | 15                                                                                                                            | *0                                                                                                                            | 15                                                                                                                                   | *0                                                                                                                                   |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Manganese                                                  |                                                                                           | 300                                                                              | 50                                                                                                                | 50                                                                                                                                         |                                                                                                                         | 50                                                                                                     |                                                                                                        | *                                                                                          | *                                                                                                  | 50                                                                                                                            |                                                                                                                               | 50                                                                                                                                   |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 4900                                                                                                                 |  |  |
| Mercury                                                    | 2                                                                                         |                                                                                  | 2                                                                                                                 | 2                                                                                                                                          | 2                                                                                                                       | 2                                                                                                      | 2                                                                                                      | *                                                                                          | *                                                                                                  | 2                                                                                                                             | 2                                                                                                                             | 2                                                                                                                                    | 2                                                                                                                                    |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Mercury (organic)<br>Molybdenum                            |                                                                                           | 40                                                                               |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        |                                                                                            | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                |                                                                                 |                                                                                                                      | 175                                                                                                                  |  |  |
| Nickel                                                     |                                                                                           | 100                                                                              |                                                                                                                   |                                                                                                                                            |                                                                                                                         | 100                                                                                                    |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               | 100                                                                                                                                  |                                                                                                                                      | 320                                                                                                                               |                                                                                                        | *                                                                                                              | *                                                                               |                                                                                                                      | 700                                                                                                                  |  |  |
| Selenium                                                   |                                                                                           |                                                                                  | 10                                                                                                                | 50                                                                                                                                         | 50                                                                                                                      | 50                                                                                                     | 50                                                                                                     | *                                                                                          | *                                                                                                  | 50                                                                                                                            | 50                                                                                                                            | 50                                                                                                                                   | 50                                                                                                                                   | 80                                                                                                                                |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 175                                                                                                                  |  |  |
| Silver                                                     |                                                                                           | 100                                                                              | 50                                                                                                                | 100                                                                                                                                        | 100                                                                                                                     | 100                                                                                                    |                                                                                                        | *                                                                                          | *                                                                                                  | 100                                                                                                                           | 100                                                                                                                           | 100                                                                                                                                  |                                                                                                                                      | 80                                                                                                                                |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    | 175                                                                                                                  |  |  |
| Tin                                                        |                                                                                           | •                                                                                |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Thallium                                                   |                                                                                           | •                                                                                |                                                                                                                   | 2                                                                                                                                          | 0.5                                                                                                                     | 2                                                                                                      | 0.5                                                                                                    | *                                                                                          | *                                                                                                  | 2                                                                                                                             | 0.5                                                                                                                           | 2                                                                                                                                    | 0.5                                                                                                                                  |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Vanadium                                                   |                                                                                           | 2000                                                                             | 5000                                                                                                              | 5000                                                                                                                                       |                                                                                                                         | 5000                                                                                                   |                                                                                                        | *                                                                                          | *                                                                                                  | 5000                                                                                                                          |                                                                                                                               | 5000                                                                                                                                 |                                                                                                                                      | 1.12<br>4800                                                                                                                      |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 2.45<br>10500                                                                                                        |  |  |
| Zinc                                                       |                                                                                           | *                                                                                | 5000                                                                                                              | 5000                                                                                                                                       |                                                                                                                         | 5000                                                                                                   |                                                                                                        | *                                                                                          | *                                                                                                  | 5000                                                                                                                          |                                                                                                                               | 5000                                                                                                                                 | <b>—</b>                                                                                                                             | 4800                                                                                                                              |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 10000                                                                                                                |  |  |
| LPAH                                                       |                                                                                           |                                                                                  | 0.01                                                                                                              |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| HPAH                                                       |                                                                                           | •                                                                                | 0.01                                                                                                              |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Total Petroleum Hydrocarbons                               |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Gasoline                                                   | 1000                                                                                      |                                                                                  |                                                                                                                   | <del>                                     </del>                                                                                           | -                                                                                                                       |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      | <del>                                     </del>                                                                                     | -                                                                                                                                 |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Gasoline (w/benzene)                                       | 800                                                                                       |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |  |  |
| Diesel<br>Heavy Oil                                        | 500<br>500                                                                                |                                                                                  |                                                                                                                   | <del> </del>                                                                                                                               |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      | <del> </del>                                                                                                                         |                                                                                                                                   | 1                                                                                                      |                                                                                                                | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
|                                                            |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               |                                                                                                                      |                                                                                                                      |  |  |
| 2,3,7,8-TCDD (Dioxin)                                      |                                                                                           | •                                                                                | 0.0000006                                                                                                         | 0.0000003                                                                                                                                  | *0                                                                                                                      | 0.0000003                                                                                              | *0                                                                                                     | *                                                                                          | *                                                                                                  | 0.0000003                                                                                                                     | *0                                                                                                                            | 0.0000003                                                                                                                            | *0                                                                                                                                   |                                                                                                                                   | 0.0000058                                                                                              | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
|                                                            |                                                                                           | •                                                                                |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | •                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Aldrin                                                     | -                                                                                         | :                                                                                |                                                                                                                   | -                                                                                                                                          | -                                                                                                                       |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      | -                                                                                                                                    | 0.24                                                                                                                              | 0.002573529                                                                                            | :                                                                                                              | *                                                                               |                                                                                                                      | 0.525                                                                                                                |  |  |
| alpha-BHC<br>beta-BHC                                      | -                                                                                         | - :                                                                              |                                                                                                                   | <del> </del>                                                                                                                               |                                                                                                                         |                                                                                                        |                                                                                                        |                                                                                            |                                                                                                    |                                                                                                                               |                                                                                                                               |                                                                                                                                      | <del> </del>                                                                                                                         |                                                                                                                                   | 0.013888889<br>0.048611111                                                                             |                                                                                                                | *                                                                               |                                                                                                                      |                                                                                                                      |  |  |
| gamma-BHC (Lindane)                                        | 0.1                                                                                       |                                                                                  |                                                                                                                   | 0.0002                                                                                                                                     | 0.0002                                                                                                                  | 0.0002                                                                                                 |                                                                                                        | *                                                                                          | *                                                                                                  | 0.0002                                                                                                                        | 0.0002                                                                                                                        | 0.0002                                                                                                                               | <del> </del>                                                                                                                         | 4.8                                                                                                                               | 0.040611111                                                                                            |                                                                                                                | *                                                                               | *                                                                                                                    | 10.5                                                                                                                 |  |  |
| Chlordane                                                  | <b></b>                                                                                   |                                                                                  |                                                                                                                   | 0.002                                                                                                                                      | *0                                                                                                                      | 0.002                                                                                                  |                                                                                                        | *                                                                                          | *                                                                                                  | 0.002                                                                                                                         | *0                                                                                                                            | 0.002                                                                                                                                |                                                                                                                                      | 8                                                                                                                                 | 0.25                                                                                                   | *                                                                                                              | *                                                                               |                                                                                                                      | 17.5                                                                                                                 |  |  |
| 4,4'-DDT                                                   | 0.3                                                                                       | •                                                                                |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      | 8                                                                                                                                 | 0.257352941                                                                                            | *                                                                                                              | *                                                                               | *                                                                                                                    | 17.5                                                                                                                 |  |  |
| 4,4'-DDE                                                   |                                                                                           | •                                                                                |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   | 0.257352941                                                                                            | *                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| 4,4'-DDD                                                   |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   | 0.364583333                                                                                            | •                                                                                                              | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
| Dieldrin                                                   |                                                                                           | •                                                                                | -                                                                                                                 | <del>                                     </del>                                                                                           |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      | <del>                                     </del>                                                                                     | 0.8                                                                                                                               | 0.00546875                                                                                             | *                                                                                                              | *                                                                               | *                                                                                                                    | 1.75                                                                                                                 |  |  |
| alpha-Endosulfan                                           |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            | <b>-</b>                                                                                                                |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      | 96<br>96                                                                                                                          |                                                                                                        |                                                                                                                | *                                                                               |                                                                                                                      | 210<br>210                                                                                                           |  |  |
| hota-Endoculfan                                            |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | 1                                                                                          | 1                                                                                                  |                                                                                                                               |                                                                                                                               | 1                                                                                                                                    |                                                                                                                                      | 30                                                                                                                                | 1                                                                                                      |                                                                                                                |                                                                                 |                                                                                                                      | 210                                                                                                                  |  |  |
| beta-Endosulfan<br>Endosulfan Sulfate                      |                                                                                           |                                                                                  |                                                                                                                   |                                                                                                                                            |                                                                                                                         |                                                                                                        |                                                                                                        | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                        | *                                                                                                              | *                                                                               |                                                                                                                      | 210                                                                                                                  |  |  |
| beta-Endosulfan<br>Endosulfan Sulfate<br>Endrin            |                                                                                           | :                                                                                |                                                                                                                   | 0.002                                                                                                                                      | 0.002                                                                                                                   | 0.002                                                                                                  |                                                                                                        | *                                                                                          | *                                                                                                  | 0.002                                                                                                                         | 0.002                                                                                                                         | 0.002                                                                                                                                |                                                                                                                                      | 96<br>4.8                                                                                                                         |                                                                                                        |                                                                                                                | *                                                                               | *                                                                                                                    | 210<br>10.5                                                                                                          |  |  |

| Method C                                                                                                    |                                                                                                                                      | G                                                                                                  | W PATHWAY                                                                              | 'EVALUATIO                                                                       | )N                                                                                 | AR                      | AR's                             | ARAR's<br>(Not Applied)                                             | Ass                                                   | ays Applica                                  | ible                                         | EPA Method             | POTABLE GW<br>MOST<br>STRINGENT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|----------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground Water,<br>Method C-HH,<br>Carcinogen/ Potable<br>WAC 173-340-<br>720(5)(b)(iii)(B)<br>CLARC Database | Ground Water,<br>Method C-HH,<br>Potable,<br>Petroleum Mixture<br>WAC 173-340-<br>720(5)(b)(iii)(C)<br>EQ. 720-3 (4-<br>Phase Model) | Ground Water,<br>Method B-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(4)(b)(ii) | Ground Water,<br>Non-Potable,<br>Surface Water<br>Protection<br>WAC 173-340-<br>720(6) | Groundwater to<br>Sediment<br>Protection Ecology<br>CSL WAC 173-340<br>720(1)(e) | Groundwater to<br>Sediment<br>Protection Ecology<br>(SQS WAC 173-340-<br>720(1)(c) | EPA CERCLA<br>LDW/T-117 | EPA RCRA<br>LDW/Plant 2<br>TMCLs | EPA Tap Water<br>Residential<br>Screening Levels<br>(RSL's, 5/2010) | Natural<br>Background<br>Levels<br>Ch. 173-340<br>WAC | Applicable<br>DL (MDL)<br>Ch. 173-340<br>WAC | Applicable<br>PQL (RL)<br>Ch. 173-340<br>WAC | Analytical Methods     | Screening<br>Levels             | POTABLE GROUNDWATER (Screening Levels Including Potable Groundwater Regulations When Applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/L                                                                                                        | μg/L                                                                                                                                 | μg/L                                                                                               | μg/L                                                                                   | μg/L                                                                             | μg/L                                                                               | μg/L                    | μg/L                             | μg/L                                                                | μg/L                                                  | μg/L                                         | μg/L                                         |                        | μg/L                            | Regulatory Framework For Most Stringent Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 2242.926156                                                                      | 2242.926156                                                                        |                         |                                  |                                                                     |                                                       | 3.69                                         | 10                                           | 8260B                  | 2242.926156                     | Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    |                                                                                                    | *                                                                                      | 233.0779055                                                                      | 181.9923372                                                                        |                         |                                  |                                                                     |                                                       | 1.31                                         | 5                                            | 8260B                  | 181.9923372                     | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 2.020624303                                                                      | 2.020624303                                                                        |                         | 655.2507426                      | 730                                                                 |                                                       | 0.32                                         |                                              | 8270D-SIM              | 2.020624303                     | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | - :                                                                                                                                  | -                                                                                                  | •                                                                                      | 7.110609481                                                                      | 7.110609481                                                                        |                         | 3053.696194                      | 1800                                                                |                                                       | 0.026                                        |                                              | 8270D-SIM              | 7.110609481<br>77.18894009      | Protection - Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.19                                                                                                        |                                                                                                                                      | *                                                                                                  |                                                                                        | 77.18894009<br>10.20710059                                                       | 77.18894009<br>5.325443787                                                         |                         | 333.8496875                      | 180                                                                 |                                                       | 0.345<br>0.032                               | 1                                            | 8270D-SIM<br>8270D-SIM | 0.219                           | Protection - Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c) HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.13                                                                                                        | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 223.880597                                                                       | 78.35820896                                                                        |                         | 40694.5198                       | 11000                                                               |                                                       | 0.388                                        | 1                                            | 8270D-SIM              | 78.35820896                     | Protection - Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.121                                        | 1                                            | 8270D-SIM              | 100                             | HH -Method B, Carcinogen/Potable WAC 173-340-720(4)(b)(iii)(B) CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              | Krone, 1988            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40                                                                                                          | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 2.1                                          | 5                                            | 8270D-SIM              | 3                               | HH -Method A Potable ARAR's WAC 173-340-720(3)(b)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             |                                                                                                                                      |                                                                                                    | •                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        | 50                              | HH -Method A Potable Safe Drinking Water Act, 40 CFR 141: WAC 173-340-720(3)(b)(ii)(A); MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                             |                                                                                                                                      | *                                                                                                  |                                                                                        |                                                                                  |                                                                                    |                         | 3.865979381                      | 15                                                                  |                                                       |                                              |                                              | 200.8                  | 3.865979381                     | HH - Method A Potable Safe Drinking Water Act, 40 CFR 141: WAC 173-340-720(3)(b)(ii)(A); MCL HH - Tribal Fish (Wo Salmon) Consumption, Non-Carc - Child, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        |                                 | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |
|                                                                                                             | •                                                                                                                                    |                                                                                                    |                                                                                        |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.583                                                                                                       |                                                                                                                                      | -                                                                                                  |                                                                                        |                                                                                  |                                                                                    | 0.71                    | 7.3                              | 0.045                                                               | 5                                                     | 0.18                                         | 0.2                                          | 200.8                  | 0.05                            | State Water Quality Criteria WAC 173-340-(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             |                                                                                                                                      | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 120                              | 7300<br>73                                                          |                                                       |                                              |                                              |                        | 4                               | State Board Health, Ch. 246-290 WAC: WAC 173-340-720(3)(b)(ii)(C); MCL  State Board Health, Ch. 246-290 WAC: WAC 173-340-720(3)(b)(ii)(C); MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 3.357954465                                                                      | 2.556054891                                                                        |                         | 0.21                             | 18                                                                  |                                                       | 0.008                                        | 0.2                                          |                        | 0.21                            | HH - Tribal Fish (w/o Salmon) Consumption, Non-Carc - Child, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 0.58                             | 0.043                                                               |                                                       | 3                                            | 10                                           | 7196A                  | 0.58                            | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 317.6470588                                                                      | 305.8823529                                                                        |                         |                                  |                                                                     |                                                       | 0.032                                        | 0.5                                          | 200.8                  | 50                              | State Water Quality Criteria WAC 173-340-(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             |                                                                                                                                      |                                                                                                    | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        | 7.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             |                                                                                                                                      | *                                                                                                  | *                                                                                      | 123.3288287                                                                      | 123.3288287                                                                        |                         | 7.3                              | 1500                                                                |                                                       | 0.059                                        | 0.5                                          | 200.8                  | 7.3<br>300                      | EPA RCRA Plant II - LDWG Groundwater Background  HH -Method B Potable WAC 173-340-720(4)(b)(i); Safe Drinking Water Standards - MCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                             |                                                                                                                                      | *                                                                                                  |                                                                                        | 13.31299809                                                                      | 11.30348894                                                                        |                         | 2.5                              |                                                                     |                                                       | 0.127                                        | 1                                            | 200.8                  | 2.5                             | Aquatic Life Fresh/Chronic, CWA §304, NRWQC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 2000                             | 880                                                                 |                                                       |                                              |                                              |                        | 50                              | State Water Quality Criteria WAC 173-340-(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 0.00742766                                                                       | 0.005161594                                                                        |                         | 0.012                            | 0.57                                                                |                                                       | 0.0002                                       | 0.1                                          | 7470                   | 0.005161594                     | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | •                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 0.00045                          | 3.7                                                                 |                                                       |                                              |                                              |                        | 0.00045                         | HH - Tribal Fish (w/o Salmon) Consumption, Non-Carc - Child, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             |                                                                                                                                      |                                                                                                    |                                                                                        |                                                                                  |                                                                                    |                         | 8.2                              | 730                                                                 |                                                       |                                              | 2                                            | 200.8                  | 40<br>8.2                       | HH -Method A Potable ARAR's WAĆ 173-340-720(3)(b)(ii)  Aquatic Life Fresh/Chronic, NTR - 40 CFR 131.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                             |                                                                                                                                      | *                                                                                                  |                                                                                        |                                                                                  |                                                                                    |                         | 5                                | 180                                                                 |                                                       |                                              |                                              | 200.8                  | 5                               | Aquatic Life Fresh/Chronic, NTR - 40 CFR 131.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      | 1.532250723                                                                      | 1.532250723                                                                        | 1.9                     | 22                               | 180                                                                 |                                                       | 0.5                                          | 0.02                                         |                        | 1.532250723                     | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  |                                                                                        |                                                                                  |                                                                                    |                         | 0.47                             |                                                                     |                                                       |                                              |                                              |                        | 0.47                            | HH -Consumption Organisms Only; Marine; CWA §304, NWRQC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                             |                                                                                                                                      | *                                                                                                  | *                                                                                      | 76.25551053                                                                      | 32.56745762                                                                        |                         | 260<br>56                        | 2.6<br>11000                                                        |                                                       | 0.4                                          | 4                                            |                        | 1.12<br>32.56745762             | HH -Method C, Non-carcinogenic/ Potable WAC 173-340-720(5)(b)(iii)(A); CLARC Database  Protection -Groundwater to Sediment {Ecology SQS}; WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             |                                                                                                                                      | *                                                                                                  |                                                                                        | 76.25551055                                                                      | 32.36/43/62                                                                        |                         | 36                               | 11000                                                               |                                                       | 0.4                                          | 4                                            |                        | 32.30743702                     | Protection -Groundwater to Sediment (Ecology SQS); WAC 173-340-720(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        | 0.01                            | State Water Quality Criteria WAC 173-340-(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             |                                                                                                                                      | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 1                                |                                                                     |                                                       |                                              |                                              |                        | 0.01                            | State Water Quality Criteria WAC 173-340-(3)(b)(ii); WAC 173-200-040(3) Table 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | :                                                                                                                                    |                                                                                                    |                                                                                        |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              | NWTPH-Dx               | 1000                            | W. M. J. A. B. W. L. (T. I. 700 d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  |                                                                                        |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              | NWTPH-G<br>NWTPH-G     | 1000<br>800                     | HH -Method A Potable (Table 720-1) WAC 173-340-720(3)(b)(i) HH -Method A Potable (Table 720-1) WAC 173-340-720(3)(b)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 40                                           | 100                                          | NWTPH-G<br>NWTPH-D     | 500                             | HH -Method A Potable (Table 720-1) WAC 173-340-720(3)(b)(i)  HW -Method A Potable (Table 720-1) WAC 173-340-720(3)(b)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    | 500                     |                                  |                                                                     |                                                       | 90                                           | 100                                          | NWTPH-Dx               | 500                             | HH -Method A Potable (Table 720-1) WAC 173-340-720(3)(b)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              |                                              |                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0000058                                                                                                   | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 2.06039E-10                      | 0.00000052                                                          |                                                       |                                              |                                              |                        | 2.06039E-10                     | HH - Tribal Fish (w/o Salmon) Consumption, Carc - Adult, EPA RCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.025735294                                                                                                 |                                                                                                                                      | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 4.7E-08                                      | 0.000001                                     | 8081B                  | 0.002573529                     | HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.138888889                                                                                                 | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.00000027                                   |                                              | 8081B                  | 0.013888889                     | HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.486111111                                                                                                 | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.00000031                                   | 0.0000005                                    | 8081B                  | 0.048611111                     | HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.00000015                                   |                                              | 8081B                  | 0.0002                          | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.5                                                                                                         |                                                                                                                                      |                                                                                                    | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              | 0.0000005                                    | 8081B                  | 0.002<br>0.257352941            | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.573529412<br>2.573529412                                                                                  | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         | 1                                |                                                                     |                                                       | 0.00000023                                   | 0.0000005                                    | 8081B<br>8081B         | 0.257352941                     | HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database  HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.645833333                                                                                                 |                                                                                                                                      | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       |                                              | 0.0000005                                    | 8081B                  | 0.364583333                     | HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0546875                                                                                                   | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.0000023                                    | 0.000005                                     | 8081B                  | 0.00546875                      | HH -Method B, Carc/Potable WAC 173-340-720(4)(b)(iii)(B); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.0000012                                    |                                              | 8081B                  | 96                              | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             |                                                                                                                                      | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.00000051                                   | 0.000002                                     | 8081B                  | 96                              | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             |                                                                                                                                      |                                                                                                    |                                                                                        | 1                                                                                |                                                                                    | I                       |                                  | 1                                                                   |                                                       | 0.00000012                                   | 0.0000005                                    | 8081B                  | 96                              | HH -Method B, Non-Carc/Potable WAC 173-340-720(4)(b)(iii)(A); CLARC Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             | *                                                                                                                                    | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                    |                         |                                  |                                                                     |                                                       | 0.00000084                                   | 0.000002                                     | 8081B                  | 0.002                           | MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### GW MOST STRINGENT Adjusted Screening Levels μg/L 2242.926156 181.9923372 2.020624303 7.110609481 77.18894009 5.325443787 78.35820896 3.865979381 7.3 120 120 0.21 0.58 305.8823529 7.3 2.5 2000 0.005161594 0.00045 8.2 5 1.532250723 0.47 32.56745762 1000 800 500 500 2.06039E-10 1.16061E-05 0.001125041 0.003937642 0.019 0.000186709 5.05602E-05 5.05602E-05 7.16269E-05 1.23315E-05 0.056

0.056 0.056 0.002 0.002

| MEDIA - MTCA Standard                       |                                                                          |                |                                                                                                                                                    | GW Method A                                                  |                                                            |             |                                                                                            |                                                                                                    |                                                                                                                               | GW Method B                                                                                                                   |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                                             |                                                                                                                                     |                                                                                 |                                                                                                                      |                                                                                                                      |  |  |
|---------------------------------------------|--------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| PATHWAYS HH - Human Health Ecol- Ecological | Ground Water, Method AHH, Potable (Table 720-1) WAC 173-340 720(3)(b)(i) | 720(3)(b)(ii): | Ground Water<br>Method A-HH-<br>Potable<br>Safe Drinking Water<br>Act, 40 CFR<br>141: WAC 173-<br>290-310; WAC 173-<br>340-720(3)(b)(ii)(A)<br>MCL | Act, 40 CFR<br>141: WAC 173-<br>290-310; 290<br>WAC 173-340- | State Board S<br>salth, Ch. 246-<br>0 WAC: WAC<br>173-340- | 1M/AC- M/AC | Ground Water<br>Method A -<br>Potable<br>No Table Values<br>WAC 173-340-<br>720(3)(b)(iii) | Ground Water,<br>Method A-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(3)(b)(iv) | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>Safe Drinking Water<br>Standards -<br>MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>Safe Drinking Water<br>Standards -<br>MCGs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>State Department of<br>Health Stanadrds -<br>MCLs | Ground Water<br>Method B - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(4)(b)(i)<br>State Department of<br>Health Stanadrds -<br>MCGs | Ground Water,<br>Method B-HH,<br>Non-carcinogenic/<br>Potable<br>WAC 173-340-<br>720(4)(b)(iii)(A)<br>EQ. 720-1<br>CLARC Database | Ground Water,<br>Method B-HH,<br>Carcinogen/<br>Potable WAC<br>173-340-<br>720(4)(b)(iii)(B) EQ.<br>720-2 CLARC<br>Database | Ground Water,<br>Method B-HH,<br>Potable,<br>Petroleum Mixture<br>WAC 173-340-<br>720(4)(b)(iii)(C)<br>EQ. 720-3<br>(4-Phase Model) | Ground Water<br>Method C - HH<br>Potable ARAR's<br>WAC 173-340-<br>720(5)(b)(i) | Ground Water,<br>Method C-HH,<br>Protect Surface<br>Water Highest<br>Beneficial Use<br>WAC 173-340-<br>720(5)(b)(ii) | Ground Water,<br>Method C-HH,<br>Non-carcinogenic/<br>Potable<br>WAC 173-340-<br>720(5)(b)(iii)(A)<br>CLARC Database |  |  |
| UNITS                                       | μg/L μg/L                                                                | μg/L           | μg/L                                                                                                                                               | μg/L                                                         | μg/L                                                       | μg/L        | μg/L                                                                                       | μg/L                                                                                               | μg/L                                                                                                                          | μg/L                                                                                                                          | µg/L                                                                                                                                 | μg/L                                                                                                                                 | μg/L                                                                                                                              | μg/L                                                                                                                        | μg/L                                                                                                                                | μg/L                                                                            | μg/L                                                                                                                 | μg/L                                                                                                                 |  |  |
| Heptachlor                                  |                                                                          |                | 0.0004                                                                                                                                             | *0                                                           | 0.0004                                                     |             | *                                                                                          | *                                                                                                  | 0.0004                                                                                                                        | *0                                                                                                                            | 0.0004                                                                                                                               |                                                                                                                                      | 8                                                                                                                                 | 0.01944444                                                                                                                  |                                                                                                                                     | *                                                                               | *                                                                                                                    | 17.5                                                                                                                 |  |  |
| Heptachlor Epoxide                          |                                                                          |                | 0.0002                                                                                                                                             | *0                                                           | 0.0002                                                     |             | *                                                                                          | *                                                                                                  | 0.0002                                                                                                                        | *0                                                                                                                            | 0.0002                                                                                                                               |                                                                                                                                      | 0.104                                                                                                                             | 0.004807692                                                                                                                 |                                                                                                                                     | *                                                                               | *                                                                                                                    | 0.2275                                                                                                               |  |  |
| Toxaphene                                   |                                                                          |                |                                                                                                                                                    |                                                              |                                                            |             | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                                             | *                                                                                                                                   | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |
|                                             |                                                                          | 1              |                                                                                                                                                    |                                                              |                                                            |             | *                                                                                          | *                                                                                                  |                                                                                                                               |                                                                                                                               |                                                                                                                                      |                                                                                                                                      |                                                                                                                                   |                                                                                                                             |                                                                                                                                     | *                                                                               | *                                                                                                                    |                                                                                                                      |  |  |

| Method C                                                                                                    |                                                                                                                 | G                                                                                                  | W PATHWAY                                                                              | ( EVALUATIO                                                                      | N                                                                                 | AR                      | AR's                             | ARAR's<br>(Not Applied)                                             | ASSS                                                  | ays Applica                                  | bie                                          | EPA Method         | POTABLE GW<br>MOST<br>STRINGENT |                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|----------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------|---------------------------------|--------------------------------------------------------------------------------------------------|
| Ground Water,<br>Method C-HH,<br>Carcinogen/ Potable<br>WAC 173-340-<br>720(5)(b)(iii)(B)<br>CLARC Database | Ground Water, Method C-HH, Potable, Petroleum Mixture WAC 173-340- 720(5)(b)(iii)(C) EQ. 720-3 (4- Phase Model) | Ground Water,<br>Method B-HH,<br>Potable/Protect<br>Surface Water<br>WAC 173-340-<br>720(4)(b)(ii) | Ground Water,<br>Non-Potable,<br>Surface Water<br>Protection<br>WAC 173-340-<br>720(6) | Groundwater to<br>Sediment<br>Protection Ecology<br>CSL WAC 173-340<br>720(1)(c) | Groundwater to<br>Sediment<br>Protection Ecology<br>SQS WAC 173-340-<br>720(1)(c) | EPA CERCLA<br>LDW/T-117 | EPA RCRA<br>LDW/Plant 2<br>TMCLs | EPA Tap Water<br>Residential<br>Screening Levels<br>(RSL's, 5/2010) | Natural<br>Background<br>Levels<br>Ch. 173-340<br>WAC | Applicable<br>DL (MDL)<br>Ch. 173-340<br>WAC | Applicable<br>PQL (RL)<br>Ch. 173-340<br>WAC | Analytical Methods | Screening<br>Levels             | POTABLE GROUNDWATER (Screening Levels Including Potable Groundwater Regulations When Applicable) |
| μg/L                                                                                                        | μg/L                                                                                                            | μg/L                                                                                               | μg/L                                                                                   | μg/L                                                                             | μg/L                                                                              | μg/L                    | μg/L                             | μg/L                                                                | μg/L                                                  | μg/L                                         | μg/L                                         |                    | μg/L                            | Regulatory Framework For Most Stringent Criteria                                                 |
| 0.19444444                                                                                                  | *                                                                                                               | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                   |                         |                                  |                                                                     |                                                       | 0.00000017                                   | 0.0000005                                    | 8081B              | 0.0004                          | MCL                                                                                              |
| 0.048076923                                                                                                 | *                                                                                                               | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                   |                         |                                  |                                                                     |                                                       | 0.00000047                                   | 0.000001                                     | 8081B              | 0.0002                          | MCL                                                                                              |
|                                                                                                             | *                                                                                                               | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                   |                         |                                  |                                                                     |                                                       |                                              |                                              | 8081B              |                                 |                                                                                                  |
|                                                                                                             | *                                                                                                               | *                                                                                                  | *                                                                                      |                                                                                  |                                                                                   |                         |                                  |                                                                     |                                                       |                                              |                                              |                    |                                 |                                                                                                  |

GW MOST STRINGENT

Adjusted Screening Levels

μg/L

1.82819E-05 9.04051E-06

6.39423E-05

| MEDIA - MTCA Standard                                                     |                                                                                                 |                                |                                      | SW                                                                                                                                   | Method A                                                                                                           |                                                                                                         |                                                                                                                       |                                                                                                   |                                                                                                                         |                                                                                                                                      |                                                                                                                   |                                                                                                              |                                                                                                                                           | SW Method                                         | В                                                                                                                                       |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         |                                                                              |                                                                                                       |                                                                                                            | SW Meth                                                                                                                                  | hod C                                                                                                                                    |                                                     |                                                                              | HIDDEN GW<br>ARAR's                                                                    |                                                                                                                                   |                                                                                                                                        |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| PATHWAYS<br>HH - Human Health<br>Ecol- Ecological                         | Surface Wate<br>Method A - H<br>ARAR's<br>WAC 173-34<br>730(2)(b)(i)<br>[See Require<br>ARAR's] | Method<br>WAC 173<br>730(2)(b) | I A -<br>3-340-<br>)(i)(A)<br>quired | Surface Water,<br>Method A - HH/<br>Aquatic<br>Organisms:<br>CWA §304<br>WAC 173-340-<br>730(2)(b)(i)(B)<br>[See Required<br>ARAR's] | Surface Water,<br>Method A - HH<br>NTR - 40 CFR 131<br>WAC 173-340-<br>730(2)(9)(0)(C)<br>[See Required<br>ARAR's] | Surface Water,<br>Method A - HH<br>Potability<br>WAC 173-340-<br>730(2)(b)(ii) [Sec<br>Required ARAR's] | Surface Water, Method A - HH No Table Values WAC 173-340- 730(2)(b)(iii) [See applicable SW background or PQL values] | Surface Water,<br>Method B - HH<br>ARAR's WAC<br>173-340-730(3)(b)(i)<br>[See Required<br>ARAR's] | Surface Water,<br>Method B -<br>WA WQS:Ch. 173<br>2101 A<br>WAC 173-340-<br>730(3)(b)(i)(A)<br>[See Required<br>ARAR's] | Surface Water,<br>Method B - HH/<br>Aquatic<br>Organisms: CWA<br>§304<br>WAC 173-340-<br>730(3)(b)(i)(B)<br>[See Required<br>ARAR's] | Surface Water,<br>Method B - HH<br>NTR - 40 CFR 13<br>WAC 173-340-<br>730(3)(b)(i)(C)<br>[See Required<br>ARAR's] | Surface Water,<br>Method B,<br>I Environmental<br>Effects, WAC<br>173-340-<br>730(3)(b)(ii)<br>[WET TESTING] | Surface Water,<br>Method B-HH,<br>Non-carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(A)<br>EQ. 730-1<br>CLARC Database | WAC 173-340-<br>730(3)(c)<br><b>EQ. 730-1 MOD</b> | Surface Water,<br>Method B-HH,<br>Non-carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(c)<br>- EQ. 730-1 MOD -<br>Tribal Child | Surface Water,<br>Method B-HH,<br>Carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(B)<br>EQ. 730-2<br>CLARC Database | Surface Water,<br>Method B-HH,<br>Carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(B)<br>EQ. 730-2<br>MOD - Tribal<br>Adult | Surface Water,<br>Method B-HH,<br>Carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(B)<br>EQ. 730-2<br>MOD - Tribal<br>Child | Surface Water,<br>Method B-HH<br>Petroleum Mixture<br>WAC 173-340-<br>730(3)(b)(iii)(C) | Surface Water,<br>Method B-HH<br>Potability<br>WAC 173-340-<br>730(3)(b)(iv) | Surface Water,<br>Method C - HH<br>ARAR's<br>WAC 173-340-<br>730(4)(b)(i)<br>[See Required<br>ARAR's] | Surface Water,<br>Method C,<br>Environmental<br>Effects,<br>WAC 173-340-<br>730(4)(b)(ii)<br>[WET TESTING] | Surface Water,<br>Method C,<br>Non-carcinogen,<br>Fish Consumtion<br>WAC 173-340-<br>730(4)(b)(iii)(A)<br>EQ. 730-1<br>CLARC<br>Database | Surface Water,<br>Method C,<br>Carcinogen,<br>Fish<br>Consumption<br>WAC 173-340-<br>730(4)(b)(iii)(B)<br>EQ. 730-2<br>CLARC<br>Database | Surface Water,<br>Method C,<br>Petroleum<br>Mixture | Surface Water,<br>Method C-HH<br>Potability<br>WAC 173-340-<br>730(4)(b)(iv) | Ground Water,<br>Method A-HH,<br>Potable (Table<br>720-1) WAC 173-<br>340-720(3)(b)(i) | Surface Water<br>Aquatic Life<br>SWQS.RCW 90-48;<br>Ch. 173-2014-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)((A) Fresh-<br>Acute | Surface Water<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Fresh - Chronic |
| UNITS                                                                     | μg/L                                                                                            | μg/l                           | L                                    | μg/L                                                                                                                                 | μg/L                                                                                                               | μg/L                                                                                                    | μg/L                                                                                                                  | μg/L                                                                                              | μg/L                                                                                                                    | μg/L                                                                                                                                 | μg/L                                                                                                              | μg/L                                                                                                         | μg/L                                                                                                                                      | μg/L                                              | μg/L                                                                                                                                    | μg/L                                                                                                                                  | μg/L                                                                                                                                         | μg/L                                                                                                                                         | μg/L                                                                                    | μg/L                                                                         | μg/L                                                                                                  | μg/L                                                                                                       | μg/L                                                                                                                                     | μg/L                                                                                                                                     | μg/L                                                | μg/L                                                                         | μg/L                                                                                   | μg/L                                                                                                                              | μg/L                                                                                                                                   |
| acetone<br>acenaphthene                                                   | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           | 239932.7328<br>208.8670622                        |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 1606.97888                                                                                                                               |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| acenaphthylene<br>anthracene                                              | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 25925.92593                                                                                                                               | 8424.30484                                        | 3865.979381                                                                                                                             |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 64814.81481                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del></del>                                                                                                                            |
| benzene                                                                   | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   | 297.3830293                                                                                                                             | 22.66252266                                                                                                                           | 3.221707489                                                                                                                                  | 15.77031216                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 4985.754986                                                                                                                              | 567                                                                                                                                      | *                                                   | *                                                                            | 5                                                                                      |                                                                                                                                   |                                                                                                                                        |
| benzo(g,h,i)perylene<br>benzo[a]anthracene                                | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         | 0.295958059                                                                                                                           | 0.04207344                                                                                                                                   | 0.205950195                                                                                                                                  | 0.018                                                                                   | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          | 0.74                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del>                                     </del>                                                                                       |
| benzo[a]pyrene                                                            | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         | 0.029595806                                                                                                                           | 0.004207344                                                                                                                                  | 0.02059502                                                                                                                                   | 0.018                                                                                   | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          | 0.74                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| benzo[b]fluoranthene<br>benzo[k]fluoranthene                              | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         | 0.295958059<br>0.295958059                                                                                                            | 0.04207344<br>0.04207344                                                                                                                     | 0.205950195<br>0.205950195                                                                                                                   | 0.018<br>0.018                                                                          | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          | 0.74                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| bis(2-ethylhexyl) phthalate                                               | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 398.8603989                                                                                                                               |                                                   | 59.47660587                                                                                                                             | 3.561253561                                                                                                                           |                                                                                                                                              | 2.478191911                                                                                                                                  | 2.2                                                                                     | *                                                                            | *                                                                                                     | *                                                                                                          | 997.1509972                                                                                                                              | 89                                                                                                                                       | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <u> </u>                                                                                                                               |
| butyl benzyl phthalate<br>carbon tetrachloride                            | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 1252.46019<br>553.0864198                                                                                                                 | 406.9712483<br>179.7185033                        | 186.762289<br>82.4742268                                                                                                                | 8.239869669<br>4.938271605                                                                                                            | 1.17138106<br>0.702025403                                                                                                                    | 5.733929924<br>3.436426117                                                                                                                   |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 3131.150474<br>1380                                                                                                                      | 206<br>123                                                                                                                               | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| chlorobenzene                                                             | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 1813.001813                                                                                                                               | 589.1122266                                       | 270.3482085                                                                                                                             |                                                                                                                                       |                                                                                                                                              | <u> </u>                                                                                                                                     |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del></del>                                                                                                                            |
| chloroethane (ethyl chloride)<br>chloroform (trichloromethane)            | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 6913.580247                                                                                                                               | 2246.481291                                       | 1030.927835                                                                                                                             | 55.75467941                                                                                                                           | 7.926093264                                                                                                                                  | 38.79835938                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 17283.95062                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| chloromethane (methyl chloride)                                           | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         | 132.9534663<br>2.959580585                                                                                                            | 18.90068394<br>0.420734403                                                                                                                   | 92.51916468<br>2.059501954                                                                                                                   | 0.018                                                                                   | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          | 0.74                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del>                                     </del>                                                                                       |
| dibenz[a,h]anthracene                                                     | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         | 0.295958059                                                                                                                           |                                                                                                                                              | 0.205950195                                                                                                                                  | 0.018                                                                                   | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          | 0.74                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| dibenzofuran<br>di-butyl phthalate (di-n-butyl phth.)                     | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 2913.025385                                                                                                                               | 946.5511057                                       | 434.3797058                                                                                                                             |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 7282.563462                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del>                                     </del>                                                                                       |
| dichlorobenzene, 1,2-                                                     | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           | 1363.646467                                       |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 10491.60671                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| dichlorobenzene, 1,3-<br>dichlorobenzene, 1,4-                            | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del>                                     </del>                                                                                       |
| dichloroethane, 1,1-                                                      | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 106691.0532                                                                                                                               |                                                   |                                                                                                                                         | 233.9716079                                                                                                                           |                                                                                                                                              | 162.8152941                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| dichloroethane, 1,2-<br>dichloroethylene, 1,1-                            | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 43209.87654<br>23148.14815                                                                                                                | 14040.50807<br>7521.70075                         | 6443.298969<br>3451.767305                                                                                                              | 59.35422602                                                                                                                           | 8.437805329                                                                                                                                  | 41.30319852                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 108024.6914<br>57870.37037                                                                                                               | 1480<br>48.2                                                                                                                             | *                                                   | *                                                                            | 5                                                                                      |                                                                                                                                   | <del>                                     </del>                                                                                       |
| diethyl phthalate                                                         | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 28411.97362                                                                                                                               |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 71029.93404                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| dimethyl phthalate<br>di-n-octyl phthalate                                | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del></del>                                                                                                                            |
| ethylbenzene                                                              | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 6913.580247                                                                                                                               |                                                   | 1030.927835                                                                                                                             |                                                                                                                                       | 2.233717193                                                                                                                                  | 10.9340831                                                                                                                                   |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 17283.95062                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            | 700                                                                                    |                                                                                                                                   |                                                                                                                                        |
| fluoranthene<br>fluorene                                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 90.17713366<br>3456.790123                                                                                                                | 29.30192988<br>1123.240645                        | 13.44688481<br>515.4639175                                                                                                              |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 225.4428341<br>8641.975309                                                                                                               |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| hexachlorobenzene                                                         | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 0.238399319<br>925.9259259                                                                                                                | 0.077464872<br>300.86803                          | 0.035549236<br>138.0706922                                                                                                              | 0.000465624<br>29.67711301                                                                                                            | 6.61931E-05<br>4.218902664                                                                                                                   | 0.000324016<br>20.65159926                                                                                                                   |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 0.595998297<br>2330                                                                                                                      | 0.0117<br>747                                                                                                                            | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del> </del>                                                                                                                           |
| hexachlorobutadiene<br>indeno[1,2,3-cd]pyrene                             | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 925.9259259                                                                                                                               | 300.86803                                         | 138.0706922                                                                                                                             | 0.029595806                                                                                                                           |                                                                                                                                              | 0.02059502                                                                                                                                   | 0.018                                                                                   | *                                                                            | *                                                                                                     | *                                                                                                          | 2330                                                                                                                                     | 0.74                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| MEK (Methyl Ethyl Ketone;2-Butanone) methylene chloride (dichloromethane) | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 492264.4163<br>172839.5062                                                                                                                | 159955.1552<br>56162.03227                        | 73404.6718<br>25773.19588                                                                                                               | 960.2194787                                                                                                                           | 136.5049395                                                                                                                                  | 668.1939672                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 432098.7654                                                                                                                              | 24000                                                                                                                                    | *                                                   | *                                                                            | 5                                                                                      |                                                                                                                                   | 1                                                                                                                                      |
| methylnaphthalene, 2-                                                     | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 172839.5062                                                                                                                               | 56162.03227                                       | 25773.19588                                                                                                                             | 960.2194787                                                                                                                           | 136.5049395                                                                                                                                  | 668.1939672                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 432098.7654                                                                                                                              | 24000                                                                                                                                    | *                                                   | *                                                                            | J                                                                                      |                                                                                                                                   |                                                                                                                                        |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone) naphthalene                           | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 4938,271605                                                                                                                               | 1604.629493                                       | 736.377025                                                                                                                              |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 12345.67901                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            | 160                                                                                    |                                                                                                                                   | <del></del>                                                                                                                            |
| nitrosodiphenylamine, N-                                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 4930.271003                                                                                                                               | 1604.629493                                       | 730.377025                                                                                                                              |                                                                                                                                       | 1.382665579                                                                                                                                  |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 1990                                                                                                                                     | 243                                                                                                                                      | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| pcb mixtures<br>pcb - Aroclor 1016                                        | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 0.005816714                                                                                                                               | 0.001890068                                       | 0.000867367                                                                                                                             |                                                                                                                                       | 1.47662E-05<br>0.00042189                                                                                                                    |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 2.077397911<br>0.014541785                                                                                                               | 0.0026                                                                                                                                   | *                                                   | *                                                                            | 0.1                                                                                    | 2                                                                                                                                 | 0.014                                                                                                                                  |
| pcb - Aroclor 1221                                                        | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 0.000010714                                                                                                                               | 0.001030000                                       | 0.000007307                                                                                                                             | 0.002307711                                                                                                                           | 0.00042103                                                                                                                                   | 0.00200310                                                                                                                                   |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 0.014341703                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| pcb - Aroclor 1232<br>pcb - Aroclor 1242                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | -                                                                                                                                         |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del>                                     </del>                                                                                       |
| pcb - Aroclor 1248                                                        | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <u> </u>                                                                                                                               |
| pcb - Aroclor 1254<br>pcb - Aroclor 1260                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 0.001661918                                                                                                                               | 0.00054002                                        | 0.000247819                                                                                                                             | 0.00010387                                                                                                                            | 1.47662E-05                                                                                                                                  | 7.22806E-05                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 0.004154796                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| phenanthrene                                                              | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        | <u> </u>                                                                                                                          | <u> </u>                                                                                                                               |
| pyrene<br>tetrachloroethylene (perchloroethylene)                         | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           | 21.41772417<br>271.751769                         | 9.828761139<br>124.7090123                                                                                                              | 0.387185274                                                                                                                           | 0.055042314                                                                                                                                  | 0.022079603                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 2090.800478                                                                                                                              | 104                                                                                                                                      | *                                                   | *                                                                            | 5                                                                                      |                                                                                                                                   |                                                                                                                                        |
| trichlorobenzene, 1,2,4-                                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 227.4204029                                                                                                                               | 73.89741088                                       | 33.91209984                                                                                                                             |                                                                                                                                       | 0.278707907                                                                                                                                  |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 568.5510071                                                                                                                              | 49                                                                                                                                       | *                                                   | *                                                                            | 200                                                                                    |                                                                                                                                   | <del></del>                                                                                                                            |
| trichlorethane, 1,1,1-<br>trichlorethane, 1,1,2-                          | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 925925.9259<br>2304.526749                                                                                                                | 300868.03<br>748.8270969                          |                                                                                                                                         | 25.26893365                                                                                                                           | 3.592235251                                                                                                                                  | 17.58405177                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 2314814.815<br>5761.316872                                                                                                               | 632                                                                                                                                      | *                                                   | *                                                                            | 200                                                                                    |                                                                                                                                   |                                                                                                                                        |
| trichloroethylene                                                         | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 70.70707071                                                                                                                               | _                                                 | 10.54358013<br>45.21613312                                                                                                              | 6.620512238                                                                                                                           | 0.941172974                                                                                                                                  | 4.607057486                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 176.7676768                                                                                                                              | 166                                                                                                                                      | *                                                   | *                                                                            | 5                                                                                      |                                                                                                                                   | <del></del>                                                                                                                            |
| trimethylbenzene, 1,3,5-<br>toluene                                       | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 303.2272038<br>19383.86985                                                                                                                | 98.52988117<br>6298.545675                        | 45.21613312<br>2890.451874                                                                                                              |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 48459.67463                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            | 1000                                                                                   |                                                                                                                                   |                                                                                                                                        |
| vinyl chloride (chloroethylene)                                           | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           | 2160.078164                                       | 991.2767645<br>1577.950768                                                                                                              | 3.693151841                                                                                                                           | 0.525018998                                                                                                                                  | 2.569976797                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 16619.18329                                                                                                                              | 92.3                                                                                                                                     | *                                                   | *                                                                            | 0.2<br>1000                                                                            |                                                                                                                                   | <del></del>                                                                                                                            |
| xylene (dimethylbenzene)<br>benzoic acid                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 10302.01058                                                                                                                               | J+30.491//2                                       | 1311.330168                                                                                                                             |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            | 1000                                                                                   | <del></del>                                                                                                                       |                                                                                                                                        |
| benzyl alcohol<br>dimethylphenol, 2,4-                                    | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 552 7015076                                                                                                                               | 179.6227045                                       | 82.430264                                                                                                                               |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 1381.978994                                                                                                                              | 10500                                                                                                                                    | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del></del>                                                                                                                            |
| methylphenol, 2- (o-cresol)                                               | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           | 6654.269226                                       |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 1301.3/0334                                                                                                                              |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
| methylphenol, 4- (p-cresol) pentachlorophenol                             | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 1178.451178                                                                                                                               | 382.9229473                                       | 175.7263355                                                                                                                             | 1,473063972                                                                                                                           | 0.209410987                                                                                                                                  | 1.025070291                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 2950                                                                                                                                     | 36.8                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del>                                     </del>                                                                                       |
| phenol (total)                                                            | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | 555555.5556                                                                                                                               |                                                   | 82842.41532                                                                                                                             |                                                                                                                                       | J.203710307                                                                                                                                  |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 1390000                                                                                                                                  | 50.0                                                                                                                                     | *                                                   | *                                                                            |                                                                                        | <del></del>                                                                                                                       |                                                                                                                                        |
| styrene (phenylethylene)                                                  | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | <u> </u>                                                                                                                                  |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 1                                                                                                                                        | _                                                                                                                                        | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   | <del></del>                                                                                                                            |
| Tributyltin Trichlorophenol, 2,4,6-                                       | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            | <u> </u>                                                                                                                                  |                                                   |                                                                                                                                         | 3.928170595                                                                                                                           | 0.558429298                                                                                                                                  | 2.733520775                                                                                                                                  |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          | 43.2                                                                                                                                     | 98.2                                                                                                                                     | *                                                   | *                                                                            |                                                                                        |                                                                                                                                   |                                                                                                                                        |
|                                                                           | *                                                                                               | *                              |                                      | *                                                                                                                                    | *                                                                                                                  | *                                                                                                       | *                                                                                                                     | *                                                                                                 | *                                                                                                                       | *                                                                                                                                    | *                                                                                                                 | *                                                                                                            |                                                                                                                                           |                                                   |                                                                                                                                         |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                         | *                                                                            | *                                                                                                     | *                                                                                                          |                                                                                                                                          |                                                                                                                                          | *                                                   | *                                                                            |                                                                                        | , –                                                                                                                               | 1                                                                                                                                      |

| SW MCTA Method A,B,C Required ARAR's                                                                                                  |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  | ALWAYS<br>APPLICABLE                                                                            | SW MOST<br>STRINGENT                                                                                                                 |                                                            |                                                                        |                                                                                                                                                  |                                   |                            |                                                                                                      |                                                           |                             |                                                                                                    |                                                              |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------|------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
| Surface Water<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Marine - Acute | Surface Water<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(I)(A)<br>Marine - Chronic | Surface Water HH - Consumption; Water + Organism (Fresh) CWA §304 NRWQC | Surface Water<br>HH –<br>Consumption;<br>Organism Only<br>(Marine)<br>CWA §304<br>NRWQC | Surface Water<br>HH –<br>Organoleptic<br>Effects<br>CWA §304<br>NRWQC | Surface Water<br>Aquatic Life<br>Fresh/Acute,<br>CWA §304,<br>NRWQC | Surface Water<br>Aquatic Life<br>Fresh/Chronic,<br>CWA §304,<br>NRWQC | Surface Water<br>Aquatic Life<br>Marine/Acute,<br>CWA §304,<br>NRWQC | Surface Water<br>Aquatic Life<br>Marine/Chronic,<br>CWA §304,<br>NRWQC | Surface Water<br>Aquatic Life<br>Fresh/Acute,<br>NTR - 40 CFR<br>131.36 | Surface Water<br>Aquatic Life<br>Fresh/Chronic,<br>NTR - 40 CFR<br>131.36 | Surface Water<br>Aquatic Life<br>Marine/Acute,<br>NTR - 40 CFR<br>131.36 | Aquatic Life<br>Marine/Chronic | Consumption NTR  | Fresh Water<br>Organism<br>Consumption Only<br>NTR - 40 CFR<br>131.36 (WAC 173-<br>201A-040[5]) | Surface Water HH - Marine Water Organism Consumption Only NTR - 40 CFR 131.36 (WAC 173- 201A-040[5]) HH - 10 <sup>-6</sup> Carc Risk | / (NPDES)<br>40 CFR 122,125/<br>RCW 90-48;<br>WAC 173-216, | Waste Water -, Toxics Substances<br>Control Act (TSCA<br>40 CFR 761.61 | Shoreline<br>Management Act<br>RCW 90-58; WAG.<br>173-16; King<br>I) County/City Seattl<br>Shoreline Master<br>Plans (KCC Title<br>25;SMC 23.60) | Protection Ecology CSL WAC 173-34 |                            | Surface Water HI - Adult Non-Carcinogen Tribal Fish Consumption w/o Salmon EPA RCRA (using EQ 730-1) | - Child Non-Carcinogen Tribal Fish Consumption w/o Salmon | - Adult<br>Carcinogen Triba | I Surface Water HH - Child Carcinogen Tribal Fish Consumption W/o Salmon EPA RCRA (using EQ 730-2) | Natural<br>Background<br>Levels<br>Ch. 173-340<br>WAC<br>LDW | Partial<br>Screening<br>Level       |
| μg/L                                                                                                                                  | μg/L                                                                                                                                    | μg/L                                                                    | μg/L                                                                                    | μg/L                                                                  | μg/L                                                                | μg/L                                                                  | μg/L                                                                 | μg/L                                                                   | μg/L                                                                    | μg/L                                                                      | μg/L                                                                     | μg/L                           | μg/L             | μg/L                                                                                            | μg/L                                                                                                                                 | μg/L                                                       | μg/L                                                                   | μg/L                                                                                                                                             | μg/L                              | μg/L                       | μg/L                                                                                                 | μg/L                                                      | μg/L                        | μg/L                                                                                               | μg/L                                                         | μg/L                                |
|                                                                                                                                       |                                                                                                                                         | 670                                                                     | 990                                                                                     | 20                                                                    |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      | 643                                                        |                                                                        |                                                                                                                                                  | 9.31372549<br>10.78431373         | 2.614379085<br>10.78431373 | 239932.7328<br>251.4717863                                                                           |                                                           |                             |                                                                                                    |                                                              | 6000<br>2.614379085<br>10.78431373  |
|                                                                                                                                       |                                                                                                                                         | 8300<br>2.2                                                             | 40000<br>51                                                                             |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 9600<br>1.2      | 110000<br>71                                                                                    | 110000<br>71                                                                                                                         | 2400<br>1.2                                                |                                                                        |                                                                                                                                                  | 58.82352941                       | 10.78431373                | 434.2425175<br>407.9566509                                                                           |                                                           | 2.028193577                 | 9.928041555                                                                                        |                                                              | 10.78431373<br>10.78431373<br>0.795 |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  | 0.029147982                       | 0.011584454                |                                                                                                      |                                                           |                             |                                                                                                    |                                                              | 0.011584454                         |
|                                                                                                                                       |                                                                                                                                         | 0.0038                                                                  | 0.018                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.0028<br>0.0028 | 0.031<br>0.031                                                                                  | 0.031<br>0.031                                                                                                                       | 0.0028<br>0.0028                                           |                                                                        |                                                                                                                                                  | 0.632911392<br>0.266903915        | 0.257852789<br>0.125826131 |                                                                                                      | +                                                         | 0.000258331<br>1.51762E-05  | 0.001264533<br>7.42877E-05                                                                         | 0.0032<br>0.0032                                             | 0.000258331<br>1.51762E-05          |
|                                                                                                                                       |                                                                                                                                         | 0.0038                                                                  | 0.018                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.0028           | 0.031                                                                                           | 0.031                                                                                                                                | 0.0028                                                     |                                                                        |                                                                                                                                                  | 0.560398506                       | 0.286425903                |                                                                                                      |                                                           | 0.000121366                 | 0.000594087                                                                                        | 0.0032                                                       | 0.000121366                         |
|                                                                                                                                       |                                                                                                                                         | 0.0038                                                                  | 0.018                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.0028           | 0.031                                                                                           | 0.031                                                                                                                                | 0.0028                                                     |                                                                        |                                                                                                                                                  | 0.571791614                       | 0.292249047                |                                                                                                      | <del> </del>                                              | 0.00012711                  | 0.000622206                                                                                        |                                                              | 0.00012711                          |
|                                                                                                                                       |                                                                                                                                         | 1.2<br>1500                                                             | 2.2<br>1900                                                                             |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 1.8              | 5.9                                                                                             | 5.9                                                                                                                                  |                                                            |                                                                        |                                                                                                                                                  | 0.472727273<br>6.837606838        | 0.284848485                | 316.1089996<br>142.4227361                                                                           | 145.0648924<br>65.35890755                                | 1.23480078<br>0.409933862   | 6.044370515<br>2.006633126                                                                         |                                                              | 0.284848485<br>0.409933862          |
|                                                                                                                                       |                                                                                                                                         | 0.23                                                                    | 1.6                                                                                     |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.25             | 4.4                                                                                             | 4.4                                                                                                                                  |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 117.8224453                                                                                          | 54.0696417                                                | 0.247823653                 | 1.213100936                                                                                        |                                                              | 0.23                                |
|                                                                                                                                       |                                                                                                                                         | 130                                                                     | 1600                                                                                    | 20                                                                    | 1                                                                   |                                                                       |                                                                      | 1                                                                      |                                                                         |                                                                           |                                                                          | 1                              | 680<br>0.41      | 21000<br>34                                                                                     | 21000<br>34                                                                                                                          | 1                                                          | 1                                                                      |                                                                                                                                                  |                                   | 1                          | 589.1122266                                                                                          | 270.3482085                                               |                             |                                                                                                    |                                                              | 20<br>0.41                          |
|                                                                                                                                       |                                                                                                                                         | 5.7                                                                     | 470                                                                                     |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 5.7              | 34<br>470                                                                                       | 34<br>470                                                                                                                            |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 1217.385093                                                                                          | 558.6675407                                               | 4.2952095                   | 21.0251225                                                                                         |                                                              | 0.41<br>4.2952095                   |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  |                                   |                            |                                                                                                      | 1                                                         | 22.4296091                  | 109.7933125                                                                                        |                                                              | 18.90068394                         |
|                                                                                                                                       |                                                                                                                                         | 0.0038                                                                  | 0.018                                                                                   |                                                                       | 1                                                                   |                                                                       |                                                                      |                                                                        | <u> </u>                                                                |                                                                           |                                                                          |                                | 0.0028<br>0.0028 | 0.031<br>0.031                                                                                  | 0.031<br>0.031                                                                                                                       | 0.0028<br>0.0028                                           |                                                                        |                                                                                                                                                  | 1.949152542<br>0.01259542         | 0.466101695<br>0.004580153 | 1                                                                                                    | +                                                         | 0.002581193<br>6.25379E-05  | 0.012634981                                                                                        | 0.0032<br>0.0032                                             | 0.002581193<br>6.25379E-05          |
|                                                                                                                                       |                                                                                                                                         | 3.0030                                                                  | 3.013                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.0020           | 0.001                                                                                           | 0.001                                                                                                                                | 0.0020                                                     |                                                                        |                                                                                                                                                  | 5.132743363                       | 1.327433628                |                                                                                                      | <u> </u>                                                  | 5.2507 JE-03                | 0.00000124                                                                                         | 3.0032                                                       | 1.327433628                         |
|                                                                                                                                       |                                                                                                                                         | 2000                                                                    | 4500                                                                                    |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 2700             | 12000                                                                                           | 12000                                                                                                                                |                                                            |                                                                        |                                                                                                                                                  | 1164.383562                       | 150.6849315                | 101.4976487                                                                                          |                                                           |                             |                                                                                                    |                                                              | 46.57806484                         |
|                                                                                                                                       |                                                                                                                                         | 420<br>320                                                              | 1300<br>960                                                                             |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 2700<br>400      | 17000<br>2600                                                                                   | 17000<br>2600                                                                                                                        |                                                            |                                                                        |                                                                                                                                                  | 5.191873589                       | 5.191873589                | 948.9204451                                                                                          | 435.4670142                                               |                             |                                                                                                    |                                                              | 5.191873589<br>320                  |
|                                                                                                                                       |                                                                                                                                         | 63                                                                      | 190                                                                                     |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 400              | 2600                                                                                            | 2600                                                                                                                                 |                                                            |                                                                        |                                                                                                                                                  | 20.73732719                       | 7.142857143                |                                                                                                      |                                                           |                             |                                                                                                    |                                                              | 4                                   |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 34667.92115                                                                                          |                                                           | 33.26143751                 | 162.8152941                                                                                        |                                                              | 1                                   |
|                                                                                                                                       |                                                                                                                                         | 0.38<br>330                                                             | 37<br>7100                                                                              |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.38             | 99<br>3.2                                                                                       | 99<br>3.2                                                                                                                            |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 5911.79287<br>5099.458136                                                                            | 2712.967987<br>2340.181224                                | 3.552760138                 | 17.39082043                                                                                        |                                                              | 0.38<br>0.057                       |
|                                                                                                                                       |                                                                                                                                         | 17000                                                                   | 44000                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 23000            | 120000                                                                                          | 120000                                                                                                                               |                                                            |                                                                        |                                                                                                                                                  | 873.015873                        | 484.1269841                | 00001100100                                                                                          | 20101101221                                               |                             |                                                                                                    |                                                              | 484.1269841                         |
|                                                                                                                                       |                                                                                                                                         | 270000                                                                  | 1100000                                                                                 |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 313000           | 2900000                                                                                         | 2900000                                                                                                                              |                                                            |                                                                        |                                                                                                                                                  | 142.8571429                       | 142.8571429                |                                                                                                      | <del>                                     </del>          |                             |                                                                                                    |                                                              | 142.8571429                         |
|                                                                                                                                       |                                                                                                                                         | 530                                                                     | 2100                                                                                    |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 3100             | 29000                                                                                           | 29000                                                                                                                                |                                                            |                                                                        |                                                                                                                                                  | 22.95918367                       | 0.295918367                | 1733.396058                                                                                          | 795.4690085                                               |                             |                                                                                                    |                                                              | 0.295918367<br>2.233717193          |
|                                                                                                                                       |                                                                                                                                         | 130                                                                     | 140                                                                                     |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 300              | 370                                                                                             | 370                                                                                                                                  | 90.2                                                       |                                                                        |                                                                                                                                                  | 16.92524683                       | 2.256699577                | 23.89873714                                                                                          |                                                           |                             |                                                                                                    |                                                              | 2.256699577                         |
|                                                                                                                                       |                                                                                                                                         | 1100                                                                    | 5300                                                                                    |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 1300             | 14000                                                                                           | 14000                                                                                                                                | 640                                                        |                                                                        |                                                                                                                                                  | 6.991150442                       | 2.03539823                 | 98.52988117                                                                                          | 45.21613312                                               |                             |                                                                                                    |                                                              | 2.03539823                          |
|                                                                                                                                       |                                                                                                                                         | 0.00028                                                                 | 0.00029<br>18                                                                           |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.00075<br>0.44  | 0.00077<br>50                                                                                   | 0.00077<br>50                                                                                                                        |                                                            |                                                                        |                                                                                                                                                  | 0.680473373<br>6.237424547        | 0.112426036<br>3.923541247 |                                                                                                      | +                                                         | 6.61931E-05<br>4.218902664  | 0.000324016<br>20.65159926                                                                         |                                                              | 6.61931E-05<br>0.44                 |
|                                                                                                                                       |                                                                                                                                         | 0.0038                                                                  | 0.018                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 0.0028           | 0.031                                                                                           | 0.031                                                                                                                                | 0.0028                                                     |                                                                        |                                                                                                                                                  | 0.032835821                       | 0.012686567                |                                                                                                      |                                                           | 5.23736E-05                 | 0.00025637                                                                                         | 0.0032                                                       | 5.23736E-05                         |
|                                                                                                                                       |                                                                                                                                         | 4.0                                                                     | 500                                                                                     |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 4.7              | 4000                                                                                            | 4000                                                                                                                                 |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 159955.1552                                                                                          |                                                           | 64 40700070                 | 200 0070050                                                                                        |                                                              | 4800                                |
|                                                                                                                                       |                                                                                                                                         | 4.6                                                                     | 590                                                                                     |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 4.7              | 1600                                                                                            | 1600                                                                                                                                 |                                                            |                                                                        |                                                                                                                                                  | 30.62200957                       | 18.18181818                | 25272.91452                                                                                          | 11597.93814                                               | 61.42722279                 | 300.6872852                                                                                        |                                                              | 4.6<br>18.18181818                  |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  |                                   |                            |                                                                                                      |                                                           |                             |                                                                                                    |                                                              |                                     |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | _                |                                                                                                 | - 40                                                                                                                                 | 160                                                        |                                                                        |                                                                                                                                                  | 92.39130435                       | 53.80434783                | 244.182749                                                                                           | 112.0573734                                               | 4 50050000                  |                                                                                                    |                                                              | 53.80434783                         |
| 10                                                                                                                                    | 0.03                                                                                                                                    | 3.3<br>0.000064                                                         | 0.000064                                                                                |                                                                       |                                                                     | 0.014                                                                 |                                                                      | 0.03                                                                   |                                                                         | 0.014                                                                     |                                                                          | 0.03                           | 0.00017          | 16<br>0.00017                                                                                   | 0.00017                                                                                                                              |                                                            | 0.5                                                                    |                                                                                                                                                  | 1.450892857                       | 0.267857143                |                                                                                                      | +                                                         | 1.593580667<br>2.30352E-05  | 7.800604079<br>0.000112758                                                                         | 0.00153                                                      | 1.382665579<br>1.47662E-05          |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         | 0.014                                                                     |                                                                          | 0.03                           |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  |                                   | _                          | 0.002948507                                                                                          | 0.001353093                                               |                             |                                                                                                    | 0.00153                                                      | 0.00042189                          |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     | <b> </b>                                                              |                                                                      |                                                                        | <del>                                     </del>                        | 0.014<br>0.014                                                            | <b> </b>                                                                 | 0.03                           |                  |                                                                                                 | <u> </u>                                                                                                                             | 1                                                          |                                                                        |                                                                                                                                                  | 1                                 | 1                          | 1                                                                                                    | +                                                         | 2.30352E-05                 | 0.000112758                                                                                        | 0.00153<br>0.00153                                           | 2.30352E-05<br>0.014                |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         | 0.014                                                                     |                                                                          | 0.03                           |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  |                                   |                            |                                                                                                      | <u> </u>                                                  | 2.30352E-05                 | 0.000112758                                                                                        | 0.00153                                                      | 0.014<br>2.30352E-05                |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         | 11                                                                    |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         | 0.014                                                                     |                                                                          | 0.03                           |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  | 1.480637813                       |                            |                                                                                                      |                                                           | 2.30352E-05                 | 0.000112758                                                                                        | 0.00153                                                      | 2.30352E-05                         |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         | 6                                                                     | <u> </u>                                                            | <del>y</del> ~                                                        |                                                                      | -                                                                      |                                                                         | 0.014<br>0.014                                                            | 1                                                                        | 0.03                           | 1                |                                                                                                 | 1                                                                                                                                    | 1                                                          |                                                                        |                                                                                                                                                  | 0.85978836<br>0.314009662         | 0.158730159<br>0.057971014 | 0.000200579                                                                                          | 9.20471E-05                                               | 5.48457E-06<br>2.30352E-05  | 2.68471E-05<br>0.000112758                                                                         | 0.00153<br>0.00153                                           | 5.48457E-06<br>2.30352E-05          |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       | $\wedge$                                                             |                                                                        |                                                                         | J.U14                                                                     |                                                                          | 0.03                           |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  | 23.07692308                       | 4.807692308                |                                                                                                      | <u> </u>                                                  | 2.00332E-03                 | 0.000112/36                                                                                        | 0.00133                                                      | 4.807692308                         |
|                                                                                                                                       |                                                                                                                                         | 830                                                                     | 4000                                                                                    |                                                                       | Ų                                                                   |                                                                       | 100                                                                  |                                                                        |                                                                         |                                                                           |                                                                          |                                | 960              | 11000                                                                                           | 11000                                                                                                                                | 480                                                        |                                                                        |                                                                                                                                                  | 20.17291066                       | 14.4092219                 |                                                                                                      | 9.828761139                                               |                             |                                                                                                    |                                                              | 9.828761139                         |
|                                                                                                                                       |                                                                                                                                         | 0.69<br>35                                                              | 3.3<br>70                                                                               |                                                                       | 1                                                                   | $-U_{I}$                                                              | $\rightarrow$                                                        | $\rightarrow$                                                          |                                                                         |                                                                           |                                                                          |                                | 0.8              | 8.85                                                                                            | 8.85                                                                                                                                 |                                                            | +                                                                      |                                                                                                                                                  | 2.506963788                       | 1.128133705                | 101.7428121<br>35.10127017                                                                           |                                                           | 0.02060763                  | 0.100874693                                                                                        |                                                              | 0.02060763<br>0.141842417           |
|                                                                                                                                       |                                                                                                                                         | 30                                                                      |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      | 7                                                                      |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  |                                   | 5.00.00                    | 100289.3433                                                                                          |                                                           |                             |                                                                                                    |                                                              | 200                                 |
|                                                                                                                                       |                                                                                                                                         | 0.59                                                                    | 16                                                                                      |                                                                       | <u> </u>                                                            |                                                                       | U                                                                    | <u> </u>                                                               |                                                                         |                                                                           |                                                                          | <u> </u>                       | 0.6              | 42                                                                                              | 42                                                                                                                                   |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 486.954037                                                                                           |                                                           |                             | 11.43471574                                                                                        |                                                              | 0.59                                |
|                                                                                                                                       |                                                                                                                                         | 2.5                                                                     | 30                                                                                      |                                                                       |                                                                     | 1                                                                     |                                                                      |                                                                        | <u> </u>                                                                |                                                                           | 1                                                                        |                                | 2.7              | 81                                                                                              | 81                                                                                                                                   |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 18.0520818<br>98.52988117                                                                            |                                                           | 0.739493051                 | 3.619830882                                                                                        |                                                              | 0.49<br>45.21613312                 |
|                                                                                                                                       |                                                                                                                                         | 1300                                                                    | 15000                                                                                   |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 6800             | 200000                                                                                          | 200000                                                                                                                               |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 2819.850993                                                                                          |                                                           |                             |                                                                                                    |                                                              | 1000                                |
|                                                                                                                                       |                                                                                                                                         | 0.025                                                                   | 2.4                                                                                     |                                                                       | <u> </u>                                                            |                                                                       |                                                                      | <u> </u>                                                               |                                                                         |                                                                           |                                                                          | <u> </u>                       | 2                | 525                                                                                             | 525                                                                                                                                  |                                                            |                                                                        |                                                                                                                                                  |                                   |                            | 1053.038105                                                                                          |                                                           | 0.53322242                  | 2.610132684                                                                                        |                                                              | 0.02                                |
|                                                                                                                                       |                                                                                                                                         | 1                                                                       |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            | +                                                                      |                                                                                                                                                  | 2242.926156                       | 2242.926156                | 3438.491772                                                                                          | 1577.950768                                               | 1                           |                                                                                                    |                                                              | 1000<br>2242.926156                 |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        |                                                                                                                                                  | 233.0779055                       | 181.9923372                |                                                                                                      | 1                                                         |                             |                                                                                                    |                                                              | 181.9923372                         |
|                                                                                                                                       |                                                                                                                                         | 380                                                                     | 850                                                                                     | 400                                                                   | <u> </u>                                                            | <u> </u>                                                              |                                                                      |                                                                        | <del>                                     </del>                        |                                                                           | <u> </u>                                                                 |                                | 1                |                                                                                                 | <u> </u>                                                                                                                             | <u> </u>                                                   |                                                                        |                                                                                                                                                  | 2.020624303                       | 2.020624303                |                                                                                                      |                                                           |                             |                                                                                                    |                                                              | 2.020624303                         |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       | 1                                                                   | <del> </del>                                                          |                                                                      |                                                                        | <del>                                     </del>                        |                                                                           | <del> </del>                                                             | 1                              |                  |                                                                                                 | 1                                                                                                                                    | 1                                                          |                                                                        |                                                                                                                                                  | 7.110609481<br>77.18894009        | 7.110609481<br>77.18894009 | 6654.269226<br>727.4874646                                                                           |                                                           |                             |                                                                                                    |                                                              | 7.110609481<br>77.18894009          |
| 13                                                                                                                                    | 7.9                                                                                                                                     | 0.27                                                                    | 3                                                                                       | 30                                                                    | 19                                                                  | 15                                                                    | 13                                                                   | 7.9                                                                    | 20                                                                      | 13                                                                        | 13                                                                       | 7.9                            | 0.28             | 8.2                                                                                             | 8.2                                                                                                                                  |                                                            |                                                                        |                                                                                                                                                  | 10.20710059                       | 5.325443787                |                                                                                                      |                                                           | 0.698036623                 | 3.416900968                                                                                        |                                                              | 0.209410987                         |
|                                                                                                                                       |                                                                                                                                         | 10000                                                                   | 860000                                                                                  | 300                                                                   | <u> </u>                                                            | <u> </u>                                                              |                                                                      |                                                                        | <del>                                     </del>                        |                                                                           | <u> </u>                                                                 |                                | 21000            | 4600000                                                                                         | 4600000                                                                                                                              | <u> </u>                                                   |                                                                        |                                                                                                                                                  | 223.880597                        | 78.35820896                | 88676.89306                                                                                          | 40694.5198                                                |                             |                                                                                                    |                                                              | 78.35820896                         |
|                                                                                                                                       |                                                                                                                                         |                                                                         |                                                                                         |                                                                       | 0.46                                                                | 0.072                                                                 | 0.42                                                                 | 0.0074                                                                 | <u> </u>                                                                |                                                                           | <del> </del>                                                             |                                | 1                |                                                                                                 | <del>                                     </del>                                                                                     | <u> </u>                                                   | 1                                                                      |                                                                                                                                                  | <u> </u>                          | 1                          | 1                                                                                                    | +                                                         |                             |                                                                                                    |                                                              | 100<br>0.072                        |
|                                                                                                                                       |                                                                                                                                         | 1.4                                                                     | 2.4                                                                                     | 2                                                                     |                                                                     | ļ                                                                     |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                | 2.1              | 6.5                                                                                             | 6.5                                                                                                                                  |                                                            |                                                                        |                                                                                                                                                  |                                   |                            |                                                                                                      | 1                                                         | 0.558429298                 | 2.733520775                                                                                        |                                                              | 0.558429298                         |
|                                                                                                                                       | 1                                                                                                                                       |                                                                         |                                                                                         |                                                                       |                                                                     |                                                                       |                                                                      |                                                                        |                                                                         |                                                                           |                                                                          |                                |                  |                                                                                                 |                                                                                                                                      |                                                            |                                                                        | 1                                                                                                                                                |                                   |                            |                                                                                                      |                                                           |                             | l                                                                                                  |                                                              |                                     |

| MEDIA - MTCA Standard                             |                                                                                                       |                                                                                             | sw                                                                                                                                   | Method A                                                                                                           |                                                                                                      |                 |                                                                      |                                                                                                                         |                                                                                                                                       |                                                                                                                    |      | ,                                 | SW Method E                                                                                                                           | 3                          |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        |                                              |                                                                                                       |                                                                                                            | SW Me                                          | hod C                                                                                                         |      |                                                                              | HIDDEN GW<br>ARAR's                                                                    |                                                                                                                                     |                                                                                                                                        |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| PATHWAYS<br>HH - Human Health<br>Ecol- Ecological | Surface Water,<br>Method A - HH<br>ARAR's<br>WAC 173-340-<br>730(2)(b)(i)<br>[See Required<br>ARAR's] | Surface Water,<br>Method A -<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>[See Required<br>ARAR's] | Surface Water,<br>Method A - HH/<br>Aquatic<br>Organisms:<br>CWA §304<br>WAC 173-340-<br>730(2)(b)(i)(B)<br>[See Required<br>ARAR's] | Surface Water,<br>Method A - HH<br>NTR - 40 CFR 131<br>WAC 173-340-<br>730(2)(b)(i)(C)<br>[See Required<br>ARAR's] | Surface Water,<br>Method A - HH<br>Potability<br>WAC 173-340-<br>730(2)(b)(i) [Se<br>Required ARAR's | e applicable SW | Method B - HH<br>ARAR's WAC<br>173-340-730(3)(b)(i)<br>[See Required | Surface Water,<br>Method B -<br>WA WQS:Ch. 173<br>2101 A<br>WAC 173-340-<br>730(3)(b)(i)(A)<br>[See Required<br>ARAR's] | Surface Water,<br>Method B - HH/<br>Aquatic<br>Organisms: CWA<br>\$304<br>WAC 173-340-<br>730(3)(b)(i)(B)<br>[See Required<br>ARAR's] | Surface Water,<br>Method B - HH<br>NTR - 40 CFR 13'<br>WAC 173-340-<br>730(3)(b)(i)(C)<br>[See Required<br>ARAR's] |      | WAC 173-340-<br>730(3)(b)(iii)(A) | Surface Water,<br>Method B-HH,<br>Non-carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(c)<br>EQ. 730-1 MOD -<br>Tribal Adult | WAC 173-340-<br>730(3)(c)  | Surface Water,<br>Method B-HH,<br>Carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(B)<br>EQ. 730-2<br>CLARC Database | Surface Water,<br>Method B-HH,<br>Carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(B)<br>EQ. 730-2<br>MOD - Tribal<br>Adult | Surface Water,<br>Method B-HH,<br>Carcinogen,<br>Fish Consumption<br>WAC 173-340-<br>730(3)(b)(iii)(B)<br>EQ. 730-2<br>MOD - Tribal<br>Child | Surface Water,<br>Method B-HH<br>Petroleum Mixtur<br>WAC 173-340-<br>730(3)(b)(iii)(C) | Method B-HH<br>re Potability<br>WAC 173-340- | Surface Water,<br>Method C - HH<br>ARAR's<br>WAC 173-340-<br>730(4)(b)(i)<br>[See Required<br>ARAR's] | Surface Water,<br>Method C,<br>Environmental<br>Effects,<br>WAC 173-340-<br>730(4)(b)(ii)<br>[WET TESTING] | WAC 173-340-<br>730(4)(b)(iii)(A)<br>EQ. 730-1 | Surface Water, Method C, Carcinogen, Fish Consumption WAC 173-340- 730(4)(b)(iii)(B) EQ. 730-2 CLARC Database |      | Surface Water,<br>Method C-HH<br>Potability<br>WAC 173-340-<br>730(4)(b)(iv) | Ground Water,<br>Method A-HH,<br>Potable (Table<br>720-1) WAC 173-<br>340-720(3)(b)(i) | Surface Water<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-2014-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A) Fresh-<br>Acute | Surface Water<br>Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A)<br>Fresh - Chronic |
| UNITS                                             | μg/L                                                                                                  | μg/L                                                                                        | μg/L                                                                                                                                 | μg/L                                                                                                               | μg/L                                                                                                 | μg/L            | μg/L                                                                 | μg/L                                                                                                                    | μg/L                                                                                                                                  | μg/L                                                                                                               | μg/L | μg/L                              | μg/L                                                                                                                                  | μg/L                       | μg/L                                                                                                                                  | μg/L                                                                                                                                         | μg/L                                                                                                                                         | μg/L                                                                                   | μg/L                                         | μg/L                                                                                                  | μg/L                                                                                                       | μg/L                                           | μg/L                                                                                                          | μg/L | μg/L                                                                         | μg/L                                                                                   | μg/L                                                                                                                                | μg/L                                                                                                                                   |
| Aluminum                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Antimony                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 1037.037037                       | 336.9721936                                                                                                                           | 154.6391753                |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 2592.592593                                    |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Arsenic (III)                                     | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     | ,                                                                                                                                      |
| Arsenic (V) Arsenic (total)                       | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 17.67676768                       | 5.743844209                                                                                                                           | 2.635895033                | 0.098204265                                                                                                                           | 0.013960732                                                                                                                                  | 0.068338019                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 44.19191919                                    | 2.46                                                                                                          | *    | *                                                                            | 5                                                                                      | 360                                                                                                                                 | 190                                                                                                                                    |
| Barium                                            | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 819.144579                        | 266.170769                                                                                                                            | 122.1478478                | 0.096204265                                                                                                                           | 0.013960732                                                                                                                                  | 0.000330019                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 44.19191919                                    | 2.40                                                                                                          | *    | *                                                                            | J                                                                                      | 360                                                                                                                                 | 190                                                                                                                                    |
| Beryllium                                         | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 88.67689306                                                                                                                           | 40.6945198                 |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 682.2612086                                    | 682                                                                                                           | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Cadmium                                           | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 40.50925926                       | 13.16297631                                                                                                                           | 6.040592784                |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 101                                            |                                                                                                               | *    | *                                                                            | 5                                                                                      |                                                                                                                                     |                                                                                                                                        |
| Chromium (VI)                                     | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 486.1111111                       | 157.9557158                                                                                                                           | 72.4871134                 | 0.810185185                                                                                                                           | 0.115176043                                                                                                                                  | 0.56378866                                                                                                                                   |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 1215.277778                                    |                                                                                                               | *    | *                                                                            |                                                                                        | 15                                                                                                                                  | 10                                                                                                                                     |
| Chromium, total (or III)                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              | 1                                                                                      | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 50                                                                                     |                                                                                                                                     |                                                                                                                                        |
| Copper                                            | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 2880.658436                       | 936 0220742                                                                                                                           | 429.5532646                |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              | +                                                                                      | *                                            | *                                                                                                     | *                                                                                                          | 7200                                           |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     | 11.4                                                                                                                                   |
| Copper                                            | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 2000.030430                       | 930.0330712                                                                                                                           | 429.5532040                |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 7200                                           |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     | 11.4                                                                                                                                   |
| Lead                                              | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 15                                                                                     |                                                                                                                                     | 0.54                                                                                                                                   |
| Manganese                                         | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Mercury                                           | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 2                                                                                      | 2.1                                                                                                                                 | 0.012                                                                                                                                  |
| Mercury (organic)                                 | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 0.003050109                       | 0.000991095                                                                                                                           | 0.000454821                |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Molybdenum<br>Nickel                              | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 1103.23089                        | 358.481057                                                                                                                            | 164.5097609                |                                                                                                                                       | <b>-</b>                                                                                                                                     |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 2758.077226                                    |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Selenium                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 2700.617284                       | 877.5317542                                                                                                                           | 402.7061856                |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 6751.54321                                     |                                                                                                               | *    | *                                                                            |                                                                                        | 20                                                                                                                                  | 5                                                                                                                                      |
| Silver                                            | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 25925.92593                       | 8424.30484                                                                                                                            | 3865.979381                |                                                                                                                                       | 1                                                                                                                                            |                                                                                                                                              | 1.9                                                                                    | *                                            | *                                                                                                     | *                                                                                                          | 64814.81481                                    |                                                                                                               | *    | *                                                                            |                                                                                        | 20                                                                                                                                  |                                                                                                                                        |
| Tin                                               | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Thallium                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Vanadium                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Zinc                                              | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 16548.46336                       | 5377.215856                                                                                                                           | 2467.646414                |                                                                                                                                       | <b>-</b>                                                                                                                                     |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 41371.15839                                    |                                                                                                               | *    | *                                                                            |                                                                                        | 35.4                                                                                                                                | 104                                                                                                                                    |
| I PAH                                             | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| HPAH                                              | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     | <del></del>                                                                                                                            |
| Total Petroleum Hydrocarbons                      | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | 0.7  |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        | 0.208                                                                                                                               |                                                                                                                                        |
| Gasoline                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 1000                                                                                   |                                                                                                                                     |                                                                                                                                        |
| Gasoline (w/benzene)                              | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 800                                                                                    |                                                                                                                                     |                                                                                                                                        |
| Diesel                                            | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 500<br>500                                                                             |                                                                                                                                     |                                                                                                                                        |
| Heavy Oil                                         | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              | 500                                                                                    | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            | 500                                                                                    |                                                                                                                                     |                                                                                                                                        |
| 2,3,7,8-TCDD (Dioxin)                             | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 5.18519E-07                       | 1.68486E-07                                                                                                                           | 7.73196E-08                | 8.64198E-09                                                                                                                           | 1.22854E-09                                                                                                                                  | 6.01375E-09                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                | 0.000000216                                                                                                   | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
|                                                   | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     | 1                                                                                                                                      |
| Aldrin                                            | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 0.01665477                        | 0.005411759                                                                                                                           | 0.002483499                | 8.1641E-05                                                                                                                            | 1.16061E-05                                                                                                                                  | 5.68121E-05                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 0.041636926                                    | 0.002041026                                                                                                   | *    | *                                                                            |                                                                                        | 2.5                                                                                                                                 | 0.0019                                                                                                                                 |
| alpha-BHC                                         | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            | 0.007913897                                                                                                                           | 0.001125041                                                                                                                                  | 0.005507093                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                | 0.19784742                                                                                                    | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| beta-BHC                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 5.982905983                       | 1.944070348                                                                                                                           | 0.892149088                | 0.027698639                                                                                                                           | 0.003937642                                                                                                                                  | 0.019274826                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 14.95726496                                    | 0.69246597                                                                                                    | *    | *                                                                            | 0.1                                                                                    |                                                                                                                                     | 0.08                                                                                                                                   |
| gamma-BHC (Lindane)<br>Chlordane                  | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 1.944070348<br>0.029873421                                                                                                            |                            | 0.00131337                                                                                                                            | 0.000186709                                                                                                                                  | 0.000913943                                                                                                                                  | 1                                                                                      | *                                            | *                                                                                                     | *                                                                                                          | 0.229839769                                    | 0.032834253                                                                                                   | *    | *                                                                            | V.1                                                                                    | 2.4                                                                                                                                 | 0.08                                                                                                                                   |
| 4,4'-DDT                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 0.023873421                                                                                                                           |                            |                                                                                                                                       | 5.05602E-05                                                                                                                                  |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 0.060461581                                    | ***************************************                                                                       |      | *                                                                            | 0.3                                                                                    | 1.1                                                                                                                                 | 0.0043                                                                                                                                 |
| 4,4'-DDE                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            | 0.000355656                                                                                                                           |                                                                                                                                              | 0.000247493                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                | 0.008891409                                                                                                   |      | *                                                                            |                                                                                        | 1.1                                                                                                                                 | 0.001                                                                                                                                  |
| 4,4'-DDD                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            | 0.000503847                                                                                                                           | 7.16269E-05                                                                                                                                  | 0.000350615                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                | 0.012596163                                                                                                   |      | *                                                                            |                                                                                        | 1.1                                                                                                                                 | 0.001                                                                                                                                  |
| Dieldrin                                          | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 0.009019598                                                                                                                           |                            | 8.67436E-05                                                                                                                           | 1.23315E-05                                                                                                                                  | 6.03628E-05                                                                                                                                  | 1                                                                                      | *                                            | *                                                                                                     | *                                                                                                          | 0.069394877                                    | 0.00216859                                                                                                    | *    | *                                                                            |                                                                                        | 2.5                                                                                                                                 | 0.0019                                                                                                                                 |
| alpha-Endosulfan                                  | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 18.72067742                                                                                                                           |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              | 1                                                                                      | *                                            | *                                                                                                     | *                                                                                                          | 144.0329218                                    |                                                                                                               | *    | *                                                                            |                                                                                        | 0.22                                                                                                                                | 0.056                                                                                                                                  |
| beta-Endosulfan                                   | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 18.72067742<br>18.72067742                                                                                                            | 8.591065292<br>8.591065292 |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              | +                                                                                      | *                                            | *                                                                                                     | *                                                                                                          | 144.0329218<br>144.0329218                     |                                                                                                               | *    | *                                                                            |                                                                                        | 0.22<br>0.22                                                                                                                        | 0.056<br>0.056                                                                                                                         |
| Endosulfan Sulfate<br>Endrin                      | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   | 0.063659734                                                                                                                           | 0.02921395                 |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              | +                                                                                      | *                                            | *                                                                                                     | *                                                                                                          | 0.489784495                                    |                                                                                                               | *    | *                                                                            |                                                                                        | 0.22                                                                                                                                | 0.056                                                                                                                                  |
| Endrin Aldehyde                                   | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 0.195913798                       | 0.063659734                                                                                                                           | 0.02921395                 |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 0.489784495                                    |                                                                                                               | *    | *                                                                            |                                                                                        | 0.18                                                                                                                                | 0.0023                                                                                                                                 |
| Heptachlor                                        | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 0.115740741                       | 0.037608504                                                                                                                           | 0.017258837                | 0.000128601                                                                                                                           | 1.82819E-05                                                                                                                                  | 8.94903E-05                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 0.289351852                                    | 0.003215021                                                                                                   | *    | *                                                                            |                                                                                        | 0.52                                                                                                                                | 0.0038                                                                                                                                 |
| Heptachlor Epoxide                                | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    | 0.003009259                       | 0.000977821                                                                                                                           | 0.00044873                 | 6.35938E-05                                                                                                                           | 9.04051E-06                                                                                                                                  | 4.42534E-05                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          | 0.007523148                                    | 0.001589845                                                                                                   |      | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
| Toxaphene                                         | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            | 0.000449791                                                                                                                           | 6.39423E-05                                                                                                                                  | 0.000312999                                                                                                                                  |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |
|                                                   | *                                                                                                     | *                                                                                           | *                                                                                                                                    | *                                                                                                                  | *                                                                                                    | *               | *                                                                    | *                                                                                                                       | *                                                                                                                                     | *                                                                                                                  | *    |                                   |                                                                                                                                       |                            |                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                        | *                                            | *                                                                                                     | *                                                                                                          |                                                |                                                                                                               | *    | *                                                                            |                                                                                        |                                                                                                                                     |                                                                                                                                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                    |                                                |                                                   |                                    | SW MCTA N                                 | Method A,B,C I                              | Required ARA                               | R's                                          |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 | Surface                  | Water Al                                | RAR                                                                       |                                                                           |                                                                                               | ALWAYS<br>APPLICABLE                       | SW MOST<br>STRINGENT       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A) | Aquatic Life<br>SWQS:RCW 90-48;<br>Ch. 173-201A-240<br>per MTCA<br>WAC 173-340-<br>730(2)(b)(i)(A) | HH - Consumption; Water + Organism (Fresh) CWA | HH – Consumption; Organism Only (Marine) CWA §304 | HH – Organoleptic Effects CWA §304 | Aquatic Life<br>Fresh/Acute,<br>CWA §304, | Aquatic Life<br>Fresh/Chronic,<br>CWA §304, | Aquatic Life<br>Marine/Acute,<br>CWA §304, | Aquatic Life<br>Marine/Chronic,<br>CWA §304, | Aquatic Life<br>Fresh/Acute,<br>NTR - 40 CFR     | Aquatic Life<br>Fresh/Chronic,<br>NTR - 40 CFR   | Aquatic Life<br>Marine/Acute,<br>NTR - 40 CFR | Aquatic Life<br>Marine/Chronic,<br>NTR - 40 CFR | Fresh Water Water<br>& Organism<br>Consumption NTR<br>- 40 CFR 131.36<br>(WAC 173-201A-<br>040[5]) HH | Fresh Water<br>Organism<br>Consumption Only<br>NTR - 40 CFR<br>131.36 (WAC 173-<br>201A-040[5]) | HH - Marine Water<br>Organism<br>Consumption Only<br>NTR - 40 CFR<br>- 131.36 (WAC 173-<br>201A-040[5]) | Discharge<br>(NPDES)<br>40 CFR 122,125/<br>RCW 90-48;<br>WAC 173-216, | Toxics Substances<br>Control Act (TSCA) | Management Act<br>RCW 90-58; WAC<br>173-16; King<br>County/City Seattle<br>Shoreline Master<br>Plans (KCC Title | diment Son Ecology Prote | Sediment<br>ction Ecology<br>3 WAC 173- | - Adult Non-Carcinogen Tribal Fish Consumption w/o Salmon EPA RCRA (using | - Child Non-Carcinogen Tribal Fish Consumption w/o Salmon EPA RCRA (using | - Adult - Child Carcinogen Tribal Fish Consumption w/o Salmon EPA RCRA (using EPA RCRA (using | Background<br>Levels<br>Ch. 173-340<br>WAC | Screening                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L                                                                                               | μg/L                                                                                               | μg/L                                           | μg/L                                              | μg/L                               | μg/L                                      | μg/L                                        | μg/L                                       | μg/L                                         | μg/L                                             | μg/L                                             | μg/L                                          | μg/L                                            | μg/L                                                                                                  | μg/L                                                                                            | μg/L                                                                                                    |                                                                       | μg/L                                    | μg/L μ                                                                                                          | g/L                      | μg/L                                    | μg/L                                                                      | μg/L                                                                      | μg/L μg/L                                                                                     | μg/L                                       |                            |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C   |                                                                                                    |                                                                                                    | 5.6                                            | 640                                               |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 | 14                                                                                                    | 4300                                                                                            | 4300                                                                                                    | 750                                                                   |                                         |                                                                                                                 |                          |                                         | 8.42430484                                                                | 3.865979381                                                               |                                                                                               |                                            | 50<br>3.865979381          |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C   |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
| The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The    | 69                                                                                                 | 36                                                                                                 | 1                                              | 0.14                                              |                                    | 340                                       | 150                                         | 69                                         | 36                                           | 360                                              | 190                                              | 69                                            | 36                                              | 0.018                                                                                                 | 0.14                                                                                            | 0.14                                                                                                    | 168.54                                                                |                                         |                                                                                                                 |                          |                                         |                                                                           | 1                                                                         | 0.005388353                                                                                   | 0.87                                       |                            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                                                    | 1000                                           |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C   |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         | 15.9                                                                  |                                         | 3.357                                                                                                           | 954465 2.5               | 56054891                                |                                                                           |                                                                           | 0.575880214 2.818943299                                                                       |                                            |                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7100                                                                                               | 30                                                                                                 |                                                |                                                   |                                    |                                           |                                             | .100                                       | 55                                           |                                                  |                                                  | . 700                                         | 30                                              |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         | 317.6                                                                                                           | 470588 305               | 5.8823529                               |                                                                           | 552.755507                                                                | 2.010043233                                                                                   |                                            |                            |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8                                                                                                | 3.1                                                                                                | 1300                                           |                                                   | 1000                               | 13                                        | 9                                           | 4.8                                        | 3.1                                          | 17                                               | 11                                               | 2.4                                           | 2.4                                             |                                                                                                       |                                                                                                 |                                                                                                         | 63.6                                                                  |                                         | 123.3                                                                                                           | 288287 123               | 3.3288287                               | 936.0338712                                                               | 429.5532646                                                               |                                                                                               |                                            | 2.4                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                                                                    | 300                                            |                                                   |                                    | 25                                        |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 300                        |
| The color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color      | 210                                                                                                | 8.1                                                                                                | 50                                             | 100                                               |                                    | 65                                        | 2.5                                         | 210                                        | 8.1                                          | 65                                               | 2.5                                              | 210                                           | 8.1                                             |                                                                                                       |                                                                                                 |                                                                                                         | 81.6                                                                  |                                         | 13.31                                                                                                           | 299809 11.               | 30348894                                |                                                                           |                                                                           |                                                                                               |                                            |                            |
| Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Tota   | 1.8                                                                                                | 0.025                                                                                              |                                                | 0.2                                               |                                    | 1.4                                       | 0.77                                        | 1.8                                        | 0.94                                         | 2.1                                              | 0.012                                            | 1.8                                           | 0.025                                           | 0.14                                                                                                  | 0.15                                                                                            | 0.15                                                                                                    | 2.4                                                                   |                                         | 0.00                                                                                                            | 742766 0.0               | 05161594                                |                                                                           | 1                                                                         |                                                                                               |                                            |                            |
| Part   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 40                         |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |                                                                                                    |                                                |                                                   |                                    | 470                                       |                                             |                                            |                                              | 1                                                |                                                  |                                               |                                                 | 610                                                                                                   | 4600                                                                                            | 4600                                                                                                    | 238.5                                                                 |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
| 90 81 7690 3000 120 120 90 81 100 100 100 90 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                    |                                                |                                                   |                                    | 3.2                                       |                                             |                                            |                                              |                                                  | -                                                |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         | 1.532                                                                                                           | 250723 1.5               | 32250723                                |                                                                           |                                                                           |                                                                                               |                                            | 1.532250723                |
| 80 81 7400 7600 7600 120 120 120 120 120 120 120 120 120 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                    | 0.24                                           | 0.47                                              |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 | 1.7                                                                                                   | 6.3                                                                                             | 6.3                                                                                                     |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 0.24                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                    |                                                |                                                   |                                    | 100                                       | 400                                         |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         | 70.00                                                                                                           | 7554050 00               | F074F700                                | 400 =400054                                                               | 50.0000440                                                                |                                                                                               |                                            |                            |
| Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp   | 90                                                                                                 | 81                                                                                                 | 7400                                           | 26000                                             | 5000                               | 120                                       | 120                                         | 90                                         | 81                                           | 110                                              | 100                                              | 90                                            | 81                                              |                                                                                                       |                                                                                                 |                                                                                                         | 117                                                                   |                                         | 76.23                                                                                                           | 32.                      | 36743762                                | 122.7436354                                                               | 56.3280143                                                                |                                                                                               |                                            | 32.56/45/62                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
| Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp   |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         | 1000                                                                  |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
| Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp   |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            |                            |
| 0.71 0.0019 0.00049 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         | 10000                                                                 |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 500                        |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C   |                                                                                                    |                                                                                                    | 0.000000005                                    | 5.1E-09                                           |                                    |                                           | <u> </u>                                    |                                            |                                              | <del>                                     </del> | <del>                                     </del> |                                               |                                                 | 0.000000013                                                                                           | 0.000000014                                                                                     | 0.000000014                                                                                             | <del></del>                                                           |                                         | <del>                                     </del>                                                                |                          |                                         | 2.44893E-08                                                               | 1.12383E-08                                                               | 2.06039E-10 1.00857E-09                                                                       |                                            | 2.06039E-10                |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C   | 0.71                                                                                               | 0.0019                                                                                             |                                                |                                                   |                                    | 3                                         |                                             | 1.3                                        |                                              | 3                                                |                                                  | 1.3                                           |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 1.16061E-05                |
| 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                                                    | 1                                              |                                                   |                                    |                                           | 1                                           | 1                                          |                                              | -                                                | -                                                |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         | -                                                                     |                                         |                                                                                                                 | +                        |                                         |                                                                           | -                                                                         |                                                                                               |                                            | 0.001125041<br>0.003937642 |
| 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    | _                                                                                                  | 0.98                                           | 1.8                                               |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 | 0.019                                                                                                 | 0.063                                                                                           | 0.063                                                                                                   |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 0.019                      |
| 0.13         0.001         0.00022         0.00022         0.00022         0.00023         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00031         0.00032         0.00031         0.00032         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            | 1                                            |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 | •                                                                                                       |                                                                       |                                         | + +                                                                                                             |                          |                                         |                                                                           | -                                                                         |                                                                                               |                                            | 0.000186709<br>5.05602E-05 |
| 0.71         0.0019         0.00052         0.000054         0.24         0.056         0.71         0.0019         0.019         0.0014         0.0014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014         0.00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.13                                                                                               | 0.001                                                                                              | 0.00022                                        | 0.00022                                           |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 | 0.00059                                                                                               | 0.00059                                                                                         | 0.00059                                                                                                 |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 5.05602E-05                |
| 0.034 0.0087 62 89 0.22 0.056 0.034 0.0087 0.22 0.056 0.034 0.0087 0.22 0.056 0.034 0.0087 0.22 0.056 0.034 0.0087 0.22 0.056 0.034 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0087 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0 |                                                                                                    |                                                                                                    |                                                |                                                   |                                    | 0.24                                      | 0.056                                       | 0.71                                       | 0.0019                                       | 2.5                                              | 0.0019                                           | 0.71                                          | 0.0019                                          |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 | +                        |                                         |                                                                           | <del>                                     </del>                          |                                                                                               |                                            | 7.16269E-05<br>1.23315E-05 |
| 0.034 0.0087 62 89 0.22 0.056 0.034 0.0087 0.22 0.056 0.034 0.0087 0.22 0.056 0.034 0.0087 0.0023 0.099 0.06 0.086 0.036 0.036 0.037 0.0023 0.18 0.0023 0.037 0.0023 0.099 0.08 0.037 0.0023 0.29 0.3 0.086 0.036 0.036 0.037 0.0023 0.18 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.037 0.0023 0.0021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.0 | 0.034                                                                                              | 0.0087                                                                                             | 62                                             | 89                                                |                                    | 0.22                                      | 0.056                                       | 0.034                                      | 0.0087                                       | 0.22                                             | 0.056                                            | 0.034                                         | 0.0087                                          |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 0.056                      |
| 0.037         0.0023         0.059         0.06         0.086         0.037         0.0023         0.018         0.0023         0.023         0.018         0.018         0.0023         0.0023         0.029         0.3         0.086         0.036         0.0023         0.18         0.0023         0.037         0.0023         0.018         0.0023         0.0037         0.0023         0.018         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.037         0.0023         0.0037         0.0023         0.0037         0.0023         0.0037         0.0023         0.0037         0.0023         0.0037         0.0023         0.0037         0.0038         0.053         0.0038         0.053         0.0038         0.053         0.0038         0.053         0.0038         0.053         0.0038         0.053         0.0038         0.053         0.0038         0.053         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       | 1                                                                                               |                                                                                                         | -                                                                     |                                         | + +                                                                                                             | +                        |                                         |                                                                           | <del> </del>                                                              |                                                                                               |                                            |                            |
| 0.053 0.0036 0.00079 0.00079 0.00079 0.52 0.0038 0.53 0.0036 0.52 0.0038 0.053 0.0036 0.52 0.0038 0.053 0.0036 0.0021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021  | 0.037                                                                                              | 0.0023                                                                                             | 0.059                                          | 0.06                                              |                                    | 0.086                                     | 0.036                                       | 0.037                                      | 0.0023                                       | 0.18                                             | 0.0023                                           | 0.037                                         | 0.0023                                          |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 0.002                      |
| 0.00039 0.00039 0.52 0.038 0.53 0.036 0.52 0.0038 0.53 0.0036 0.52 0.0038 0.053 0.0036 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001  |                                                                                                    |                                                                                                    |                                                |                                                   |                                    |                                           |                                             |                                            |                                              |                                                  |                                                  |                                               |                                                 |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 | +                        |                                         |                                                                           | 1                                                                         |                                                                                               |                                            | 0.002<br>1.82819E-05       |
| 0.00028 0.00028 0.73 0.0002 0.21 0.0002 0.73 0.0002 0.21 0.0002 0.21 0.0002 0.21 0.0002 0.21 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    |                                                                                                    | 0.000039                                       | 0.000039                                          |                                    | 0.52                                      | 0.0038                                      | 0.053                                      | 0.0036                                       | 0.52                                             | 0.0038                                           | 0.053                                         | 0.0036                                          |                                                                                                       |                                                                                                 |                                                                                                         |                                                                       |                                         |                                                                                                                 |                          |                                         |                                                                           |                                                                           |                                                                                               |                                            | 9.04051E-06                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                    | 0.00028                                        | 0.00028                                           |                                    | 0.73                                      | 0.0002                                      | 0.21                                       | 0.0002                                       | 0.73                                             | 0.0002                                           | 0.21                                          | 0.0002                                          |                                                                                                       | 1                                                                                               |                                                                                                         |                                                                       |                                         |                                                                                                                 | +                        |                                         |                                                                           | <del>                                     </del>                          |                                                                                               |                                            | 6.39423E-05                |

| MEDIA - MTCA Standard                                                                                                                                                                                                                                                         |                                                  | MENT R<br>(Marine                             |                                        |                                                |                                                        |                                         |                                                    |                                                   |                                                      |                                                    |                                                 | SEDIMEN                                                 | T Appare                                                  | ent Effec                                                     | t Thresh                                            | olds (Mar                                     | ine Wate                                             | ers)                                         |                                           |                                    |                                                        |                                             |                                                  |                                                     | SE                                              | DIMENT AET's                                        | (Fresh                                                                                          | Water)                                                | Puget                                                          | Sound Dre                                                                                              | edge Disp                                         | osal Analy<br>Waters)          | rsis (PSDD                                                      | PA) (                                                                             | Marine                                                                |                                                                                 |                                                                               |                                  |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------|--------------------------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|----------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological                                                                                                                                                                                                                                   | SMS<br><b>SQS</b><br>WAC 173-<br>340-760         |                                               | CSL<br>WAC 17                          | CSI<br>73- WAC 1                               | 73- (1994)                                             | ed Echinoder (1994)                     |                                                    |                                                   | Oyster<br>(1986)                                     |                                                    | Microtox<br>(1986)                              | SMS<br>LAET<br>WAC 173-<br>340-760<br>(1988)            | SMS<br>2LAET<br>WAC 173-<br>340-760<br>(1988)             | SMS<br>HAET<br>WAC 173-<br>340-760<br>(1988)                  | Amphipod<br>(1994)                                  | Echinoderm<br>(1994)                          | Benthic<br>(1988)                                    | Amphipod<br>(1988)                           | d Oyster<br>(1988)                        | Microtox<br>(1988)                 | Oyster<br>(1986)                                       | Microtox<br>(1986)                          | SMS<br>LAET<br>WAC 173-<br>340-760<br>(1988)     | SMS<br>2LAET<br>WAC 173-<br>340-760<br>(1988)       | Ecology (2003)<br>(Draft Freshwater)<br>LAET    | Ecology (2003) (Dra<br>Freshwater) 2LAET            | Sediment Evaluati<br>Framework/PSDI<br>(ECY03/RSET0<br>(SL1)<br>Interim<br>Freshwater<br>(2007) | Framework/PSDDA<br>(ECY03/RSET07)<br>(SL2)<br>Interim | A Framework                                                    | Sediment<br>Evaluation<br>Framework<br>(SEF)<br>Screening<br>Level<br>(SL2)<br><b>Marine</b><br>(2005) | Framework<br>(SEF)<br>Screening<br>Level<br>(SL1) | Framework<br>(SEF)             | PSDDA<br>/DMMP<br>Screening<br>Level<br><b>Marine</b><br>(2011) | PSDDA<br>/DMMP<br>Bioaccum-<br>ulation<br>Trigger (BT)<br><b>Marine</b><br>(2003) | PSDDA<br>/DMMP<br>Maximum<br>Level<br>(ML)<br><b>Marine</b><br>(1998) | CERCLAMTCA<br>HH Risk Based<br>Threshold<br>Concentrations<br>40 CFR 160<br>LDW | CERCLAMTCA HH Risk Based Threshold Concentrations 40 CFR 160 LDW (Netfishing) |                                  |                                  |
| UNITO                                                                                                                                                                                                                                                                         | mg/kg<br>OC                                      | mg/kg<br>DW                                   |                                        |                                                | g mg/k<br>DW                                           |                                         |                                                    |                                                   |                                                      |                                                    | mg/kg<br>DW                                     | mg/kg<br>DW                                             | mg/kg<br>DW                                               | mg/kg<br>DW                                                   | mg/kg<br>OC                                         | mg/kg<br>OC                                   | mg/kg<br>OC                                          | mg/kg<br>OC                                  | mg/kg<br>OC                               |                                    | mg/kg<br>OC                                            | mg/kg<br>OC                                 | mg/kg<br>OC                                      | mg/kg<br>OC                                         | mg/kg DV                                        | / mg/kg DW                                          | / mg/kg D                                                                                       | W mg/kg DV                                            | w mg/kg<br>DW                                                  | mg/kg<br>DW                                                                                            | mg/kg<br>OC                                       | mg/kg<br>OC                    | mg/kg<br>DW                                                     | mg/kg<br>DW                                                                       | mg/kg<br>DW                                                           | mg/kg<br>DW                                                                     | mg/kg<br>DW                                                                   | mg/kg<br>DW                      | mg/kg<br>DW                      |
| acetone acenaphthene acenaphthylene anthracene                                                                                                                                                                                                                                | 16<br>66<br>220                                  |                                               | 66                                     | 1.3                                            | 1.3                                                    | 0.071                                   | 1.3                                                | 0.56                                              | 0.56                                                 | 0.64                                               | 0.56                                            | 0.5<br>0.56<br>0.96                                     | 0.5<br>1.3<br>0.96                                        | 2<br>1.3<br>13                                                | 200<br>66<br>1200                                   | 110<br>18<br>93                               | 57<br>66<br>220                                      | 66                                           | 27                                        | 27                                 | 16<br>27<br>79                                         | 57<br>27<br>79                              | 16<br>66<br>220                                  | 32<br>132<br>440                                    | 1.06<br>0.47<br>1.23                            | 1.32<br>0.64<br>1.58                                | 1.1<br>0.47<br>1.2                                                                              | 1.3<br>0.64<br>1.6                                    | 0.5<br>0.56<br>0.96                                            | 1.3                                                                                                    | 16<br>66<br>220                                   | 57<br>66<br>1200               | 0.5<br>0.56<br>0.96                                             |                                                                                   | 2<br>1.3<br>13                                                        |                                                                                 |                                                                               |                                  |                                  |
| benzene benzo(a,h,)perylene benzo(a)anthracene benzo(a)pyrene benzo(b)fluoranthene benzo(k)fluoranthene bis(2-ethylhexyl) phthalate butyl benzyl phthalate carbon tetrachloride chlorobenzene                                                                                 | 31<br>110<br>99<br>230<br>230<br>47<br>4.9       | 1.3<br>1.6<br>3.2<br>3.2                      | 270<br>210<br>450<br>450<br>78         | 1.6<br>1.6<br>3.6<br>3.6<br>3.1                | 5.1<br>3.5<br>9.1<br>9.1<br>8.3                        | 0.96<br>1.1<br>1.8<br>1.8<br>1.7        | 5.1<br>3.6<br>9.9<br>9.9                           | 1.6<br>2.4<br>3.7<br>3.7<br>3.1                   | 1.6<br>1.6<br>3.6<br>3.6<br>1.9                      | 4.5<br>6.8<br>8<br>8<br>1.9                        | 1.3<br>1.6<br>3.2<br>3.2                        | 0.67<br>1.3<br>1.6<br>3.2<br>3.2<br>1.3<br>0.063        | 0.72<br>1.6<br>1.6<br>3.6<br>3.6<br>1.9<br>0.9            | 2.6<br>5.1<br>3.6<br>9.9<br>9.9<br>3.1<br>0.9                 | 100<br>270<br>210<br>450<br>450<br>550              | 240<br>170<br>230<br>310<br>310<br>130<br>5.2 | 1200<br>650<br>1300<br>1500<br>1500<br>60<br>64      | 270<br>210<br>450<br>450<br>78               | 99<br>230<br>230<br>60                    | 140<br>430<br>430<br>47            | 31<br>110<br>99<br>230<br>230<br>60<br>9.2             | 67<br>160<br>140<br>430<br>430<br>47<br>4.9 | 31<br>110<br>99<br>47<br>4.9                     | 2<br>62<br>220<br>198<br>94<br>9.8                  | 4.02<br>4.26<br>3.3<br>11<br>11<br>2.52<br>0.26 | 5.2<br>5.8<br>4.81<br>13.8<br>13.8<br>6.38<br>0.366 | 4<br>4.3<br>3.3<br>0.6<br>0.6<br>0.22<br>0.22                                                   | 5.2<br>5.8<br>4.8<br>4<br>4<br>0.32<br>0.37           | 0.67<br>1.3<br>1.6<br>3.2<br>3.2<br>1.3<br>0.063               | 1.6<br>1.6<br>3.6<br>3.6<br>1.9                                                                        | 99                                                | 210                            | 0.67<br>1.3<br>1.6<br>3.2<br>3.2<br>1.3<br>0.063                |                                                                                   | 3.2<br>5.1<br>3.6<br>9.9<br>9.9<br>8.3<br>0.97                        | 0.15<br>0.15<br>0.15<br>0.15                                                    | 0.21<br>0.21<br>0.21<br>0.21                                                  | 0.062<br>0.062<br>0.062<br>0.062 | 0.009<br>0.009<br>0.009<br>0.009 |
| chloroethane chloroform (trichloromethane) chloromethane chrysene dibenz[a,h]nathracene dibenz[a,h]nathracene dibenzofuran di-butyl phthalate (di-n-butyl phth.) dichlorobenzene, 1,2- dichlorobenzene, 1,3- dichlorobenzene, 1,3- dichlorobenzene, 1,4- dichloroethane, 1,1- | 110<br>12<br>15<br>220<br>2.3                    | 0.23<br>0.54<br>1.4                           | 33<br>58<br>1700<br>2.3                | 0.23<br>0.54<br>0 5.1                          | 1.9<br>1.7<br>1.4<br>0.11<br>0.17                      | 0.24<br>0.11<br>0.031                   | 0.97<br>0.7<br>5.1<br>0.05<br>4 0.17               | 0.26<br>0.54<br>5.1                               | 0.23<br>0.54<br>1.4<br>0.05<br>0.17                  | 1.2<br>0.54<br>5.1<br>0.05                         | 0.54<br>1.4<br>0.035<br>0.17                    | 0.23<br>0.54<br>1.4<br>0.035<br>0.17                    | 2.8<br>0.23<br>0.54<br>5.1<br>0.05                        | 9.2<br>0.97<br>1.7<br>5.1<br>0.11                             | 840<br>50<br>170<br>260<br>5.8<br>15                | 220<br>48<br>57<br>0.88                       | 850<br>89<br>58<br>1700<br>2.3<br>15                 | 47<br>170<br>260<br>5.8<br>15                | 120<br>15<br>260                          | 33<br>58<br>220<br>2.3<br>15       | 110<br>120<br>15<br>260<br>2.3<br>15<br>3.1            | 200<br>33<br>58<br>220<br>2.3<br>15         | 110<br>12<br>15<br>220<br>2.3                    | 220<br>24<br>30<br>440<br>4.6                       | 5.94<br>0.8<br>0.399<br>0.103                   | 6.4<br>0.839<br>0.443                               | 5.9<br>0.8<br>0.4                                                                               | 6.4<br>0.84<br>0.44                                   | 1.4<br>0.23<br>0.54<br>1.4<br>0.035<br>0.17                    | 0.23<br>0.54<br>1.4<br>0.05                                                                            | 12<br>15<br>220<br>2.3                            | 460<br>33<br>58<br>1700<br>2.3 | 1.4<br>0.23<br>0.54<br>1.4<br>0.035                             |                                                                                   | 21<br>1.9<br>1.7<br>5.1<br>0.11                                       | 0.15<br>0.15                                                                    | 0.21<br>0.21<br>160                                                           | 0.062<br>0.062<br>15             | 0.009                            |
| dichloroethane, 1,2- dichloroethylene, 1,1- diethyl phthalate dimethyl phthalate dimethyl phthalate din-octyl phthalate ethylbenzene fluoranthene fluoranthene fluorene hexachlorobenzene (HCB) hexachlorobutadiene indenol,1,2,3-odjpyrene                                   | 61<br>53<br>58<br>160<br>23<br>0.38<br>3.9<br>34 | 0.071<br>6.2<br>1.7<br>0.54<br>0.022<br>0.011 | 53<br>4500<br>1200<br>79<br>2.3<br>6.2 | 0.16<br>0 6.2<br>0 2.5<br>0.54<br>0.07<br>0.12 | 1.4<br>2.1<br>0.05<br>30<br>3.6<br>0.13                | 0.085<br>0.098<br>0.004<br>1.3<br>0.12  | 1.4<br>3 6.2<br>4 0.01<br>24<br>1 0.022<br>3 0.011 | 0.16<br>0.59<br>0.05<br>3.9                       | 0.16<br>0.42<br>0.037<br>2.5<br>0.54<br>0.23<br>0.27 | 0.16<br>69<br>0.037<br>6.3<br>0.64<br>0.23<br>0.27 | 0.071<br>0.033<br>1.7<br>0.54<br>0.07<br>0.12   |                                                         | 1.2<br>0.16<br>6.2<br>2.5<br>0.54<br>0.07<br>0.12<br>0.69 | 1.2<br>1.4<br>6.2<br>0.05<br>30<br>3.6<br>0.23<br>0.27<br>2.6 | 110<br>53<br>58<br>3.8<br>3000<br>360<br>4.5<br>6.2 | 0.27<br>57<br>320<br>73                       | 61<br>53<br>4500<br>3.8<br>1200<br>79<br>0.38<br>6.9 | 53<br>58<br>3.8<br>3000<br>360<br>4.5<br>6.2 | 22<br>57<br>3.8<br>160<br>23<br>9.6<br>11 | 3.8<br>190<br>71<br>2.3<br>3.9     | 5.3<br>22<br>57<br>3.8<br>160<br>23<br>9.6<br>11<br>33 | 5.3<br>19<br>3.8<br>190<br>71<br>2.3<br>3.9 | 61<br>53<br>58<br>160<br>23<br>0.38<br>3.9<br>34 | 122<br>106<br>116<br>320<br>46<br>0.76<br>7.8<br>68 | 0.311<br>0.011<br>11.1<br>1.07                  | 0.436<br>0.201<br>15<br>3.85                        | 0.046<br>0.026<br>11<br>1<br>1                                                                  | 0.44<br>0.045<br>15<br>3                              | 0.2<br>0.071<br>6.2<br>0.01<br>1.7<br>0.54<br>0.022<br>0.011   | 6.2<br>2.5<br>0.54<br>0.07<br>0.12                                                                     |                                                   | 6.2                            | 0.2<br>0.071<br>6.2<br>1.7<br>0.54<br>0.022<br>0.011            | 4.6                                                                               | 1.2<br>1.4<br>6.2<br>0.05<br>30<br>3.6<br>0.23<br>0.27<br>4.4         | 0.15                                                                            | 0.21                                                                          | 0.062                            | 0.009                            |
| MEK (Methyl Ethyl Ketone;2-Butanone) methylene chloride (dichloromethane) methylnaphthalene, 2- MIK (M-Isobutyl-K;4-M,2-Pentanone) naphthalene nitrosodiphenylamine, N- pcb mixtures pcb - Aroclor 1016 pcb - Aroclor 1221                                                    | 99<br>11                                         | 0.028<br>0.13                                 | 170                                    | 2.1<br>0.04<br>1                               | 2.4                                                    |                                         | 2.7                                                | 2.1<br>8 0.22                                     | 2.1<br>0.13                                          | 2.1<br>0.074                                       | 2.1<br>0.04<br>0.13                             | 0.67<br>2.1<br>0.028<br>0.13                            | 2.1                                                       | 0.13<br>3.1                                                   | 11<br>190                                           | 6.4                                           | 11                                                   | 220<br>11                                    | 11                                        | 170<br>11<br>12                    |                                                        | 11                                          | 11                                               |                                                     | 0.469<br>0.529<br>0.062                         | 1.31                                                | 0.47<br>0.5<br>0.06                                                                             | 0.56                                                  | 2.1                                                            |                                                                                                        | 99<br>11                                          | 11                             | 0.028                                                           | 0.038                                                                             | 1.9<br>2.4<br>0.13<br>3.1                                             |                                                                                 | 0.000016                                                                      | 0.0000039                        | 0.002                            |
| pcb - Aroclor 1232 pcb - Aroclor 1242 pcb - Aroclor 1248 pcb - Aroclor 1254 pcb - Aroclor 1260 phenanthrene pyrene tetrachloroethylene (perchloroethylene) trichlorobenzene, 1,2,4- trichlorothane, 1,1,1- trichlorothane, 1,1,2-                                             |                                                  | 1.5                                           | 1400                                   | 1.5                                            | 16<br>0.21                                             |                                         | 16<br>0.057                                        | 4.3<br>7 0.12                                     | 3.3<br>0.14                                          | 7.3<br>0.14                                        | 1.5<br>2.6<br>0.14                              | 1.5<br>2.6                                              | 1.5                                                       | 6.9<br>16<br>0.21                                             | 840<br>1000<br>22                                   | 140                                           | 480                                                  | 1000                                         | 22                                        | 210<br>22                          | 210<br>22                                              | 22                                          | 100<br>1000<br>0.81                              | 2000                                                | 0.23<br>0.138<br>6.1<br>8.79                    | 0.294<br>0.14<br>7.57<br>16                         | 6.1                                                                                             | 7.6                                                   | 2.6<br>0.057<br>0.031                                          | 0.05                                                                                                   | 1000                                              | 1400                           | 2.6                                                             | 11.98                                                                             | 0.21<br>0.064                                                         |                                                                                 |                                                                               |                                  |                                  |
| benzyl alcohol dimethylphenol, 2,4- methylphenol, 2- (o-cresol) methylphenol, 4- (p-cresol) pentachlorophenol phenol (total)                                                                                                                                                  | 2.85<br>1.45<br>3.15<br>33.5<br>18               | 0.057<br>0.029<br>0.063<br>0.67<br>0.36       | 3.65<br>1.45<br>3.15<br>33.5<br>34.5   | 0.07<br>0.02<br>0.06<br>0.67<br>0.69           | 0.76<br>0.073<br>0.077<br>0.077<br>0.077<br>3.6<br>0.4 | 0.012<br>0.055<br>0.055<br>0.11<br>0.15 | 0.65<br>2 0.87<br>5 0.21<br>5 0.072<br>1.8<br>0.69 | 0.69<br>0.073<br>0.05<br>2 0.063<br>1.2<br>0 0.14 | 0.65<br>0.073<br>0.029<br>0.063<br>0.67<br>0.14      | 0.65<br>0.073<br>0.029<br>0.072<br>0.67<br>0.14    | 0.65<br>0.057<br>0.029<br>0.072<br>0.67<br>0.14 | 0.04<br>0.65<br>0.057<br>0.029<br>0.063<br>0.67<br>0.14 | 0.073<br>0.029<br>0.063<br>0.67<br>0.69                   | 0.76<br>0.87<br>0.21<br>0.072<br>3.6<br>0.69                  | 5<br>6.5<br>3.1<br>780<br>24                        | 2<br>0.71<br>2.1<br>4.7<br>9.3                | 170<br>73<br>2.6<br>10<br>250<br>66                  | 170<br>73<br>6.5<br>3.1<br>780<br>24         | 5<br>1.3<br>3.1<br>37                     | 170<br>5<br>0.63<br>10<br>81<br>11 | 170<br>5<br>1.3<br>3.1<br>37<br>11                     | 0.63<br>10<br>81<br>11                      | 0.057<br>0.029<br>0.063<br>0.67<br>0.36          | 0.114                                               | 2.91                                            | 3.79                                                |                                                                                                 |                                                       | 0.16<br>0.04<br>0.65<br>0.057<br>0.029<br>0.063<br>0.67<br>0.4 | 0.65<br>0.073<br>0.029<br>0.063<br>0.67<br>0.69                                                        |                                                   |                                | 0.65<br>0.057<br>0.029<br>0.063<br>0.67<br>0.4                  | 0.504                                                                             | 0.16<br>0.76<br>0.87<br>0.21<br>0.077<br>3.6<br>0.69<br>1.2           |                                                                                 |                                                                               |                                  |                                  |
| styrene (phenylethylene) Tributyltin Trichlorophenol, 2,4,6-                                                                                                                                                                                                                  |                                                  |                                               | 0.07                                   | 3                                              |                                                        |                                         |                                                    |                                                   |                                                      |                                                    |                                                 |                                                         |                                                           |                                                               |                                                     |                                               |                                                      |                                              |                                           |                                    |                                                        |                                             |                                                  |                                                     |                                                 |                                                     | 0.075                                                                                           | 0.075                                                 | 0.15                                                           |                                                                                                        |                                                   |                                | 0.073                                                           |                                                                                   |                                                                       |                                                                                 |                                                                               |                                  |                                  |

|                                                                        |                                                                           | SEC                                                                                                                 | DIMENT POTEN                                                                          | TIAL ARAR                                                 | 's                                                                |                                                               |                                                                                  |                                                                                                            |                                          |                                          |                                                                                         |                                                                             | A                                                  | ways Applica                              | ible                                      | EPA Method                         | SEDIMENT<br>MOST                          | SEDIMENT<br>MOST                          |
|------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|
| CERCLA HH Risk Based Threshold Concentrations 40 CFR 160 Lockheed West | CERCLA HH Risk Based Threshold Concentrations 40 CFR 160 Hylebos Waterway | CERCLA HH<br>Risk Based Threshold<br>Concentrations 40<br>CFR 160 Data<br>Quality Objectives<br>Commencement<br>Bay | MTCA Sediment to<br>protect Surface Water<br>Upriver Dam PCB Site<br>Spokane<br>River | CERCLA<br>SMS/SQS ARAR<br>WAC 173-340-760<br><b>T-117</b> | CERCLA Sediment Screening Level (Based on Soil equivalency) T-117 | CERCLA Sediment Screening Level - Recreational Scenario T-117 | "Bold Study"<br>(EPA OSV Bold<br>Survey, 2009,<br>conducted by DMMP<br>agencies) | "Elliot Bay"<br>(Ecology, 2009,<br>combined 2007 data<br>from Basin, Urban,<br>and Harbor areas in<br>Bay) | SMS<br><b>SQS</b><br>WAC 173-<br>340-760 | SMS<br><b>CSL</b><br>WAC 173-<br>340-760 | CERCLA<br>HH Risk Based<br>Threshold<br>Concentrations<br>40 CFR 160<br>(SITE-SPECIFIC) | CERCLA Ecol Risk Based Threshold Concentrations 44 CFR 180 (SITE- SPECIFIC) | Natural<br>Background<br>Levels Ch.<br>173-340 WAC | Applicable<br>DL (MDL)<br>Ch. 173-340 WAC | Applicable<br>PQL (RL)<br>Ch. 173-340 WAC | Analytical Methods                 | Screening<br>Levels<br>(Marine<br>Waters) | Screening<br>Levels<br>(Marine<br>Waters) |
| mg/kg<br>DW                                                            | mg/kg DW                                                                  | mg/kg<br>DW                                                                                                         | mg/kg<br>DW                                                                           | mg/kg<br>DW<br>(1.55%)                                    | mg/kg<br>DW (1.55%)                                               | mg/kg<br>DW (1.55%)                                           | mg/kg<br>DW                                                                      | mg/kg<br>DW                                                                                                | mg/kg<br>Dw<br>(2%)                      | mg/kg<br>Dw<br>(2%)                      | mg/kg                                                                                   | mg/kg                                                                       | mg/kg DW                                           | mg/kg DW                                  | mg/kg DW                                  |                                    | mg/kg DW                                  | mg/kg OC                                  |
| 16                                                                     |                                                                           | 0.5                                                                                                                 |                                                                                       | 0.25                                                      | 340                                                               | 0.25                                                          |                                                                                  |                                                                                                            | 0.32                                     | 1.14                                     | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0012                                    | 8270D-SIM/1625C                    | 0.5                                       | 16                                        |
|                                                                        |                                                                           | 1.3                                                                                                                 |                                                                                       | 1                                                         |                                                                   |                                                               |                                                                                  |                                                                                                            | 1.3                                      | 1.32                                     | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0018                                    | 8270D-SIM/1625C                    | 0.56                                      | 66                                        |
|                                                                        |                                                                           | 0.96                                                                                                                |                                                                                       | 3.4                                                       | 1700                                                              | 3.4                                                           |                                                                                  |                                                                                                            | 4.4                                      | 24                                       | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0018                                    | 8270D-SIM/1625C                    | 0.96                                      | 220                                       |
| 31                                                                     |                                                                           | 0.72                                                                                                                |                                                                                       | 0.48                                                      |                                                                   |                                                               |                                                                                  |                                                                                                            | 0.62                                     | 1.56                                     | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.003                                     | 8270D-SIM/1625C                    | 0.67                                      | 31                                        |
| 0.00022<br>0.00022                                                     |                                                                           | 1.6<br>1.6                                                                                                          |                                                                                       | 1.7<br>1.5                                                | 0.015<br>0.015                                                    | 0.09                                                          | 0.00797<br>0.00797                                                               | 0.125<br>0.125                                                                                             | 2.2                                      | 5.4<br>4.2                               | *                                                                                       | *                                                                           | 0.00797<br>0.00797                                 | 0.02                                      | 0.0033                                    | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.062<br>0.062                            | 110<br>99                                 |
| 0.00022                                                                |                                                                           | 3.6                                                                                                                 |                                                                                       | 3.6                                                       | 0.015                                                             | 0.09                                                          | 0.00797                                                                          | 0.125                                                                                                      | 4.6                                      | 9                                        | *                                                                                       | *                                                                           | 0.00797                                            | 0.02                                      | 0.0033                                    | 8270D-SIM/1625C                    | 0.062                                     | 230                                       |
| 0.00022                                                                |                                                                           | 3.6                                                                                                                 |                                                                                       | 3.6                                                       | 0.015                                                             | 0.09                                                          | 0.00797                                                                          | 0.125                                                                                                      | 4.6                                      | 9                                        | *                                                                                       | *                                                                           | 0.00797                                            | 0.02                                      | 0.0032                                    | 8270D-SIM/1625C                    | 0.062                                     | 230                                       |
| 47                                                                     | 1.3<br>0.063                                                              | 1.3<br>0.9                                                                                                          |                                                                                       | 0.73<br>0.076                                             | 35<br>260                                                         |                                                               |                                                                                  | 1                                                                                                          | 0.94                                     | 1.56<br>1.28                             | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0108/0.02<br>0.0018                     | 8270D-SIM/1625C<br>8270D-SIM/1625C | 1.3<br>0.063                              | 47<br>4.9                                 |
|                                                                        |                                                                           | - 1                                                                                                                 |                                                                                       |                                                           | ,-                                                                |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            | -                                        |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        | -                                                                         |                                                                                                                     |                                                                                       |                                                           | 6.515                                                             |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           | 00705 0000                         |                                           |                                           |
| 0.00022<br>0.00022                                                     |                                                                           | 2.8<br>0.23                                                                                                         |                                                                                       | 1.7<br>0.19                                               | 0.015<br>0.015                                                    | 0.09                                                          | 0.00797<br>0.00797                                                               | 0.125<br>0.125                                                                                             | 2.2<br>0.24                              | 9.2<br>0.66                              | *                                                                                       | *                                                                           | 0.00797<br>0.00797                                 | 0.02                                      | 0.0019<br>0.0027                          | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.062<br>0.062                            | 110<br>12                                 |
| 0.00022                                                                |                                                                           | 0.54                                                                                                                |                                                                                       | 0.23                                                      | 0.0.0                                                             | 0.23                                                          | 0.00707                                                                          | 01.20                                                                                                      | 0.3                                      | 1.16                                     | *                                                                                       | *                                                                           | 0.00101                                            | 0.02                                      | 0.0015                                    | 8270D-SIM/1625C                    | 0.54                                      | 15                                        |
|                                                                        | 0.035                                                                     | 1.4<br>0.05                                                                                                         |                                                                                       | 3.4<br>0.036                                              | 200                                                               |                                                               |                                                                                  |                                                                                                            | 4.4<br>0.046                             | 34<br>0.046                              | *                                                                                       | *                                                                           |                                                    | 0.02<br>0.0032                            | 0.0033<br>0.0015                          | 8270D-SIM/1625C<br>8270D-SIM/1625C | 1.4<br>0.035                              | 220<br>2.3                                |
|                                                                        | 0.033                                                                     | 0.03                                                                                                                |                                                                                       | 0.036                                                     | 200                                                               |                                                               |                                                                                  |                                                                                                            | 0.046                                    | 0.040                                    | *                                                                                       | *                                                                           |                                                    | 0.0032                                    | 0.0019                                    | 8270D-SIW/1023C                    | 0.035                                     | 2.3                                       |
|                                                                        |                                                                           | 0.11                                                                                                                |                                                                                       | 0.048                                                     | 2.6                                                               |                                                               |                                                                                  |                                                                                                            | 0.062                                    | 0.18                                     | *                                                                                       | *                                                                           |                                                    | 0.0032                                    | 0.0022                                    | 8270D-SIM/1625C                    | 0.11                                      | 3.1                                       |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        | 0.006<br>0.071                                                            | 0.2<br>0.16                                                                                                         |                                                                                       | 0.95<br>0.82                                              | 4900                                                              |                                                               |                                                                                  |                                                                                                            | 1.2                                      | 2.2<br>1.06                              | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0041<br>0.0021                          | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.2<br>0.071                              | 61<br>53                                  |
|                                                                        | 0.061                                                                     | 6.2                                                                                                                 |                                                                                       | 0.82                                                      |                                                                   |                                                               |                                                                                  |                                                                                                            | 1.2                                      | 90                                       | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0021                                    | 8270D-SIM/1625C                    | 6.2                                       | 58                                        |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    | 0.01                                      |                                           |
| 160                                                                    |                                                                           | 2.5<br>0.54                                                                                                         |                                                                                       | 2.5<br>0.36                                               | 230<br>230                                                        | 2.5<br>0.36                                                   |                                                                                  |                                                                                                            | 3.2<br>0.46                              | 24<br>1.58                               | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0029                                    | 8270D-SIM/1625C<br>8270D-SIM/1625C | 1.7<br>0.54                               | 160<br>23                                 |
|                                                                        | 0.022                                                                     | 0.022                                                                                                               |                                                                                       | 0.0059                                                    | 0.3                                                               |                                                               |                                                                                  |                                                                                                            | 0.0076                                   | 0.046                                    | *                                                                                       | *                                                                           |                                                    | 0.012                                     |                                           | 8270D-SIM/1625C                    | 0.022                                     | 0.38                                      |
| 0.00022                                                                | *11                                                                       | 0.011<br>0.69                                                                                                       |                                                                                       | 0.53                                                      | 0.015                                                             | 0.09                                                          | 0.00797                                                                          | 0.125                                                                                                      | 0.078                                    | 0.124<br>1.76                            | *                                                                                       | *                                                                           | 0.00797                                            | 0.02                                      | 0.00057<br>0.0025                         | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.011<br>0.062                            | 3.9<br>34                                 |
| 0.00022                                                                |                                                                           | 0.03                                                                                                                |                                                                                       | 0.55                                                      | 0.013                                                             | 0.03                                                          | 0.00797                                                                          | 0.123                                                                                                      | 0.00                                     | 1.70                                     |                                                                                         |                                                                             | 0.00737                                            | 0.02                                      | 0.0023                                    | 0270D-31141/1023C                  | 0.002                                     | 34                                        |
|                                                                        |                                                                           | 0.67                                                                                                                |                                                                                       | 0.59                                                      | 31                                                                | 0.59                                                          |                                                                                  |                                                                                                            | 0.76                                     | 1.28                                     | *                                                                                       | *                                                                           |                                                    | 0.02                                      |                                           | 8270D-SIM/1625C                    | 0.67                                      | 38                                        |
|                                                                        |                                                                           | 0.07                                                                                                                |                                                                                       | 0.59                                                      | 31                                                                | 0.59                                                          |                                                                                  |                                                                                                            | 0.76                                     | 1.20                                     |                                                                                         |                                                                             |                                                    | 0.02                                      |                                           | 8270D-SIW/1023C                    | 0.67                                      | 36                                        |
|                                                                        |                                                                           | 2.1                                                                                                                 |                                                                                       | 1.5                                                       | 3.9                                                               |                                                               |                                                                                  |                                                                                                            | 2                                        | 3.4                                      | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0015                                    | 8270D-SIM/1625C                    | 2.1                                       | 99                                        |
| 0.00011                                                                | 0.13                                                                      | 0.028                                                                                                               | 0.048                                                                                 | 0.17<br>0.19                                              | 99<br>0.22                                                        | 0.19                                                          | 0.0014                                                                           | 0.048                                                                                                      | 0.22                                     | 0.22<br>1.3                              | *                                                                                       | *                                                                           | 0.002                                              | 0.005<br>0.067                            | 0.0022                                    | 8270D-SIM/1625C<br>8082            | 0.028                                     | 11<br>12                                  |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            | 0.24                                     | 1.3                                      | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           | 12                                        |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            | -                                        |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            | 0.24<br>0.24                             | 1.3                                      | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           | 12<br>12                                  |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            | 0.24                                     | 1.3                                      | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           | 12                                        |
| 100                                                                    |                                                                           | 1.5                                                                                                                 |                                                                                       | 1.6                                                       | 170                                                               | 1.6                                                           |                                                                                  |                                                                                                            | 2                                        | 9.6                                      | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0017                                    | 8270D-SIM/1625C                    | 1.5                                       | 100                                       |
|                                                                        |                                                                           | 3.3                                                                                                                 |                                                                                       | 16                                                        | 170                                                               |                                                               |                                                                                  |                                                                                                            | 20                                       | 28                                       | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0017                                    | 8270D-SIM/1625C                    | 2.6<br>0.057                              | 1000                                      |
|                                                                        | 0.031                                                                     | 0.051                                                                                                               |                                                                                       | 0.013                                                     | 8.7                                                               |                                                               |                                                                                  |                                                                                                            | 0.016                                    | 0.036                                    | *                                                                                       | *                                                                           |                                                    | 0.006                                     | 0.0018                                    | 8270D-SIM/1625C                    | 0.031                                     | 0.81                                      |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  | -                                                                                                          |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    | 0.16                                      |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  | 1                                                                                                          | -                                        |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           | 6.00                                                              |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           | 00705                              | 0.04                                      |                                           |
|                                                                        |                                                                           | 0.54<br>0.073                                                                                                       |                                                                                       | 0.65<br>0.057                                             | 24000<br>3100                                                     |                                                               |                                                                                  |                                                                                                            | 0.65<br>0.057                            | 0.65<br>0.073                            | *                                                                                       | *                                                                           |                                                    | 0.1<br>0.006                              | 0.12<br>0.0043                            | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.65<br>0.057                             | 32.5<br>2.85                              |
|                                                                        | 0.029                                                                     | 0.029                                                                                                               |                                                                                       | 0.029                                                     | 120                                                               |                                                               |                                                                                  |                                                                                                            | 0.029                                    | 0.029                                    | *                                                                                       | *                                                                           |                                                    | 0.005                                     | 0.0064                                    | 8270D-SIM/1625C                    | 0.029                                     | 1.45                                      |
|                                                                        | 0.055<br>0.11                                                             | 0.063<br>0.67                                                                                                       |                                                                                       | 0.67                                                      |                                                                   |                                                               |                                                                                  |                                                                                                            | 0.063<br>0.67                            | 0.063<br>0.67                            | *                                                                                       | *                                                                           |                                                    | 0.006                                     | 0.004<br>0.0034                           | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.063<br>0.67                             | 3.15<br>33.5                              |
| 0.058                                                                  | 0.11                                                                      | 0.67                                                                                                                |                                                                                       | 0.87                                                      | 3                                                                 |                                                               |                                                                                  |                                                                                                            | 0.87                                     | 0.67                                     | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0034                                    | 8270D-SIM/1625C<br>8270D-SIM/1625C | 0.87                                      | 18                                        |
|                                                                        | 0.18                                                                      | 0.42                                                                                                                |                                                                                       | 0.42                                                      | 1800                                                              | 0.42                                                          |                                                                                  |                                                                                                            | 0.42                                     | 1.2                                      | *                                                                                       | *                                                                           |                                                    | 0.02                                      | 0.0022                                    | 8270D-SIM/1625C                    | 0.42                                      | 21                                        |
| 0.017                                                                  | 0.138                                                                     | 0.7                                                                                                                 |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  | 1                                                                                                          |                                          |                                          | *                                                                                       | *                                                                           |                                                    | 0.001                                     | 0.0028/0.006                              | Krone 1989                         | 0.073                                     | 0.073                                     |
| 2-2                                                                    |                                                                           | <del></del>                                                                                                         |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                                     |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  | 1                                                                                                          |                                          |                                          | *                                                                                       | *                                                                           |                                                    |                                           |                                           |                                    |                                           |                                           |

| MEDIA - MTCA Standard                     |                                   | MENT Re<br>(Marine \              | •                                        | ARAR        |           |                     |                   |                    |                  |                   | S         | SEDIMEN                                      | T Appare                                      | ent Effect                                   | Thresho            | olds (Mar            | ine Wate          | ers)               |                    |                   |                  |                 |                                              |                     |                                    | SEDII   | MENT AET's                                | (Fresh                                                                             | Vater)            | Puget S                                                                                                | Sound Dre                                                                                              | edge Dispo                                        | osal Analy<br>Waters)                                                                                  | /sis (PSDI                                                      | DA)                                                                              | (Marine     |                                                                   |                                                                                 |                                                                                               |                                                                  |
|-------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------|-------------|-----------|---------------------|-------------------|--------------------|------------------|-------------------|-----------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------|----------------------|-------------------|--------------------|--------------------|-------------------|------------------|-----------------|----------------------------------------------|---------------------|------------------------------------|---------|-------------------------------------------|------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| PATHWAYS HH Human Health Ecol- Ecological | SMS<br>SQS<br>WAC 173-<br>340-760 | SMS<br>SQS<br>WAC 173-<br>340-760 | SMS<br><b>CSL</b><br>WAC 173-<br>340-760 | WAC 173- (1 | phipod Ec | chinoderm<br>(1994) | Benthic<br>(1988) | Amphipod<br>(1986) | Oyster<br>(1986) | Benthic<br>(1986) | (1000)    | SMS<br>LAET<br>WAC 173-<br>340-760<br>(1988) | SMS<br>2LAET<br>WAC 173-<br>340-760<br>(1988) | SMS<br>HAET<br>WAC 173-<br>340-760<br>(1988) | Amphipod<br>(1994) | Echinoderm<br>(1994) | Benthic<br>(1988) | Amphipod<br>(1988) | d Oyster<br>(1988) | Microto<br>(1988) | Oyster<br>(1986) | Microtox (1986) | SMS<br>LAET<br>WAC 173-<br>340-760<br>(1988) | WAC 173-<br>340-760 | Ecology (2<br>(Draft Fresh<br>LAET | nwater) | cology (2003) (Draft<br>Freshwater) 2LAET | Sediment Evaluation Framework/PSDD. (ECY03./RSET07 (SL1) Interim Freshwater (2007) | A Framework/PSDDA | Sediment<br>Evaluation<br>Framework<br>(SEF)<br>Screening<br>Level<br>(SL1)<br><b>Marine</b><br>(2005) | Sediment<br>Evaluation<br>Framework<br>(SEF)<br>Screening<br>Level<br>(SL2)<br><b>Marine</b><br>(2005) | Framework<br>(SEF)<br>Screening<br>Level<br>(SL1) | Sediment<br>Evaluation<br>Framework<br>(SEF)<br>Screening<br>Level<br>(SL2)<br><b>Marine</b><br>(2005) | PSDDA<br>/DMMP<br>Screening<br>Level<br><b>Marine</b><br>(2011) | PSDDA<br>/DMMP<br>Bioaccum-<br>ulation<br>Trigger (BT<br><b>Marine</b><br>(2003) |             | CERCLA/MTCA HH Risk Based Threshold Concentrations 40 CFR 160 LDW | CERCLA/MTCA HIH Risk Based Threshold Concentrations 40 CFR 160 LDW (Netfishing) | CERCLA/MTCA HH Risk Based Threshold Concentrations 40 CFR 160 LDW (Beach Play & Clam Fishing) | CERCLAMTCA HH Risk Based Threshold Concentrations 40 CFR 160 LDW |
| UNITS                                     | mg/kg<br>OC                       | mg/kg<br>DW                       |                                          | mg/kg mg    |           |                     |                   |                    | mg/kg<br>DW      |                   |           | mg/kg<br>DW                                  | mg/kg<br>DW                                   | mg/kg<br>DW                                  | mg/kg<br>OC        | mg/kg<br>OC          | mg/kg<br>OC       | mg/kg<br>OC        | mg/kg<br>OC        | mg/k              | g mg/kg<br>OC    | g mg/kg<br>OC   | mg/kg<br>OC                                  | mg/kg<br>OC         | mg/kg                              | DW r    | mg/kg DW i                                | mg/kg D\                                                                           | W mg/kg DW        | mg/kg<br>DW                                                                                            | mg/kg<br>DW                                                                                            | mg/kg<br>OC                                       | mg/kg<br>OC                                                                                            | mg/kg<br>DW                                                     | mg/kg<br>DW                                                                      | mg/kg<br>DW | mg/kg<br>DW                                                       | mg/kg<br>DW                                                                     | mg/kg<br>DW                                                                                   | mg/kg<br>DW                                                      |
| Aluminum                                  |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   | 10000                                                                           | 7600                                                                                          |                                                                  |
| Antimony Arsenic (III)                    |                                   |                                   |                                          | 2           | 200       | 9.3                 | 150               | 200                |                  | 150               |           | 150                                          |                                               | 200                                          | 15000              | 2100                 | 5500              | 55000              | 3300               | 3300              | 3300             | 3300            |                                              |                     | 0.6                                |         | 1.9                                       |                                                                                    |                   | 150                                                                                                    | 150                                                                                                    |                                                   |                                                                                                        | 150                                                             | 150                                                                              | 200         |                                                                   | 41                                                                              | 3.1                                                                                           |                                                                  |
| Arsenic (V)                               |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Arsenic (total) Barium                    | 2850                              | 57                                | 4650                                     | 93 4        | 450       | 130                 | 57                | 93                 | 700              | 57                | 700       | 57                                           | 93                                            | 700                                          | 32000              | 5800                 | 4400              | 32000              | 88000              | 88000             | 88000            | 0 88000         | 57                                           | 114                 | 31.4                               |         | 50.9                                      | 20                                                                                 | 51                | 57                                                                                                     | 93                                                                                                     |                                                   |                                                                                                        | 57                                                              | 507.1                                                                            | 700         | 1.3                                                               | 1.6<br>6700                                                                     | 0.39<br>540                                                                                   | 7                                                                |
| Beryllium                                 |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     | 0.46                               |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Cadmium<br>Chromium (VI)                  | 255                               | 5.1                               | 335                                      | 6.7         | 14        | 2.7                 | 5.1               | 6.7                | 9.6              | 5.1               | 9.6       | 5.1                                          | 6.7                                           | 9.6                                          | 1100               | 430                  | 580               | 1100               | 1200               | 1200              | 1200             | 1200            | 5.1                                          | 10.2                | 2.39                               |         | 2.9                                       | 1.1                                                                                | 1.5               | 5.1                                                                                                    | 6.7                                                                                                    |                                                   |                                                                                                        | 5.1                                                             | 11.3                                                                             | 14          |                                                                   | 45                                                                              | 3.7                                                                                           | +                                                                |
| Chromium, total (or III)                  | 13000                             | 260                               | 13500                                    | 270 1       | 100       | 96                  | 260               |                    |                  |                   |           | 260                                          | 270                                           | 270                                          | 130000             | 5400                 | 65000             | 150000             | )                  |                   |                  |                 | 260                                          | 520                 | 95                                 |         | 133                                       | 95                                                                                 | 100               | 260                                                                                                    | 270                                                                                                    |                                                   |                                                                                                        | 260                                                             | 267                                                                              |             |                                                                   | 6.5                                                                             | 1.6                                                                                           |                                                                  |
| Cobalt<br>Copper                          | 19500                             | 390                               | 19500                                    | 390 1       | 300       | 390                 | 530               | 1300               | 390              | 530               | 390       | 390                                          | 390                                           | 1300                                         | 100000             | 30000                | 13000             | 100000             | 49000              | 48000             | 49000            | 0 48000         | 390                                          | 780                 | 619                                | -       | 829                                       | 80                                                                                 | 830               | 390                                                                                                    | 390                                                                                                    |                                                   |                                                                                                        | 390                                                             | 1027                                                                             | 1300        |                                                                   | 4100                                                                            | 310                                                                                           | +                                                                |
| Iron                                      |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   | 10000                                                                           | 2300                                                                                          |                                                                  |
| Lead<br>Manganese                         | 22500                             | 450                               | 26500                                    | 530 1:      | 200       | 430                 | 450               | 660                | 660              | 450               | 530       | 450                                          | 530                                           | 660                                          | 48000              | 22000                | 18000             | 110000             | 66000              | 66000             | 66000            | 66000           | 450                                          | 900                 | 335                                |         | 431                                       | 340                                                                                | 430               | 450                                                                                                    | 530                                                                                                    |                                                   |                                                                                                        | 450                                                             | 975                                                                              | 1200        |                                                                   | 80<br>1900                                                                      | 40<br>180                                                                                     |                                                                  |
| Mercury                                   | 20.5                              | 0.41                              | 29.5                                     | 0.59        | 2.3       | 1.4                 | 2.1               | 2.1                | 0.59             | 2.1               | 0.41      | 0.41                                         | 0.59                                          | 2.1                                          | 300                | 71                   | 120               | 210                | 210                | 77                | 210              | 77              | 0.41                                         | 0.82                | 0.8                                |         | 3.04                                      | 0.28                                                                               | 0.75              | 0.41                                                                                                   | 0.59                                                                                                   |                                                   |                                                                                                        | 0.41                                                            | 1.5                                                                              | 2.3         |                                                                   | 31                                                                              | 2.3                                                                                           |                                                                  |
| Mercury (organic) Molybdenum              |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   | 510                                                                             | 39                                                                                            |                                                                  |
| Nickel                                    |                                   |                                   |                                          | 3           | 370       | 110                 | 140               | 140                |                  | 140               |           | 140                                          |                                               |                                              | 20000              | 49000                | 31000             | 41000              |                    |                   |                  |                 |                                              |                     | 53.1                               |         | 113                                       | 60                                                                                 | 70                | 140                                                                                                    |                                                                                                        |                                                   |                                                                                                        |                                                                 | 370                                                                              | 370         |                                                                   | 2000                                                                            | 160                                                                                           |                                                                  |
| Selenium<br>Silver                        | 305                               | 6.1                               | 305                                      | 6.1         | 6.1       | 8.4                 | 6.1               | 6.1                | 0.56             | 6.1               | 0.56      | 6.1                                          | 6.1                                           |                                              | 270                | 270                  | 490               | 170                | 100                | 100               | 100              | 100             | 6.1                                          | 12.2                | 0.54                               | 5       | 3.5                                       | 2                                                                                  | 2.5               | 6.1                                                                                                    | 6.1                                                                                                    |                                                   | -                                                                                                      | 6.1                                                             | 3<br>6.1                                                                         | 8.4         |                                                                   | 510                                                                             | 39                                                                                            |                                                                  |
| Tin                                       | 303                               | 0.1                               | 303                                      | 0.1         | 0.1       | 0.4                 | 0.1               | 0.1                | 0.50             | 0.1               | 0.50      | 0.1                                          | 0.1                                           |                                              | 210                | 270                  | 430               | 170                | 100                | 100               | 100              | 100             | 0.1                                          | 12.2                | 0.54                               |         | 5.5                                       |                                                                                    | 2.5               | 0.1                                                                                                    | 0.1                                                                                                    |                                                   |                                                                                                        | 0.1                                                             | 0.1                                                                              | 0.4         |                                                                   | 310                                                                             | 39                                                                                            |                                                                  |
| Thallium<br>Vanadium                      |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   | 6.7<br>100                                                                      | 0.52<br>7.8                                                                                   |                                                                  |
| Zinc                                      | 20500                             | 410                               | 48000                                    | 960 3       | 800       | 460                 | 410               | 960                | 1600             | 410               | 1600      | 410                                          | 960                                           | 1600                                         | 150000             | 60000                | 48000             | 210000             | 200000             | 20000             | 20000            | 0 200000        | 410                                          | 820                 | 683                                |         | 1080                                      | 130                                                                                | 400               | 410                                                                                                    | 960                                                                                                    |                                                   |                                                                                                        | 410                                                             | 2783                                                                             | 3800        |                                                                   | 10000                                                                           | 2300                                                                                          |                                                                  |
|                                           |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 | -                                                                                |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| LPAH<br>HPAH                              | 370<br>960                        | 5.2<br>12                         | 780<br>5300                              |             |           | 1.2<br>7.9          | 13<br>69          | 5.2<br>18          | 5.2<br>17        | 6.1<br>51         | 5.2<br>12 | 5.2<br>12                                    | 5.2<br>17                                     | 24<br>69                                     | 2200<br>5300       | 22<br>150            | 780<br>7600       | 2200<br>5300       | 370<br>960         |                   |                  |                 | 370<br>960                                   |                     | 6.59<br>31.64                      |         | 9.2<br>54.8                               | 6.6<br>31                                                                          | 9.2<br>55         | 5.2<br>12                                                                                              | 5.2<br>17                                                                                              | 370<br>960                                        | 780<br>5300                                                                                            | 5.2<br>12                                                       |                                                                                  | 29<br>69    |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Total Petroleum Hydrocarbons              |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Gasoline Gasoline (w/benzene)             |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              | -                   |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 | -                                                                                |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Diesel                                    |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Heavy Oil                                 |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| 2,3,7,8-TCDD (Dioxin)                     |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        | 0.000004                                                        |                                                                                  |             | 0.000013                                                          | 0.000016                                                                        | 0.0000039                                                                                     | 0.000002                                                         |
| Aldrin                                    |                                   |                                   |                                          | 0.0         | 0095 0    | 0.0095              |                   |                    |                  |                   |           |                                              |                                               |                                              | 0.56               | 0.56                 |                   | 1                  | -                  | +                 | +                |                 |                                              |                     |                                    |         |                                           |                                                                                    | +                 | 0,0095                                                                                                 | 0.0095                                                                                                 | <del>                                     </del>  |                                                                                                        | 0.0095                                                          |                                                                                  |             |                                                                   | -                                                                               | -                                                                                             |                                                                  |
| alpha-BHC                                 |                                   |                                   |                                          | 0.0         |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              | 0.00               | 0.00                 |                   |                    | 1                  |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   | 0.3033                                                                                                 | 0.0000                                                                                                 |                                                   |                                                                                                        | 0.5055                                                          |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| beta-BHC                                  | -                                 |                                   |                                          |             |           |                     |                   |                    |                  |                   | +         |                                              |                                               |                                              |                    |                      | -                 | 1                  |                    | 1                 |                  | -               | 1                                            | +                   |                                    |         |                                           |                                                                                    | 1                 | 0.01                                                                                                   | 1                                                                                                      | 1                                                 | <del> </del>                                                                                           | 1                                                               |                                                                                  | -           |                                                                   | -                                                                               |                                                                                               |                                                                  |
| gamma-BHC (Lindane) Chlordane             |                                   |                                   |                                          | 0.0         | 0028 0    | 0.0045              |                   |                    |                  |                   |           |                                              |                                               |                                              | 0.16               |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        | 0.0045                                                                                                 |                                                   |                                                                                                        |                                                                 | 0.037                                                                            |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| 4,4'-DDT                                  |                                   |                                   |                                          |             | .024      |                     |                   |                    |                  |                   |           | 0.006                                        |                                               | 0.034<br>0.015                               |                    |                      | 3.7<br>0.31       |                    |                    |                   |                  |                 | 3.7<br>0.31                                  |                     | 0.019                              |         |                                           |                                                                                    |                   |                                                                                                        | 0.0034<br>0.0093                                                                                       |                                                   |                                                                                                        | 0.012<br>0.009                                                  | 0.05                                                                             | 0.069       |                                                                   | 7                                                                               | 1.7                                                                                           |                                                                  |
| 4,4'-DDE<br>4,4'-DDD                      |                                   |                                   |                                          |             | .062      |                     |                   |                    |                  |                   |           | 0.009                                        |                                               |                                              |                    | 1.6                  |                   |                    |                    |                   | 1                |                 | 0.31                                         | _                   | 0.02                               |         |                                           |                                                                                    | +                 | 0.009                                                                                                  |                                                                                                        |                                                   |                                                                                                        | 0.009                                                           |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Dieldrin                                  |                                   |                                   |                                          |             | 0035 0    |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    | 0.28                 |                   |                    |                    | 1                 |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        | 0.0035                                                                                                 |                                                   |                                                                                                        | 0.0019                                                          |                                                                                  |             |                                                                   | 0.11                                                                            | 0.03                                                                                          |                                                                  |
| alpha-Endosulfan<br>beta-Endosulfan       | 1                                 |                                   |                                          |             |           |                     |                   |                    |                  |                   | +         |                                              |                                               |                                              |                    |                      |                   | 1                  |                    | +                 | +                |                 |                                              |                     |                                    | -+      |                                           |                                                                                    | +                 | +                                                                                                      | +                                                                                                      | 1                                                 |                                                                                                        | +                                                               |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Endosulfan Sulfate                        |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   |                                                                                                        |                                                                                                        |                                                   |                                                                                                        |                                                                 |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Endrin<br>Endrin Aldehyde                 |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    | +                 |                  |                 |                                              |                     |                                    | +       |                                           |                                                                                    | +                 | 1                                                                                                      | 1                                                                                                      | 1                                                 |                                                                                                        | 1                                                               |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Heptachlor                                |                                   |                                   |                                          | 0.0         | 0015      | 0.002               |                   |                    |                  |                   |           |                                              |                                               |                                              | 0.11               | 0.4                  |                   |                    |                    |                   |                  |                 |                                              |                     |                                    |         |                                           |                                                                                    |                   | 0.0015                                                                                                 | 0.002                                                                                                  |                                                   |                                                                                                        | 0.0015                                                          |                                                                                  |             |                                                                   |                                                                                 |                                                                                               |                                                                  |
| Heptachlor Epoxide Toxaphene              | -                                 |                                   |                                          |             |           |                     |                   |                    |                  |                   | +         |                                              |                                               |                                              |                    |                      | -                 | 1                  |                    | 1                 |                  | -               | 1                                            | +                   |                                    |         |                                           |                                                                                    | 1                 | 1                                                                                                      | 1                                                                                                      | 1                                                 | 1                                                                                                      | 1                                                               |                                                                                  | -           |                                                                   | 1.6                                                                             | 0.44                                                                                          |                                                                  |
| толарнене                                 |                                   |                                   |                                          |             |           |                     |                   |                    |                  |                   |           |                                              |                                               |                                              |                    |                      |                   |                    |                    |                   |                  |                 |                                              | <u> </u>            |                                    |         |                                           |                                                                                    | <u> </u>          |                                                                                                        |                                                                                                        |                                                   | <u> </u>                                                                                               |                                                                 | <u> </u>                                                                         |             |                                                                   | 1.0                                                                             | J.44                                                                                          | <u> </u>                                                         |

|                                                                        |                                                                           | SEC                                                                                               | DIMENT POTEN                                                                          | ITIAL ARAR                                                | 's                                                                |                                                               |                                                                                  |                                                                                                            |                                   |                                          |                                                                                         |                                                                                            | ΑĤ                                                 | ways Applica                              | ble                                       | EPA Method         | SEDIMENT<br>MOST<br>STRINGENT             | SEDIMENT<br>MOST<br>STRINGENT             |
|------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------|-------------------------------------------|-------------------------------------------|
| CERCLA HH Risk Based Threshold Concentrations 40 CFR 160 Lockheed West | CERCLA HH Risk Based Threshold Concentrations 40 CFR 160 Hylebos Waterway | CERCLA HH Risk Based Threshold Concentrations 40 CFR 160 Data Quality Objectives Commencement Bay | MTCA Sediment to<br>protect Surface Water<br>Upriver Dam PCB Site<br>Spokane<br>River | CERCLA<br>SMS/SQS ARAR<br>WAC 173-340-760<br><b>T-117</b> | CERCLA Sediment Screening Level (Based on Soil equivalency) T-117 | CERCLA Sediment Screening Level - Recreational Scenario T-117 | "Bold Study"<br>(EPA OSV Bold<br>Survey, 2009,<br>conducted by DMMP<br>agencies) | "Elliot Bay"<br>(Ecology, 2009,<br>combined 2007 data<br>from Basin, Urban,<br>and Harbor areas in<br>Bay) | SMS<br>SQS<br>WAC 173-<br>340-760 | SMS<br><b>CSL</b><br>WAC 173-<br>340-760 | CERCLA<br>HH Risk Based<br>Threshold<br>Concentrations<br>40 CFR 160<br>(SITE-SPECIFIC) | CERCLA<br>Ecol Risk Based<br>Threshold<br>Concentrations 40<br>CFR 160 (SITE-<br>SPECIFIC) | Natural<br>Background<br>Levels Ch.<br>173-340 WAC | Applicable<br>DL (MDL)<br>Ch. 173-340 WAC | Applicable<br>PQL (RL)<br>Ch. 173-340 WAC | Analytical Methods | Screening<br>Levels<br>(Marine<br>Waters) | Screening<br>Levels<br>(Marine<br>Waters) |
| mg/kg<br>DW                                                            | mg/kg DW                                                                  | mg/kg<br>DW                                                                                       | mg/kg<br>DW                                                                           | mg/kg<br>DW<br>(1.55%)                                    |                                                                   | mg/kg<br>DW (1.55%)                                           | mg/kg<br>DW                                                                      | mg/kg<br>DW                                                                                                | mg/kg<br>Dw<br>(2%)               | mg/kg<br>Dw<br>(2%)                      | mg/kg                                                                                   | mg/kg                                                                                      | mg/kg DW                                           | mg/kg DW                                  | mg/kg DW                                  |                    | mg/kg DW                                  | mg/kg OC                                  |
| 150                                                                    | 5.9                                                                       | 150                                                                                               |                                                                                       |                                                           | 7700<br>3.1                                                       |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           | 0.11/1.0                                  | 6010B/6020         | 7600<br>3.1                               |                                           |
| 130                                                                    | 3.8                                                                       | 130                                                                                               |                                                                                       |                                                           | J. I                                                              |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           | 0.11/1.0                                  | 001015/0020        | 3.1                                       |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
| 0.000023                                                               | 57                                                                        | 57                                                                                                |                                                                                       | 57                                                        | 0.39<br>1500                                                      | 12                                                            | 7.3                                                                              | 8.44                                                                                                       | 57                                | 93                                       | *                                                                                       | *                                                                                          | 7.3                                                | 19                                        | 0.02/0.2                                  | 6010B/6020         | 0.39<br>540                               | 2850                                      |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           | .500                                                              |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 540                                       |                                           |
| 0.33                                                                   | 2.7                                                                       | 5.1                                                                                               |                                                                                       | 5.1                                                       | 7                                                                 |                                                               |                                                                                  |                                                                                                            | 5.1                               | 6.7                                      | *                                                                                       | *                                                                                          | 0.398                                              | 1.7                                       | 0.02/0.2                                  | 6010B/6020         | 3.7                                       | 255                                       |
| 260                                                                    | 63.5                                                                      |                                                                                                   |                                                                                       | 260                                                       | 39                                                                |                                                               |                                                                                  | 1                                                                                                          | 260                               | 270                                      | *                                                                                       | *                                                                                          | 35.6                                               | 87                                        | 0.09/0.5                                  | 6010B/6020         | 1.6                                       | 13000                                     |
| 10                                                                     | 00.0                                                                      |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            | 200                               | 2.0                                      | *                                                                                       | *                                                                                          | 9.6                                                |                                           | 0.03/0.3                                  | 6010B/6020         |                                           |                                           |
| 35                                                                     | 270                                                                       | 390                                                                                               |                                                                                       | 390                                                       | 310                                                               |                                                               | 24.9                                                                             | 41.1                                                                                                       | 390                               | 390                                      | *                                                                                       | *                                                                                          | 24.9                                               | 130                                       | 0.04/0.2                                  | 6010B/6020         | 310                                       | 19500                                     |
| 10                                                                     | 360                                                                       | 450                                                                                               |                                                                                       | 450                                                       | 5500<br>40                                                        |                                                               | 10.9                                                                             | 26.9                                                                                                       | 450                               | 530                                      | *                                                                                       | *                                                                                          | 10.9                                               | 150                                       | 0.0019                                    | 6010B/6020         | 2300<br>40                                | 22500                                     |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           | 180                                                               |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 180                                       |                                           |
| 0.41                                                                   | 0.41                                                                      | 0.59                                                                                              |                                                                                       | 0.41                                                      | 2.3                                                               |                                                               | 0.101                                                                            | 0.175                                                                                                      | 0.41                              | 0.59                                     | *                                                                                       | *                                                                                          | 0.1                                                | 0.14                                      | 0.003/0.05                                | 7471A/245.5        | 0.41                                      | 20.5                                      |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           | 39                                                                |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 39                                        |                                           |
| 140                                                                    | 110                                                                       | 140                                                                                               |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          | 36.6                                               |                                           | 0.38/1.0                                  | 6020               | 140                                       |                                           |
| 11                                                                     | _                                                                         |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          | 0.575                                              |                                           | 0.3/5.0                                   | 6020               | 3                                         |                                           |
|                                                                        | 3                                                                         | 6.1                                                                                               |                                                                                       | 6.1                                                       | 39                                                                |                                                               |                                                                                  |                                                                                                            | 6.1                               | 6.1                                      | *                                                                                       | *                                                                                          |                                                    | 2                                         |                                           | 6010B/6020         | 6.1                                       | 305                                       |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           | 0.51                                                              |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.52                                      |                                           |
| 57                                                                     |                                                                           |                                                                                                   |                                                                                       |                                                           | 39                                                                |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          | 43.3                                               |                                           | 0.03/0.3                                  | 6010B              | 7.8                                       |                                           |
| 410                                                                    | 410                                                                       | 410                                                                                               |                                                                                       | 410                                                       | 2300                                                              |                                                               |                                                                                  |                                                                                                            | 410                               | 960                                      | *                                                                                       | *                                                                                          | 59.7                                               | 137                                       | 0.29/0.6                                  | 6010B/6020         | 410                                       | 20500                                     |
|                                                                        |                                                                           | 5.2                                                                                               |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           | 0.0022                                    |                    | 5.2                                       | 370                                       |
| 960                                                                    |                                                                           | 17                                                                                                |                                                                                       | 15                                                        |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           | 0.0033                                    | 8270C              | 12                                        | 960                                       |
|                                                                        |                                                                           |                                                                                                   |                                                                                       | 5.7                                                       |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
| 0.000000141                                                            |                                                                           |                                                                                                   |                                                                                       |                                                           | 0.0000045                                                         | 0.000013                                                      |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          | 0.000000141                                        | 0.000000065                               |                                           | 1613B              | 0.0000039                                 |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.0095                                    |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.0000                                    |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.01<br>0.0028                            | 1                                         |
|                                                                        |                                                                           | 0.034                                                                                             |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.0012                                    |                                           |
|                                                                        |                                                                           | 0.009                                                                                             |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.009                                     |                                           |
|                                                                        |                                                                           | 0.016                                                                                             |                                                                                       |                                                           | <del>                                     </del>                  |                                                               |                                                                                  | <del>                                     </del>                                                           |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.016<br>0.0019                           | -                                         |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 2.3010                                    |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   | _                                        | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           |                                                                   |                                                               |                                                                                  |                                                                                                            |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.0015                                    |                                           |
|                                                                        |                                                                           |                                                                                                   |                                                                                       |                                                           | <del>                                     </del>                  |                                                               |                                                                                  | <del>                                     </del>                                                           |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    | 0.44                                      | -                                         |
|                                                                        |                                                                           | İ                                                                                                 |                                                                                       |                                                           | 1                                                                 |                                                               |                                                                                  | 1                                                                                                          |                                   |                                          | *                                                                                       | *                                                                                          |                                                    |                                           |                                           |                    |                                           | 1                                         |

| MEDIA - MTCA Standard                                          |                                                                |                                                                        | AIR M                                                                  | lethod B                                                                   |                                                                            |                                                                               |                                                                |                                                                        |                                                                        | AIR Method                                                                 | С                                                                          |                                                                               |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| PATHWAYS<br>HH - Human Health<br>Ecol- Ecological              | Air,<br>Method B-HH,<br>ARAR's WAC<br>173-340-<br>750(3)(b)(i) | Air,<br>Method B-HH,<br>Carcinogen WAC<br>173-340-<br>750(3)(b)(ii)(B) | Air,<br>Method B-HH,<br>Carcinogen WAC<br>173-340-<br>750(3)(b)(ii)(B) | Air,<br>Method B-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(3)(b)(ii)(A) | Air,<br>Method B-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(3)(b)(ii)(A) | Air,<br>Method B-HH,<br>Petroleum Mixture<br>WAC 173-340-<br>750(3)(b)(ii)(C) | Air,<br>Method C-HH,<br>ARAR's<br>WAC 173-340-<br>750(4)(b)(i) | Air,<br>Method C-HH,<br>Carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(B) | Air,<br>Method C-HH,<br>Carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(B) | Air,<br>Method C-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(A) | Air,<br>Method C-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(A) | Air,<br>Method C-HH,<br>Petroleum Mixture<br>WAC 173-340-<br>750(4)(b)(ii)(C) | Air,<br>Lower Explosive<br>Limit (LEL)<br>WAC 173-340-<br>750(4)(b)(iii) | Air, Ambient,<br>Puget Sound<br>Clean Air Authority<br>(PSCAA)<br>Ch. 70.94 RCW | J&E<br>Less Protective | J&E<br>Best Protective | J&E<br>More Protective | CA EPA OEHHA<br>HH-Indoor Air<br><b>Residential</b><br>Screening Levels | CA EPA OEHHA<br>HH-Indoor Air<br>Commercial/<br>Industrial<br>Screening Levels | CA EPA OEHHA<br>HH-Indoor Air<br>Residential<br>Screening Levels | CA EPA OEHHA<br>HH-Indoor Air<br>Commercial/<br>Industrial<br>Screening Levels | CA EPA OEHHA<br>HH-Shallow Soil Gas<br>(Vapor Intrusion)<br>Residential<br>Screening Levels | CA EPA OEHHA<br>HH-Shallow Soil Gas<br>(Vapor Intrusion)<br>Residential<br>Screening Levels | CA EPA OEHHA<br>HH-Shallow Soil Gas<br>(Vapor Intrusion)<br>Commercial/Industrial<br>Screening Levels | CA EPA OEHHA HH-<br>Shallow Soil Gas (Vapor<br>Intrusion)<br>Commercial/Industrial<br>Screening Levels |
| UNITS                                                          | ppbv                                                           | µg/m³                                                                  | ppbv                                                                   | μg/m³                                                                      | ppbv                                                                       | ppbv<br>*                                                                     | ppbv                                                           | μg/m³                                                                  | ppbv                                                                   | μg/m³                                                                      | ppbv                                                                       | ppbv                                                                          | ppbv                                                                     | ppbv                                                                            | ppbv                   | ppbv                   | ppbv                   | mg/m³                                                                   | mg/m³                                                                          | ppbv                                                             | ppbv                                                                           | μg/m³                                                                                       | ppbv                                                                                        | μg/m³                                                                                                 | ppbv                                                                                                   |
| acetone acenaphthene acenaphthylene                            |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             | 26000000                                                                 |                                                                                 | 71120                  | 41430                  | 32890                  |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| anthracene<br>benzene                                          |                                                                | 0.321                                                                  | 0.100492318                                                            | 13.7                                                                       | 4.288924456                                                                | *                                                                             |                                                                | 3.21                                                                   | 1.004923175                                                            | 30                                                                         | 9.391805378                                                                | *                                                                             | 13500000                                                                 |                                                                                 | 59.25                  | 30.59                  | 22.59                  | 0.000084                                                                | 0.000141                                                                       | 0.026207055                                                      | 0.044141485                                                                    | 36.2                                                                                        | 11.33277849                                                                                 | 122                                                                                                   | 38.19334187                                                                                            |
| benzo(g,h,i)perylene                                           |                                                                | 0.321                                                                  | 0.100492318                                                            | 13.7                                                                       | 4.200924430                                                                | *                                                                             |                                                                | 3.21                                                                   | 1.004923173                                                            | 30                                                                         | 3.331003376                                                                | *                                                                             | 13300000                                                                 |                                                                                 | 39.23                  | 30.59                  | 22.39                  | 0.000084                                                                | 0.000141                                                                       | 0.020297033                                                      | 0.044141465                                                                    | 30.2                                                                                        | 11.00277040                                                                                 | 122                                                                                                   | 56.15654167                                                                                            |
| benzo[a]anthracene                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <u> </u>                                                                                               |
| benzo[a]pyrene                                                 |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | Saturation             | Saturation             | Saturation             |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| benzo[b]fluoranthene<br>benzo[k]fluoranthene                   |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | Saturation             | Saturation             | Saturation             |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| bis(2-ethylhexyl) phthalate                                    |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| butyl benzyl phthalate                                         |                                                                | 0.417                                                                  | 0.066291612                                                            | 45.7                                                                       | 7.265052016                                                                | *                                                                             |                                                                | 4.17                                                                   | 0.662916125                                                            | 100                                                                        | 15.89726918                                                                | *                                                                             |                                                                          |                                                                                 |                        |                        |                        | 0.0000579                                                               | 0.0000973                                                                      | 0.009204519                                                      | 0.015469042                                                                    | 25.1                                                                                        | 3.990214564                                                                                 | 84.6                                                                                                  | 13.44908973                                                                                            |
| carbon tetrachloride<br>chlorobenzene                          |                                                                | 0.417                                                                  | 0.000291012                                                            | 22.9                                                                       | 4.972513321                                                                | *                                                                             |                                                                | 4.17                                                                   | 0.002910125                                                            | 50                                                                         | 10.85701599                                                                | *                                                                             |                                                                          |                                                                                 | 8911                   | 4340                   | 3064                   | 0.0000579                                                               | 0.0000973                                                                      | 0.009204519                                                      | 0.015466043                                                                    | 25.1                                                                                        | 3.330214304                                                                                 | 04.0                                                                                                  | 13.44300373                                                                                            |
| chloroethane (ethyl chloride)                                  |                                                                |                                                                        |                                                                        |                                                                            | _                                                                          | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 372.1                  | 266                    | 236.4                  |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| chloroform (trichloromethane)                                  |                                                                | 0.109                                                                  | 0.022320352                                                            | 41.1                                                                       | 19.89891089                                                                | *                                                                             |                                                                | 1.09                                                                   | 0.223203518                                                            | 90                                                                         | 43.57425743                                                                | *                                                                             |                                                                          |                                                                                 | 11.8                   | 6.421                  | 4.92                   |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del> </del>                                                                                           |
| chloromethane (methyl chloride)<br>chrysene                    |                                                                |                                                                        |                                                                        | 41.1                                                                       | 19.09#31063                                                                |                                                                               |                                                                |                                                                        |                                                                        | 90                                                                         | 43.57425743                                                                | *                                                                             |                                                                          |                                                                                 | Saturation             | Saturation             | Saturation             |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| dibenz[a,h]anthracene                                          |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | <u>/_()_</u>                                                                  | _                                                              |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| dibenzofuran                                                   |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | AT                                                                            | m -                                                            |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 3411                   | 1239                   | 624                    |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| di-butyl phthalate (di-n-butyl phth.)<br>dichlorobenzene, 1,2- |                                                                |                                                                        |                                                                        | 91.4                                                                       | 15.2022449                                                                 |                                                                               |                                                                | ^                                                                      |                                                                        | 200                                                                        | 33.26530612                                                                | *                                                                             |                                                                          |                                                                                 | 23870                  | 11420                  | 7952                   |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| dichlorobenzene, 1,3-                                          |                                                                |                                                                        |                                                                        | •                                                                          | .0.2022110                                                                 | *                                                                             | 11/51                                                          |                                                                        |                                                                        |                                                                            | 00:20000:2                                                                 | *                                                                             |                                                                          |                                                                                 | 200.0                  | 20                     | .002                   |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| dichlorobenzene, 1,4-                                          |                                                                |                                                                        |                                                                        | 366                                                                        | 60.8755102                                                                 | *                                                                             |                                                                | //~                                                                    |                                                                        | 800                                                                        | 133.0612245                                                                | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <b></b>                                                                                                |
| dichloroethane, 1,1-<br>dichloroethane, 1,2-                   |                                                                | 0.0962                                                                 | 0.023758485                                                            |                                                                            |                                                                            | *                                                                             | <del>                                     </del>               | 0.932                                                                  | 0.230175758                                                            |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 84210<br>12.59         | 41220<br>6.852         | 29220<br>5.25          | 0.000116                                                                | 0.000195                                                                       | 0.028648485                                                      | 0.048159091                                                                    | 49.6                                                                                        | 12.24969697                                                                                 | 167                                                                                                   | 41.24393939                                                                                            |
| dichloroethylene, 1,1-                                         |                                                                | 0.05                                                                   | 0.012616099                                                            | 91.4                                                                       | 23.0622291                                                                 | *                                                                             | Ī                                                              | 0.5                                                                    | 0.126160991                                                            |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 30160                  | 15680                  | 11640                  | 0.000365                                                                | 0.0511                                                                         |                                                                  | 12.89365325                                                                    | 15900                                                                                       | 4011.919505                                                                                 | 44400                                                                                                 | 11203.09598                                                                                            |
| diethyl phthalate                                              |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| dimethyl phthalate                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del></del>                                                                                            |
| di-n-octyl phthalate<br>ethylbenzene                           |                                                                | 460                                                                    | 105.9438583                                                            | 4570                                                                       | 1052.529201                                                                | *                                                                             |                                                                | 1000                                                                   | 230.3127355                                                            | 10000                                                                      | 2303.127355                                                                | *                                                                             |                                                                          |                                                                                 | 344.7                  | 169.3                  | 120.3                  | *                                                                       | *                                                                              |                                                                  |                                                                                | *                                                                                           |                                                                                             |                                                                                                       |                                                                                                        |
| fluoranthene                                                   |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| fluorene                                                       |                                                                | 0.00540                                                                | 0.000400404                                                            |                                                                            |                                                                            | *                                                                             |                                                                | 0.0540                                                                 | 0.00400404                                                             |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | Solubility             | Solubility             | Solubility             |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| hexachlorobenzene<br>hexachlorobutadiene                       |                                                                | 0.00543<br>0.114                                                       | 0.000466164<br>0.0106875                                               |                                                                            |                                                                            | *                                                                             |                                                                | 0.0543<br>1.14                                                         | 0.00466164<br>0.106875                                                 |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 0.3883                 | 0.1733                 | 0.113                  |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| indeno[1,2,3-cd]pyrene                                         |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| MEK (Methyl Ethyl Ketone;2-Butanone)                           |                                                                |                                                                        |                                                                        | 2290                                                                       | 776.4595756                                                                | *                                                                             |                                                                |                                                                        |                                                                        | 5000                                                                       | 1695.326584                                                                | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | 1                                                                                                      |
| methylene chloride (dichloromethane) methylnaphthalene, 2-     |                                                                | 5.32                                                                   | 1.532084806                                                            |                                                                            |                                                                            | *                                                                             |                                                                | 53.2                                                                   | 15.32084806                                                            |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 826.8<br>10610         | 445.8<br>4675          | 339.5<br>3015          |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                            |                                                                |                                                                        |                                                                        | 1370                                                                       | 334.4299121                                                                |                                                                               |                                                                |                                                                        |                                                                        | 3000                                                                       | 732.3282748                                                                |                                                                               |                                                                          |                                                                                 |                        |                        | 55.5                   |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| naphthalene                                                    |                                                                | 1.37                                                                   | 0.261283151                                                            | 1.37                                                                       | 0.261283151                                                                | *                                                                             |                                                                | 3                                                                      | 0.572152886                                                            | 3000                                                                       | 572.1528861                                                                | *                                                                             | 9000000                                                                  |                                                                                 | 459.6                  | 210.1                  | 140.2                  | 0.000072                                                                | 0.00012                                                                        | 0.013731669                                                      | 0.022886115                                                                    | 31.9                                                                                        | 6.083892356                                                                                 | 106                                                                                                   | 20.21606864                                                                                            |
| nitrosodiphenylamine, N-<br>pcb mixtures                       |                                                                | 0.00439                                                                | 0.000297328                                                            |                                                                            |                                                                            | *                                                                             |                                                                | 0.0439                                                                 | 0.002973283                                                            |                                                                            |                                                                            | *                                                                             |                                                                          | 2000                                                                            |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| pcb - Aroclor 1016                                             |                                                                | 0.00403                                                                | 0.000237320                                                            |                                                                            |                                                                            | *                                                                             |                                                                | 0.0400                                                                 | 0.002370200                                                            |                                                                            |                                                                            | *                                                                             |                                                                          | 2000                                                                            |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| pcb - Aroclor 1221                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| pcb - Aroclor 1232<br>pcb - Aroclor 1242                       | <del>                                     </del>               |                                                                        | 1                                                                      |                                                                            | 1                                                                          | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          | +                                                                               |                        |                        |                        |                                                                         | -                                                                              | 1                                                                | 1                                                                              |                                                                                             |                                                                                             |                                                                                                       | <del> </del>                                                                                           |
| pcb - Aroclor 1248                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| pcb - Aroclor 1254                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        | L                      |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             | <u>-</u>                                                                                              | <u> </u>                                                                                               |
| pcb - Aroclor 1260<br>phenanthrene                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          | -                                                                               |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| pyrene                                                         |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | Solubility             | Solubility             | Solubility             |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| tetrachloroethylene (perchloroethylene)                        |                                                                | -                                                                      |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        | -                                                                          |                                                                            | *                                                                             |                                                                          |                                                                                 | 83.28                  | 40.38                  | 28.41                  | 0.000412                                                                | 0.000693                                                                       | 0.060756333                                                      | 0.102194511                                                                    | 180                                                                                         | 26.54402895                                                                                 | 603                                                                                                   | 88.92249698                                                                                            |
| trichlorobenzene, 1,2,4-<br>trichlorethane, 1,1,1-             | -                                                              |                                                                        | -                                                                      | 0.914<br>2290                                                              | 0.12312562<br>419.7188906                                                  | *                                                                             |                                                                |                                                                        |                                                                        | 5000                                                                       | 0.269421488<br>916.4167916                                                 | *                                                                             | -                                                                        | -                                                                               | 265500                 | 132000                 | 94730                  | 2.29                                                                    | 3.21                                                                           | 410 7400000                                                      | 588.3395802                                                                    | 991000                                                                                      | 181633.8081                                                                                 | 2790000                                                                                               | 511360.5697                                                                                            |
| trichlorethane, 1,1,1-                                         |                                                                | 0.156                                                                  | 0.028592204                                                            | 2290                                                                       | +13./100300                                                                | *                                                                             |                                                                | 1.56                                                                   | 0.285922039                                                            | 5000                                                                       | 310.410/316                                                                | *                                                                             |                                                                          |                                                                                 | 18.34                  | 9.122                  | 6.548                  | 2.29                                                                    | 3.21                                                                           | 413./100306                                                      | 300.3393002                                                                    | 331000                                                                                      | .01003.0001                                                                                 | Z1 90000                                                                                              | 311333.3031                                                                                            |
| trichloroethylene                                              |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 | 2.687                  | 1.341                  | 0.9655                 | 0.00122                                                                 | 0.00204                                                                        | 0.227009132                                                      | 0.379589041                                                                    | 528                                                                                         | 98.24657534                                                                                 | 1770                                                                                                  | 329.3493151                                                                                            |
| trimethylbenzene, 1,3,5-                                       |                                                                | 2200                                                                   | 584.0390879                                                            | 183                                                                        | 48.58143322                                                                | *                                                                             |                                                                | 4900                                                                   | 1300.814332                                                            | 400                                                                        | 106.1889251                                                                | *                                                                             | 12700000                                                                 |                                                                                 | 959.7<br>64890         | 440.4<br>33380         | 295.6<br>24590         | 0.242                                                                   | 0.438                                                                          | 92 0020222                                                       | 116.276873                                                                     | 135000                                                                                      | 35838.76221                                                                                 | 378000                                                                                                | 100348.5342                                                                                            |
| toluene<br>vinyl chloride (chloroethylene)                     | <b> </b>                                                       | 2200<br>0.568                                                          | 0.2222016                                                              | 183<br>45.7                                                                | 48.58143322<br>17.87784                                                    | *                                                                             |                                                                | 4900<br>5.68                                                           | 1300.814332<br>2.222016                                                | 100                                                                        | 106.1889251<br>39.12                                                       | *                                                                             | 12/00000                                                                 | +                                                                               | 58.23                  | 33380<br>31.87         | 24590<br>24.51         | 0.313<br>0.0000311                                                      | 0.438                                                                          | _                                                                | 116.276873<br>0.02049888                                                       | 135000<br>13.3                                                                              | 5.20296                                                                                     | 378000<br>44.8                                                                                        | 17.52576                                                                                               |
| xylene (dimethylbenzene)                                       |                                                                | 46                                                                     | 10.59039548                                                            |                                                                            | 10.68248588                                                                | *                                                                             |                                                                | 100                                                                    | 23.02259887                                                            | 100                                                                        | 23.02259887                                                                | *                                                                             | 10000000                                                                 |                                                                                 | 1145000                | 550400                 | 384500                 | 0.73                                                                    | 1.02                                                                           | _                                                                | 234.8305085                                                                    | 319000                                                                                      | 73442.0904                                                                                  | 887000                                                                                                | 204210.452                                                                                             |
| benzoic acid                                                   |                                                                |                                                                        |                                                                        |                                                                            | -                                                                          | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            | -                                                                          | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | 1                                                                                                      |
| benzyl alcohol<br>dimethylphenol, 2,4-                         | -                                                              |                                                                        | 1                                                                      |                                                                            | 1                                                                          | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             | 1                                                                        |                                                                                 |                        |                        |                        |                                                                         | <del>                                     </del>                               | 1                                                                | <del>                                     </del>                               |                                                                                             |                                                                                             |                                                                                                       | <del> </del>                                                                                           |
| methylphenol, 2- (o-cresol)                                    |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| methylphenol, 4- (p-cresol)                                    |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <u> </u>                                                                                               |
| pentachlorophenol<br>phenol (total)                            | <b>  </b>                                                      |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          | +                                                                               |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | <del>                                     </del>                                                       |
| styrene (phenylethylene)                                       |                                                                |                                                                        |                                                                        | 4.57                                                                       | 1.073357349                                                                | *                                                                             |                                                                |                                                                        |                                                                        | 1000                                                                       | 234.870317                                                                 | *                                                                             | 11000000                                                                 |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Tributyltin                                                    |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                                                                  |                                                                                |                                                                                             |                                                                                             |                                                                                                       | L                                                                                                      |
| Trichlorophenol, 2,4,6-                                        |                                                                | 0.806                                                                  | 0.099780759                                                            | 1                                                                          |                                                                            | *                                                                             |                                                                | 8.06                                                                   | 0.997807595                                                            |                                                                            | 1                                                                          | *                                                                             | 1                                                                        |                                                                                 |                        |                        |                        |                                                                         | l                                                                              | 1                                                                | l                                                                              |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |

| AIR Pote                                                                                       | ential ARAR's                                                                                    |                                                                                                 |                                                                                               |                       |                   |                                                                                                          |                                                    |                               |                                                                                       |                                                                                                            |                                |                                                                               | Conversi                   | on Tables                            |                                                       | Always A                            | applicable                                          |                                                     | EPA Method              | AIR MOST<br>STRINGENT                     |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|----------------------------|--------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------|-------------------------------------------|
| CERCLA EP/<br>Regional Screening Level<br>(RSL; May, 2010)<br>Residential (mixed<br>Carc & NC) | A CERCLA EPA<br>Regional Screening Level<br>(RSL; May, 2010)<br>Residential (mixed<br>Carc & NC) | A CERCLA EPA<br>Regional Screening Level<br>(RSL; May, 2010)<br>Industrial (mixed<br>Carc & NC) | CERCLA EPA<br>Regional Screening Level<br>(RSL; May, 2010)<br>Industrial (mixed<br>Carc & NC) | A<br>NIOSH PEL<br>TWA | NIOSH PEL<br>STEL | American Conference Of Governmental Industrial Hygenists (ACGIH) Threshold Limit Values TLV  CFR part 50 | y DOSH Worker<br>Safety (PEL's)<br>29 CFR/Ch. 296- | DOSH Worker<br>Safety (PEL's) | Air, L&I<br>DOSH Worker<br>Safety (PEL's)<br>29 CFR/Ch. 296-<br>841 WAC<br>TWA - LESS | Air, L&I-Air, DOSH Worker DOSH \(\text{Safety}\) (PEL's) Safety (PS CFR/C \(\text{841}\) WAC TWA - LESS TW | PEL's) S<br>Ch. 296- 29<br>VAC | ir, L&ł<br>DOSH Worker<br>Safety (PEL's)<br>9 CFR/Ch. 296-<br>841 WAC<br>STEL | Molecular Weight           | Convert μg/m³ or<br>mg/m³ to ppbv    | Natural<br>Background<br>Levels Ch.<br>173-340<br>WAC | Applicable DL (MDL) Ch. 173-340 WAC | Applicable<br>RL<br>(MRL/PQL)<br>Ch. 173-340<br>WAC | Applicable<br>RL<br>(MRL/PQL)<br>Ch. 173-340<br>WAC | Analytical Method       | Screening<br>Levels                       |
| μg/m³                                                                                          | ppbv                                                                                             | μg/m³                                                                                           | ppbv                                                                                          | ppbv                  | ppbv              | mg/m³ ppbv                                                                                               | mg/m³                                              | ppbv                          | mg/m³                                                                                 | ppbv ppk                                                                                                   |                                | ppbv                                                                          | Unitless                   | Unitless                             | ppbv                                                  | ppbv                                | ug/m³                                               | ppbv                                                |                         | ppbv                                      |
| 32400                                                                                          | 13658.27586                                                                                      | 140000                                                                                          | 59017.24138                                                                                   | 750000                | 1000000           |                                                                                                          |                                                    |                               |                                                                                       | 7500                                                                                                       |                                | 1000000                                                                       | 58<br>154.2<br>152.2       | 0.421/421                            |                                                       |                                     | 5                                                   | 2.10775862                                          | TO-15                   | 13658.27586                               |
| 0.31                                                                                           | 0.097048656                                                                                      | 1.6                                                                                             | 0.500896287                                                                                   |                       |                   |                                                                                                          |                                                    |                               |                                                                                       | 100                                                                                                        |                                | 600<br>5000                                                                   | 178<br>78.1<br>276.34      | 0.313/313                            |                                                       | 0.223                               | 1                                                   | 0.31306018                                          | WA APH                  | 200<br>0.026297055                        |
| 0.0087<br>0.00087<br>0.0087                                                                    | 0.000931735<br>0.000085086<br>0.000843037                                                        | 0.11<br>0.011<br>0.11                                                                           | 0.011780552<br>0.0010758<br>0.010659084                                                       |                       |                   |                                                                                                          | 0.2                                                | 21.41918528<br>19.56          | 0.6<br>0.6                                                                            | 64.25755585<br>58.68                                                                                       |                                |                                                                               | 228.3<br>250<br>252.32     |                                      |                                                       |                                     |                                                     |                                                     |                         | 0.000931735<br>0.000085086                |
| 0.0087                                                                                         | 0.000843037<br>0.062531969                                                                       | 0.11<br>5.1                                                                                     | 0.010659084<br>0.318913043                                                                    |                       |                   |                                                                                                          |                                                    |                               |                                                                                       |                                                                                                            |                                |                                                                               | 252.32<br>391<br>312.36    |                                      |                                                       |                                     |                                                     |                                                     |                         |                                           |
| 0.41<br>52<br>10000                                                                            | 0.065178804<br>11.29129663<br>3790.697674                                                        | 2<br>220<br>44000                                                                               | 0.317945384<br>47.77087034<br>16679.06977                                                     | 10000                 | 25000             |                                                                                                          |                                                    |                               |                                                                                       | 200<br>750                                                                                                 |                                | 4000<br>113000                                                                | 153.8<br>112.6<br>64.5     | 0.158/158<br>0.217/217<br>0.379/379  |                                                       |                                     | 1                                                   | 0.15897269                                          | TO-15                   | 0.009204519<br>4.972513321<br>236.4       |
| 0.11<br>94<br>0.087                                                                            | 0.022525126<br>45.51089109<br>0.009317346                                                        | 0.53<br>390<br>1.1                                                                              | 0.108530151<br>188.8217822<br>0.117805519                                                     | 2000                  |                   |                                                                                                          | 0.2                                                | 21.41918528                   | 0.6                                                                                   | 64.25755585                                                                                                | 00                             | 4000                                                                          | 119.4<br>50.5<br>228.3     | 0.204/204<br>0.484/484               |                                                       |                                     |                                                     |                                                     |                         | 0.022320352<br>19.89891089<br>0.009317346 |
| 0.0008                                                                                         | 7.02586E-05                                                                                      | 0.01                                                                                            | 0.000878233                                                                                   |                       |                   |                                                                                                          | 0.2                                                | 17.56465517<br>439.7482014    | 0.6                                                                                   | 52.69396552<br>879.4964029                                                                                 |                                |                                                                               | 278.4<br>168.18<br>278     |                                      |                                                       |                                     |                                                     |                                                     |                         | 7.02586E-05<br>624<br>439.7482014         |
| 210<br>0.22                                                                                    | 34.92857143<br>0.036591837                                                                       | 880                                                                                             | 146.3673469<br>0.182959184                                                                    | 75000                 | 110000            |                                                                                                          |                                                    |                               |                                                                                       | 750                                                                                                        | 00                             | 110000                                                                        | 147<br>147<br>147          | 0.166/166<br>0.166/166<br>0.166/166  |                                                       |                                     | 1 1 1                                               | 0.16632653<br>0.16632653<br>0.16632653              | TO-15<br>TO-15<br>TO-15 | 15.2022449<br>0.036591837                 |
| 1.5<br>0.094<br>210                                                                            | 0.370454545<br>0.023215152<br>52.9876161                                                         | 7.7<br>0.47<br>880                                                                              | 1.901666667<br>0.116075758<br>222.0433437                                                     | 100000<br>5000        | 250000<br>20000   |                                                                                                          |                                                    |                               |                                                                                       | 1000<br>100<br>100                                                                                         | 00                             | 150000<br>2000<br>3000                                                        | 99<br>99<br>96.9           | 0.247/247<br>0.247/247<br>0.252/252  |                                                       |                                     | 1 1 1                                               | 0.2469697<br>0.2469697<br>0.25232198                | TO-15<br>TO-15<br>TO-15 | 0.370454545<br>0.023215152<br>0.012616099 |
|                                                                                                |                                                                                                  |                                                                                                 |                                                                                               |                       |                   |                                                                                                          | 5<br>5                                             | 550.6756757<br>630.1546392    | 10<br>10                                                                              | 1101.351351<br>1260.309278                                                                                 |                                |                                                                               | 222<br>194<br>390.56       |                                      |                                                       |                                     |                                                     |                                                     |                         | 550.6756757<br>630.1546392                |
| 0.97                                                                                           | 0.223403353                                                                                      | 4.9                                                                                             | 1.128532404                                                                                   | 100000                | 125000            |                                                                                                          |                                                    |                               |                                                                                       | 1000                                                                                                       | 000                            | 125000                                                                        | 106.16<br>202.26<br>166.22 | 0.230/230                            |                                                       | 2                                   | 1                                                   | 0.23031274                                          | TO-15/WA APH            | 0.223403353                               |
| 0.0053<br>0.11<br>0.0087                                                                       | 0.000455004<br>0.0103125<br>0.00076987                                                           | 0.027<br>0.56<br>0.11                                                                           | 0.002317942<br>0.0525<br>0.009733985                                                          | 20                    |                   |                                                                                                          |                                                    |                               |                                                                                       | 20                                                                                                         | )                              | 60                                                                            | 284.8<br>260.8<br>276.3    | 0.094/94                             |                                                       |                                     |                                                     |                                                     |                         | 0.000455004<br>0.0103125                  |
| 5200<br>5.2                                                                                    | 1763.139648<br>1.497526502                                                                       | 22000<br>2.6                                                                                    | 7459.436971<br>0.748763251                                                                    |                       |                   |                                                                                                          |                                                    |                               |                                                                                       | 250                                                                                                        | 00                             | 125000                                                                        | 72.11<br>84.9<br>142.21    | 0.288/288                            |                                                       |                                     | 1                                                   | 0.33906532<br>0.28798587                            | TO-15<br>TO-15          | 0.748763251<br>3015                       |
| 3100<br>0.072                                                                                  | 756.7392173<br>0.013731669                                                                       | 13000<br>0.36                                                                                   | 3173.422524<br>0.068658346                                                                    | 10000                 | 15000             |                                                                                                          |                                                    |                               |                                                                                       | 100                                                                                                        | 00                             | 15000                                                                         | 100.16<br>128.2<br>198.2   | 0.190/190                            |                                                       | 0.262                               | 1                                                   | 0.24410942                                          | TO-15<br>WA APH         | 0.013731669                               |
| 0.0043<br>0.12<br>0.0043                                                                       | 0.000291233<br>0.011376503<br>0.000523842                                                        | 0.021<br>0.61<br>0.021                                                                          | 0.001422299<br>0.057830554<br>0.002558296                                                     |                       |                   |                                                                                                          | 0.5                                                | 33.86426593                   | 1.5                                                                                   | 101.5927978                                                                                                |                                |                                                                               | 361<br>257.9<br>200.7      |                                      |                                                       |                                     |                                                     |                                                     |                         | 0.000291233                               |
| 0.0043<br>0.0043<br>0.0043                                                                     | 0.000452778<br>0.000394503<br>0.00035045                                                         | 0.021<br>0.021<br>0.021                                                                         | 0.00221124<br>0.001926642<br>0.0017115                                                        |                       |                   |                                                                                                          |                                                    |                               |                                                                                       |                                                                                                            |                                |                                                                               | 232.2<br>266.5<br>300      |                                      |                                                       |                                     |                                                     |                                                     |                         |                                           |
| 0.0043<br>0.0043                                                                               | 0.000320534<br>0.000293919                                                                       | 0.021<br>0.021                                                                                  | 0.001565396<br>0.001435421                                                                    |                       |                   |                                                                                                          |                                                    |                               |                                                                                       | 200                                                                                                        |                                | 600                                                                           | 328<br>357.7<br>178.2      |                                      |                                                       |                                     |                                                     |                                                     |                         | 200                                       |
| 0.41<br>2.1                                                                                    | 0.060461399<br>0.282892562                                                                       | 2.1                                                                                             | 0.309680338<br>1.185454545                                                                    | 25000                 |                   |                                                                                                          |                                                    |                               |                                                                                       | 200<br>2500                                                                                                | 00                             | 600<br>38000                                                                  | 202<br>165.8<br>181.5      | 0.147/147<br>0.135/135               |                                                       |                                     | 1                                                   | 0.14746683                                          | TO-15                   | 200<br>0.060461399<br>0.12312562          |
| 5200<br>0.15<br>1.2                                                                            | 953.0734633<br>0.027492504<br>0.223287671                                                        | 22000<br>0.77<br>6.1                                                                            | 4032.233883<br>0.141128186<br>1.135045662                                                     | 50000                 | 200000            |                                                                                                          |                                                    |                               |                                                                                       | 3500<br>100<br>500                                                                                         | 00                             | 450000<br>20000<br>200000                                                     | 133.4<br>133.4<br>131.4    | 0.183/183<br>0.183/183<br>186/186000 |                                                       |                                     | 1 1 1                                               | 0.18328336<br>0.18328336<br>0.18607306              | TO-15<br>TO-15<br>TO-15 | 419.7188906<br>0.027492504<br>0.223287671 |
| 5200<br>0.16                                                                                   | 1380.456026<br>0.062592                                                                          | 22000                                                                                           | 5840.390879<br>1.09536                                                                        | 25000                 |                   |                                                                                                          |                                                    |                               |                                                                                       | 250<br>1000<br>100                                                                                         | 000                            | 38000<br>150000<br>5000                                                       | 92.1<br>62.5               | 0.203/203<br>0.265/265<br>0.391/391  |                                                       | 1                                   | 1                                                   | 0.26547231                                          | TO-15/WA APH<br>TO-15   | 295.6<br>48.58143322<br>0.01216632        |
| 100                                                                                            | 23.02259887                                                                                      | 440                                                                                             | 101.299435                                                                                    | 100000                | 150000            |                                                                                                          |                                                    |                               |                                                                                       | 1000                                                                                                       | 000                            | 150000                                                                        | 106.2<br>122<br>108.14     | 0.230/230                            |                                                       | 1                                   | 1                                                   | 0.23022599                                          | TO-15/WA APH            | 10.59039548                               |
| 630<br>630                                                                                     | 119.7783826<br>119.7783826                                                                       | 2600<br>2600                                                                                    | 494.3234837<br>494.3234837                                                                    |                       |                   |                                                                                                          |                                                    |                               |                                                                                       | 500<br>500                                                                                                 |                                | 10000<br>10000                                                                | 122.2<br>128.6<br>128.6    |                                      |                                                       |                                     |                                                     |                                                     |                         | 119.7783826<br>119.7783826                |
| 0.48<br>210<br>1000                                                                            | 0.044054054<br>54.62234043<br>234.870317                                                         | 2.4<br>880<br>4400                                                                              | 0.22027027<br>228.893617<br>1033.429395                                                       | 50000                 | 100000            |                                                                                                          | 0.5                                                | 45.88963964                   | 1.5                                                                                   | 137.6689189<br>500<br>500                                                                                  | 00                             | 10000<br>100000                                                               | 266.4<br>94<br>104.1       |                                      |                                                       |                                     | 1                                                   | 0.23487032                                          | TO-15                   | 0.044054054<br>54.62234043<br>1.073357349 |
| 0.78                                                                                           | 0.096562025                                                                                      | 4                                                                                               | 0.495189873                                                                                   |                       |                   |                                                                                                          |                                                    |                               |                                                                                       | 10                                                                                                         | 0                              | 300                                                                           | 595.62<br>197.5            |                                      |                                                       |                                     |                                                     |                                                     |                         | 100<br>0.096562025                        |

| MEDIA - MTCA Standard                                     |                                                                |                                                                        | AIR M                                                                  | ethod B                                                                    |                                                                            |                                                                               |                                                                |                                                                        |                                                                        | AIR Method                                                                 | С                                                                          |                                                                               |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
|-----------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| PATHWAYS HH - Human Health Ecol- Ecological               | Air,<br>Method B-HH,<br>ARAR's WAC<br>173-340-<br>750(3)(b)(i) | Air,<br>Method B-HH,<br>Carcinogen WAC<br>173-340-<br>750(3)(b)(ii)(B) | Air,<br>Method B-HH,<br>Carcinogen WAC<br>173-340-<br>750(3)(b)(ii)(B) | Air,<br>Method B-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(3)(b)(ii)(A) | Air,<br>Method B-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(3)(b)(ii)(A) | Air,<br>Method B-HH,<br>Petroleum Mixture<br>WAC 173-340-<br>750(3)(b)(ii)(C) | Air,<br>Method C-HH,<br>ARAR's<br>WAC 173-340-<br>750(4)(b)(i) | Air,<br>Method C-HH,<br>Carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(B) | Air,<br>Method C-HH,<br>Carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(B) | Air,<br>Method C-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(A) | Air,<br>Method C-HH,<br>Non-carcinogen<br>WAC 173-340-<br>750(4)(b)(ii)(A) | Air,<br>Method C-HH,<br>Petroleum Mixture<br>WAC 173-340-<br>750(4)(b)(ii)(C) | Air,<br>Lower Explosive<br>Limit (LEL)<br>WAC 173-340-<br>750(4)(b)(iii) | Air, Ambient,<br>Puget Sound<br>Clean Air Authority<br>(PSCAA)<br>Ch. 70.94 RCW | J&E<br>Less Protective | J&E<br>Best Protective | J&E<br>More Protective | CA EPA OEHHA<br>HH-Indoor Air<br><b>Residential</b><br>Screening Levels | CA EPA OEHHA<br>HH-Indoor Air<br>Commercial/<br>Industrial<br>Screening Levels | HH-Indoor Air Residential  | CA EPA OEHHA<br>HH-Indoor Air<br>Commercial/<br>Industrial<br>Screening Levels | CA EPA OEHHA<br>HH-Shallow Soil Gas<br>(Vapor Intrusion)<br>Residential<br>Screening Levels | CA EPA OEHHA<br>HH-Shallow Soil Gas<br>(Vapor Intrusion)<br>Residential<br>Screening Levels | CA EPA OEHHA<br>HH-Shallow Soil Gas<br>(Vapor Intrusion)<br>Commercial/Industrial<br>Screening Levels | CA EPA OEHHA HH-<br>Shallow Soil Gas (Vapor<br>Intrusion)<br>Commercial/Industrial<br>Screening Levels |
| UNITS                                                     | ppbv                                                           | µg/m³                                                                  | ppbv                                                                   | μg/m³                                                                      | ppbv                                                                       | ppbv<br>*                                                                     | ppbv                                                           | μg/m³                                                                  | ppbv                                                                   | μg/m³                                                                      | ppbv                                                                       | ppbv<br>*                                                                     | ppbv                                                                     | ppbv                                                                            | ppbv                   | ppbv                   | ppbv                   | mg/m³                                                                   | mg/m³                                                                          | ppbv                       | ppbv                                                                           | μg/m³                                                                                       | ppbv                                                                                        | μg/m³                                                                                                 | ppby                                                                                                   |
| Aluminum<br>Antimony                                      |                                                                |                                                                        |                                                                        | 2.29<br>0.0912                                                             | 2.075259451<br>0.018314908                                                 | * *                                                                           |                                                                |                                                                        |                                                                        | 5                                                                          | 4.531134173                                                                | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Arsenic (III) Arsenic (V) Arsenic (total)                 |                                                                | 0.000581                                                               | 0.000189608                                                            |                                                                            |                                                                            | *                                                                             |                                                                | 0.00581                                                                | 0.001896082                                                            |                                                                            |                                                                            | *                                                                             |                                                                          | 5000                                                                            |                        |                        |                        | 0.000015                                                                |                                                                                | 0.004895222                |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Barium<br>Beryllium<br>Cadmium                            |                                                                | 0.00104                                                                | 0.000200869                                                            | 0.229<br>0.00914                                                           | 0.040770771<br>0.001765329                                                 | *                                                                             |                                                                | 0.0104                                                                 | 0.002008689                                                            | 0.501<br>0.02                                                              | 0.089197189<br>0.003862864                                                 | *                                                                             |                                                                          | 2000                                                                            |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Chromium (VI) Chromium, total (or III) Cobalt             |                                                                |                                                                        |                                                                        | 0.0458                                                                     | 0.021536464                                                                | *                                                                             |                                                                |                                                                        |                                                                        | 0.1                                                                        | 0.047022848                                                                | *                                                                             |                                                                          | 10000                                                                           |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Copper<br>Iron<br>Lead                                    |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | *                                                                             |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                          | 100000                                                                          |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Manganese<br>Mercury<br>Mercury (organic)                 |                                                                |                                                                        |                                                                        | 0.0229<br>0.137                                                            | 0.01019158<br>0.016698988                                                  | *                                                                             |                                                                |                                                                        |                                                                        | 0.0501                                                                     | 0.022296862<br>0.036567127                                                 | * * * * *                                                                     |                                                                          |                                                                                 |                        |                        |                        | 0.00009                                                                 | 0.000131                                                                       | 0.040054243<br>0.003656713 | 0.015967645                                                                    | 44.5                                                                                        | 5.424123835                                                                                 | 125                                                                                                   | 15.23630291                                                                                            |
| Molybdenum<br>Nickel<br>Selenium                          |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * * *                                                                         |                                                                | 0.104                                                                  | 0.043311191                                                            |                                                                            |                                                                            | * * *                                                                         |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Silver Tin Thallium                                       |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Vanadium<br>Zinc<br>LPAH                                  |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| HPAH Total Petroleum Hydrocarbons Gasoline                |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           | 1400000                                                                  |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Gasoline (w/benzene) Diesel Heavy Oil                     |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * * *                                                                         | 1400000                                                                  |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| 2,3,7,8-TCDD (Dioxin)                                     |                                                                | 5.83E-08                                                               | 4.42682E-09                                                            |                                                                            |                                                                            | * *                                                                           |                                                                | 0.000000583                                                            | 4.42682E-08                                                            |                                                                            |                                                                            | * * *                                                                         |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Aldrin<br>alpha-BHC<br>beta-BHC                           |                                                                | 0.000510204<br>0.001388889<br>0.004716981                              | 3.41851E-05<br>0.000116768<br>0.000396569                              |                                                                            |                                                                            | * *                                                                           |                                                                | 0.005102041<br>0.013888889<br>0.047169811                              |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| gamma-BHC (Lindane) Chlordane 4,4'-DDT                    |                                                                | 0.025<br>0.025773196                                                   | 0.001491581<br>0.001728914                                             | 0.32                                                                       | 0.01909224                                                                 | * *                                                                           |                                                                |                                                                        | 0.014915813<br>0.001728914                                             |                                                                            | 0.041764275                                                                | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| 4,4'-DDE<br>4,4'-DDD<br>Dieldrin                          |                                                                | 0.000543478                                                            | 3.4885E-05                                                             |                                                                            |                                                                            | * *                                                                           |                                                                | 0.005434783                                                            | 0.00034885                                                             |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| alpha-Endosulfan<br>beta-Endosulfan<br>Endosulfan Sulfate |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        |                                                                        |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Endrin<br>Endrin Aldehyde<br>Heptachlor                   |                                                                |                                                                        | 0.000125942                                                            |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        | 0.001259421                                                            |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |
| Heptachlor Epoxide<br>Toxaphene                           |                                                                | 0.000961538<br>0.0078125                                               | 6.03871E-05<br>0.00046139                                              |                                                                            |                                                                            | * *                                                                           |                                                                |                                                                        | 0.000603871<br>0.004613904                                             |                                                                            |                                                                            | * *                                                                           |                                                                          |                                                                                 |                        |                        |                        |                                                                         |                                                                                |                            |                                                                                |                                                                                             |                                                                                             |                                                                                                       |                                                                                                        |

| AIR Pote                                                                                       | ntial ARAR's                                                                                   |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | Conversion Tables                           |                                          | Always                              | Applicable                                          |                                                     | EPA Method        | AIR MOST<br>STRINGENT      |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|-------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------|----------------------------|
| CERCLA EPA<br>Regional Screening Level<br>(RSL; May, 2010)<br>Residential (mixed<br>Carc & NC) | CERCLA EPA<br>Regional Screening Level<br>(RSL; May, 2010)<br>Residential (mixed<br>Carc & NC) | CERCLA EPA<br>Regional Screening Level<br>(RSL; May, 2010)<br>Industrial (mixed<br>Carc & NC) | CERCLA EPA Regional Screening Level (RSL; May, 2010) Industrial (mixed Carc & NC) | NIOSH PEL<br>TWA           | NIOSH PEL<br>STEL | American Conferenc<br>Of Governmental<br>Industrial Hygenists<br>(ACGIH) Thresho<br>Limit Values<br>TLV | Ambient Air Quality<br>Standards | DOSH Worker<br>Safety (PEL's)<br>29 CFR/Ch. 296- | DOSH Worker<br>Safety (PEL's) | DOSH Worker<br>Safety (PEL's) | Safety (PEL's)             | DOSH Worker DOSH Worker<br>Safety (PEL's) Safety (PEL's) | Molecular Weight Convert μg/m³ mg/m³ to ppb | Natural Background Levels Ch 173-340 WAC | Applicable DL (MDL) Ch. 173-340 WAC | Applicable<br>RL<br>(MRL/PQL)<br>Ch. 173-340<br>WAC | Applicable<br>RL<br>(MRL/PQL)<br>Ch. 173-340<br>WAC | Analytical Method | Screening<br>Levels        |
| μg/m³                                                                                          | ppbv                                                                                           | μg/m³                                                                                         | ppbv                                                                              | ppbv                       | ppbv              | mg/m³                                                                                                   | ppbv                             | mg/m³                                            | ppbv                          | mg/m³                         | ppbv                       | ppbv ppbv                                                | Unitless Unitless                           | ppbv                                     | ppbv                                | ug/m³                                               | ppbv                                                |                   | ppbv                       |
| 5.2                                                                                            | 4.71237954                                                                                     | 22                                                                                            | 19.93699036                                                                       | 13593.40252                |                   |                                                                                                         |                                  | 10                                               | 9062.268347                   | 20                            | 18124.53669                |                                                          | 26.98                                       | _                                        |                                     |                                                     |                                                     |                   | 2.075259451                |
| 0.2                                                                                            | 4.1 1251 304                                                                                   | LL                                                                                            | 13.33033000                                                                       | 10000.40202                |                   |                                                                                                         |                                  | 0.5                                              | 100.4106776                   |                               | 301.2320329                |                                                          | 121.75                                      |                                          |                                     |                                                     |                                                     |                   | 0.018314908                |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 74.92                                       |                                          |                                     |                                                     |                                                     |                   |                            |
| 0.00057                                                                                        | 0.000186018                                                                                    | 0.0029                                                                                        | 0.00094641                                                                        |                            |                   | 5                                                                                                       |                                  | 0.01                                             | 3.263481046                   | 0.6                           | 195.8088628                |                                                          | 74.92<br>74.92                              |                                          |                                     |                                                     |                                                     |                   | 0.000186018                |
| 0.52                                                                                           | 0.092579917                                                                                    | 2.2                                                                                           | 0.391684264                                                                       |                            |                   | Ů                                                                                                       |                                  | 0.5                                              | 89.01915095                   |                               | 267.0574529                |                                                          | 137.33                                      |                                          |                                     |                                                     |                                                     |                   | 0.040770771                |
| 0.001                                                                                          | 0.000193143                                                                                    | 0.0051                                                                                        | 0.00098503                                                                        | 0.386286437                | 0.965716091       | 0.00005                                                                                                 |                                  | 0.002                                            | 0.386286437                   | 0.005                         | 0.965716091                |                                                          | 126.59                                      |                                          |                                     |                                                     |                                                     |                   | 0.000193143                |
| 0.0014<br>0.000011                                                                             | 0.00030451<br>5.17251E-06                                                                      | 0.0068<br>0.00015                                                                             | 0.00147905<br>7.05343E-05                                                         |                            |                   |                                                                                                         |                                  | 0.005<br>0.005                                   | 1.087536696<br>2.351142396    | <u> </u>                      |                            |                                                          | 112.41<br>51.996                            | _                                        |                                     |                                                     |                                                     |                   | 0.00030451<br>5.17251E-06  |
| 0.000011                                                                                       | 5.17251E-06                                                                                    | 0.00015                                                                                       | 7.05343E-05                                                                       | 470.2284791                |                   |                                                                                                         |                                  | 0.005                                            | 235.1142396                   |                               |                            |                                                          | 51.996                                      |                                          |                                     |                                                     |                                                     |                   | 235.1142396                |
| 0.00027                                                                                        | 0.000112023                                                                                    | 0.0014                                                                                        | 0.000580859                                                                       | 20.74495164                |                   |                                                                                                         |                                  | 0.05                                             | 20.74495164                   | 0.15                          | 62.23485491                |                                                          | 58.93                                       |                                          |                                     |                                                     |                                                     |                   | 0.000112023                |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   | 38.4736428                 |                   |                                                                                                         |                                  | 0.1                                              | 38.4736428                    | 0.3                           | 115.4209284                |                                                          | 63.55                                       | _                                        |                                     |                                                     |                                                     |                   | 38.4736428                 |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   | 437.803284                 | 0.002088668       | 30                                                                                                      | 0.01770029                       | 0.05                                             | 437.803284<br>5.900096525     |                               | 1313.409852                |                                                          | 55.847<br>207.2                             |                                          |                                     |                                                     |                                                     |                   | 437.803284<br>0.002088668  |
| 0.052                                                                                          | 0.023142451                                                                                    | 0.22                                                                                          | 0.097910372                                                                       | 445.0471441                | 1335.141432       |                                                                                                         |                                  | 0.00                                             | 0.000000020                   |                               |                            |                                                          | 54.938                                      |                                          |                                     |                                                     |                                                     |                   | 0.01019158                 |
| 0.31                                                                                           | 0.037786031                                                                                    | 1.3                                                                                           | 0.15845755                                                                        | 6.094521163                |                   |                                                                                                         |                                  | 0.1                                              | 12.18904233                   |                               | 36.56712698                |                                                          | 200.59                                      |                                          |                                     |                                                     |                                                     |                   | 0.003656713                |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   | 0540 407700                |                   |                                                                                                         |                                  | 0.01                                             | 1.133914621                   |                               | 3.401743863                |                                                          | 215.6247                                    |                                          |                                     |                                                     |                                                     |                   | 1.133914621                |
| 0.01                                                                                           | 0.004164538                                                                                    | 0.051                                                                                         | 0.021239142                                                                       | 2548.467792<br>41.64537557 |                   |                                                                                                         |                                  | 5<br>1                                           | 1274.233896<br>416.4537557    | 3                             | 2548.467792<br>1249.361267 |                                                          | 95.94<br>58.71                              |                                          |                                     |                                                     |                                                     |                   | 1274.233896<br>0.004164538 |
| 21                                                                                             | 6.502659574                                                                                    | 88                                                                                            | 27.24924012                                                                       |                            |                   |                                                                                                         |                                  | 0.2                                              | 61.93009119                   |                               | 185.7902736                |                                                          | 78.96                                       |                                          |                                     |                                                     |                                                     |                   | 6.502659574                |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   | 2.26665925                 |                   |                                                                                                         |                                  | 0.01                                             | 2.26665925                    | 0.03                          | 6.799977751                |                                                          | 107.868                                     |                                          |                                     |                                                     |                                                     |                   | 2.26665925                 |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  | 2                                                | 411.9976409                   | 4                             | 823.9952818                |                                                          | 118.69                                      | _                                        |                                     |                                                     |                                                     |                   | 411.9976409                |
| 0.1                                                                                            | 0.047996231                                                                                    | 0.44                                                                                          | 0.211183416                                                                       | 23.99811549                |                   |                                                                                                         |                                  | 0.1                                              | 11.96301008                   | 0.3                           | 35.88903024                |                                                          | 204.38<br>50.9415                           |                                          |                                     |                                                     |                                                     |                   | 11.96301008<br>0.047996231 |
| 0.1                                                                                            | 0.047030201                                                                                    | 0.44                                                                                          | 0.211100410                                                                       | 20.00011040                |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 65.38                                       |                                          |                                     |                                                     |                                                     |                   | 0.047330201                |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          |                                             |                                          |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          |                                             | _                                        |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          |                                             | _                                        | 235.32                              |                                                     |                                                     | WA APH            |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            | 300000 500000                                            |                                             |                                          | 200.02                              |                                                     |                                                     |                   | 300000                     |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          |                                             |                                          |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   | 100                                                                                                     |                                  |                                                  |                               |                               |                            |                                                          |                                             |                                          |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          |                                             |                                          |                                     |                                                     |                                                     |                   |                            |
| 0.00000064                                                                                     | 4.85963E-09                                                                                    | 0.0000032                                                                                     | 2.42981E-08                                                                       |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 322                                         |                                          |                                     |                                                     |                                                     |                   | 4.42682E-09                |
| 0.0005                                                                                         | 2 250445 05                                                                                    | 0.0025                                                                                        | 0.000467507                                                                       |                            | 1                 |                                                                                                         | 1                                |                                                  |                               | 1                             |                            |                                                          | 264.04                                      |                                          |                                     |                                                     |                                                     |                   | 2 2504 45 05               |
| 0.0005<br>0.0014                                                                               | 3.35014E-05<br>0.000117702                                                                     | 0.0025<br>0.0068                                                                              | 0.000167507<br>0.000571694                                                        |                            | -                 |                                                                                                         | 1                                |                                                  |                               | 1                             |                            |                                                          | 364.91<br>290.82                            |                                          |                                     |                                                     |                                                     |                   | 3.35014E-05<br>0.000116768 |
| 0.0046                                                                                         | 0.000386734                                                                                    | 0.023                                                                                         | 0.00193367                                                                        |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 290.82                                      |                                          |                                     |                                                     |                                                     |                   | 0.000386734                |
| 0.0078                                                                                         | 0.000655744                                                                                    | 0.04                                                                                          | 0.003362789                                                                       |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 290.83                                      |                                          |                                     |                                                     |                                                     |                   |                            |
| 0.024                                                                                          | 0.001431918                                                                                    | 0.12                                                                                          | 0.00715959                                                                        |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 409.8                                       |                                          |                                     |                                                     |                                                     |                   | 0.001431918                |
| 0.025<br>0.025                                                                                 | 0.001677047<br>0.001922024                                                                     | 0.13<br>0.13                                                                                  | 0.008720643<br>0.009994526                                                        |                            |                   | <u> </u>                                                                                                | 1                                | +                                                |                               | 1                             |                            |                                                          | 364.48<br>318.0241                          |                                          |                                     |                                                     |                                                     |                   | 0.001677047                |
| 0.035                                                                                          | 0.002673885                                                                                    | 0.18                                                                                          | 0.013751406                                                                       |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 320.04                                      |                                          |                                     |                                                     |                                                     |                   | 0.002673885                |
| 0.00053                                                                                        | 3.40198E-05                                                                                    | 0.0027                                                                                        | 0.000173309                                                                       |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 380.91                                      |                                          |                                     |                                                     |                                                     |                   | 3.40198E-05                |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  | 1                                                |                               |                               |                            |                                                          | 406.95<br>406.95                            |                                          |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   | <u> </u>                                                                                                | 1                                | +                                                |                               | 1                             |                            |                                                          | 406.95                                      |                                          |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 380.909                                     |                                          |                                     |                                                     |                                                     |                   |                            |
|                                                                                                |                                                                                                |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          | 380.909                                     |                                          |                                     |                                                     |                                                     |                   |                            |
| 0.0019                                                                                         | 0.000124431                                                                                    | 0.0094                                                                                        | 0.000615605                                                                       |                            |                   | -                                                                                                       |                                  | 1                                                |                               |                               |                            |                                                          | 373.34                                      |                                          |                                     |                                                     |                                                     |                   | 0.000124431                |
| 0.00094                                                                                        | 5.90345E-05<br>0.000448841                                                                     | 0.0047<br>0.038                                                                               | 0.000295172<br>0.002244203                                                        |                            |                   | +                                                                                                       |                                  | +                                                |                               |                               |                            |                                                          | 389.315<br>414                              |                                          |                                     |                                                     |                                                     |                   | 5.90345E-05<br>0.000448841 |
| 0.0076                                                                                         | 0.000448841                                                                                    |                                                                                               |                                                                                   |                            |                   |                                                                                                         |                                  |                                                  |                               |                               |                            |                                                          |                                             |                                          |                                     |                                                     |                                                     |                   |                            |

| Chemical                                                     | BCF*** | RfD***       | BCF <sup>\$\$\$</sup> | RfD <sup>\$\$\$</sup> | Non-Carc SW CUL* |
|--------------------------------------------------------------|--------|--------------|-----------------------|-----------------------|------------------|
| Units                                                        | L/kg   | mg/kg-day    | L/kg                  | mg/kg-day             | μg/L             |
| Acetone                                                      | 3.16   | 0.9          | 3.16                  | 0.9                   | 738396.6245      |
| Acenaphthene                                                 | 242    | 0.06         | 201                   | 0.06                  | 642.7915519      |
| Acenaphthylene                                               |        |              |                       |                       |                  |
| Anthracene                                                   | 30     | 0.3          | 582                   | 0.3                   | 25925.92593      |
| Benzene                                                      | 5.2    | 0.004        | 8.26                  | 0.004                 | 1994.301994      |
| Benzo(g,h,i)perylene                                         |        |              |                       |                       |                  |
| Benzo(a)anthracene                                           | 30     |              | 4886                  |                       |                  |
| Benzo(a)pyrene                                               | 30     |              | 8317                  |                       |                  |
| Benzo(b)fluoranthene                                         | 30     |              | 10400                 |                       |                  |
| Benzo(k)fluoranthene                                         | 30     |              | 9930                  |                       |                  |
| bis(2-Ethylhexyl)phthalate                                   | 130    | 0.02         | 53.3                  | 0.02                  | 398.8603989      |
| Butyl benzyl phthalate                                       | 414    | 0.2          | 1183                  | 0.2                   | 1252.46019       |
| Carbon Tetrachloride                                         | 18.75  | 0.004        | 28.6                  | 0.004                 | 553.0864198      |
| Chlorobenzene                                                | 28.6   | 0.02         | 28.6                  | 0.02                  | 1813.001813      |
| Chloroethane                                                 |        |              | 2.39                  |                       |                  |
| Chloroform                                                   | 3.75   | 0.01         | 6.92                  | 0.01                  | 6913.580247      |
| Chloromethane (methyl chloride)                              | 3.75   |              | 3.16                  |                       | 55151555211      |
| Chrysene                                                     | 30     |              | 4890                  |                       |                  |
| Dibenz[a,h]anthracene                                        | 30     |              | 20183                 |                       |                  |
| Dibenzofuran                                                 |        | 0.001        |                       |                       |                  |
| Di-n-butylphthalate                                          | 89     | 0.1          | 830                   | 0.1                   | 2913.025385      |
| 1,2-Dichlorobenzene                                          | 55.6   | 0.09         | 79.9                  |                       |                  |
| 1,3-Dichlorobenzene                                          |        |              |                       |                       |                  |
| 1,4-Dichlorobenzene                                          | 55.6   |              |                       |                       |                  |
| 1,1-Dichloroethane                                           | 4.86   | 0.2          | 4.86                  | 0.2                   | 106691.0532      |
| 1,2-Dichloroethane                                           | 1.2    | 0.02         | 2.85                  | 0.02                  | 43209.87654      |
| 1,1-Dichloroethene                                           | 5.6    | 0.05         | 8.26                  | 0.05                  | 23148.14815      |
| diethyl phthalate                                            | 73     | 0.8          | 16.8                  |                       | 28411.97362      |
| dimethyl phthalate                                           | 36     |              | 3.17                  |                       |                  |
| di-n-octyl phthalate                                         |        |              | 63.5                  |                       |                  |
| Ethylbenzene                                                 | 37.5   | 0.1          | 48.6                  |                       |                  |
| Fluoranthene                                                 | 1150   |              |                       |                       |                  |
| Fluorene                                                     | 30     | 0.04         |                       | 0.04                  |                  |
| hexachlorobenzene                                            | 8700   | 0.0008       |                       |                       | 0.238399319      |
| Hexachlorobutadiene                                          | 2.8    | 0.001        |                       |                       | 925.9259259      |
| Indeno(1,2,3-cd)pyrene                                       | 30     |              | 24100                 |                       | 100001 1100      |
| MEK (Methyl Ethyl Ketone;2-Butanone)                         | 3.16   | 0.6          |                       |                       |                  |
| Methylene Chloride                                           | 0.9    | 0.06         |                       |                       |                  |
| 2-Methylnaphthalene                                          |        | 0.004        |                       | 0.004                 |                  |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)                          | 10.5   | 0.08<br>0.02 | 69                    | 0.02                  | 4029 274605      |
| Naphthalene                                                  | 136    | 0.02         | 118                   |                       | 4938.271605      |
| nitrosodiphenylamine, N-<br>Polychlorinated biphenyls (PCBs) | 31200  |              | 20000                 |                       |                  |
| Aroclor 1016                                                 | 31200  | 0.00007      | 20000                 |                       | 0.005816714      |
| Aroclor 1016<br>Aroclor 1221                                 | 31200  | 0.00007      | 20000                 | 0.00007               | 0.000010714      |
| Aroclor 1232                                                 |        |              | 20000                 |                       |                  |
| Aroclor 1232<br>Aroclor 1242                                 |        |              | 20000                 |                       |                  |
| Aroclor 1242<br>Aroclor 1248                                 |        |              | 20000                 |                       |                  |
| Aroclor 1254                                                 | 31200  | 0.00002      | 84000                 |                       | 0.001661918      |
| Aroclor 1260                                                 | 51200  | 0.0002       | 20000                 |                       | 0.001001010      |
| Phenanthrene                                                 |        |              | 582                   |                       |                  |

| Pyrene                       | 1180  | 0.03    | 1180  | 0.03    | 65.913371   |
|------------------------------|-------|---------|-------|---------|-------------|
| Tetrachloroethene            | 31    | 0.01    | 82.8  | 0.01    | 836.3201912 |
| 1,2,4-Trichlorobenzene       | 114   | 0.01    | 240   | 0.01    | 227.4204029 |
| 1,1,1-Trichloroethane        | 5.6   | 2       | 16.8  | 2       | 925925.9259 |
| 1,1,2-Trichloroethane        | 4.5   | 0.004   | 6.92  | 0.004   | 2304.526749 |
| Trichloroethene              | 11    | 0.0003  | 14    | 0.0003  | 70.70707071 |
| 1,3,5-Trimethylbenzene       | 85.5  | 0.01    | 85.5  | 0.01    | 303.2272038 |
| Toluene                      | 10.7  | 0.08    | 23.9  | 0.08    | 19383.86985 |
| Vinyl Chloride               | 1.17  | 0.003   | 2.4   | 0.003   | 6647.673314 |
| Xylene                       | 49    | 0.2     | 49    | 0.2     | 10582.01058 |
| benzoic acid                 |       | 4       |       | 0.1_    | 7000000     |
| Benzyl Alcohol               |       | 0.1     |       |         |             |
| 2,4-Dimethylphenol           | 93.8  | 0.02    | 11.8  | 0.02    | 552.7915976 |
| 2-Methylphenol (o-cresol)    | 6.33  | 0.05    | 6.33  | 0.05    | 20478.61448 |
| 4-Methylphenol (p-cresol)    |       | 0.005   | 5.79  | 0.005   |             |
| Pentachlorophenol            | 11    | 0.005   |       | 0.000   | 1178.451178 |
| Total Phenol                 | 1.4   | 0.3     | 2.85  | 0.3     | 555555.5556 |
| Styrene                      |       | 0.2     |       | 9.0     |             |
| Tributyltin                  |       | 0.0003  |       |         |             |
| 2,4,6-Trichlorophenol        | 150   |         |       |         |             |
| , ,,-                        |       |         |       |         |             |
| Aluminum                     |       |         |       |         |             |
| Antimony                     | 1     | 0.0004  | 40    | 0.0004  | 1037.037037 |
| Arsenic (III)                |       |         |       |         |             |
| Arsenic (V)                  |       |         |       |         |             |
| Arsenic                      | 44    | 0.0003  | 114   | 0.0003  | 17.67676768 |
| Barium                       | 633   | 0.2     | 633   | 0.2     | 819.144579  |
| Beryllium                    | 19    | 0.002   | 62    | 0.002   | 272.9044834 |
| Cadmium                      | 64    | 0.001   | 907   | 0.001   | 40.50925926 |
| Chromium (VI)                | 16    | 0.003   | 3.2   | 0.003   | 486.1111111 |
| Chromium                     |       |         |       |         |             |
| Cobalt                       |       |         |       |         |             |
| Copper                       | 36    | 0.04    | 36    | 0.04    | 2880.658436 |
| Iron                         |       | 0.7     |       |         |             |
| Lead                         |       |         | 0.09  |         |             |
| Manganese                    |       | 0.14    |       | 0.024   |             |
| Mercury                      |       |         | 5000  | 0.00016 |             |
| Mercury (organic)            | 85000 | 0.0001  | 85000 | 0.0001  | 0.003050109 |
| Molybdenum                   | T I   | 0.005   |       |         |             |
| Nickel                       | 47    | 0.02    | 78    | 0.02    | 1103.23089  |
| Selenium                     | 4.8   | 0.005   | 129   | 0.005   | 2700.617284 |
| Silver                       | 0.5   | 0.005   | 88    | 0.005   | 25925.92593 |
| Tin                          |       |         | 10000 |         |             |
| Thallium                     | 116   |         |       |         |             |
| Vanadium                     |       | 0.00007 |       | 0.00007 |             |
| Zinc                         | 47    | 0.3     | 2059  | 0.3     | 16548.46336 |
|                              |       |         |       |         |             |
| LPAH                         |       |         |       |         |             |
| НРАН                         | 1     |         |       |         |             |
| Total Petroleum Hydrocarbons | 1     |         |       |         |             |
| Gasoline                     | 1     |         |       |         |             |
| Gasoline (w/benzene)         | 1     |         |       |         |             |
| Diesel                       |       |         |       |         |             |
| Heavy Oil                    | 1     |         |       |         |             |
|                              |       |         |       |         |             |

| 2,3,7,8-TCDD                   | 5000  | 1E-09    | 34400 | 1.0E-09 | 5.18519E-07 |
|--------------------------------|-------|----------|-------|---------|-------------|
|                                |       |          |       |         |             |
| Aldrin                         | 4670  | 0.00003  |       |         | 0.01665477  |
| alpha-BHC                      | 130   |          |       |         |             |
| beta-BHC                       | 130   |          |       |         |             |
| gamma-BHC (Lindane)            | 130   | 0.0003   |       |         | 5.982905983 |
| Chlordane                      | 14100 | 0.0005   |       |         | 0.091935908 |
| 4,4'-DDT                       | 53600 | 0.0005   |       |         | 0.024184632 |
| 4,4'-DDE                       | 53600 |          |       |         |             |
| 4,4'-DDD                       | 53600 |          |       |         |             |
| Dieldrin                       | 4670  | 0.00005  |       |         | 0.027757951 |
| alpha-Endosulfan (959-98-8)    | 270   | 0.006    |       |         | 57.61316872 |
| beta-Endosulfan (891-86-1)     | 270   | 0.006    |       |         | 57.61316872 |
| Endosulfan Sulfate (1031-07-8) | 270   | 0.006    |       |         | 57.61316872 |
| Endrin                         | 3970  | 0.0003   |       |         | 0.195913798 |
| Endrin Aldehyde                | 3970  | 0.0003   |       |         | 0.195913798 |
| Heptachlor                     | 11200 | 0.0005   |       |         | 0.115740741 |
| Heptachlor Epoxide             | 11200 | 0.000013 |       |         | 0.003009259 |
| Toxaphene                      | 13100 |          |       |         |             |
|                                |       |          |       |         |             |
|                                |       | Ш        |       | II .    |             |

| Mod (Tribal Adult - w/o<br>Salmon) Non-Carc**<br>µg/L | Mod (Tribal Child - w/o<br>Salmon) Non-Carc**<br>µg/L | EPA Tribal Adult w/o<br>Salmon <sup>\$\$\$</sup><br>µg/L | EPA Tribal Child w/o<br>Salmon <sup>\$\$\$</sup><br>µg/L |  |
|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
| 239932.7328                                           | 110107.0077                                           | 239932.7328                                              | 110107.0077                                              |  |
| 208.8670622                                           | 95.85072847                                           | 251.4717863                                              | 115.4023696                                              |  |
|                                                       |                                                       |                                                          |                                                          |  |
| 8424.30484                                            | 3865.979381                                           | 434.2425175                                              | 199.2772877                                              |  |
| 648.0234493                                           | 297.3830293                                           | 407.9566509                                              | 187.2144979                                              |  |
|                                                       |                                                       |                                                          |                                                          |  |
| 129.6046899                                           | 59.47660587                                           | 316.1089996                                              | 145.0648924                                              |  |
| 406.9712483                                           | 186.762289                                            | 142.4227361                                              | 65.35890755                                              |  |
| 179.7185033                                           | 82.4742268                                            | 117.8224453                                              | 54.0696417                                               |  |
| 589.1122266                                           | 270.3482085                                           | 589.1122266                                              | 270.3482085                                              |  |
| 2246.481291                                           | 1030.927835                                           | 1217.385093                                              | 558.6675407                                              |  |
|                                                       |                                                       |                                                          |                                                          |  |
| 946.5511057                                           | 434.3797058                                           | 101.4976487                                              | 46.57806484                                              |  |
| 1363.646467                                           | 625.7880294                                           | 948.9204451                                              | 435.4670142                                              |  |
| 34667.92115                                           | 15909.38017                                           | 34667.92115                                              | 15909.38017                                              |  |
| 14040.50807                                           | 6443.298969                                           | 5911.79287                                               | 2712.967987                                              |  |
| 7521.70075                                            | 3451.767305                                           | 5099.458136                                              | 2340.181224                                              |  |
| 9232.114894                                           | 4236.689733                                           |                                                          |                                                          |  |
| 2246.481291                                           | 1030.927835                                           | 1733.396058                                              | 795.4690085                                              |  |
| 29.30192988                                           | 13.44688481                                           | 23.89873714                                              | 10.96731739                                              |  |
| 1123.240645                                           | 515.4639175                                           | 98.52988117                                              | 45.21613312                                              |  |
| 0.077464872                                           | 0.035549236                                           |                                                          |                                                          |  |
| 300.86803                                             | 138.0706922                                           |                                                          |                                                          |  |
| 159955.1552                                           | 73404.6718                                            | 159955.1552                                              | 73404.6718                                               |  |
| 56162.03227                                           | 25773.19588                                           | 25272.91452                                              | 11597.93814                                              |  |
| 1604.629493                                           | 736.377025                                            | 244.182749                                               | 112.0573734                                              |  |
| 0.001890068                                           | 0.000867367                                           | 0.002948507                                              | 0.001353093                                              |  |
|                                                       |                                                       |                                                          |                                                          |  |
| 0.00054002                                            | 0.000247819                                           | 0.000200579                                              | 9.20471E-05                                              |  |

| 21.41772417 | 9.828761139   | 21.41772417  | 9.828761139 |
|-------------|---------------|--------------|-------------|
| 271.751769  | 124.7090123   | 101.7428121  | 46.69057224 |
| 73.89741088 | 33.91209984   | 35.10127017  | 16.10824742 |
| 300868.03   | 138070.6922   | 100289.3433  | 46023.56406 |
| 748.8270969 | 343.6426117   | 486.954037   | 223,4670163 |
| 22.97537684 | 10.54358013   | 18.0520818   | 8.284241532 |
| 98.52988117 | 45.21613312   | 98.52988117  | 45.21613312 |
| 6298.545675 | 2890.451874   | 2819.850993  | 1294.051676 |
| 2160.078164 | 991.2767645   | 1053.038105  | 483.2474227 |
| 3438.491772 | 1577.950768   | 3438.491772  | 1577.950768 |
| 0100.101772 | 1017.000700   | 0.100.101172 | 1017.000700 |
| 179.6227045 | 82.430264     | 1427.848278  | 655.2507426 |
| 6654.269226 | 3053.696194   | 6654.269226  | 3053.696194 |
| 0004.200220 | 0000.000104   | 727.4874646  | 333.8496875 |
| 382.9229473 | 175.7263355   | 121.4014040  | 333.0430073 |
| 180520.818  | 82842.41532   | 88676.89306  | 40694.5198  |
|             | 320 121 11002 |              |             |
| 336.9721936 | 154.6391753   | 8.42430484   | 3.865979381 |
|             |               |              |             |
| 5.743844209 | 2.635895033   | 2.216922326  | 1.017362995 |
| 266.170769  | 122.1478478   | 266.170769   | 122.1478478 |
| 88.67689306 | 40.6945198    | 27.1751769   | 12.47090123 |
| 13.16297631 | 6.040592784   | 0.928809795  | 0.42623808  |
| 157.9557158 | 72.4871134    | 789.7785788  | 362.435567  |
|             |               |              |             |
| 936.0338712 | 429.5532646   | 936.0338712  | 429.5532646 |
|             |               | 0.026957775  | 0.012371134 |
| 0.000991095 | 0.000454821   | 0.000991095  | 0.000454821 |
| 0.000991090 | 0.000434021   | 0.000391093  | 0.00043402  |
| 358.481057  | 164.5097609   | 216.0078164  | 99.12767645 |
| 877.5317542 | 402.7061856   | 32.65234434  | 14.98441621 |
| 8424.30484  | 3865.979381   | 47.86536841  | 21.96579194 |
| 0424.30404  | 3003.979301   | 47.00330041  | 21.90379192 |
| 5377.215856 | 2467.646414   | 122.7436354  | 56.3280143  |
| 5377.215856 | 2467.646414   | 122.7436354  | 56.3280143  |
|             |               |              |             |
|             |               |              |             |
|             |               |              |             |

| 1.68486E-07 | 7.73196E-08 | 2.44893E-08 | 1.12383E-08 |
|-------------|-------------|-------------|-------------|
|             |             |             |             |
| 0.005411759 | 0.002483499 |             |             |
|             |             |             |             |
|             |             |             |             |
| 1.944070348 | 0.892149088 |             |             |
| 0.029873421 | 0.013709147 |             |             |
| 0.007858493 | 0.003606324 |             |             |
|             |             |             |             |
|             |             |             |             |
| 0.009019598 | 0.004139164 |             |             |
| 18.72067742 | 8.591065292 |             |             |
| 18.72067742 | 8.591065292 |             |             |
| 18.72067742 | 8.591065292 |             |             |
| 0.063659734 | 0.02921395  |             |             |
| 0.063659734 | 0.02921395  |             |             |
| 0.037608504 | 0.017258837 |             |             |
| 0.000977821 | 0.00044873  |             |             |
|             |             |             |             |
|             |             |             |             |

## Non-Carcinogenic Surface Water Cleanup Level\*

- \* See Surface Water CUL Sheet Method B, Carc, CLARC Database
- \*\* Modified EQ 730-1 parameters to match EPA LDW-Tribal Consumption Rates Using CLARC BCF
- \*\*\* From CLARC (unless not available, then from EPA)

\$\$\$ BCF/RfD from EPA Plar

MTCA EQ. 730-1

CUL (ug/L) = (RfD\*ABW\*AT\*HQ\*UCF1\*

| Parameter                                              | Symbol | Value                            |
|--------------------------------------------------------|--------|----------------------------------|
| Reference Dose(Oral)                                   | RfD    | Chemical Specific                |
| Risk                                                   | Risk   | 0.000001                         |
| Average body weight over the exposure duration (Adult) | ABW    | 70 (81.8) (63)                   |
| Average body weight over the exposure duration (Child) | ABW    | (15) (15)                        |
| Average time                                           | AT     | <i>30 <mark>(64)</mark> (24)</i> |
| Unit Conversion Factor 1                               | UCF1   | 1000                             |
| Unit Conversion Factor 2                               | UCF2   | 1000                             |
| Bioconcentration factor                                | BCF    | Chemical Specific                |
| Fish consumption rate [w/o Salmon](Adult)              | FCR    | <i>54</i> (97.1) (57.1)          |
| Fish consumption rate [w/o Salmon](Child)              | FCR    | (38.8) (23)                      |
| Fish Diet Fraction                                     | FDF    | 0.5 (1.0) (1.0)                  |
| Exposure Duration (Adult)                              | ED     | <i>30 (64) (24)</i>              |
| Exposure Duration (Child)                              | ED     | <u>(6)</u> (6)                   |

(Tribal) = Tulalip Tribe (EPA, 2008) (API) = Asian & Pacific Islander (EPA, 2005)



## <sup>-</sup>/Rfd When Available at 2 TMCL Documents

# UCF2)/(BCF\*FCR\*FDF\*ED)

| Units     | Source                      |
|-----------|-----------------------------|
| mg/kg-day | Chemical Specific           |
| unitless  | MTCA Default                |
| kg        | MTCA Default (Tribal) (API) |
| kg        | MTCA Default (Tribal) (API) |
| years     | MTCA Default                |
| ug/mg     | MTCA Eq. 730-2              |
| g/L       | MTCA Eq. 730-2              |
| L/kg      | Chemical Specific           |
| g/day     | MTCA Default (Tribal) (API) |
| g/day     | MTCA Default (Tribal) (API) |
| unitless  | MTCA Default (Tribal) (API) |
| years     | MTCA Default (Tribal) (API) |
| years     | MTCA Default (Tribal) (API) |

| Chemical                             | BCF*** | CPFo        | BCF <sup>\$\$\$</sup> | CPFo <sup>\$\$\$</sup> | Carc SW CUL* |
|--------------------------------------|--------|-------------|-----------------------|------------------------|--------------|
| Units                                | L/kg   | kg-day/mg   | L/kg                  | mg/kg-day              | μg/L         |
| Acetone                              |        |             | 3.16                  |                        |              |
| Acenaphthene                         | 242    |             | 201                   |                        |              |
| Acenaphthylene                       |        |             |                       |                        |              |
| Anthracene                           | 30     |             | 582                   |                        |              |
| Benzene                              | 5.2    | 0.055       | 8.26                  | 0.055                  | 22.66252266  |
| Benzo(g,h,i)perylene                 |        |             |                       |                        |              |
| Benzo(a)anthracene                   | 30     | 0.73        | 4886                  | 0.73                   | 0.295958059  |
| Benzo(a)pyrene                       | 30     | 7.3         |                       | 7.3                    |              |
| Benzo(b)fluoranthene                 | 30     | 0.73        |                       | 0.73                   |              |
| Benzo(k)fluoranthene                 | 30     | 0.73        |                       | 0.73                   | 0.295958059  |
| bis(2-Ethylhexyl)phthalate           | 130    | 0.014       |                       | 0.014                  | 3.561253561  |
| Butyl benzyl phthalate               | 414    | 0.0019      |                       |                        |              |
| Carbon Tetrachloride                 | 18.75  | 0.07        | 28.6                  |                        | 4.938271605  |
| Chlorobenzene                        |        |             | 28.6                  |                        |              |
| Chloroethane                         |        |             | 2.39                  |                        |              |
| Chloroform                           | 3.75   | 0.031       |                       |                        | 55.75467941  |
| Chloromethane (methyl chloride)      | 3.75   | 0.013       |                       |                        |              |
| Chrysene                             | 30     | 0.073       |                       | 0.073                  |              |
| Dibenz[a,h]anthracene                | 30     | 0.73        |                       |                        |              |
| Dibenzofuran                         |        | 00          |                       | 00                     | 0.2000000    |
| Di-n-butylphthalate                  | 89     |             | 830                   |                        |              |
| 1,2-Dichlorobenzene                  | 55.6   |             | 79.9                  |                        |              |
| 1,3-Dichlorobenzene                  |        |             |                       |                        |              |
| 1,4-Dichlorobenzene                  | 55.6   |             |                       |                        |              |
| 1,1-Dichloroethane                   | 4.86   | 0.0057      | 4.86                  | 0.0057                 | 233.9716079  |
| 1,2-Dichloroethane                   | 1.2    | 0.091       | 2.85                  | 0.091                  | 59.35422602  |
| 1,1-Dichloroethene                   | 5.6    |             | 8.26                  |                        |              |
| diethyl phthalate                    | 73     |             | 16.8                  |                        |              |
| dimethyl phthalate                   | 36     |             | 3.17                  |                        |              |
| di-n-octyl phthalate                 |        |             | 63.5                  |                        |              |
| Ethylbenzene                         | 37.5   | 0.011       | 48.6                  | 0.011                  |              |
| Fluoranthene                         | 1150   |             | 1410                  |                        |              |
| Fluorene                             | 30     |             | 342                   |                        |              |
| hexachlorobenzene                    | 8700   | 1.6         |                       |                        |              |
| Hexachlorobutadiene                  | 2.8    | 0.078       |                       |                        |              |
| Indeno(1,2,3-cd)pyrene               | 30     | 7.3         |                       | 0.73                   | 0.029595806  |
| MEK (Methyl Ethyl Ketone;2-Butanone) |        |             | 3.16                  |                        |              |
| Methylene Chloride                   | 0.9    | 0.0075      | 2                     | 0.0075                 | 960.2194787  |
| 2-Methylnaphthalene                  |        |             |                       |                        |              |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)  |        |             |                       |                        |              |
| Naphthalene                          | 10.5   | 0.00.10     | 69                    |                        | 0.700440007  |
| nitrosodiphenylamine, N-             | 136    | 0.0049      |                       |                        |              |
| Polychlorinated biphenyls (PCBs)     | 31200  | 2           |                       |                        |              |
| Aroclor 1016                         | 31200  | 0.07        | 20000                 |                        | 0.002967711  |
| Aroclor 1221                         |        | 2           | 20000                 |                        |              |
| Arcelor 1232                         |        | 2<br>2<br>2 | 20000                 | 2                      |              |
| Arcelor 1242                         |        | 2           | 20000                 |                        |              |
| Aroclor 1248                         | 24200  | 2           | 20000                 |                        |              |
| Aroclor 1254                         | 31200  | 2 2         | 84000                 |                        |              |
| Aroclor 1260                         |        |             |                       |                        |              |
| Phenanthrene                         | l .    |             | 582                   | <u> </u>               |              |

| Pyrene                       |      | ı     | 1180  |             |             |
|------------------------------|------|-------|-------|-------------|-------------|
| Tetrachloroethene            | 31   | 0.54  | 82.8  | 0.54        | 0.387185274 |
| 1,2,4-Trichlorobenzene       | 114  | 0.029 | 240   | 0.01        | 1.960520714 |
| 1,1,1-Trichloroethane        | 5.6  | 0.025 | 16.8  |             | 1.000020711 |
| 1,1,2-Trichloroethane        | 4.5  | 0.057 | 6.92  | 0.057       | 25.26893365 |
| Trichloroethene              | 11   | 0.089 | 14    | 0.089       | 6.620512238 |
| 1,3,5-Trimethylbenzene       | - '' | 0.000 | 85.5  | 0.000       | 0.020012200 |
| Toluene                      | 10.7 |       | 23.9  |             |             |
| Vinyl Chloride               | 1.17 | 1.5   | 2.4   | 0.72        | 3.693151841 |
| Xylene                       |      | 1.0   | 49    | 0.72        | 0.000101011 |
| benzoic acid                 |      |       | 70    |             |             |
| Benzyl Alcohol               |      |       |       |             |             |
| 2,4-Dimethylphenol           | 93.8 |       | 11.8  |             |             |
| 2-Methylphenol (o-cresol)    | 33.0 |       | 6.33  |             |             |
| 4-Methylphenol (p-cresol)    |      |       | 5.79  |             |             |
| Pentachlorophenol            | 11   | 0.4   | 11    | 0.12        | 1.473063973 |
| Total Phenol                 | 1.4  | 0.4   | 2.85  | 0.12        | 1.473003373 |
| Styrene                      | 1.4  |       | 2.00  |             |             |
| Tributyltin                  |      |       |       |             |             |
| 2,4,6-Trichlorophenol        | 150  | 0.011 | 150   | 0.011       | 3.928170595 |
| 2,4,6-1110100pnenoi          | 130  | 0.011 | 130   | 0.011       | 3.920170393 |
| Aluminum                     |      |       |       |             |             |
| Antimony                     | 1    |       | 40    |             |             |
| Arsenic (III)                |      |       |       |             |             |
| Arsenic (V)                  |      |       |       |             |             |
| Arsenic                      | 44   | 1.5   | 114   | 1.5         | 0.098204265 |
| Barium                       |      |       | 633   |             | 0.00020.200 |
| Beryllium                    | 19   |       | 62    |             |             |
| Cadmium                      | 64   |       | 907   |             |             |
| Chromium (VI)                | 16   | 0.5   | 3.2   | 0.5         | 0.810185185 |
| Chromium                     |      | 0.0   | 0.2   | 0.0         | 0.010100100 |
| Cobalt                       |      |       |       |             |             |
| Copper                       | 36   |       | 36    |             |             |
| Iron                         |      |       |       |             |             |
| Lead                         |      |       | 0.09  |             |             |
|                              |      |       | 0.09  |             |             |
| Manganese<br>Mercury         |      |       | 5000  |             |             |
| Mercury (organic)            |      |       | 85000 |             |             |
| Molybdenum                   |      |       | 03000 |             |             |
| Nickel                       | 47   |       | 78    |             |             |
| Selenium                     | 4.8  |       | 129   |             |             |
| Silver                       | 0.5  |       | 88    |             |             |
| Tin                          | 0.5  |       | 10000 |             |             |
| Thallium                     | 116  |       | 10000 |             |             |
| Vanadium                     | 110  |       | -     |             |             |
|                              | 47   |       | 2059  |             |             |
| Zinc                         | 41   |       | 2008  |             |             |
| LPAH                         |      |       |       |             |             |
| HPAH                         |      |       |       |             |             |
| Total Petroleum Hydrocarbons | +    |       |       |             |             |
| Gasoline                     |      |       |       | <del></del> |             |
| Gasoline (w/benzene)         |      |       |       | <del></del> |             |
| Diesel                       |      |       |       | <del></del> |             |
|                              |      |       |       |             |             |
| Heavy Oil                    |      | 11    |       | , <b>!</b>  |             |

| 2,3,7,8-TCDD                   | 5000  | 150000 | 34400 | 1.3E+05 | 8.64198E-09 |
|--------------------------------|-------|--------|-------|---------|-------------|
|                                |       |        |       |         |             |
| Aldrin                         | 4670  | 17     |       |         | 8.1641E-05  |
| alpha-BHC                      | 130   | 6.3    |       |         | 0.007913897 |
| beta-BHC                       | 130   | 1.8    |       |         | 0.027698639 |
| gamma-BHC (Lindane)            | 130   |        |       |         |             |
| Chlordane                      | 14100 | 0.35   |       |         | 0.00131337  |
| 4,4'-DDT                       | 53600 | 0.34   |       |         | 0.000355656 |
| 4,4'-DDE                       | 53600 | 0.34   |       |         | 0.000355656 |
| 4,4'-DDD                       | 53600 | 0.24   |       |         | 0.000503847 |
| Dieldrin                       | 4670  | 16     |       |         | 8.67436E-05 |
| alpha-Endosulfan (959-98-8)    | 270   |        |       |         |             |
| beta-Endosulfan (891-86-1)     | 270   |        |       |         |             |
| Endosulfan Sulfate (1031-07-8) | 270   |        |       |         |             |
| Endrin                         | 3970  |        |       |         |             |
| Endrin Aldehyde                | 3970  |        |       |         |             |
| Heptachlor                     | 11200 | 4.5    |       |         | 0.000128601 |
| Heptachlor Epoxide             | 11200 | 9.1    |       |         | 6.35938E-05 |
| Toxaphene                      | 13100 | 1.1    |       |         | 0.000449791 |
|                                |       |        | •     |         |             |

| 7 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

| Mod (Tribal Adult - | Mod (Tribal Child - | EPA Tribal Adult w/o     | EPA Tribal Child w/o     |
|---------------------|---------------------|--------------------------|--------------------------|
| w/o Salmon) Carc**  | w/o Salmon) Carc**  | Salmon <sup>\$\$\$</sup> | Salmon <sup>\$\$\$</sup> |
| μg/L                | μg/L                | μg/L                     | μg/L                     |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
| 3.221707489         | 15.77031216         | 2.028193577              | 9.928041555              |
|                     |                     |                          |                          |
| 0.04207344          | 0.205950195         | 0.000258331              | 0.001264533              |
| 0.004207344         | 0.02059502          | 1.51762E-05              | 7.42877E-05              |
| 0.04207344          | 0.205950195         | 0.000121366              | 0.000594087              |
| 0.04207344          | 0.205950195         | 0.00012711               | 0.000622206              |
| 0.50626832          | 2.478191911         | 1.23480078               | 6.044370515              |
| 1.17138106          | 5.733929924         | 0.409933862              | 2.006633126              |
| 0.702025403         | 3.436426117         | 0.247823653              | 1.213100936              |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
| 7.926093264         | 38.79835938         | 4.2952095                | 21.0251225               |
| 18.90068394         | 92.51916468         | 22.4296091               | 109.7933125              |
| 0.420734403         | 2.059501954         | 0.002581193              | 0.012634981              |
| 0.04207344          | 0.205950195         | 6.25379E-05              | 0.000306124              |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
| 33.26143751         | 162.8152941         | 33.26143751              | 162.8152941              |
| 8.437805329         | 41.30319852         | 3.552760138              | 17.39082043              |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
| 0.000=1=100         | 10.0010001          |                          |                          |
| 2.233717193         | 10.9340831          |                          |                          |
|                     |                     |                          |                          |
| 0.040045.05         | 0.000004040         | 0.040045.05              | 0.000004040              |
| 6.61931E-05         | 0.000324016         | 6.61931E-05              | 0.000324016              |
| 4.218902664         | 20.65159926         | 4.218902664              | 20.65159926              |
| 0.004207344         | 0.02059502          | 5.23736E-05              | 0.00025637               |
| 136.5049395         | 668.1939672         | 61.42722279              | 300.6872852              |
| 130.0049390         | 000.1939072         | 61.42722279              | 300.0072032              |
|                     |                     |                          |                          |
|                     |                     |                          |                          |
| 1.382665579         | 6.768171186         | 1.593580667              | 7.800604079              |
| 1.47662E-05         | 7.22806E-05         | 2.30352E-05              | 0.000112758              |
| 0.00042189          | 0.00206516          | 0.000658149              | 0.003221649              |
| 0.00012100          | 0.00200010          | 2.30352E-05              | 0.000112758              |
|                     |                     |                          | 0.300112100              |
|                     |                     | 2.30352E-05              | 0.000112758              |
|                     |                     | 2.30352E-05              | 0.000112758              |
| 1.47662E-05         | 7.22806E-05         | 5.48457E-06              | 2.68471E-05              |
|                     |                     | 2.30352E-05              | 0.000112758              |
|                     |                     |                          |                          |

| 0.055042314 | 0.022079603 | 0.02060763  | 0.100874693  |
|-------------|-------------|-------------|--------------|
| 0.278707907 | 0.141842417 | 0.02000765  | 0.10007 4033 |
| 0.210101901 | 0.141042417 |             |              |
| 3.592235251 | 17.58405177 | 2.335991132 | 11.43471574  |
| 0.941172974 | 4.607057486 | 0.739493051 | 3.619830882  |
| 0.941172974 | 4.007057400 | 0.739493051 | 3.619630662  |
|             |             |             |              |
| 0.505040000 | 0.500070707 | 0.50000040  | 0.040400004  |
| 0.525018998 | 2.569976797 | 0.53322242  | 2.610132684  |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
| 0.209410987 | 1.025070291 | 0.698036623 | 3.416900968  |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
| 0.558429298 | 2.733520775 | 0.558429298 | 2.733520775  |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
| 0.013960732 | 0.068338019 | 0.005388353 | 0.026376078  |
| 0.013960732 | 0.066336019 | 0.005366353 | 0.026376076  |
|             |             |             |              |
|             |             |             |              |
| 0.445450040 | 0.70070000  | 0.777000011 | 0.010010000  |
| 0.115176043 | 0.56378866  | 0.575880214 | 2.818943299  |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |
|             |             |             |              |

| 1.22854E-09 | 6.01375E-09 | 2.06039E-10 | 1.00857E-09 |
|-------------|-------------|-------------|-------------|
|             |             |             |             |
| 1.16061E-05 | 5.68121E-05 |             |             |
| 0.001125041 | 0.005507093 |             |             |
| 0.003937642 | 0.019274826 |             |             |
|             |             |             |             |
| 0.000186709 | 0.000913943 |             |             |
| 5.05602E-05 | 0.000247493 |             |             |
| 5.05602E-05 | 0.000247493 |             |             |
| 7.16269E-05 | 0.000350615 |             |             |
| 1.23315E-05 | 6.03628E-05 |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
| 1.82819E-05 | 8.94903E-05 |             |             |
| 9.04051E-06 | 4.42534E-05 |             |             |
| 6.39423E-05 | 0.000312999 |             |             |
|             |             |             |             |

### Carcinogenic Surface Water Cleanup Level\*

- \* See Surface Water CUL Sheet Method B, Carc, CLARC Database
- \*\* Modified EQ 730-2 parameters to match EPA LDW-Tribal Consumption Rates Using CLARC BCF/CPFo when
- \*\*\* From CLARC (unless not available, then from EPA)

\$\$\$ BCF/CPFo from EPA Plant 2 TMCL C

MTCA EQ. 730-2

CUL (ug/L) = (Risk\*ABW\*AT\*UCF1\*UCF2)/(CPF\*BCI

| Parameter                                              | Symbol | Value                     | Units     |
|--------------------------------------------------------|--------|---------------------------|-----------|
| Cancer Potency Factor (Oral)                           | CPFo   | Chemical Specific         | kg-day/mg |
| Risk                                                   | Risk   | 0.000001                  | unitless  |
| Average body weight over the exposure duration (Adult) | ABW    | 70 (81.8) (63)            | kg        |
| Average body weight over the exposure duration (Child) | ABW    | (15) (15)                 | kg        |
| Average time                                           | AT     | 75 <mark>(70)</mark> (70) | years     |
| Unit Conversion Factor 1                               | UCF1   | 1000                      | ug/mg     |
| Unit Conversion Factor 2                               | UCF2   | 1000                      | g/L       |
| Bioconcentration factor                                | BCF    | Chemical Specific         | L/kg      |
| Fish consumption rate [w/o Salmon](Adult)              | FCR    | <i>54</i> (97.1) (57.1)   | g/day     |
| Fish consumption rate [w/o Salmon](Child)              | FCR    | (38.8) (23)               | g/day     |
| Fish Diet Fraction                                     | FDF    | 0.5 (1.0) (1.0)           | unitless  |
| Exposure Duration (Adult)                              | ED     | 30 (64) (24)              | years     |
| Exposure Duration (Child)                              | ED     | <del>(6)</del> (6)        | years     |

(Tribal) = Tulalip Tribe (EPA, 2008)

(API) = Asian & Pacific Islander (EPA, 2005)



### available locuments (10/2010)

#### F\*FCR\*FDF\*ED)

| Source                      |
|-----------------------------|
| Chemical Specific           |
| MTCA Default                |
| MTCA Default (Tribal) (API) |
| MTCA Default (Tribal) (API) |
| MTCA Default                |
| MTCA Eq. 730-2              |
| MTCA Eq. 730-2              |
| Chemical Specific           |
| MTCA Default (Tribal) (API) |
| MTCA Default (Tribal) (API) |
| MTCA Default (Tribal) (API) |
| MTCA Default (Tribal) (API) |
| MTCA Default (Tribal) (API) |

| Chemical                             |           | Koc***    | Koc <sup>\$\$\$</sup> | Koc**   | Kd       | Henry's Law*** | Henry's Law <sup>\$\$\$</sup> |
|--------------------------------------|-----------|-----------|-----------------------|---------|----------|----------------|-------------------------------|
|                                      | GW/SW CUL | L/kg      | L/kg                  | L/kg    | ml/g     | Dimensionless  | Dimensionless                 |
| Acetone                              |           |           | 2.364                 | 1.981   | 0.001981 | 0.001623835    | 0.00159                       |
| Acenaphthene                         |           | 4898      | 5027                  | 6123    | 6.123    | 0.004225243    | 0.00636                       |
| Acenaphthylene                       |           |           | 2759                  | 6123    | 6.123    | 0.00511283     | 0.00451                       |
| Anthracene                           |           | 23000     | 16360                 | 20400   | 20.4     | 0.002274187    | 0.00267                       |
| Benzene                              |           | 62        | 145.8                 | 165.5   | 0.1655   | 0.227009649    | 0.228                         |
| Benzo(g,h,i)perylene                 |           |           |                       | 2676000 | 2676     | 1.35388E-05    |                               |
| Benzo(a)anthracene                   |           | 357537    | 176900                | 426600  | 426.6    | 1.73836E-05    | 0.00014                       |
| Benzo(a)pyrene                       |           | 968774    | 587400                | 786800  | 786.8    | 1.86925E-05    | 0.000046                      |
| Benzo(b)fluoranthene                 |           | 1200000   | 599400                | 803100  | 803.1    | 2.6873E-05     | 0.0046                        |
| Benzo(k)fluoranthene                 |           |           | 587400                | 786800  | 786.8    | 2.38871E-05    | 0.000034                      |
| bis(2-Ethylhexyl)phthalate           |           | 111123    | 119600                | 165400  | 165.4    | 1.10437E-05    | 0.00000418                    |
| Butyl benzyl phthalate               |           | 13746     | 7155                  | 9359    | 9.359    | 5.15373E-05    | 0.0000517                     |
| Carbon Tetrachloride                 |           | 152       | 43.89                 | 48.64   | 0.04864  | 1.3            | 1.2                           |
| Chlorobenzene                        |           | 224       | 233.9                 | 268     | 0.268    | 0.127207209    | 0.152                         |
| Chloroethane                         |           |           | 21.73                 | 23.74   | 0.02374  | 0.454019298    | 0.3608                        |
| Chloroform                           |           | 53        | 31.82                 | 35.04   | 0.03504  | 0.150112687    | 0.15                          |
| Chloromethane                        |           |           | 13.22                 | 14.3    | 0.0143   | 0.36076128     | 0.3608                        |
| Chrysene                             |           |           | 180500                | 236100  | 236.1    | 0.000213921    | 0.0039                        |
| Dibenz[a,h]anthracene                |           | 1789101   | 1912000               | 2622000 | 2622     | 5.03102E-06    | 0.0000006                     |
| Dibenzofuran                         |           |           | 9161                  | 11290   | 11.29    | 0.008712262    |                               |
| Di-n-butylphthalate                  |           | 1600      | 1157                  | 1460    | 1.46     | 7.40338E-05    | 3.85E-08                      |
| 1,2-Dichlorobenzene                  |           | 379       | 382.9                 | 443.1   | 0.4431   | 0.078533068    | 0.0779                        |
| 1,3-Dichlorobenzene                  |           |           |                       |         |          |                |                               |
| 1,4-Dichlorobenzene                  |           | 616       |                       | 434     | 0.434    | 0.099          |                               |
| 1,1-Dichloroethane                   |           | 53        | 31.82                 | 35.04   | 0.03504  | 0.229872834    | 0.23                          |
| 1,2-Dichloroethane                   |           | 38        | 39.6                  | 43.79   | 0.04379  | 0.048265115    | 0.0401                        |
| 1,1-Dichloroethene                   |           | 65        | 31.82                 | 35.04   | 0.03504  | 1.06755889     | 1.07                          |
| diethyl phthalate                    |           | 82        | 104.9                 | 126.2   | 0.1262   | 0.000025       | 0.0000185                     |
| dimethyl phthalate                   |           |           |                       |         |          |                |                               |
| di-n-octyl phthalate                 |           | 1567      |                       |         | 1.567    | 0.0027         |                               |
| Ethylbenzene                         |           | 204       | 446.1                 | 517.8   | 0.5178   | 0.322312799    | 0.323                         |
| Fluoranthene                         |           | 49096     | 55450                 | 70850   | 70.85    | 0.000362397    | 0.00066                       |
| Fluorene                             |           | 7707      | 9160                  | 11290   | 11.29    | 0.003934834    | 0.00261                       |
| hexachlorobenzene                    |           | 80000     |                       | 3380    | 3.38     | 0.07           |                               |
| Hexachlorobutadiene                  |           |           |                       | 993.5   | 0.9935   | 42.12971863    |                               |
| Indeno(1,2,3-cd)pyrene               |           | 3,500,000 | 1951000               | 2676000 | 2676     | 1.42341E-05    | 0.000066                      |
| MEK (Methyl Ethyl Ketone;2-Butanone) |           |           | 4.51                  |         |          |                | 0.002296                      |
| Methylene Chloride                   |           | 10        | 21.73                 | 23.74   | 0.02374  | 0.211875672    | 0.0898                        |
| 2-Methylnaphthalene                  |           |           |                       | 2976    | 2.976    | 0.021187567    |                               |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)  |           |           |                       |         |          |                |                               |
| Naphthalene                          |           | 1191      | 1544                  | 1837    | 1.837    | 0.017997161    | 0.0198                        |
| nitrosodiphenylamine, N-             |           | 1290      | 2632                  | 6154    | 6.154    | 0.000049       | 0.000205                      |
| Polychlorinated biphenyls (PCBs)     |           | 310000    | 130500                | 44820   | 44.82    | 0.014          |                               |
| Aroclor 1016                         |           | 107285    | 47700                 | 27110   | 27.11    | 0.008180528    | 0.0119                        |
| Aroclor 1221                         |           |           | 8397                  | 10330   | 10.33    | 0.030104343    | 0.0119                        |
| Aroclor 1232                         |           |           | 70400                 | 10330   | 10.33    | 0.030104343    | 0.0119                        |
| Aroclor 1242                         | <u> </u>  |           | 78100                 | 448.2   | 0.4482   | 0.007771501    | 0.0119                        |

| Aroclor 1248              |        |        | 43900  | 43.9    | 0.017997161 | 0.0119    |
|---------------------------|--------|--------|--------|---------|-------------|-----------|
| Aroclor 1254              |        | 130500 | 75640  | 75.64   | 0.011575447 | 0.0119    |
| Aroclor 1260              | 822422 | 349700 | 207000 | 207     | 0.013743287 | 0.0119    |
| Phenanthrene              |        | 0.0.00 | 20830  | 20.83   | 0.001730182 | 0.0110    |
| Pyrene                    | 67992  | 54340  | 69410  | 69.41   | 0.000486741 | 0.000451  |
| Tetrachloroethene         | 265    | 94.94  | 106.8  | 0.265   | 0.754       | 0.754     |
| 1,2,4-Trichlorobenzene    | 1659   |        | 67.7   | 0.0677  | 0.0337      | 5.7.6.1   |
| 1,1,1-Trichloroethane     | 135    | 43.89  | 48.64  | 0.04864 | 0.703525398 | 0.705     |
| 1,1,2-Trichloroethane     | 75     | 60.7   | 67.7   | 0.0677  | 0.033703775 | 0.037     |
| Trichloroethene           | 94     | 60.7   | 67.7   | 0.094   | 0.422       | 0.422     |
| 1,3,5-Trimethylbenzene    |        | 602.1  | 703    | 0.703   | 0.358716148 | 0.32      |
| Toluene                   | 140    | 233.9  | 268    | 0.268   | 0.211875672 | 0.272     |
| Vinyl Chloride            | 19     | 21.73  | 23.74  | 0.019   | 1.11        | 1.11      |
| Xylene                    | 241    | 375.3  | 443.1  | 0.4431  | 0.132933578 | 0.301     |
| benzoic acid              | 0.6    |        |        | 0.0006  | 0.000063    |           |
| Benzyl Alcohol            |        |        | 15.66  | 0.01566 | 1.37842E-05 |           |
| 2,4-Dimethylphenol        |        | 491.8  | 717.6  | 0.716   | 0.000039    | 0.000082  |
| 2-Methylphenol (o-cresol) |        | 306.5  | 91     | 0.091   | 0.000049    | 0.0000492 |
| 4-Methylphenol (p-cresol) |        | 300.4  |        |         | -           | 0.0000324 |
| Pentachlorophenol         | 592    |        | 3380   | 3.38    | 1.00211E-06 |           |
| Total Phenol              | 29     | 187.2  | 18.1   | 0.0181  | 0.000323131 | 0.0000163 |
| Styrene                   | 912    |        | 517.8  | 0.5178  | 0.112482258 |           |
| Tributyltin               |        |        |        |         |             |           |
| 2,4,6-Trichlorophenol     | 381    |        | 1186   | 1.186   | 0.000106347 |           |
| , , ,                     |        |        |        |         |             |           |
| Aluminum                  |        |        |        |         |             |           |
| Antimony                  |        |        |        | 45      | 0           |           |
| Arsenic (III)             |        |        |        |         |             |           |
| Arsenic (V)               |        |        |        |         |             |           |
| Arsenic                   |        |        |        | 29      | 0           |           |
| Barium                    |        |        |        | 41      | 0           |           |
| Beryllium                 |        |        |        | 790     | 0           |           |
| Cadmium                   |        |        |        | 6.7     | 0           |           |
| Chromium (VI)             |        |        |        | 19      | 0           |           |
| Chromium                  |        |        |        | 1000    | 0           |           |
| Cobalt                    |        |        |        |         |             |           |
| Copper                    |        |        |        | 22      | 0           |           |
| Iron                      |        |        |        |         |             |           |
| Lead                      |        |        |        | 10000   | 0           |           |
| Manganese                 |        |        |        | 65      |             |           |
| Mercury                   |        |        |        | 52      | 0           | 0.47      |
| Mercury (organic)         |        |        |        |         |             |           |
| Molybdenum                |        |        |        |         |             |           |
| Nickel                    |        |        |        | 65      | 0           |           |
| Selenium                  |        |        |        | 5       | 0           |           |
| Silver                    |        |        |        | 8.3     | 0           |           |
| Tin                       |        |        |        |         |             |           |
| Thallium                  |        |        |        | 71      | 0           |           |
| Vanadium                  |        |        |        | 1000    |             |           |
| Zinc                      |        |        |        | 62      | 0           |           |
|                           |        |        |        |         |             |           |
| LPAH                      |        |        | ,      |         |             |           |

| НРАН                           | 157213 | 157.213 |         |             |  |
|--------------------------------|--------|---------|---------|-------------|--|
| Total Petroleum Hydrocarbons   |        |         |         |             |  |
| Gasoline                       |        |         |         |             |  |
| Gasoline (w/benzene)           |        |         |         |             |  |
| Diesel                         |        |         |         |             |  |
| Heavy Oil                      |        |         |         |             |  |
| 2,3,7,8-TCDD                   |        | 146300  | 146.3   | 0.002045132 |  |
| Aldrin                         | 48685  | 96000   | 48.685  | 0.00697     |  |
| alpha-BHC                      | 1762   | 3800    | 1.762   | 0.000435    |  |
| beta-BHC                       | 2139   | 3800    | 2.139   | 0.0000305   |  |
| gamma-BHC (Lindane)            | 1352   | 1080    | 1.352   | 0.000574    |  |
| Chlordane                      | 51310  | 21305   | 51.31   | 0.00199     |  |
| 4,4'-DDT                       | 677934 | 243000  | 677.934 | 0.000332    |  |
| 4,4'-DDE                       | 86405  | 440000  | 86.405  | 0.000861    |  |
| 4,4'-DDD                       | 45800  | 770000  | 45.8    | 0.000164    |  |
| Dieldrin                       | 25546  | 10700   | 25.546  | 0.000619    |  |
| alpha-Endosulfan (959-98-8)    | 2040   | 8168    | 2.04    | 0.000459    |  |
| beta-Endosulfan (891-86-1)     | 2040   | 8031    | 2.04    | 0.000459    |  |
| Endosulfan Sulfate (1031-07-8) | 2040   | 10038   | 2.04    | 0.000459    |  |
| Endrin                         | 10811  | 9157    | 10.811  | 0.000308    |  |
| Endrin Aldehyde                | 10811  |         | 10.811  | 0.000308    |  |
| Heptachlor                     | 9528   | 12000   | 9.528   | 0.0447      |  |
| Heptachlor Epoxide             | 83200  | 220     | 83.2    | 0.00039     |  |
| Toxaphene                      |        |         |         |             |  |
|                                |        |         |         |             |  |

| VADOSE Soil to   | SATURATED Soil to |
|------------------|-------------------|
| Water Protection | Water Protection  |
| (mg/kg)          | (mg/kg)           |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| 0                | 0                 |
| U                | U                 |

# Insert GW or SW screening criteria to determine

\*\* Note that the EPA Koc values (column D), not MTC*I*\*\*\* From CLARC (unless not available, then from EPA)

MTCA EQ. 747-1 
$$C_s = C_w(UCF)DF * \left[ K_d + \frac{C_d}{C_d} \right]$$

MTCA EQ. 747-2  $K_d = K_{oc} x f_{oc}$ 

| Parameter                                          | Symbol                |
|----------------------------------------------------|-----------------------|
| Soil concentration                                 | Cs                    |
| Groundwater/Surfacewater screening level           | Cw                    |
| UCF                                                | Unit coversion factor |
| Dilution faction                                   | DF                    |
| Distribution coefficient                           | Kd                    |
| Soil organic carbon-water partitioning coefficient | Koc                   |
| Soil fraction of organic carbon - for silty sands  | foc                   |
| Water-filled soil porosity                         | $\theta w$            |
| Air-filled soil porosity                           | θа                    |
| Henry's law constant                               | Нсс                   |
| Dry soil bulk density                              | ρb                    |

\* The dilution factor is 20 for Vad
\*\*\* The Default Porosity for Water/Air Fill is 0.3/



| 0 | 0 |
|---|---|
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
|   |   |
| 0 | 0 |
| 0 |   |
|   | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
|   |   |



| 0 | 0 |
|---|---|
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
|   |   |

## vadose soil concentration that is protective\*\*

\(column C), are default values used to determine Kd \$\\$\frac{\\$\\$}\\$ From EPA Plant 2 TMCL Documents

$$K_{w}(UCF)DF* \left[K_{d} + \frac{(\theta_{w} + \theta_{a}H_{cc})}{\rho_{b}}\right]$$

(For Nonlonic & Ionizing Organic Substances)

| Value             | Units            | Source                 |
|-------------------|------------------|------------------------|
| Calculated Value  | mg/kg            | Calculated Value       |
| Chemical Specific | ug/l             | Pathway Specific       |
| 0.001             | mg/ug            | MTCA                   |
| 20*               | dimensionless    | Vadose Soil            |
| Chemical Specific | L/kg             | Chemical Specific      |
| Chemical Specific | ml/g             | Chemical Specific      |
| 0.001             | g/g              | Site Specific -Default |
| 0.3***            | ml water/ml soil | Site Specific -Default |
| 0.13***           | ml air/ml soil   | Site Specific -Default |
| Chemical Specific | dimensionless    | Chemical Specific      |
| 1.5               | kg/L             | Site Specific -Default |

ose soil, or 1 for Saturated Soil /0.13 for Vadose Soil & 0.43/0 Saturated Soils

| Chemical                             | GW Screening<br>Level | Кос     | Kd       | Henry's Law   |  |
|--------------------------------------|-----------------------|---------|----------|---------------|--|
|                                      | ug/l                  | L/kg    | ml/g     | Dimensionless |  |
| Acetone                              | 6000                  | 1.981   | 0.001981 | 0.001623835   |  |
| Acenaphthene                         | 2.614379085           | 6123    | 6.123    | 0.004225243   |  |
| Acenaphthylene                       | 10.78431373           | 6123    | 6.123    | 0.00511283    |  |
| Anthracene                           | 10.78431373           | 20400   | 20.4     | 0.002274187   |  |
| Benzene                              | 0.795                 | 165.5   | 0.1655   | 0.227009649   |  |
| Benzo(g,h,i)perylene                 | 0.011584454           | 2676000 | 2676     | 1.35388E-05   |  |
| Benzo(a)anthracene                   | 0.000112155           | 426600  | 426.6    | 1.73836E-05   |  |
| Benzo(a)pyrene                       | 6.5888E-06            | 786800  | 786.8    | 1.86925E-05   |  |
| Benzo(b)fluoranthene                 | 5.26914E-05           | 803100  | 803.1    | 2.6873E-05    |  |
| Benzo(k)fluoranthene                 | 5.51854E-05           | 786800  | 786.8    | 2.38871E-05   |  |
| bis(2-Ethylhexyl)phthalate           | 0.284848485           | 165400  | 165.4    | 1.10437E-05   |  |
| Butyl benzyl phthalate               | 0.523504274           | 9359    | 9.359    | 5.15373E-05   |  |
| Carbon Tetrachloride                 | 0.247823653           | 48.64   | 0.04864  | 1.3           |  |
| Chlorobenzene                        | 100                   | 268     | 0.268    | 0.127207209   |  |
| Chloroethane                         | 21000                 | 23.74   | 0.02374  | 0.454019298   |  |
| Chloroform                           | 4.3                   | 35.04   | 0.03504  | 0.150112687   |  |
| Chloromethane                        | 190                   | 14.3    | 0.0143   | 0.36076128    |  |
| Chrysene                             | 0.001120636           | 236100  | 236.1    | 0.000213921   |  |
| Dibenz[a,h]anthracene                | 2.71511E-05           | 2622000 | 2622     | 5.03102E-06   |  |
| Dibenzofuran                         | 1.327433628           | 11290   | 11.29    | 0.008712262   |  |
| Di-n-butylphthalate                  | 46.57806484           | 1460    | 1.46     | 7.40338E-05   |  |
| 1,2-Dichlorobenzene                  | 5.191873589           | 443.1   | 0.4431   | 0.078533068   |  |
| 1,3-Dichlorobenzene                  | 600                   | -       |          |               |  |
| 1,4-Dichlorobenzene                  | 4                     | 434     | 0.434    | 0.099         |  |
| 1,1-Dichloroethane                   | 1                     | 35.04   | 0.03504  | 0.229872834   |  |
| 1,2-Dichloroethane                   | 0.48                  | 43.79   | 0.04379  | 0.048265115   |  |
| 1,1-Dichloroethene                   | 0.729                 | 35.04   | 0.03504  | 1.06755889    |  |
| diethyl phthalate                    | 484.1269841           | 126.2.  | 0.1262   | 0.000025      |  |
| dimethyl phthalate                   | 142.8571429           |         |          |               |  |
| di-n-octyl phthalate                 | 0.295918367           |         | 1.567    | 0.0027        |  |
| Ethylbenzene                         | 700                   | 517.8   | 0.5178   | 0.322312799   |  |
| Fluoranthene                         | 2.256699577           | 70850   | 70.85    | 0.000362397   |  |
| Fluorene                             | 2.03539823            | 11290   | 11.29    | 0.003934834   |  |
| hexachlorobenzene                    | 0.05                  | 3380    | 3.38     | 0.07          |  |
| Hexachlorobutadiene                  | 0.9                   | 993.5   | 0.9935   | 42.12971863   |  |
| Indeno(1,2,3-cd)pyrene               | 2.27382E-05           | 2676000 | 2676     | 1.42341E-05   |  |
| MEK (Methyl Ethyl Ketone;2-Butanone) | 4800                  |         |          |               |  |
| Methylene Chloride                   | 5                     | 23.74   | 0.02374  | 0.211875672   |  |
| 2-Methylnaphthalene                  | 18.18181818           | 2976    | 2.976    | 0.021187567   |  |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)  | 640                   |         |          |               |  |
| Naphthalene                          | 53.80434783           | 1837    | 1.837    | 0.017997161   |  |
| nitrosodiphenylamine, N-             | 1.593580667           | 6154    | 6.154    | 0.000049      |  |
| Polychlorinated biphenyls (PCBs)     | 2.30915E-05           | 44820   | 44.82    | 0.014         |  |
| Aroclor 1016                         | 0.0000641             | 27110   | 27.11    | 0.008180528   |  |
| Aroclor 1221                         | 2.30915E-05           | 10330   | 10.33    | 0.030104343   |  |
| Aroclor 1232                         |                       | 10330   | 10.33    | 0.030104343   |  |
| Aroclor 1242                         | 2.30915E-05           | 448.2   | 0.4482   | 0.007771501   |  |

|                           | 0.000455.05 | 1      | 1        |             |
|---------------------------|-------------|--------|----------|-------------|
| Aroclor 1248              | 2.30915E-05 | 43900  | 43.9     | 0.017997161 |
| Aroclor 1254              | 5.49145E-06 | 75640  | 75.64    | 0.011575447 |
| Aroclor 1260              | 2.30915E-05 | 207000 | 207      | 0.013743287 |
| Phenanthrene              | 4.807692308 | 20830  | 20.83    | 0.001730182 |
| Pyrene                    | 9.8         | 69410  | 69.41    | 0.000486741 |
| Tetrachloroethene         | 0.020523086 | 265    | 0.265    | 0.754       |
| 1,2,4-Trichlorobenzene    | 1.128133705 | 67.7   | 0.0677   | 0.0337      |
| 1,1,1-Trichloroethane     | 200         | 48.64  | 0.04864  | 0.703525398 |
| 1,1,2-Trichloroethane     | 0.768       | 67.7   | 0.0677   | 0.033703775 |
| Trichloroethene           | 0.74        | 94     | 0.094    | 0.422       |
| 1,3,5-Trimethylbenzene    | 45          | 703    | 0.703    | 0.358716148 |
| Toluene                   | 1000        | 268    | 0.268    | 0.211875672 |
| Vinyl Chloride            | 0.02        | 19     | 0.019    | 1.11        |
| Xylene                    | 1000        | 443.1  | 0.4431   | 0.132933578 |
| benzoic acid              | 2242.926156 |        | 0.0006   | 0.000063    |
| Benzyl Alcohol            | 181.9923372 | 15.66  | 0.01566  | 1.37842E-05 |
| 2,4-Dimethylphenol        | 2.020624303 | 717.6  | 0.716    | 0.000039    |
| 2-Methylphenol (o-cresol) | 7.110609481 | 91     | 0.091    | 0.000049    |
| 4-Methylphenol (p-cresol) | 77.18894009 |        |          |             |
| Pentachlorophenol         | 0.219       | 3380   | 3.38     | 1.00211E-06 |
| Total Phenol              | 78.35820896 | 18.1   | 0.0181   | 0.000323131 |
| Styrene                   | 100         | 517.8  | 0.5178   | 0.112482258 |
| Tributyltin               |             |        |          |             |
| 2,4,6-Trichlorophenol     | 3           | 1186   | 1.186    | 0.000106347 |
| ·                         |             |        |          |             |
| Aluminum                  | 50          |        |          |             |
| Antimony                  | 3.865979381 | NA     | 45       | 0           |
| Arsenic (III)             |             |        |          |             |
| Arsenic (V)               |             |        |          |             |
| Arsenic                   | 0.05        | NA     | 29       | 0           |
| Barium                    | 2           | NA     | 41       | 0           |
| Beryllium                 | 4           | NA     | 790      | 0           |
| Cadmium                   | 0.21        | NA     | 6.7      | 0           |
| Chromium (VI)             | 0.58        | NA     | 19       | 0           |
| Chromium                  | 50          | NA     | 1000     | 0           |
| Cobalt                    |             |        |          |             |
| Copper                    | 7.3         | NA     | 22       | 0           |
| Iron                      | 300         |        |          |             |
| Lead                      | 2.5         | NA     | 10000    | 0           |
| Manganese                 | 50          |        |          |             |
| Mercury                   | 0.005161594 | NA     | 52       | 0           |
| Mercury (organic)         | 0.00045     |        |          |             |
| Molybdenum                | 40          |        |          |             |
| Nickel                    | 8.2         | NA     | 65       | 0           |
| Selenium                  | 5           | NA     | 5        | 0           |
| Silver                    | 1.532250723 | NA     | 8.3      | 0           |
| Tin                       |             |        | - 1-     |             |
| Thallium                  | 0.47        | NA     | 71       | 0           |
| Vanadium                  | 1.12        |        |          | -           |
| Zinc                      | 32.56745762 | NA     | 62       | 0           |
|                           |             | ,      | <u> </u> | -           |
| LPAH                      | 0.01        |        |          |             |
| LI / II I                 | 0.01        |        |          |             |

| НРАН                         | 0.01        | 157213 | 157.213 |             |
|------------------------------|-------------|--------|---------|-------------|
| Total Petroleum Hydrocarbons |             |        |         |             |
| Gasoline                     | 1000        |        |         |             |
| Gasoline (w/benzene)         | 800         |        |         |             |
| Diesel                       | 500         |        |         |             |
| Heavy Oil                    | 500         |        |         |             |
|                              |             |        |         |             |
| 2,3,7,8-TCDD                 | 2.06039E-10 | 146300 | 146.3   | 0.002045132 |
|                              |             |        |         |             |
| Aldrin                       | 0.002573529 | 48685  | 48.685  | 0.00697     |
| alpha-BHC                    | 0.013888889 | 1762   | 1.762   | 0.000435    |
| beta-BHC                     | 0.048611111 | 2139   | 2.139   | 0.0000305   |
| gamma-BHC                    | 0.0002      | 1352   | 1.352   | 0.000574    |
| Chlordane                    | 0.002       | 51310  | 51.31   | 0.00199     |
| 4,4'-DDT                     | 0.257352941 | 677934 | 677.934 | 0.000332    |
| 4,4'-DDE                     | 0.257352941 | 86405  | 86.405  | 0.000861    |
| 4,4'-DDD                     | 0.364583333 | 45800  | 45.8    | 0.000164    |
| Dieldrin                     | 0.00546875  | 25546  | 25.546  | 0.000619    |
| alpha-Endosulfan             | 96          | 2040   | 2.04    | 0.000459    |
| beta-Endosulfan              | 96          | 2040   | 2.04    | 0.000459    |
| Endosulfan Sulfate           | 96          | 2040   | 2.04    | 0.000459    |
| Endrin                       | 0.002       | 10811  | 10.811  | 0.000308    |
| Endrin Aldehyde              | 0.002       | 10811  | 10.811  | 0.000308    |
| Heptachlor                   | 0.0004      | 9528   | 9.528   | 0.0447      |
| Heptachlor Epoxide           | 0.0002      | 83200  | 83.2    | 0.00039     |
| Toxaphene                    |             |        |         |             |
|                              |             |        |         |             |

| Most Stringent VADOSE<br>Soil to Water Protection<br>(mg/kg) | Most Stringent SATURATED Soil to Water Protection (mg/kg) |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------|--|--|
| 24.25460788                                                  | 1.731886                                                  |  |  |
| 0.330633526                                                  | 0.016757298                                               |  |  |
| 1.363879887                                                  | 0.069123856                                               |  |  |
| 4.443179766                                                  | 0.223091503                                               |  |  |
| 0.006124269                                                  | 0.000359473                                               |  |  |
| 0.620046338                                                  | 0.031003321                                               |  |  |
| 0.000957358                                                  | 4.78776E-05                                               |  |  |
| 0.000103708                                                  | 5.18596E-06                                               |  |  |
| 0.00084654                                                   | 4.23316E-05                                               |  |  |
| 0.000868618                                                  | 4.34357E-05                                               |  |  |
| 0.943418187                                                  | 0.047195596                                               |  |  |
| 0.100083594                                                  | 0.005049548                                               |  |  |
| 0.001790807                                                  | 8.30969E-05                                               |  |  |
| 0.95804925                                                   | 0.055466667                                               |  |  |
| 110.4971024                                                  | 6.51854                                                   |  |  |
| 0.02133228                                                   | 0.001383339                                               |  |  |
| 0.933150715                                                  | 0.057183667                                               |  |  |
| 0.005296124                                                  | 0.000264903                                               |  |  |
| 0.001423913                                                  | 7.1198E-05                                                |  |  |
| 0.305064294                                                  | 0.015367257                                               |  |  |
| 1.54639773                                                   | 0.081356353                                               |  |  |
| 0.067484617                                                  | 0.003788856                                               |  |  |
|                                                              |                                                           |  |  |
| 0.0514064                                                    | 0.002882667                                               |  |  |
| 0.005099246                                                  | 0.000321707                                               |  |  |
| 0.002380541                                                  | 0.000158619                                               |  |  |
| 0.004775851                                                  | 0.000234524                                               |  |  |
| 3.158465423                                                  | 0.199879894                                               |  |  |
| 3.130403423                                                  | 0.199019094                                               |  |  |
| 0.01045914                                                   | 0.000548534                                               |  |  |
| 10.44027286                                                  | 0.563126667                                               |  |  |
| 3.206771516                                                  | 0.160534086                                               |  |  |
| 0.467748395                                                  | 0.023563127                                               |  |  |
| 0.003586067                                                  | 0.000183333                                               |  |  |
| 0.087205361                                                  | 0.00115215                                                |  |  |
| 0.00121704                                                   | 6.0854E-05                                                |  |  |
| 0.00121101                                                   | 3,000 12 00                                               |  |  |
| 0.024210256                                                  | 0.001552033                                               |  |  |
| 1.15557682                                                   | 0.059321212                                               |  |  |
|                                                              | 3.30002.212                                               |  |  |
| 2.193667561                                                  | 0.1142625                                                 |  |  |
| 0.202512367                                                  | 0.010263722                                               |  |  |
| 2.07922E-05                                                  | 1.04158E-06                                               |  |  |
| 3.50123E-05                                                  | 1.75613E-06                                               |  |  |
| 4.86428E-06                                                  | 2.45155E-07                                               |  |  |
|                                                              |                                                           |  |  |
| 2.9967E-07                                                   | 1.69692E-08                                               |  |  |

 $C_s = C_w(UCF)DF$ 

#### MTCA EQ. 747-2

| Parameter                                          |
|----------------------------------------------------|
| Soil concentration                                 |
| Groundwater/Surfacewater screening level           |
| UCF                                                |
| Dilution faction                                   |
| Distribution coefficient                           |
| Soil organic carbon-water partitioning coefficient |
| Soil fraction of organic carbon - for silty sands  |
| Water-filled soil porosity                         |
| Air-filled soil porosity                           |
| Henry's law constant                               |
| Dry soil bulk density                              |
|                                                    |

\* The dilutio

\*\* Note that the EPA Koc v

\*\*\* The Default Porosity fo

| 2.03674E-05                                                                                                                                                  | 1.02034E-06                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.32954E-06                                                                                                                                                  | 4.16947E-07                                                                                                                                                                                                  |
| 9.56918E-05                                                                                                                                                  | 4.78657E-06                                                                                                                                                                                                  |
| 2.022129803                                                                                                                                                  | 0.101522436                                                                                                                                                                                                  |
| 13.64356827                                                                                                                                                  | 0.683027333                                                                                                                                                                                                  |
| 0.000217687                                                                                                                                                  | 1.13219E-05                                                                                                                                                                                                  |
| 0.006105926                                                                                                                                                  | 0.000399773                                                                                                                                                                                                  |
| 1.238448805                                                                                                                                                  | 0.067061333                                                                                                                                                                                                  |
| 0.004156738                                                                                                                                                  | 0.000272154                                                                                                                                                                                                  |
| 0.004892485                                                                                                                                                  | 0.000281693                                                                                                                                                                                                  |
| 0.84067986                                                                                                                                                   | 0.044535                                                                                                                                                                                                     |
| 9.727251165                                                                                                                                                  | 0.554666667                                                                                                                                                                                                  |
| 0.00012608                                                                                                                                                   | 6.11333E-06                                                                                                                                                                                                  |
| 13.0924182                                                                                                                                                   | 0.729766667                                                                                                                                                                                                  |
| 8.998864665                                                                                                                                                  | 0.64431792                                                                                                                                                                                                   |
| 0.784973697                                                                                                                                                  | 0.055021137                                                                                                                                                                                                  |
| 0.037017974                                                                                                                                                  | 0.002026013                                                                                                                                                                                                  |
| 0.041384351                                                                                                                                                  | 0.00268544                                                                                                                                                                                                   |
|                                                                                                                                                              |                                                                                                                                                                                                              |
| 0.0156804                                                                                                                                                    | 0.000803                                                                                                                                                                                                     |
| 0.341842395                                                                                                                                                  | 0.02388097                                                                                                                                                                                                   |
| 1.455096925                                                                                                                                                  | 0.080446667                                                                                                                                                                                                  |
|                                                                                                                                                              |                                                                                                                                                                                                              |
| 0.083160553                                                                                                                                                  | 0.004418                                                                                                                                                                                                     |
|                                                                                                                                                              |                                                                                                                                                                                                              |
|                                                                                                                                                              |                                                                                                                                                                                                              |
|                                                                                                                                                              |                                                                                                                                                                                                              |
| 3.494845361                                                                                                                                                  | 0.17507732                                                                                                                                                                                                   |
| 3.494845361                                                                                                                                                  | 0.17507732<br>0                                                                                                                                                                                              |
| 3.494845361                                                                                                                                                  |                                                                                                                                                                                                              |
| 3.494845361<br>0.0292                                                                                                                                        | 0                                                                                                                                                                                                            |
|                                                                                                                                                              | 0                                                                                                                                                                                                            |
| 0.0292                                                                                                                                                       | 0<br>0<br>0.001464333                                                                                                                                                                                        |
| 0.0292<br>1.648                                                                                                                                              | 0<br>0<br>0.001464333<br>0.082573333                                                                                                                                                                         |
| 0.0292<br>1.648<br>63.216                                                                                                                                    | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667                                                                                                                                                          |
| 0.0292<br>1.648<br>63.216<br>0.02898                                                                                                                         | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672                                                                                                                                             |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272                                                                                                              | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267                                                                                                                              |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272                                                                                                              | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333                                                                                                               |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2                                                                                                    | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333                                                                                                               |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2                                                                                                    | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333                                                                                                               |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2                                                                                                    | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0                                                                                                          |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2                                                                                                    | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0                                                                                                          |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412                                                                                          | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667                                                                                           |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412                                                                                          | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667                                                                                           |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01                                                                                | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667                                                                            |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704                                                                 | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883                                                             |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928                                              | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883                                                             |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928<br>0.52                                      | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883<br>0.011466667<br>0.535350667<br>0.026433333                |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928<br>0.52                                      | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883<br>0.011466667<br>0.535350667<br>0.026433333                |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928<br>0.52<br>0.260482623                       | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883<br>0.011466667<br>0.535350667<br>0.026433333<br>0.013156926 |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928<br>0.52<br>0.260482623<br>0.66928<br>0.00448 | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883<br>0.011466667<br>0.535350667<br>0.026433333<br>0.013156926 |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928<br>0.52<br>0.260482623                       | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883<br>0.011466667<br>0.535350667<br>0.026433333<br>0.013156926 |
| 0.0292<br>1.648<br>63.216<br>0.02898<br>0.22272<br>1000.2<br>3.2412<br>500.01<br>0.005388704<br>0.16<br>10.6928<br>0.52<br>0.260482623<br>0.66928<br>0.00448 | 0<br>0<br>0.001464333<br>0.082573333<br>3.161146667<br>0.0014672<br>0.011186267<br>50.01433333<br>0<br>0.162692667<br>25.00071667<br>0.000269883<br>0.011466667<br>0.535350667<br>0.026433333<br>0.013156926 |



| 6.03696E-10 | 3.02026E-11 |
|-------------|-------------|
|             |             |
| 0.00251617  | 0.00012603  |
| 0.00054501  | 2.84537E-05 |
| 0.00227403  | 0.000117914 |
| 6.2082E-06  | 3.27733E-07 |
| 0.002060407 | 0.000103193 |
| 3.490395734 | 0.174542083 |
| 0.445761413 | 0.022310355 |
| 0.33541677  | 0.016802431 |
| 0.002815975 | 0.000141272 |
| 4.300876378 | 0.22336     |
| 4.300876378 | 0.22336     |
| 4.300876378 | 0.22336     |
| 0.000440441 | 2.21953E-05 |
| 0.000440441 | 2.21953E-05 |
| 7.7855E-05  | 3.92587E-06 |
| 0.0003336   | 1.66973E-05 |
|             |             |
|             |             |

$$C_{s} = C_{w}(UCF)DF \left[ K_{d} + \frac{(\theta_{w} + \theta_{a}H_{cc})}{\rho_{b}} \right]$$

| Symbol                | Value             | Units            | Source                 |
|-----------------------|-------------------|------------------|------------------------|
| Cs                    | Calculated Value  | mg/kg            | Calculated Value       |
| Cw                    | Chemical Specific | ug/l             | Pathway Specific       |
| Unit coversion factor | 0.001             | mg/ug            | MTCA                   |
| DF                    | 20*               | dimensionless    | Vadose Soil            |
| Kd                    | Chemical Specific | L/kg             | Chemical Specific      |
| Koc**                 | Chemical Specific | ml/g             | Chemical Specific      |
| foc                   | 0.001             | g/g              | Site Specific -Default |
| $\theta w$            | 0.3***            | ml water/ml soil | Site Specific -Default |
| θа                    | 0.13***           | ml air/ml soil   | Site Specific -Default |
| Hcc                   | Chemical Specific | dimensionless    | Chemical Specific      |
| ρb                    | 1.5               | kg/L             | Site Specific -Default |

n factor is 20 for Vadose soil, or 1 for Saturated Soil ralues, not MTCA Tables, maybe default values used to determine Kd or Water/Air Fill is 0.3/0.13 for Vadose Soil & 0.43/0 Saturated Soils



| Chemical                             | GW Screening<br>Level | Кос     | Kd       | Henry's Law   |
|--------------------------------------|-----------------------|---------|----------|---------------|
|                                      | ug/l                  | L/kg    | ml/g     | Dimensionless |
| Acetone                              | 110107                | 1.981   | 0.001981 | 0.001623835   |
| Acenaphthene                         | 2.614379085           | 6123    | 6.123    | 0.004225243   |
| Acenaphthylene                       | 10.78431373           | 6123    | 6.123    | 0.00511283    |
| Anthracene                           | 10.78431373           | 20400   | 20.4     | 0.002274187   |
| Benzene                              | 2.02819               | 165.5   | 0.1655   | 0.227009649   |
| Benzo(g,h,i)perylene                 | 0.011584454           | 2676000 | 2676     | 1.35388E-05   |
| Benzo(a)anthracene                   | 0.000112155           | 426600  | 426.6    | 1.73836E-05   |
| Benzo(a)pyrene                       | 6.5888E-06            | 786800  | 786.8    | 1.86925E-05   |
| Benzo(b)fluoranthene                 | 5.26914E-05           | 803100  | 803.1    | 2.6873E-05    |
| Benzo(k)fluoranthene                 | 5.51854E-05           | 786800  | 786.8    | 2.38871E-05   |
| bis(2-Ethylhexyl)phthalate           | 0.284848485           | 165400  | 165.4    | 1.10437E-05   |
| Butyl benzyl phthalate               | 0.523504274           | 9359    | 9.359    | 5.15373E-05   |
| Carbon Tetrachloride                 | 0.247823653           | 48.64   | 0.04864  | 1.3           |
| Chlorobenzene                        | 270                   | 268     | 0.268    | 0.127207209   |
| Chloroethane                         |                       | 23.74   | 0.02374  | 0.454019298   |
| Chloroform                           | 4.3                   | 35.04   | 0.03504  | 0.150112687   |
| Chloromethane                        |                       | 14.3    | 0.0143   | 0.36076128    |
| Chrysene                             | 0.001120636           | 236100  | 236.1    | 0.000213921   |
| Dibenz[a,h]anthracene                | 2.71511E-05           | 2622000 | 2622     | 5.03102E-06   |
| Dibenzofuran                         | 1.327433628           | 11290   | 11.29    | 0.008712262   |
| Di-n-butylphthalate                  | 46.57806484           | 1460    | 1.46     | 7.40338E-05   |
| 1,2-Dichlorobenzene                  | 5.191873589           | 443.1   | 0.4431   | 0.078533068   |
| 1,3-Dichlorobenzene                  |                       |         |          |               |
| 1,4-Dichlorobenzene                  | 7.142857143           | 434     | 0.434    | 0.099         |
| 1,1-Dichloroethane                   | 33.26143751           | 35.04   | 0.03504  | 0.229872834   |
| 1,2-Dichloroethane                   | 3.6                   | 43.79   | 0.04379  | 0.048265115   |
| 1,1-Dichloroethene                   | 2300                  | 35.04   | 0.03504  | 1.06755889    |
| diethyl phthalate                    | 484.1269841           | 126.2.  | 0.1262   | 0.000025      |
| dimethyl phthalate                   | 142.8571429           |         |          |               |
| di-n-octyl phthalate                 | 0.295918367           |         | 1.567    | 0.0027        |
| Ethylbenzene                         | 800                   | 517.8   | 0.5178   | 0.322312799   |
| Fluoranthene                         | 2.256699577           | 70850   | 70.85    | 0.000362397   |
| Fluorene                             | 2.03539823            | 11290   | 11.29    | 0.003934834   |
| hexachlorobenzene                    | 0.112426036           | 3380    | 3.38     | 0.07          |
| Hexachlorobutadiene                  | 3.923541247           | 993.5   | 0.9935   | 42.12971863   |
| Indeno(1,2,3-cd)pyrene               | 2.27382E-05           | 2676000 | 2676     | 1.42341E-05   |
| MEK (Methyl Ethyl Ketone;2-Butanone) | 73000                 |         |          |               |
| Methylene Chloride                   | 61                    | 23.74   | 0.02374  | 0.211875672   |
| 2-Methylnaphthalene                  | 18.18181818           | 2976    | 2.976    | 0.021187567   |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)  |                       |         |          |               |
| Naphthalene                          | 53.80434783           | 1837    | 1.837    | 0.017997161   |
| nitrosodiphenylamine, N-             | 1.593580667           | 6154    | 6.154    | 0.000049      |
| Polychlorinated biphenyls (PCBs)     | 2.30915E-05           | 44820   | 44.82    | 0.014         |
| Aroclor 1016                         | 0.0000641             | 27110   | 27.11    | 0.008180528   |
| Aroclor 1221                         | 2.30915E-05           | 10330   | 10.33    | 0.030104343   |
| Aroclor 1232                         |                       | 10330   | 10.33    | 0.030104343   |
| Aroclor 1242                         | 2.30915E-05           | 448.2   | 0.4482   | 0.007771501   |

| A == ala = 4040           | 2.30915E-05        | 42000  | 42.0    | 0.017997161          |
|---------------------------|--------------------|--------|---------|----------------------|
| Aroclor 1248              | 5.49145E-06        | 43900  | 43.9    | 0.017997161          |
| Aroclor 1254              |                    | 75640  | 75.64   | 0.011575447          |
| Aroclor 1260              | 2.30915E-05        | 207000 | 207     | 0.001730182          |
| Phenanthrene              | 4.807692308<br>9.8 | 20830  | 20.83   |                      |
| Pyrene                    |                    | 69410  | 69.41   | 0.000486741<br>0.754 |
| Tetrachloroethene         | 0.020523086        | 265    | 0.265   |                      |
| 1,2,4-Trichlorobenzene    | 1.128133705        | 67.7   | 0.0677  | 0.0337               |
| 1,1,1-Trichloroethane     | 46000              | 48.64  | 0.04864 | 0.703525398          |
| 1,1,2-Trichloroethane     | 2.326407578        | 67.7   | 0.0677  | 0.033703775          |
| Trichloroethene           | 0.74               | 94     | 0.094   | 0.422                |
| 1,3,5-Trimethylbenzene    | 45                 | 703    | 0.703   | 0.358716148          |
| Toluene                   | 1300               | 268    | 0.268   | 0.211875672          |
| Vinyl Chloride            | 2.4                | 19     | 0.019   | 1.11                 |
| Xylene                    | 1300               | 443.1  | 0.4431  | 0.132933578          |
| benzoic acid              | 2242.926156        |        | 0.0006  | 0.000063             |
| Benzyl Alcohol            | 181.9923372        | 15.66  | 0.01566 | 1.37842E-05          |
| 2,4-Dimethylphenol        | 2.020624303        | 717.6  | 0.716   | 0.000039             |
| 2-Methylphenol (o-cresol) | 7.110609481        | 91     | 0.091   | 0.000049             |
| 4-Methylphenol (p-cresol) | 77.18894009        |        |         |                      |
| Pentachlorophenol         | 5.325443787        | 3380   | 3.38    | 1.00211E-06          |
| Total Phenol              | 78.35820896        | 18.1   | 0.0181  | 0.000323131          |
| Styrene                   |                    | 517.8  | 0.5178  | 0.112482258          |
| Tributyltin               |                    |        |         |                      |
| 2,4,6-Trichlorophenol     | 8                  | 1186   | 1.186   | 0.000106347          |
|                           |                    |        |         |                      |
| Aluminum                  |                    |        |         |                      |
| Antimony                  | 3.865979381        | NA     | 45      | 0                    |
| Arsenic (III)             |                    |        |         |                      |
| Arsenic (V)               |                    |        |         |                      |
| Arsenic                   | 7.3                | NA     | 29      | 0                    |
| Barium                    | 120                | NA     | 41      | 0                    |
| Beryllium                 | 120                | NA     | 790     | 0                    |
| Cadmium                   | 0.21               | NA     | 6.7     | 0                    |
| Chromium (VI)             | 0.58               | NA     | 19      | 0                    |
| Chromium                  | 305.8823529        | NA     | 1000    | 0                    |
| Cobalt                    |                    |        |         |                      |
| Copper                    | 7.3                | NA     | 22      | 0                    |
| Iron                      |                    |        |         |                      |
| Lead                      | 2.5                | NA     | 10000   | 0                    |
| Manganese                 | 2000               |        |         |                      |
| Mercury                   | 0.005161594        | NA     | 52      | 0                    |
| Mercury (organic)         | 0.00045            |        |         |                      |
| Molybdenum                |                    |        |         |                      |
| Nickel                    | 8.2                | NA     | 65      | 0                    |
| Selenium                  | 5                  | NA     | 5       | 0                    |
| Silver                    | 1.532250723        | NA     | 8.3     | 0                    |
| Tin                       |                    |        |         |                      |
| Thallium                  | 0.47               | NA     | 71      | 0                    |
| Vanadium                  |                    |        | .,      | -                    |
| Zinc                      | 32.56745762        | NA     | 62      | 0                    |
|                           | 52.001 101 02      | 14/1   | - JE    |                      |
| LPAH                      |                    |        |         |                      |
| LI AII                    |                    |        |         |                      |

| НРАН                         |             | 157213 | 157.213 |             |
|------------------------------|-------------|--------|---------|-------------|
| Total Petroleum Hydrocarbons |             |        |         |             |
| Gasoline                     | 1000        |        |         |             |
| Gasoline (w/benzene)         | 800         |        |         |             |
| Diesel                       | 500         |        |         |             |
| Heavy Oil                    | 500         |        |         |             |
|                              |             |        |         |             |
| 2,3,7,8-TCDD                 | 2.06039E-10 | 146300 | 146.3   | 0.002045132 |
|                              |             |        |         |             |
| Aldrin                       | 1.16061E-05 | 48685  | 48.685  | 0.00697     |
| alpha-BHC                    | 0.001125041 | 1762   | 1.762   | 0.000435    |
| beta-BHC                     | 0.003937642 | 2139   | 2.139   | 0.0000305   |
| gamma-BHC                    | 0.019       | 1352   | 1.352   | 0.000574    |
| Chlordane                    | 0.000186709 | 51310  | 51.31   | 0.00199     |
| 4,4'-DDT                     | 5.05602E-05 | 677934 | 677.934 | 0.000332    |
| 4,4'-DDE                     | 5.05602E-05 | 86405  | 86.405  | 0.000861    |
| 4,4'-DDD                     | 7.16269E-05 | 45800  | 45.8    | 0.000164    |
| Dieldrin                     | 1.23315E-05 | 25546  | 25.546  | 0.000619    |
| alpha-Endosulfan             | 0.056       | 2040   | 2.04    | 0.000459    |
| beta-Endosulfan              | 0.056       | 2040   | 2.04    | 0.000459    |
| Endosulfan Sulfate           | 0.056       | 2040   | 2.04    | 0.000459    |
| Endrin                       | 0.002       | 10811  | 10.811  | 0.000308    |
| Endrin Aldehyde              | 0.002       | 10811  | 10.811  | 0.000308    |
| Heptachlor                   | 1.82819E-05 | 9528   | 9.528   | 0.0447      |
| Heptachlor Epoxide           | 9.04051E-06 | 83200  | 83.2    | 0.00039     |
| Toxaphene                    | 6.39423E-05 |        |         |             |
|                              |             |        |         |             |

| Most Stringent VADOSE    | Most Stringent                     |
|--------------------------|------------------------------------|
| Soil to Water Protection | SATURATED Soil to Water Protection |
| (mg/kg)                  | (mg/kg)                            |
| 445.1003517              | 31.78212863                        |
| 0.330633526              | 0.016757298                        |
| 1.363879887              | 0.069123856                        |
| 4.443179766              | 0.223091503                        |
| 0.015624128              | 0.00091708                         |
| 0.620046338              | 0.031003321                        |
| 0.000957358              | 4.78776E-05                        |
| 0.000397338              | 5.18596E-06                        |
| 0.000103708              | 4.23316E-05                        |
| 0.00084634               | 4.23310E-05<br>4.34357E-05         |
|                          |                                    |
| 0.943418187              | 0.047195596                        |
| 0.100083594              | 0.005049548                        |
| 0.001790807              | 8.30969E-05                        |
| 2.586732974              | 0.14976                            |
|                          |                                    |
| 0.02133228               | 0.001383339                        |
| 0.005296124              | 0.000264903                        |
| 0.001423913              | 7.1198E-05                         |
| 0.305064294              | 0.015367257                        |
| 1.54639773               | 0.081356353                        |
| 0.067484617              |                                    |
| 0.007464617              | 0.003788856                        |
| 0.091797143              | 0.005147619                        |
| 0.16960826               | 0.010700426                        |
|                          |                                    |
| 0.017854054              | 0.001189644                        |
| 15.06784144              | 0.739925333                        |
| 3.158465423              | 0.199879894                        |
|                          |                                    |
| 0.01045914               | 0.000548534                        |
| 11.93174041              | 0.643573333                        |
| 3.206771516              | 0.160534086                        |
| 0.467748395              | 0.023563127                        |
| 0.008063345              | 0.000412229                        |
| 0.380170923              | 0.005022787                        |
| 0.00121704               | 6.0854E-05                         |
| 0.005005101              | 0.01000100=                        |
| 0.295365121              | 0.018934807                        |
| 1.15557682               | 0.059321212                        |
| 2.193667561              | 0.1142625                          |
| 0.202512367              | 0.1142623                          |
| 2.07922E-05              | 1.04158E-06                        |
| 3.50123E-05              | 1.75613E-06                        |
| 4.86428E-06              | 2.45155E-07                        |
| 4.00420L-00              | 2.40100E-01                        |
| 2.9967E-07               | 1.69692E-08                        |
| 2.990/E-0/               | 1.09092E-00                        |

$$C_s = C_w(UCF)DF$$

#### MTCA EQ. 747-2

| Parameter                                          |
|----------------------------------------------------|
| Soil concentration                                 |
| Groundwater/Surfacewater screening level           |
| UCF                                                |
| Dilution faction                                   |
| Distribution coefficient                           |
| Soil organic carbon-water partitioning coefficient |
| Soil fraction of organic carbon - for silty sands  |
| Water-filled soil porosity                         |
| Air-filled soil porosity                           |
| Henry's law constant                               |
| Dry soil bulk density                              |

\* The dilutio

\*\* Note that the EPA Koc v

\*\*\* The Default Porosity fo

| 2.03674E-05  | 1.02034E-06 |
|--------------|-------------|
| 8.32954E-06  | 4.16947E-07 |
| 9.56918E-05  | 4.78657E-06 |
| 2.022129803  | 0.101522436 |
| 13.64356827  | 0.683027333 |
| 0.000217687  | 1.13219E-05 |
| 0.006105926  | 0.000399773 |
| 284.8432251  | 15.42410667 |
| 0.012591495  | 0.000824401 |
| 0.004892485  | 0.000281693 |
| 0.84067986   | 0.044535    |
| 12.64542651  | 0.721066667 |
| 0.0151296    | 0.0007336   |
| 17.02014366  | 0.948696667 |
| 8.998864665  | 0.64431792  |
| 0.784973697  | 0.055021137 |
| 0.037017974  | 0.002026013 |
| 0.041384351  | 0.00268544  |
| 0.30875576   | 0.022127496 |
| 0.381301784  | 0.019526627 |
| 0.341842395  | 0.02388097  |
|              | 0.020000    |
|              |             |
|              |             |
|              |             |
|              |             |
| 3.494845361  | 0.17507732  |
| 0.101010001  | 0111001102  |
|              |             |
| 4.2632       | 0.213792667 |
| 98.88        | 4.9544      |
| 1896.48      | 94.8344     |
| 0.02898      | 0.0014672   |
| 0.22272      | 0.011186267 |
| 6118.870588  | 305.9700392 |
|              |             |
| 3.2412       | 0.162692667 |
|              |             |
| 500.01       | 25.00071667 |
| 333.01       | 20.00011001 |
| 0.005388704  | 0.000269883 |
|              |             |
|              |             |
| 10.6928      | 0.535350667 |
| 0.52         | 0.026433333 |
| 0.260482623  | 0.013156926 |
| 5.200 102020 | 5.510100020 |
| 0.66928      | 0.033504733 |
| 0.00320      | 0.000004700 |
| 40.51391728  | 2.028518377 |
| 70.01001720  | 2.020310377 |
|              |             |
|              |             |



|             | 0           |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| 6.03696E-10 | 3.02026E-11 |
|             |             |
| 1.13474E-05 | 5.6837E-07  |
| 4.41474E-05 | 2.30483E-06 |
| 0.000184203 | 9.55141E-06 |
| 0.000589779 | 3.11347E-05 |
| 0.000192348 | 9.63356E-06 |
| 0.000685731 | 3.42909E-05 |
| 8.75753E-05 | 4.38314E-06 |
| 6.58968E-05 | 3.30104E-06 |
| 6.34974E-06 | 3.18555E-07 |
| 0.002508845 | 0.000130293 |
| 0.002508845 | 0.000130293 |
| 0.002508845 | 0.000130293 |
| 0.000440441 | 2.21953E-05 |
| 0.000440441 | 2.21953E-05 |
| 3.55835E-06 | 1.79431E-07 |
| 1.50796E-05 | 7.54762E-07 |
|             |             |
|             |             |
|             |             |

$$C_{s} = C_{w}(UCF)DF \left[ K_{d} + \frac{(\theta_{w} + \theta_{a}H_{cc})}{\rho_{b}} \right]$$

| Symbol                | Value             | Units            | Source                 |
|-----------------------|-------------------|------------------|------------------------|
| Cs                    | Calculated Value  | mg/kg            | Calculated Value       |
| Cw                    | Chemical Specific | ug/l             | Pathway Specific       |
| Unit coversion factor | 0.001             | mg/ug            | MTCA                   |
| DF                    | 20*               | dimensionless    | Vadose Soil            |
| Kd                    | Chemical Specific | L/kg             | Chemical Specific      |
| Koc**                 | Chemical Specific | ml/g             | Chemical Specific      |
| foc                   | 0.001             | g/g              | Site Specific -Default |
| $\theta w$            | 0.3***            | ml water/ml soil | Site Specific -Default |
| θа                    | 0.13***           | ml air/ml soil   | Site Specific -Default |
| Hcc                   | Chemical Specific | dimensionless    | Chemical Specific      |
| ρb                    | 1.5               | kg/L             | Site Specific -Default |

n factor is 20 for Vadose soil, or 1 for Saturated Soil ralues, not MTCA Tables, maybe default values used to determine Kd or Water/Air Fill is 0.3/0.13 for Vadose Soil & 0.43/0 Saturated Soils



| Chemical                               | SW Screening<br>Level      | Кос            | Kd               | Henry's Law                |
|----------------------------------------|----------------------------|----------------|------------------|----------------------------|
|                                        | ug/l                       | L/kg           | ml/g             | Dimensionless              |
| Acetone                                | 6000                       | 1.981          | 0.001981         | 0.001623835                |
| Acenaphthene                           | 2.614379085                | 6123           | 6.123            | 0.004225243                |
| Acenaphthylene                         | 10.78431373                | 6123           | 6.123            | 0.00511283                 |
| Anthracene                             | 10.78431373                | 20400          | 20.4             | 0.002274187                |
| Benzene                                | 0.795                      | 165.5          | 0.1655           | 0.227009649                |
| Benzo(g,h,i)perylene                   | 0.011584454                | 2676000        | 2676             | 1.35388E-05                |
| Benzo(a)anthracene                     | 0.000258331                | 426600         | 426.6            | 1.73836E-05                |
| Benzo(a)pyrene                         | 1.51762E-05                | 786800         | 786.8            | 1.86925E-05                |
| Benzo(b)fluoranthene                   | 0.000121366                | 803100         | 803.1            | 2.6873E-05                 |
| Benzo(k)fluoranthene                   | 0.00012711                 | 786800         | 786.8            | 2.38871E-05                |
| bis(2-Ethylhexyl)phthalate             | 0.284848485                | 165400         | 165.4            | 1.10437E-05                |
| Butyl benzyl phthalate                 | 0.409933862                | 9359           | 9.359            | 5.15373E-05                |
| Carbon Tetrachloride                   | 0.23                       | 48.64          | 0.04864          | 1.3                        |
| Chlorobenzene                          | 20                         | 268            | 0.268            | 0.127207209                |
| Chloroethane                           | 0.41                       | 23.74          | 0.02374          | 0.454019298                |
| Chloroform                             | 4.2952095                  | 35.04          | 0.03504          | 0.150112687                |
| Chloromethane                          | 18.90068394                | 14.3           | 0.0143           | 0.36076128                 |
| Chrysene                               | 0.002581193                | 236100         | 236.1            | 0.000213921                |
| Dibenz[a,h]anthracene                  | 6.25379E-05                | 2622000        | 2622             | 5.03102E-06                |
| Dibenzofuran                           | 1.327433628                | 11290          | 11.29            | 0.008712262                |
| Di-n-butylphthalate                    | 46.57806484                | 1460           | 1.46             | 7.40338E-05                |
| 1.2-Dichlorobenzene                    | 5.191873589                | 443.1          | 0.4431           | 0.078533068                |
| 1,3-Dichlorobenzene                    | 320                        | 445.1          | 0.4431           | 0.070333000                |
| 1,4-Dichlorobenzene                    | 4                          | 434            | 0.434            | 0.099                      |
| 1,1-Dichloroethane                     | 1                          | 35.04          | 0.03504          | 0.229872834                |
| 1.2-Dichloroethane                     | 0.38                       | 43.79          | 0.04379          | 0.048265115                |
| ,                                      |                            |                |                  |                            |
| 1,1-Dichloroethene                     | 0.057<br>484.1269841       | 35.04          | 0.03504          | 1.06755889                 |
| diethyl phthalate                      |                            | 126.2.         | 0.1262           | 0.000025                   |
| dimethyl phthalate                     | 142.8571429                |                | 1 567            | 0.0027                     |
| di-n-octyl phthalate                   | 0.295918367<br>2.233717193 | F47.0          | 1.567            | 0.0027                     |
| Ethylbenzene                           |                            | 517.8          | 0.5178           | 0.322312799                |
| Fluoranthene                           | 2.256699577<br>2.03539823  | 70850<br>11290 | 70.85<br>11.29   | 0.000362397<br>0.003934834 |
| Fluorene<br>hexachlorobenzene          | 6.61931E-05                | 3380           | 3.38             | 0.003934834                |
| Hexachlorobutadiene                    | 0.619312-03                | 993.5          | 0.9935           | 42.12971863                |
| Indeno(1,2,3-cd)pyrene                 | 5.23736E-05                | 2676000        | 2676             | 1.42341E-05                |
| ( ) ) // /                             | 4800                       | 2070000        | 2070             | 1.42341E-03                |
| MEK (Methyl Ethyl Ketone;2-Butanone)   | 4.6                        | 22.74          | 0.02274          | 0.211875672                |
| Methylene Chloride 2-Methylnaphthalene | 18.18181818                | 23.74<br>2976  | 0.02374<br>2.976 | 0.021187567                |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)    | 10.10101010                | 2910           | 2.310            | 0.021101301                |
| Naphthalene                            | 53.80434783                | 1837           | 1.837            | 0.017997161                |
| nitrosodiphenylamine, N-               | 1.382665579                | 6154           | 6.154            | 0.000049                   |
| Polychlorinated biphenyls (PCBs)       | 1.47662E-05                | 44820          | 44.82            | 0.00049                    |
| Aroclor 1016                           | 0.00042189                 | 27110          | 27.11            | 0.008180528                |
| Aroclor 1221                           | 2.30352E-05                | 10330          | 10.33            | 0.030104343                |
| Aroclor 1232                           | 0.014                      | 10330          | 10.33            | 0.030104343                |
| Aroclor 1242                           | 2.30352E-05                | 448.2          | 0.4482           | 0.007771501                |

| Aroclor 1248              | 2.30352E-05 | 43900    | 43.9    | 0.017997161  |
|---------------------------|-------------|----------|---------|--------------|
| Aroclor 1254              | 5.48457E-06 | 75640    | 75.64   | 0.011575447  |
| Aroclor 1260              | 2.30352E-05 | 207000   | 207     | 0.013743287  |
| Phenanthrene              | 4.807692308 | 20830    | 20.83   | 0.001730182  |
| Pyrene                    | 9.828761139 | 69410    | 69.41   | 0.000486741  |
| Tetrachloroethene         | 0.02060763  | 265      | 0.265   | 0.754        |
| 1.2.4-Trichlorobenzene    | 0.141842417 | 67.7     | 0.0677  | 0.0337       |
| 1,1,1-Trichloroethane     | 200         | 48.64    | 0.04864 | 0.703525398  |
| 1,1,2-Trichloroethane     | 0.59        | 67.7     | 0.0677  | 0.033703775  |
| Trichloroethene           | 0.739493051 | 94       | 0.094   | 0.422        |
| 1,3,5-Trimethylbenzene    | 45.21613312 | 703      | 0.703   | 0.358716148  |
| Toluene                   | 1000        | 268      | 0.268   | 0.211875672  |
| Vinyl Chloride            | 0.02        | 19       | 0.019   | 1.11         |
| Xylene                    | 1000        | 443.1    | 0.4431  | 0.132933578  |
| benzoic acid              | 2242.926156 | 440.1    | 0.0006  | 0.000063     |
| Benzyl Alcohol            | 181.9923372 | 15.66    | 0.01566 | 1.37842E-05  |
| 2,4-Dimethylphenol        | 2.020624303 | 717.6    | 0.716   | 0.000039     |
| 2-Methylphenol (o-cresol) | 7.110609481 | 91       | 0.091   | 0.000039     |
| 4-Methylphenol (p-cresol) | 77.18894009 | <u> </u> | 0.501   | 0.000070     |
| Pentachlorophenol         | 0.209410987 | 3380     | 3.38    | 1.00211E-06  |
| Total Phenol              | 78.35820896 | 18.1     | 0.0181  | 0.000323131  |
| Styrene                   | 100         | 517.8    | 0.5178  | 0.112482258  |
| Tributyltin               | 0.072       | 317.0    | 0.5170  | 0.112 102200 |
| 2,4,6-Trichlorophenol     | 0.558429298 | 1186     | 1.186   | 0.000106347  |
| 2,4,0 Themorophenol       | 0.000420200 | 1100     | 1.100   | 0.000100011  |
| Aluminum                  | 50          |          |         |              |
| Antimony                  | 3.865979381 | NA       | 45      |              |
| Arsenic (III)             | 0.0000.000. |          |         |              |
| Arsenic (V)               |             |          |         |              |
| Arsenic                   | 0.005388353 | NA       | 29      |              |
| Barium                    | 2           | NA       | 41      |              |
| Beryllium                 | 4           | NA       | 790     |              |
| Cadmium                   | 0.25        | NA       | 6.7     |              |
| Chromium (VI)             | 0.115176043 | NA       | 19      |              |
| Chromium                  | 50          | NA       | 1000    |              |
| Cobalt                    |             |          |         |              |
| Copper                    | 1.3         | NA       | 22      |              |
| Iron                      | 300         |          |         |              |
| Lead                      | 0.54        | NA       | 10000   |              |
| Manganese                 | 50          |          |         |              |
| Mercury                   | 0.005161594 | NA       | 52      |              |
| Mercury (organic)         | 0.000454821 |          |         |              |
| Molybdenum                | 40          |          |         |              |
| Nickel                    | 8.2         | NA       | 65      |              |
| Selenium                  | 5           | NA       | 5       |              |
| Silver                    | 1.532250723 | NA       | 8.3     |              |
| Tin                       |             |          |         |              |
| Thallium                  | 0.24        | NA       | 71      |              |
| Vanadium                  | 1.12        |          |         |              |
| Zinc                      | 32.56745762 | NA       | 62      |              |
|                           |             |          |         |              |
| LPAH                      | 0.01        |          |         |              |

| НРАН                         | 0.01        | 157213 | 157.213 |             |
|------------------------------|-------------|--------|---------|-------------|
| Total Petroleum Hydrocarbons |             |        |         |             |
| Gasoline                     | 1000        |        |         |             |
| Gasoline (w/benzene)         | 800         |        |         |             |
| Diesel                       | 500         |        |         |             |
| Heavy Oil                    | 500         |        |         |             |
|                              |             |        |         |             |
| 2,3,7,8-TCDD                 | 2.06039E-10 | 146300 | 146.3   | 0.002045132 |
|                              |             |        |         |             |
| Aldrin                       | 1.16061E-05 | 48685  | 48.685  | 0.00697     |
| alpha-BHC                    | 0.001125041 | 1762   | 1.762   | 0.000435    |
| beta-BHC                     | 0.003937642 | 2139   | 2.139   | 0.0000305   |
| gamma-BHC                    | 0.019       | 1352   | 1.352   | 0.000574    |
| Chlordane                    | 0.000186709 | 51310  | 51.31   | 0.00199     |
| 4,4'-DDT                     | 5.05602E-05 | 677934 | 677.934 | 0.000332    |
| 4,4'-DDE                     | 5.05602E-05 | 86405  | 86.405  | 0.000861    |
| 4,4'-DDD                     | 7.16269E-05 | 45800  | 45.8    | 0.000164    |
| Dieldrin                     | 1.23315E-05 | 25546  | 25.546  | 0.000619    |
| alpha-Endosulfan             | 0.056       | 2040   | 2.04    | 0.000459    |
| beta-Endosulfan              | 0.056       | 2040   | 2.04    | 0.000459    |
| Endosulfan Sulfate           | 0.056       | 2040   | 2.04    | 0.000459    |
| Endrin                       | 0.002       | 10811  | 10.811  | 0.000308    |
| Endrin Aldehyde              | 0.002       | 10811  | 10.811  | 0.000308    |
| Heptachlor                   | 1.82819E-05 | 9528   | 9.528   | 0.0447      |
| Heptachlor Epoxide           | 9.04051E-06 | 83200  | 83.2    | 0.00039     |
| Toxaphene                    | 6.39423E-05 |        |         | _           |
|                              |             |        |         |             |

| Most Stringent VADOSE      | Most Stringent                        |
|----------------------------|---------------------------------------|
| Soil to Water Protection   | SATURATED Soil to<br>Water Protection |
| (mg/kg)                    | (mg/kg)                               |
| 24.25460799                |                                       |
| 24.25460788<br>0.330633526 | 1.731886<br>0.016757298               |
| 1.363879887                | 0.069123856                           |
| 4.443179766                | 0.223091503                           |
| 0.006124269                | 0.000359473                           |
| 0.620046338                | 0.031003321                           |
| 0.00220511                 | 0.000100021                           |
| 0.000238873                | 1.1945E-05                            |
| 0.001949861                | 9.75036E-05                           |
| 0.002000713                | 0.000100047                           |
| 0.943418187                | 0.047195596                           |
| 0.078371192                | 0.003954085                           |
| 0.001662011                | 7.71205E-05                           |
| 0.19160985                 | 0.011093333                           |
| 0.002157324                | 0.000127267                           |
| 0.021308514                | 0.001381798                           |
| 0.092827299                | 0.005688476                           |
| 0.012198717                | 0.00061016                            |
| 0.00327974                 | 0.000163992                           |
| 0.305064294                | 0.015367257                           |
| 1.54639773                 | 0.081356353                           |
| 0.067484617                | 0.003788856                           |
| 0.007404017                | 0.000700000                           |
| 0.0514064                  | 0.002882667                           |
| 0.005099246                | 0.000321707                           |
| 0.001884595                | 0.000125574                           |
| 0.00037342                 | 1.83373E-05                           |
| 3.158465423                | 0.199879894                           |
| 3.130403423                | 0.199679694                           |
| 0.01045914                 | 0.000548534                           |
| 0.033315167                | 0.001796951                           |
| 3.206771516                | 0.160534086                           |
| 0.467748395                | 0.023563127                           |
| 4.74746E-06                | 2.42708E-07                           |
| 0.042633732                | 0.000563273                           |
| 0.002803243                | 0.000140167                           |
|                            |                                       |
| 0.022273435                | 0.001427871                           |
| 1.15557682                 | 0.059321212                           |
|                            |                                       |
| 2.193667561                | 0.1142625                             |
| 0.175709259                | 0.008905288                           |
| 1.32958E-05                | 6.66052E-07                           |
| 0.000230442                | 1.15584E-05                           |
| 4.85242E-06                | 2.44557E-07                           |
| 0.002949131                | 0.000148633                           |
| 2.98939E-07                | 1.69278E-08                           |

$$C_s = C_w(UCF)DF$$

## MTCA EQ. 747-2

| Parameter                                          |
|----------------------------------------------------|
| Soil concentration                                 |
| Groundwater/Surfacewater screening level           |
| UCF                                                |
| Dilution faction                                   |
| Distribution coefficient                           |
| Soil organic carbon-water partitioning coefficient |
| Soil fraction of organic carbon - for silty sands  |
| Water-filled soil porosity                         |
| Air-filled soil porosity                           |
| Henry's law constant                               |
| Dry soil bulk density                              |

\* The dilutior

\*\* Note that the EPA Koc va

\*\*\* The Default Porosity fo

|             | ,           |
|-------------|-------------|
| 2.03178E-05 | 1.01785E-06 |
| 8.31911E-06 | 4.16425E-07 |
| 9.54585E-05 | 4.77489E-06 |
| 2.022129803 | 0.101522436 |
| 13.68360955 | 0.685031889 |
| 0.000218584 | 1.13685E-05 |
| 0.00076771  | 5.02642E-05 |
| 1.238448805 | 0.067061333 |
| 0.003193328 | 0.000209076 |
| 0.004889134 | 0.0002815   |
| 0.84471761  | 0.0447489   |
| 9.727251165 | 0.554666667 |
| 0.00012608  | 6.11333E-06 |
| 13.0924182  | 0.729766667 |
| 8.998864665 | 0.64431792  |
| 0.784973697 | 0.055021137 |
| 0.037017974 | 0.002026013 |
| 0.041384351 | 0.00268544  |
| 0.30875576  | 0.022127496 |
| 0.014993827 | 0.00076784  |
| 0.341842395 | 0.02388097  |
| 1.455096925 | 0.080446667 |
|             | 0.0001.0001 |
| 0.015479763 | 0.00082238  |
| 0.0.0.00    | 0.0000=00   |
| 0.2         | 0.014333333 |
| 3.494845361 | 0.17507732  |
|             |             |
|             |             |
| 0.003146798 | 0.000157807 |
| 1.648       | 0.082573333 |
| 63.216      | 3.161146667 |
| 0.0345      | 0.001746667 |
| 0.0442276   | 0.002221362 |
| 1000.2      | 50.01433333 |
|             |             |
| 0.5772      | 0.028972667 |
| 1.2         | 0.086       |
| 108.00216   | 5.4001548   |
| 0.2         | 0.014333333 |
| 0.005388704 | 0.000269883 |
|             |             |
| 0.16        | 0.011466667 |
| 10.6928     | 0.535350667 |
| 0.52        | 0.026433333 |
| 0.260482623 | 0.013156926 |
|             |             |
| 0.34176     | 0.0171088   |
| 0.00448     | 0.000321067 |
| 40.51391728 | 2.028518377 |
|             |             |
|             |             |
|             |             |



|             | Π           |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| 6.03696E-10 | 3.02026E-11 |
|             |             |
| 1.13474E-05 | 5.6837E-07  |
| 4.41474E-05 | 2.30483E-06 |
| 0.000184203 | 9.55141E-06 |
| 0.000589779 | 3.11347E-05 |
| 0.000192348 | 9.63356E-06 |
| 0.000685731 | 3.42909E-05 |
| 8.75753E-05 | 4.38314E-06 |
| 6.58968E-05 | 3.30104E-06 |
| 6.34974E-06 | 3.18555E-07 |
| 0.002508845 | 0.000130293 |
| 0.002508845 | 0.000130293 |
| 0.002508845 | 0.000130293 |
| 0.000440441 | 2.21953E-05 |
| 0.000440441 | 2.21953E-05 |
| 3.55835E-06 | 1.79431E-07 |
| 1.50796E-05 | 7.54762E-07 |
|             |             |
|             |             |
|             |             |

$$C_{s} = C_{w}(UCF)DF \left[ K_{d} + \frac{(\theta_{w} + \theta_{a}H_{cc})}{\rho_{b}} \right]$$

| Symbol                | Value             | Units            | Source                 |
|-----------------------|-------------------|------------------|------------------------|
| Cs                    | Calculated Value  | mg/kg            | Calculated Value       |
| Cw                    | Chemical Specific | ug/l             | Pathway Specific       |
| Unit coversion factor | 0.001             | mg/ug            | MTCA                   |
| DF                    | 20*               | dimensionless    | Vadose Soil            |
| Kd                    | Chemical Specific | L/kg             | Chemical Specific      |
| Koc**                 | Chemical Specific | ml/g             | Chemical Specific      |
| foc                   | 0.001             | g/g              | Site Specific -Default |
| $\theta w$            | 0.3***            | ml water/ml soil | Site Specific -Default |
| θа                    | 0.13***           | ml air/ml soil   | Site Specific -Default |
| Hcc                   | Chemical Specific | dimensionless    | Chemical Specific      |
| ρb                    | 1.5               | kg/L             | Site Specific -Default |

n factor is 20 for Vadose soil, or 1 for Saturated Soil alues, not MTCA Tables, maybe default values used to determine Kd r Water/Air Fill is 0.3/0.13 for Vadose Soil & 0.43/0 Saturated Soils



| Chemical                             | SW Screening<br>Level | Кос             | Kd                | Henry's Law            |
|--------------------------------------|-----------------------|-----------------|-------------------|------------------------|
|                                      | ug/l                  | L/kg            | ml/g              | Dimensionless          |
| Acetone                              | 110107.0077           | 1.981           | 0.001981          | 0.001623835            |
| Acenaphthene                         | 2.614379085           | 6123            | 6.123             | 0.004225243            |
| Acenaphthylene                       | 10.78431373           | 6123            | 6.123             | 0.00511283             |
| Anthracene                           | 10.78431373           | 20400           | 20.4              | 0.002274187            |
| Benzene                              | 2.028193577           | 165.5           | 0.1655            | 0.227009649            |
| Benzo(g,h,i)perylene                 | 0.011584454           | 2676000         | 2676              | 1.35388E-05            |
| Benzo(a)anthracene                   | 0.000258331           | 426600          | 426.6             | 1.73836E-05            |
| Benzo(a)pyrene                       | 1.51762E-05           | 786800          | 786.8             | 1.86925E-05            |
| Benzo(b)fluoranthene                 | 0.000121366           | 803100          | 803.1             | 2.6873E-05             |
| Benzo(k)fluoranthene                 | 0.00012711            | 786800          | 786.8             | 2.38871E-05            |
| bis(2-Ethylhexyl)phthalate           | 0.284848485           | 165400          | 165.4             | 1.10437E-05            |
| Butyl benzyl phthalate               | 0.409933862           | 9359            | 9.359             | 5.15373E-05            |
| Carbon Tetrachloride                 | 0.247823653           | 48.64           | 0.04864           | 1.3                    |
| Chlorobenzene                        | 20                    | 268             | 0.268             | 0.127207209            |
| Chloroethane                         | 34                    | 23.74           | 0.02374           | 0.454019298            |
| Chloroform                           | 4.2952095             | 35.04           | 0.03504           | 0.150112687            |
| Chloromethane                        | 20.25073279           | 14.3            | 0.0143            | 0.36076128             |
| Chrysene                             | 0.002581193           | 236100          | 236.1             | 0.000213921            |
| Dibenz[a,h]anthracene                | 6.25379E-05           | 2622000         | 2622              | 5.03102E-06            |
| Dibenzofuran                         | 1.327433628           | 11290           | 11.29             | 0.008712262            |
| Di-n-butylphthalate                  | 46.57806484           | 1460            | 1.46              | 7.40338E-05            |
| 1.2-Dichlorobenzene                  | 5.191873589           | 443.1           | 0.4431            | 0.078533068            |
| 1,3-Dichlorobenzene                  | 960                   | 445.1           | 0.4431            | 0.070333000            |
| 1,4-Dichlorobenzene                  | 4                     | 434             | 0.434             | 0.099                  |
| 1,1-Dichloroethane                   | 33.26143751           | 35.04           | 0.03504           | 0.229872834            |
| 1.2-Dichloroethane                   | 3.552760138           | 43.79           | 0.04379           | 0.048265115            |
| ,                                    | 3.2                   |                 |                   |                        |
| 1,1-Dichloroethene                   | 3.2<br>484.1269841    | 35.04<br>126.2. | 0.03504<br>0.1262 | 1.06755889<br>0.000025 |
| diethyl phthalate dimethyl phthalate | 142.8571429           | 120.2.          | 0.1202            | 0.000025               |
| di-n-octyl phthalate                 | 0.295918367           |                 | 1.567             | 0.0027                 |
| Ethylbenzene                         | 2.233717193           | 517.8           | 0.5178            | 0.322312799            |
| Fluoranthene                         | 2.256699577           | 70850           | 70.85             | 0.000362397            |
| Fluorene                             | 2.03539823            | 11290           | 11.29             | 0.003934834            |
| hexachlorobenzene                    | 6.61931E-05           | 3380            | 3.38              | 0.003934834            |
| Hexachlorobutadiene                  | 3.923541247           | 993.5           | 0.9935            | 42.12971863            |
| Indeno(1,2,3-cd)pyrene               | 5.23736E-05           | 2676000         | 2676              | 1.42341E-05            |
| MEK (Methyl Ethyl Ketone;2-Butanone) | 4800                  | 20.0000         | 2010              | 1.720712 00            |
| Methylene Chloride                   | 61.42722279           | 23.74           | 0.02374           | 0.211875672            |
| 2-Methylnaphthalene                  | 18.18181818           | 2976            | 2.976             | 0.021187567            |
| MIBK (M-Isobutyl-K;4-M,2-Pentanone)  | 10.10101010           | 2010            | 2.010             | 3.321101001            |
| Naphthalene                          | 53.80434783           | 1837            | 1.837             | 0.017997161            |
| nitrosodiphenylamine, N-             | 1.382665579           | 6154            | 6.154             | 0.000049               |
| Polychlorinated biphenyls (PCBs)     | 1.47662E-05           | 44820           | 44.82             | 0.014                  |
| Aroclor 1016                         | 0.00042189            | 27110           | 27.11             | 0.008180528            |
| Aroclor 1221                         | 2.30352E-05           | 10330           | 10.33             | 0.030104343            |
| Aroclor 1232                         | 0.014                 | 10330           | 10.33             | 0.030104343            |
| Aroclor 1242                         | 2.30352E-05           | 448.2           | 0.4482            | 0.007771501            |

| Aroclor 1248              | 2.30352E-05 | 43900    | 43.9    | 0.017997161 |
|---------------------------|-------------|----------|---------|-------------|
| Aroclor 1254              | 5.48457E-06 | 75640    | 75.64   | 0.011575447 |
| Aroclor 1260              | 2.30352E-05 | 207000   | 207     | 0.013743287 |
| Phenanthrene              | 4.807692308 | 20830    | 20.83   | 0.001730182 |
| Pyrene                    | 9.828761139 | 69410    | 69.41   | 0.000486741 |
| Tetrachloroethene         | 0.02060763  | 265      | 0.265   | 0.754       |
| 1.2.4-Trichlorobenzene    | 0.141842417 | 67.7     | 0.0677  | 0.0337      |
| 1,1,1-Trichloroethane     | 46023.56406 | 48.64    | 0.04864 | 0.703525398 |
| 1,1,2-Trichloroethane     | 2.335991132 | 67.7     | 0.0677  | 0.033703775 |
| Trichloroethene           | 0.739493051 | 94       | 0.094   | 0.422       |
| 1,3,5-Trimethylbenzene    | 45.21613312 | 703      | 0.703   | 0.358716148 |
| Toluene                   | 1294.051676 | 268      | 0.268   | 0.211875672 |
| Vinyl Chloride            | 0.53322242  | 19       | 0.019   | 1.11        |
| Xylene                    | 1577.950768 | 443.1    | 0.4431  | 0.132933578 |
| benzoic acid              | 2242.926156 |          | 0.0006  | 0.000063    |
| Benzyl Alcohol            | 181.9923372 | 15.66    | 0.01566 | 1.37842E-05 |
| 2,4-Dimethylphenol        | 2.020624303 | 717.6    | 0.716   | 0.000039    |
| 2-Methylphenol (o-cresol) | 7.110609481 | 91       | 0.091   | 0.000049    |
| 4-Methylphenol (p-cresol) | 77.18894009 |          |         |             |
| Pentachlorophenol         | 0.698036623 | 3380     | 3.38    | 1.00211E-06 |
| Total Phenol              | 78.35820896 | 18.1     | 0.0181  | 0.000323131 |
| Styrene                   |             | 517.8    | 0.5178  | 0.112482258 |
| Tributyltin               | 0.0074      |          |         |             |
| 2,4,6-Trichlorophenol     | 0.558429298 | 1186     | 1.186   | 0.000106347 |
|                           |             |          |         |             |
| Aluminum                  |             |          |         |             |
| Antimony                  | 3.865979381 | NA       | 45      |             |
| Arsenic (III)             |             |          |         |             |
| Arsenic (V)               |             |          |         |             |
| Arsenic                   | 0.005388353 | NA       | 29      |             |
| Barium                    | 122.1478478 | NA       | 41      |             |
| Beryllium                 | 12.47090123 | NA       | 790     |             |
| Cadmium                   | 0.25        | NA       | 6.7     |             |
| Chromium (VI)             | 0.115176043 | NA       | 19      |             |
| Chromium                  | 74          | NA       | 1000    |             |
| Cobalt                    |             |          |         |             |
| Copper                    | 3.1         | NA       | 22      |             |
| Iron                      |             |          |         |             |
| Lead                      | 0.54        | NA       | 10000   |             |
| Manganese                 | 100         |          |         |             |
| Mercury                   | 0.005161594 | NA       | 52      |             |
| Mercury (organic)         | 0.000454821 |          |         |             |
| Molybdenum                |             |          |         |             |
| Nickel                    | 8.2         | NA       | 65      |             |
| Selenium                  | 5           | NA<br>NA | 5       |             |
| Silver                    | 1.532250723 | NA       | 8.3     |             |
| Tin                       | 2.45        |          |         |             |
| Thallium                  | 0.47        | NA       | 71      |             |
| Vanadium<br>              | 00          |          | _       |             |
| Zinc                      | 32.56745762 | NA       | 62      |             |
|                           |             |          |         |             |
| LPAH                      | 0.01        |          |         |             |

| НРАН                         | 0.01        | 157213 | 157.213 |             |
|------------------------------|-------------|--------|---------|-------------|
| Total Petroleum Hydrocarbons |             |        |         |             |
| Gasoline                     | 1000        |        |         |             |
| Gasoline (w/benzene)         | 800         |        |         |             |
| Diesel                       | 500         |        |         |             |
| Heavy Oil                    | 500         |        |         |             |
|                              |             |        |         |             |
| 2,3,7,8-TCDD                 | 2.06039E-10 | 146300 | 146.3   | 0.002045132 |
|                              |             |        |         |             |
| Aldrin                       | 1.16061E-05 | 48685  | 48.685  | 0.00697     |
| alpha-BHC                    | 0.001125041 | 1762   | 1.762   | 0.000435    |
| beta-BHC                     | 0.003937642 | 2139   | 2.139   | 0.0000305   |
| gamma-BHC                    | 0.063       | 1352   | 1.352   | 0.000574    |
| Chlordane                    | 0.000186709 | 51310  | 51.31   | 0.00199     |
| 4,4'-DDT                     | 5.05602E-05 | 677934 | 677.934 | 0.000332    |
| 4,4'-DDE                     | 5.05602E-05 | 86405  | 86.405  | 0.000861    |
| 4,4'-DDD                     | 7.16269E-05 | 45800  | 45.8    | 0.000164    |
| Dieldrin                     | 1.23315E-05 | 25546  | 25.546  | 0.000619    |
| alpha-Endosulfan             | 0.0087      | 2040   | 2.04    | 0.000459    |
| beta-Endosulfan              | 0.0087      | 2040   | 2.04    | 0.000459    |
| Endosulfan Sulfate           | 0.0087      | 2040   | 2.04    | 0.000459    |
| Endrin                       | 0.002       | 10811  | 10.811  | 0.000308    |
| Endrin Aldehyde              | 0.002       | 10811  | 10.811  | 0.000308    |
| Heptachlor                   | 1.82819E-05 | 9528   | 9.528   | 0.0447      |
| Heptachlor Epoxide           | 9.04051E-06 | 83200  | 83.2    | 0.00039     |
| Toxaphene                    | 6.39423E-05 |        |         |             |
|                              |             |        |         | _           |

| Most Stringent VADOSE    | Most Stringent              |  |  |
|--------------------------|-----------------------------|--|--|
| Soil to Water Protection | SATURATED Soil to           |  |  |
| (mg/kg)                  | Water Protection<br>(mg/kg) |  |  |
| 445.1003828              | 31.78213086                 |  |  |
| 0.330633526              | 0.016757298                 |  |  |
| 1.363879887              | 0.069123856                 |  |  |
| 4.443179766              | 0.223091503                 |  |  |
| 0.015624156              | 0.000917082                 |  |  |
| 0.620046338              | 0.031003321                 |  |  |
| 0.00220511               | 0.000110278                 |  |  |
| 0.000238873              | 1.1945E-05                  |  |  |
| 0.001949861              | 9.75036E-05                 |  |  |
| 0.002000713              | 0.000100047                 |  |  |
| 0.943418187              | 0.047195596                 |  |  |
| 0.078371192              | 0.003954085                 |  |  |
| 0.001790807              | 8.30969E-05                 |  |  |
| 0.19160985               | 0.011093333                 |  |  |
| 0.178900071              | 0.010553827                 |  |  |
| 0.021308514              | 0.001381798                 |  |  |
| 0.09945782               | 0.006094796                 |  |  |
| 0.012198717              | 0.00061016                  |  |  |
| 0.00327974               | 0.000163992                 |  |  |
| 0.305064294              | 0.015367257                 |  |  |
| 1.54639773               | 0.081356353                 |  |  |
| 0.067484617              | 0.003788856                 |  |  |
|                          |                             |  |  |
| 0.0514064                | 0.002882667                 |  |  |
| 0.16960826               | 0.010700426                 |  |  |
| 0.01761977               | 0.001174033                 |  |  |
| 0.020963953              | 0.001029461                 |  |  |
| 3.158465423              | 0.199879894                 |  |  |
|                          |                             |  |  |
| 0.01045914               | 0.000548534                 |  |  |
| 0.033315167              | 0.001796951                 |  |  |
| 3.206771516              | 0.160534086                 |  |  |
| 0.467748395              | 0.023563127                 |  |  |
| 4.74746E-06              | 2.42708E-07                 |  |  |
| 0.380170923              | 0.005022787                 |  |  |
| 0.002803243              | 0.000140167                 |  |  |
|                          |                             |  |  |
| 0.297433756              | 0.019067419                 |  |  |
| 1.15557682               | 0.059321212                 |  |  |
| 0.40057777               |                             |  |  |
| 2.193667561              | 0.1142625                   |  |  |
| 0.175709259              | 0.008905288                 |  |  |
| 1.32958E-05              | 6.66052E-07                 |  |  |
| 0.000230442              | 1.15584E-05                 |  |  |
| 4.85242E-06              | 2.44557E-07                 |  |  |
| 0.002949131              | 0.000148633                 |  |  |
| 2.98939E-07              | 1.69278E-08                 |  |  |

$$C_s = C_w(UCF)DF$$

## MTCA EQ. 747-2

| Parameter                                          |
|----------------------------------------------------|
| Soil concentration                                 |
| Groundwater/Surfacewater screening level           |
| UCF                                                |
| Dilution faction                                   |
| Distribution coefficient                           |
| Soil organic carbon-water partitioning coefficient |
| Soil fraction of organic carbon - for silty sands  |
| Water-filled soil porosity                         |
| Air-filled soil porosity                           |
| Henry's law constant                               |
| Dry soil bulk density                              |

\* The dilutior

\*\* Note that the EPA Koc va

\*\*\* The Default Porosity for

|             | ,           |  |
|-------------|-------------|--|
| 2.03178E-05 | 1.01785E-06 |  |
| 8.31911E-06 | 4.16425E-07 |  |
| 9.54585E-05 | 4.77489E-06 |  |
| 2.022129803 | 0.101522436 |  |
| 13.68360955 | 0.685031889 |  |
| 0.000218584 | 1.13685E-05 |  |
| 0.00076771  | 5.02642E-05 |  |
| 284.9891395 | 15.43200785 |  |
| 0.012643365 | 0.000827797 |  |
| 0.004889134 | 0.0002815   |  |
| 0.84471761  | 0.0447489   |  |
| 12.58756567 | 0.71776733  |  |
| 0.003361434 | 0.000162988 |  |
| 20.65919136 | 1.151535872 |  |
| 8.998864665 | 0.64431792  |  |
| 0.784973697 | 0.055021137 |  |
| 0.037017974 | 0.002026013 |  |
| 0.041384351 | 0.00268544  |  |
|             |             |  |
| 0.049979423 | 0.002559468 |  |
| 0.341842395 | 0.02388097  |  |
|             |             |  |
|             |             |  |
| 0.015479763 | 0.00082238  |  |
|             |             |  |
|             |             |  |
| 3.494845361 | 0.17507732  |  |
|             |             |  |
|             |             |  |
| 0.003146798 | 0.000157807 |  |
|             |             |  |
| 197.090123  | 9.855586963 |  |
| 0.0345      | 0.001746667 |  |
| 0.0442276   | 0.002221362 |  |
| 1480.296    | 74.02121333 |  |
|             |             |  |
| 1.3764      | 0.069088667 |  |
|             |             |  |
| 108.00216   | 5.4001548   |  |
|             |             |  |
| 0.005388704 | 0.000269883 |  |
|             |             |  |
|             |             |  |
| 10.6928     | 0.535350667 |  |
| 0.52        | 0.026433333 |  |
| 0.260482623 | 0.013156926 |  |
|             |             |  |
| 0.66928     | 0.033504733 |  |
|             |             |  |
| 40.51391728 | 2.028518377 |  |
|             |             |  |
|             |             |  |
|             |             |  |



| 0.0314826   | 0.001574997 |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| 6.03696E-10 | 3.02026E-11 |
|             |             |
| 1.13474E-05 | 5.6837E-07  |
| 4.41474E-05 | 2.30483E-06 |
| 0.000184203 | 9.55141E-06 |
| 0.001955583 | 0.000103236 |
| 0.000192348 | 9.63356E-06 |
| 0.000685731 | 3.42909E-05 |
| 8.75753E-05 | 4.38314E-06 |
| 6.58968E-05 | 3.30104E-06 |
| 6.34974E-06 | 3.18555E-07 |
| 0.000389767 | 0.000020242 |
| 0.000389767 | 0.000020242 |
| 0.000389767 | 0.000020242 |
| 0.000440441 | 2.21953E-05 |
| 0.000440441 | 2.21953E-05 |
| 3.55835E-06 | 1.79431E-07 |
| 1.50796E-05 | 7.54762E-07 |
|             |             |
|             |             |

$$C_{s} = C_{w}(UCF)DF \left[ K_{d} + \frac{(\theta_{w} + \theta_{a}H_{cc})}{\rho_{b}} \right]$$

| Symbol                | Value             | Units            | Source                 |
|-----------------------|-------------------|------------------|------------------------|
| Cs                    | Calculated Value  | mg/kg            | Calculated Value       |
| Cw                    | Chemical Specific | ug/l             | Pathway Specific       |
| Unit coversion factor | 0.001             | mg/ug            | MTCA                   |
| DF                    | 20*               | dimensionless    | Vadose Soil            |
| Kd                    | Chemical Specific | L/kg             | Chemical Specific      |
| Koc**                 | Chemical Specific | ml/g             | Chemical Specific      |
| foc                   | 0.001             | g/g              | Site Specific -Default |
| $\theta w$            | 0.3***            | ml water/ml soil | Site Specific -Default |
| θа                    | 0.13***           | ml air/ml soil   | Site Specific -Default |
| Hcc                   | Chemical Specific | dimensionless    | Chemical Specific      |
| ρb                    | 1.5               | kg/L             | Site Specific -Default |

n factor is 20 for Vadose soil, or 1 for Saturated Soil alues, not MTCA Tables, maybe default values used to determine Kd r Water/Air Fill is 0.3/0.13 for Vadose Soil & 0.43/0 Saturated Soils