

Subsurface Investigation Report

Conducted on:
Naches Pit Stop
10121 Highway 12
Naches, Washington 98937-9785
Ecology Facility/Site ID: 505

Prepared for:
Mr. Han Chang
10121 Highway 12
Naches, Washington 98937-9785

Prepared & Reviewed by:

Nicolas Pushckor Staff Geologist Scott Rose, L.H.G. Senior Hydrogeologist

AEG Project #: 16-102

Date of Report: July 08, 2016

TABLE OF CONTENTS

1.0 INTROI	DUCTION	3
1.1 SITE A	AND VICINITY AREA BACKGROUND	3
	IOUS ENVIRONMENTAL ACTIVITIES	
1.3 SITE (GEOLOGY AND HYDROGEOLOGY	5
2.0 OBJEC	TIVES AND SCOPE OF WORK	6
3.0 FIELD	METHODOLOGY	7
3.1 Moni	TTORING WELL ADVANCEMENT AND CONSTRUCTION	7
	Sampling Procedures	
	UNDWATER SAMPLING PROCEDURES	
-	ITY CONTROLSSTIGATION-DERIVED WASTE	
	TICAL RESULTS	
	ANALYTICAL RESULTS	
	ANALYTICAL RESULTS	
	JUSIONS AND RECOMMENDATIONS	
	CLUSIONS	
	EUSIONS	
	ATIONS	
	ENCES	
7.0 KEFEK	ENCES	14
	<u>FIGURES</u>	
Figure 1:	Vicinity Map	
Figure 2:	Site Map	
	<u>TABLES</u>	
Table 1:	Summary of Soil Analytical Results	
Table 2:	Summary of Groundwater Analytical Results	
	<u>APPENDICES</u>	
Appendix A	: Site Photographs	
Appendix B	~ .	
11	Boring Logs	
	Laboratory Datasheets	

605 11TH AVENUE • OLYMPIA, WA • 98501-2363 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u>

1.0 INTRODUCTION

Associated Environmental Group, LLC (AEG) has completed a Subsurface Investigation at Pit Stop Naches, located at 10121 Highway 12, in Naches, Washington (Site). This Subsurface Investigation was performed in general conformance with ASTM E1903-11, *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.* The objective of this Subsurface Investigation was to investigate subsurface conditions at the Site, and to define the lateral and vertical extents of contamination at the Site.

To detect potential contamination, AEG advanced five monitoring wells on the property. Soil and groundwater samples were collected and laboratory analyzed for the presence of gasoline-through oil-range total petroleum hydrocarbons (TPH), total lead, cadmium, chromium, arsenic, mercury, 1,2-dichloroethane (EDC), 1,2-dibromoethane (EDB), total naphthalenes, methyl tert- butyl ether (MTBE), and benzene, toluene, ethylbenzene, and total xylenes (BTEX).

1.1 Site and Vicinity Area Background

The Site is located at the intersection of Naches Avenue and Highway 12 in Naches, Washington. A Tesoro-branded gasoline station and convenience store occupies the property, which is assigned Yakima County Tax Parcel No. 171403-32004. The 0.27-acre parcel is occupied by the 2,951-square-foot convenience store and associated fuel canopy. Three underground storage tanks (USTs) are currently operational at the Site: one 8,000-gallon unleaded gasoline UST, one 2,500-gallon gasoline UST, and one 2,500-gallon diesel UST. The western portion of the Site is underlain by a concrete stormwater trench that runs north-south. Figure 1, *Vicinity Map*, presents the general vicinity of the Site. The Site's current layout can be seen in Figure 2, *Site Map*.

1.2 Previous Environmental Activities

Exploratory Investigation for Petroleum Contaminants – White Shield, Inc. – 1991

In 1991, White Shield, Inc. performed an Exploratory Investigation for Petroleum Contaminants at the property to confirm the release of petroleum hydrocarbons from the USTs, fuel islands, and associated piping into soil and groundwater. Four test pits where excavated and samples were obtained from each pit. White Shield (1991) reported that:

"Based on our visual observations, analytical laboratory analyses, olfactory responses (smell), we found gasoline, ethylbenzene and xylene contamination in the soil which requires remedial action. We also found gasoline, diesel, benzene, toluene, ethylbenzene and xylene contamination in the groundwater which again requires remedial action. The vertical and horizontal extent of petroleum contaminants in the soil suggests that the

petroleum contamination originated from the area of the abandoned dispenser island and possibly the area of the underground storage tanks. The relative concentrations of volatile petroleum constituents near the abandoned dispenser island indicates that the petroleum is moderately degraded and appears to be an aged release. The relative concentrations of volatile petroleum constituents near the underground storage tanks suggests that the petroleum is relatively fresh...A plume of petroleum contaminated groundwater, which requires remedial action, extends to the eastern property boundary. Soil contamination, which also requires remedial action, appears to be confined to the area adjacent to the unused dispenser island and a 1 to 2 foot zone above the groundwater surface. It also extends to the eastern property boundary. Although we did not investigate outside the property boundary, it is likely that petroleum hydrocarbons have migrated off-site."

White Shield then recommended:

"...conducting additional exploration on adjacent properties to determine the extent of the petroleum plume in the soil and groundwater and to assess the potential hazards the plume may present. Once the extents of petroleum plume are known, at least three groundwater monitoring wells should be established to ensure that petroleum contaminants do not migrate and to also allow determination of the precise direction of groundwater flow. Measures should then be taken to contain the plume and halt migration. Once the plume is characterized and contained, an appropriate remediation may be selected to lower petroleum concentrations to acceptable levels. It is likely that excavation of petroleum contamination near the source is appropriate. In this case, removal of the existing tanks is recommended to facilitate soil removal. The tank system should then be replaced with tanks meeting regulatory standards."

<u>Limited Site Cleanup – Northwest Envirocon, Inc. – 1998</u>

In 1998, Northwest Envirocon, Inc. conducted a limited cleanup of impacted soil at the Site. Northwest Envirocon, Inc. reported that:

"The removal action consisted of excavating the impacted soil to the vertical and lateral extent where field screening and direct observation indicated obviously stained, or odiferous soil. The obviously contaminated material (Sample #BP-P1 4,200/ppm diesel) was temporarily stockpiled on plastic, bermed and covered with plastic, until disposal at the Anderson Rock and Demolition Pit in Yakima landfill was permitted. No petroleum hydrocarbon contamination was detected by WA-TPH-HCID in the confirmation samples (Sample #BP-3, BP-4, and BP-5) from the excavation."

<u>Phase II Environmental Site Assessment – Associated Environmental Group, LLC – 2016</u>

In January 2016, AEG completed a Phase II Environmental Site Assessment at the Site to investigate possible TPH impacts at the Site. AEG advanced three soil borings to a depth of 15 feet below ground surface (bgs), completing two as monitoring wells, to evaluate the subsurface for the presence of TPH-based contaminants. Due to subsurface conditions at the Site, it was not possible to complete the third soil boring (MW-3) as a monitoring well. Conclusions from the Phase II ESA were as follows:

"Soil contamination was detected above Ecology's MTCA Method A cleanup levels in soil samples obtained from monitoring well MW-2, from the southeast corner of the Site;

Detections of soil contamination occurred just above the water level at the time of drilling, at approximately 13 feet bgs; and

Groundwater contamination was detected above Ecology's MTCA Method A cleanup levels in the groundwater sample obtained from monitoring well MW-2, from the southeast corner of the Site."

1.3 Site Geology and Hydrogeology

According to the United States Department of Agriculture Natural Resources Conservation Service soil survey, the Site consists of soil unit Weirman gravelly fine sandy loam. The Weirman series consists of very deep, somewhat excessively drained soils formed in alluvium on flood plains and low terraces.

Soils encountered at the Site during this investigation consisted primarily of brown, moist, medium dense, silty sand to 4 feet bgs. From approximately 4 to 20 feet bgs, coarse gravel was encountered. Groundwater was encountered at the time of drilling at approximately 11 feet bgs in each of the wells. Groundwater flow direction at the Site is not known; however, based upon local topography, may be inferred to flow towards Naches River, located about 0.26 miles south of the Site.

2.0 OBJECTIVES AND SCOPE OF WORK

AEG was retained to perform this Subsurface Investigation to define the lateral and vertical extents of contamination at the Site. AEG advanced five soil borings to a depth of 20 feet bgs, completing five as monitoring wells, to evaluate the subsurface for the presence of TPH-based contaminants. The monitoring wells were advanced throughout the perimeter of the property (Figure 2, *Site Map*).

Specific tasks performed included:

- Conducting both public and private utility locates for the Site and vicinity. The public rights of way locates were performed by the Underground Utilities Locate Center; Utilities Plus, LLC provided private utility locates for the Site;
- Advancing five monitoring wells to 20 feet bgs at select locations on the Site, using a Sonic drilling rig, operated by Holt Services, Inc;
- Continuously logging the subsurface media during the investigation, to observe and document soil lithology, color, moisture content, and sensory evidence of impairment;
- Collecting soil samples for laboratory analyses at various depths, based on the field observations;
- Purging and collecting groundwater samples from each of the monitoring wells;
- Containing investigation-derived wastes, including soil cuttings, purge water, and decontamination wash fluids, in 55-gallon steel drums, and storing them on Site awaiting the results of laboratory analyses;
- Transporting and submitting soil and groundwater samples to Environmental Services Network NW, Inc. (ESN), a Washington State certified analytical laboratory, for analyses;
- Evaluating laboratory analytical results and comparing data to Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A cleanup levels for soil and groundwater; and
- Preparing this report presenting final documentation of the field activities and methodologies, and summarizing the analytical results, conclusions, and recommendations.

3.0 FIELD METHODOLOGY

3.1 Monitoring Well Advancement and Construction

On May 23 and 24, 2016, AEG supervised the advancement of monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8 at the Site. The monitoring wells were each advanced to a maximum depth of 20 feet bgs via a Sonic drilling rig operated by Holt Services Inc., a licensed driller in the State of Washington. Soil samples were collected during drilling for field screening and laboratory analyses. The locations of the monitoring wells and Site features are illustrated in Figure 2, *Site Map.* Photographs from the investigation are presented in Appendix A, *Site Photographs*. Boring logs and laboratory analytical results are provided in Appendix B, *Supporting Documents*, *Boring Logs, Laboratory Datasheets*.

Monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8 were constructed pursuant to the Ecology *Minimum Standards for Construction and Maintenance of Wells*, Chapter 173-160 WAC. Monitoring wells MW-5, MW-6, and MW-8 were constructed to a depth of 20 feet bgs with 15 feet of 2-inch diameter 0.010-inch slot polyvinyl chloride (PVC) screen. Monitoring wells MW-4 and MW-7 were each constructed to a depth of 19 feet bgs with 15 feet of 2-inch diameter 0.010-inch slot PVC screen. The annular space around the well screen was filled with 10/20 Colorado sand to approximately 1 foot above the top of the well screen. Bentonite chips were used above the sand to within 1.5 feet of the ground surface to seal the well. A traffic-rated surface monument was then placed over the well casing to protect it. Ecology tag numbers associated with the monitoring wells are as follows:

•	MW-4	BJX 333
•	MW-5	BJX 330
•	MW-6	BJX 331
•	MW-7	BJX 332
•	MW-8	BJX 334

At the conclusion of well construction, the wells were developed by Holt Services, Inc. using a submersible pump to withdraw water from the monitoring well at a rate high enough to draw the water level in the well as low as possible and then allowing the well to recharge. Well development was conducted to remove fine-grained sediment from the filter pack and well bore. Development was considered complete when the wells produced water that was clear and relatively free of sediment.

3.2 Soil Sampling Procedures

Soil samples were collected and observed to document soil lithology, color, moisture content, and sensory evidence of impairment. The soil samples were collected using a core barrel and drilling rod. The soil samples were retrieved in transparent plastic sleeves from the core barrel and placed at surface for inspection. All soil samples were screened in the field for organic vapor content utilizing a photoionization detector (PID). The PID readings are presented in the soil boring logs provided in Appendix B, *Supporting Documents*, *Boring Logs*.

The soil sampling methods for this work followed the protocols established by Ecology and the U.S. Environmental Protection Agency (EPA). To minimize volatile organic compound (VOC) losses, soil sampling for VOCs and field preservation methods followed methods set forth by EPA's Method 5035A and Ecology's guidance, "Collecting and Preparing Soil Samples for VOC Analysis".

Soil samples selected for laboratory analyses were immediately transferred to laboratory-provided containers. All soil samples were placed in a portable chilled ice chest and couriered to the Environmental Services Network Northwest, Inc. (ESN) chemistry laboratory. Soil samples were handled and transported following industry standard chain-of-custody procedures. Laboratory analyses included:

- Gasoline-range TPH using Method NWTPH-Gx;
- Diesel- and oil-range TPH using Method NWTPH-Dx/Dx Extended;
- BTEX, EDC, EDB, Total Naphthalenes, and MTBE using EPA Method 8260C; and
- Total lead using EPA Method 7010 Series.

All analytical soil results were compared to the Ecology MTCA Method A soil cleanup levels.

3.3 Groundwater Sampling Procedures

On May 27, 2016, AEG returned to the Site and sampled the groundwater from monitoring wells MW-1, MW-2, and MW-4 through MW-8. Dedicated polyethylene tubing was inserted into each well, and groundwater was purged using a peristaltic pump and EPA-approved low-flow purge techniques until the field parameters (temperature, conductivity, total dissolved solids, salinity, dissolved oxygen, pH, and oxygen reduction potential) were stabilized and discharge was relatively free of sediment. A groundwater sample was then collected from the monitoring well and placed into a laboratory-provided pre-weighed 40-milliliter (ml) volatile organic analysis (VOA) glass vial. Groundwater samples were analyzed for:

- Gasoline-range TPH using Method NWTPH-Gx;
- Diesel- and oil-range TPH using Method NWTPH-Dx/Dx Extended;
- BTEX, EDC, EDB, Total Naphthalenes, and MTBE using EPA Method 8260C;
- Total lead, cadmium, chromium, and arsenic using EPA Method 7010 Series; and
- Mercury using EPA Method 7470.

3.4 Quality Controls

To ensure that quality information was obtained at the Site:

- All samples were collected in general accordance with industry protocols for the collection, documentation, and handling of environmental samples.
- Descriptions of soil and groundwater sampling depths were carefully logged in the field. The driller and geologist confirmed sample depths as soil samples were collected.
- Nitrile gloves were worn when handling all sampling containers and sampling devices. Clean gloves were used at each soil boring to prevent cross contamination.
- Sampling equipment was scrubbed with Alconox detergent and rinsed with water prior to each sample extracted.
- Soil samples were tightly packed into laboratory-provided dedicated sampling containers to eliminate sample headspace.
- Groundwater samples were collected using laboratory-provided dedicated sampling containers using zero headspace sampling techniques.
- Upon sampling, all soil and groundwater samples were immediately placed into chilled ice chests, and transported for analysis under a chain-of-custody protocol to the ESN analytical laboratory in Olympia, Washington.

The analytical laboratory provided project quality assurance/quality control (QA/QC), including:

- Surrogate recoveries for each sample;
- Duplicate results;
- Method blank results; and
- Laboratory control samples.

All analytical laboratory QA/QC results were within required tolerances. Analytical Laboratory results are provided in Appendix B, *Supporting Documents*, *Laboratory Datasheets*.

3.5 Investigation-Derived Waste

Investigation-derived waste for this project consisted of soil cuttings from the subsurface exploration activities and decontamination water from decontamination of the drilling core barrel and associated equipment. These wastes were separated and placed in U.S. Department of Transportation-approved 55-gallon drums. The drums were appropriately labelled, and stored on Site for subsequent characterization and disposal.

4.0 ANALYTICAL RESULTS

Analytical results obtained from soil and groundwater samples were compared to MTCA Method A cleanup levels. Copies of the laboratory analytical results are provided in Appendix B, *Supporting Documents*, *Laboratory Datasheets*.

4.1 Soil Analytical Results

Analytical results of soil samples did not detect any constituents of concern above laboratory detection limits. Table 1, *Summary of Soil Analytical Results*, presents the soil analytical results for all samples analyzed as compared to MTCA Method A soil cleanup levels.

4.2 Groundwater Analytical Results

Analytical results of the groundwater samples did not detect any constituents of concern above laboratory detection limits, with the exception of total lead in MW-4 and MW-7. These exceedances included the following:

• Total lead was detected **above** the Ecology MTCA Method A cleanup level in monitoring wells MW-4 and MW-7 at concentrations of 84 micrograms per liter (μg/l) and 102 μg/l, respectively.

Table 2, *Summary of Groundwater Analytical Results*, presents the groundwater analytical results compared to MTCA Method A groundwater cleanup levels.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions derived during the subsurface investigation activities at the Site are as follows:

5.1 Conclusions

- Soil contamination was not detected above MTCA Method A cleanup levels in soil samples obtained from the Site.
- Total lead was detected above Ecology's MTCA Method A cleanup levels in the groundwater samples obtained from monitoring well MW-4 and MW-7. Lead was not detected in soil samples collected during the advancement of MW-4 and MW-7.
- No other constituents of concern were detected in groundwater samples above MTCA Method A cleanup levels. This includes gasoline- and diesel-range TPH previously detected in MW-2.

5.2 Recommendations

Based on the conclusions from this investigation, AEG recommends the following:

- A professional survey of all existing monitoring wells at the Site be conducted to determine groundwater flow direction and gradient;
- Groundwater monitoring and sampling for at least three additional quarters be conducted to determine any seasonal variation in contaminant concentrations.
 Analyses should include both total and dissolved lead, in addition to gasoline-, diesel-, and oil-range TPH and BTEX; and
- Upon collection of additional data, a Remedial Investigation Report should be drafted and submitted to Ecology for review and opinion under the Voluntary Cleanup Program.

6.0 LIMITATIONS

This report summarizes the findings of the services authorized under our agreement with Mr. Han Chang. It has been prepared using generally accepted professional practices, related to the nature of the work accomplished. This report was prepared for the exclusive use of Mr. Chang and his designated representatives, for the specific application to the project purpose.

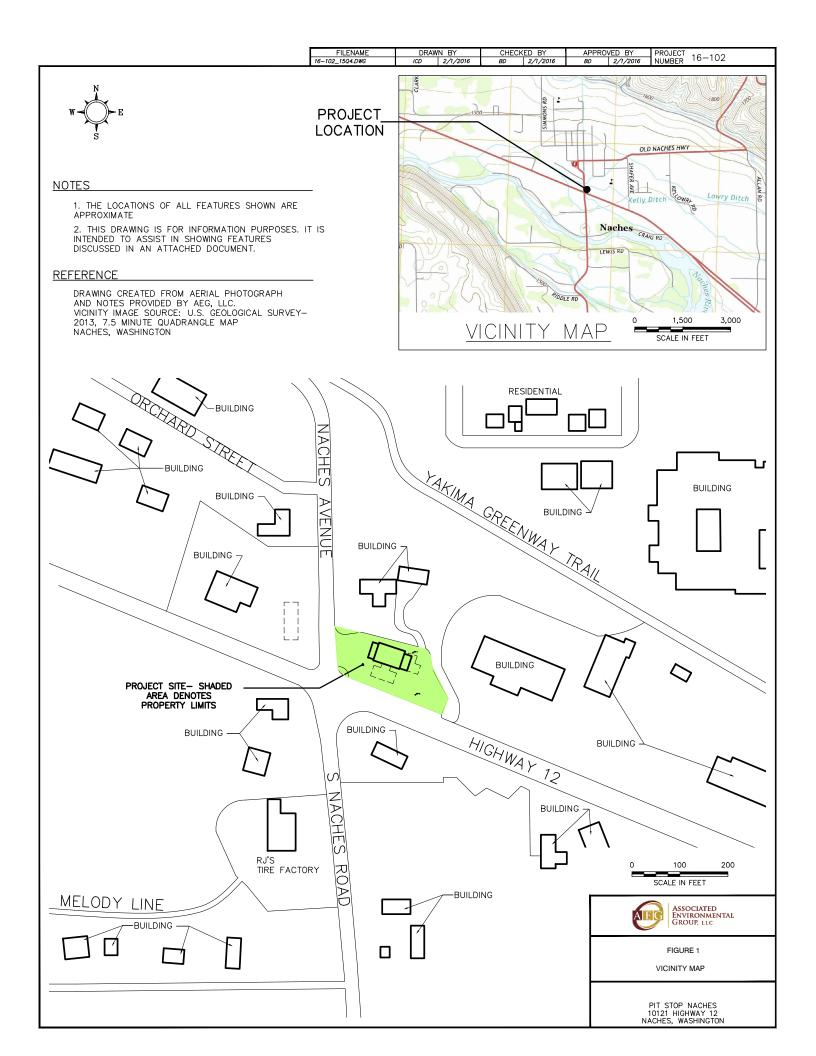
Recommendations, opinions, Site history, and proposed actions contained in this report apply to conditions and information available at the time this report was completed. Since conditions and regulations beyond our control can change at any time after completion of this report, or our proposed work, we are not responsible for any impacts of any changes in conditions, standards, practices, and/or regulations subsequent to our performance of services. We cannot warrant or validate the accuracy of information supplied by others, in whole or part.

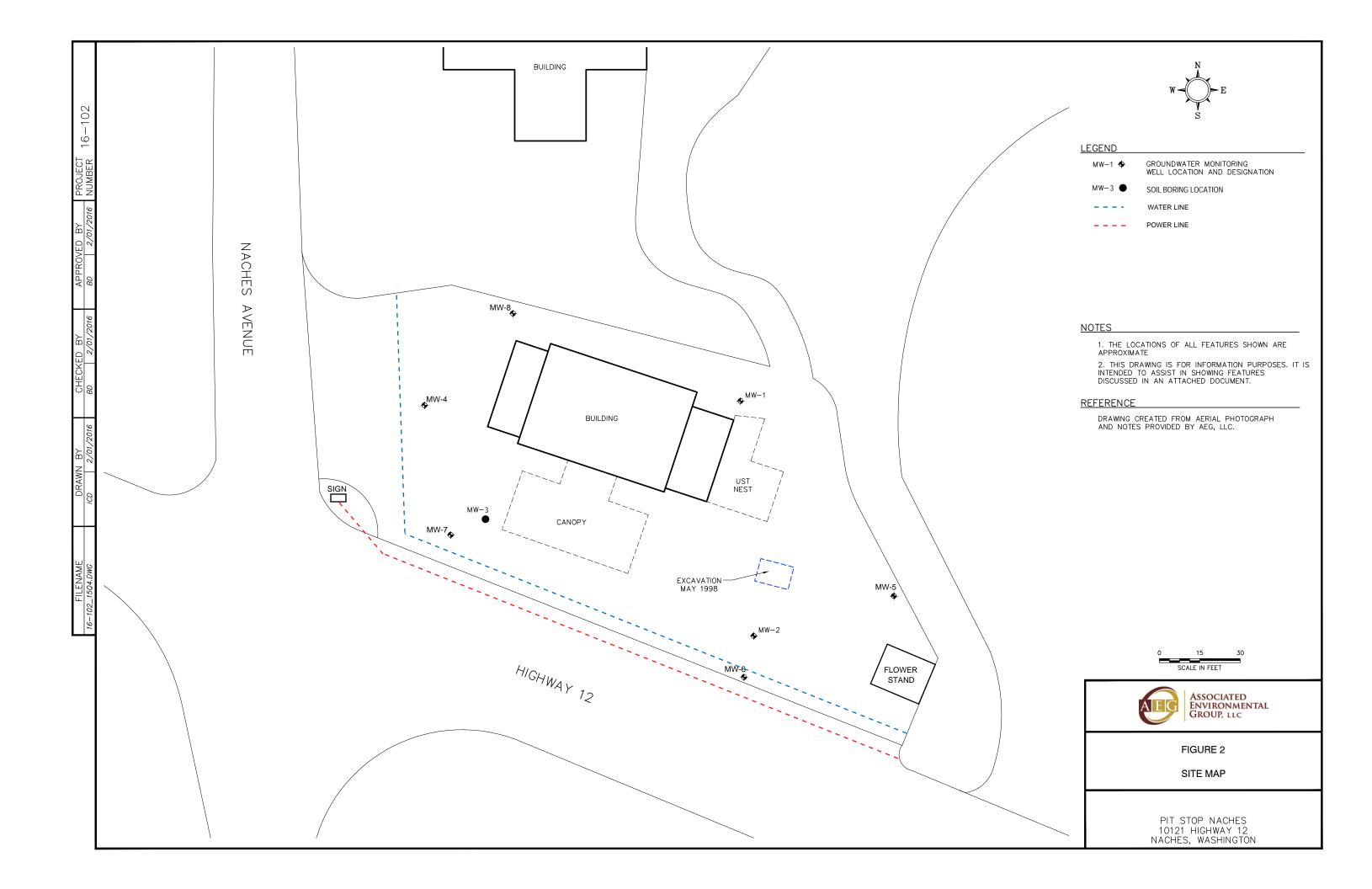
7.0 REFERENCES

American Society for Testing and Materials (ASTM) Standard E 1903-97. Standard Guide Environmental Site Assessments: Phase II Environmental Site Assessment Process.

Associated Environmental Group, LLC. 2016. *Phase II Environmental Site Assessment*, dated March 4, 2016.

Northwest Envirocon, Inc. 1998. Limited Site Cleanup at the BP-Pit Stop, Naches, Washington, dated June 20, 1998.


US EPA Method 5035A. *Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples*.


Washington State Department of Ecology, 2004, *Collecting and Preparing Soil Samples for VOC Analysis*, Implementation Memorandum #5.

Washington State Department of Ecology, 2007, *Model Toxic Control Act Statute and Regulation* – *Chapter 173-340 WAC*, Publication number 94-06 (Revised November 2007).

White Shield, Inc. 1991. Exploratory Investigation for Petroleum Contaminants at the Pit Stop, Naches, WA, dated July 3, 1991.

FIGURES

TABLES

Table 1 - Summary of Soil Analytical Results

Naches Pit Stop Naches, Washington

Sample Number		Date Collected	Vol	latile Organic	Compounds (mg	/kg)	Total Petroleur	m Hydrocarbons (ΓPH) (mg/kg)	Lead	EDC	EDB	Total Naphthalenes	MTBE
Sample Number	Depth Collected (feet)	Date Collected	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Diesel	Heavy Oil	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW1-13	13.0	1/21/2016	< 0.02	< 0.05	< 0.05	< 0.15	<10	< 50	<100	-				-
MW1-15	15.0	1/21/2016	< 0.02	< 0.05	< 0.05	< 0.15	<10	< 50	<100			-	-	
MW2-8	8.0	1/21/2016	< 0.02	< 0.05	< 0.05	< 0.15	<10	< 50	<100				-	
MW2-13	13.0	1/21/2016	< 0.02	< 0.05	< 0.05	< 0.15	<10	1,400	<100			-	-	
MW2-15	15.0	1/21/2016	< 0.02	< 0.05	< 0.05	< 0.15	<10	< 50	<100		-	-	-	-
MW3-10	10.0	1/21/2016	< 0.02	< 0.05	< 0.05	< 0.15	<10	< 50	<100				-	
MW4-5	5.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250	< 5.0	< 0.03	< 0.005	< 0.10	< 0.05
MW4-10	10.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250	< 5.0	< 0.03	< 0.005	< 0.10	< 0.05
MW5-5	5.0	5/23/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	<50	<250					
MW5-10	10.0	5/23/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250			-	-	
MW6-5	5.0	5/23/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250			-	-	-
MW6-10	10.0	5/23/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250			-	-	
MW7-5a	5.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250	< 5.0	< 0.03	< 0.005	< 0.10	< 0.05
MW7-6	6.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250	< 5.0	< 0.03	< 0.005	< 0.10	< 0.05
MW7-10	10.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	<50	<250	< 5.0	< 0.03	< 0.005	< 0.10	< 0.05
MW8-5	5.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250			-	-	
MW8-10	10.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	< 50	<250					
MW8-15	15.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	<50	<250			1	-	
MW8-20	20.0	5/24/2016	< 0.02	< 0.10	< 0.05	< 0.15	<10	<50	<250	-		-		-
	PQL (mg/kg)		0.02	0.05 / 0.10	0.05	0.15	10	50	100	5.0	0.03	0.005	0.10	0.05
MTCA Metho	d A Cleanup Lev	els (mg/kg)	0.03	7	6	9	100*	2,000	2,000	250	11**	0.005	5.0	0.1

Notes:

mg/kg = milligrams per kilogram

-- = Not analyzed for constituent

< = Not detected at the listed laboratory detection limits

EDC = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

 $MTBE = Methyl \ tert-butyl \ ether$

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

* TPH-Gasoline cleanup level with no presence of Benzene anywhere at the Site

** No MTCA Method A cleanup level established, Method B cleanup level used

Table 2 - Summary of Groundwater Analytical Results

Naches Pit Stop Naches, Washington

Committee Name	Date Collected	V	olatile Orgar	nic Compounds (ug/l)	Total Petroleun	Hydrocarbons	(TPH) (μg/l)	Lead	Cadmium	Chromium	Arsenic	Mercury	EDC	EDB	Total	MTBE
Sample Number	Date Collected	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Diesel	Heavy Oil	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	Naphthalenes (µg/l)	(µg/l)
MW-1	5/27/2016	<1.0	<2.0	<1.0	<2.0	<100	<200	<400									
	1/21/2016	<1.0	<1.0	<1.0	<3.0	3,000	61,000	<500									
MW-2	5/27/2016	<1.0	<2.0	<1.0	<2.0	<100	<200	<400									
MW-4	5/27/2016	<1.0	<1.0	<1.0	<2.0	<100	<200	<400	84	< 0.5	< 5.0	< 3.0	< 0.5	<1.0	< 0.01	< 5.0	< 5.0
IVI VV																	
MW-5	5/27/2016	<1.0	<2.0	<1.0	<2.0	<100	<200	<400									
IVI VV - 3																	
MW-6	5/27/2016	<1.0	<2.0	<1.0	<2.0	<100	< 200	<400									
IVI W -O																	
MW-7	5/27/2016	<1.0	<2.0	<1.0	<2.0	<100	<200	<400	102	< 0.5	< 5.0	< 3.0	< 0.5	<1.0	< 0.01	< 5.0	< 5.0
IVI W - /																	
NAMA O	5/27/2016	<1.0	<2.0	<1.0	<2.0	<100	<200	<400									
MW-8																	
PÇ	L (μg/l)	1.0	1.0 / 2.0	1.0	2.0 / 3.0	100	200	400	5.0	0.5	5.0	3.0	0.5	1.0	0.01	5.0	5.0
MTCA Method A	Cleanup Levels (µg/l)	5.0	1,000	700	1,000	1000*	500	500	15	2	19	20	2	5	0.01	160	20

Notes:

 $\mu g/L = micrograms \ per \ liter$

-- = Not analyzed for constituent

< = Not detected at the listed laboratory detection limits

EDC = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

 $MTBE = Methyl\ tert-butyl\ ether$

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

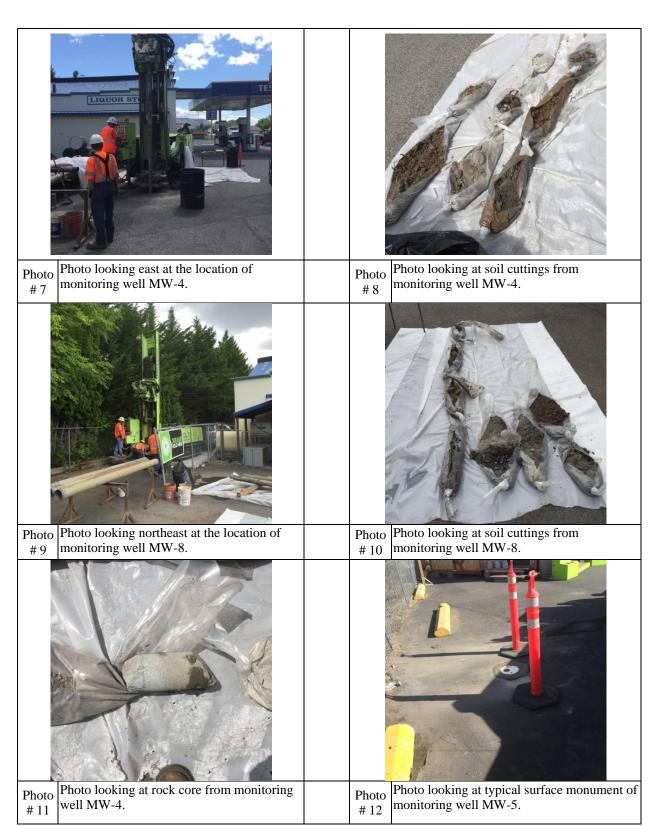
Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

* TPH-Gasoline Cleanup Level with no presence of Benzene anywhere at the Site

APPENDIX A

Site Photographs

PROPERTY AND VICINITY PHOTOGRAPHIC RECORD


Project No.: 16-102 Project Name: Naches Pit Stop, Naches, Washington

PROPERTY AND VICINITY PHOTOGRAPHIC RECORD

Project No.: 16-102 Project Name: Naches Pit Stop, Naches, Washington

APPENDIX B

Supporting Documents

Boring Logs

Laboratory Datasheets

PROJ	ECT: Naches Pit Stop			JOB#	16-102	Monitor	ing Well #	MW-4		PAGE 1 OF 1
Locat	ion: 10121 Highway 12, Naches, WA			Approx	ximate Elev	vation: 146	1 feet above	mean s	ea levei	1
Subc	ontractor / Driller: Holt / Pete			Equipr	ment / Drilli	ing Method	l: Sonic Drillii	ng Rig		
Date	: May 24, 2016			Logge	d By:	Nicolas Pu	shckor			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	3 inch asphalt surface underlain by;						N/A		None	
	Brown, moist, medium dense, <u>SILTY SAND</u> ; fine grained sand	sw	1				14// (None	× ×
			2							
			3							~~
5	At 4 feet; Gray, dry, very dense, GRAVEL ; coarse grained gravel	GP	5		MW4-5	11:16		1.3		
			6							
			7							
			8							
			9							
10			10		MW4-10	11:36		7.9		
		\bigvee	11	. (
	At 11 feet; Wet		12	\otimes						
			13							
			14							
15			15		MW4-15	11:44		0.6		
			16							
			17							
			18							
			19							
20			20		MW4-20	11:44		0.9		
	Total Depth = 20 feet									
25										
	<u>Explanation</u>	Monito	ring W	ell Con	struction				Ecology BJX 333	
	Sample Advance / Recovery		Grout/C	oncrete	e					
	No Recovery	※	3/4-inch	bento	nite chips					
			Silica s							
	– – - Contact located approximately		2-inch c	liamete	r blank PV0	casing fro	m			
	Groundwater level at time of drilling or date of measurement		2-inch c	liamete	r PVC 0.01	slotted scr	een			

PROJ	ECT: Naches Pit Stop			JOB#	16-102	Monitor	ing Well #	MW-5		PAGE 1 OF 1
Locat	ion: 10121 Highway 12, Naches, WA			Appro	ximate Elev	vation: 146	1 feet above	mean s	ea leve	
Subc	ontractor / Driller: Holt / Pete			Equip	ment / Drilli	ing Method	d: Sonic Drilli	ng Rig		
Date	: May 23, 2016			Logge	d By:	Nicolas Pu	ıshckor			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	3 inch asphalt surface underlain by; Brown, moist, medium dense, <u>SILTY SAND</u> ; fine grained sand	sw	1	1			N/A		None	
	At 2 feet; Gray, dry, very dense, <u>GRAVEL</u> ; coarse grained gravel	GP	3	3						
5				5	MW5-5	11:13		0.0		
			\$	3						
10	At 11 feet; Wet		11	1	MW5-10	11:22		0.0		
			13							
15			16	7	MW5-16	11:28		5.0		
20			18	9						
-	Total Depth = 20 feet	,	. 1							65000 0
25										
	<u>Explanation</u>	Monito	ring W	/ell Con	<u>struction</u>				Ecology BJX 33	
	Sample Advance / Recovery		Grout/0	Concrete	е					
	No Recovery	***	3/4-inc	h bento	nite chips					
	9	WWW.	Silica							
	– – - Contact located approximately		2-inch	diamete	r blank PV0	casing fro	m			
	Groundwater level at time of drilling AT or date of measurement		2-inch	diamete	r PVC 0.01	slotted scr	reen			

PROJ	ECT: Naches Pit Stop			JOB#	16-102	Monitor	ing Well #	<i>MW-</i> 6		PAGE 1 OF 1
Locat	ion: 10121 Highway 12, Naches, WA			Approx	kimate Elev	vation: 146	1 feet above	mean s	ea leve	
Subc	ontractor / Driller: Holt / Pete			Equipr	nent / Drilli	ing Method	l: Sonic Drilli	ng Rig		
Date	: May 23, 2016			Logge	d By:	Nicolas Pu	shckor			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	3 inch asphalt surface underlain by; Brown, moist, medium dense, <u>SILTY SAND</u> ; fine grained sand	SW	1				N/A		None	× × ×
	At 2 feet; Gray, dry, very dense, GRAVEL ; coarse grained gravel	GP	3							
5			5		MW6-5	13:53		1.3		
			7							
10			9		MW6-10	13:57		0.8		
			11 12	⊗-						
15	At 15 feet; Wet		14		MW6-15	14:03		1.2		
20	From 18 to 19 feet; Discolored gray soil		18		MW6-19	14:03		0.4		
	Total Depth = 20 feet	1	20			ı		1	I.	122214
25										
	<u>Explanation</u>	Monito	ring W	ell Con	<u>struction</u>				Ecology BJX 33	Tag #
	Sample Advance / Recovery	_	Grout/C	Concrete	.					
	No Recovery	***	3/4-incl	h bentor	nite chips					
	NO Recovery		Silica s	sand						
	– – - Contact located approximately		2-inch d	diamete	r blank PVC	casing fro	m			
	Groundwater level at time of drilling or date of measurement		2-inch	diamete	r PVC 0.01	slotted scr	een			

PROJ	ECT: Naches Pit Stop			JOB#	16-102	Monitor	ing Well #	MW-7		PAGE 1 OF 1
Locat	ion: 10121 Highway 12, Naches, WA			Approx	kimate Elev	ation: 146	1 feet above	mean s	ea leve	
Subc	ontractor / Driller: Holt / Pete			Equipr	nent / Drilli	ng Method	l: Sonic Drillii	ng Rig	-	
Date	: May 24, 2016			Logge	d By:	Nicolas Pu	shckor			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	3 inch asphalt surface underlain by; Brown, moist, medium dense, <u>SILTY SAND</u> ; fine grained sand	SW	2 3				N/A		None	
5	At 4 feet; Gray, dry, very dense, GRAVEL ; coarse grained gravel	GP	5		MW7-5a MW7-6	8:24 8:50		139 71.4		
10			10 11 12 13	⊗ -	MW7-10	9:02		44.7		
15	At 15 feet; Wet		14 15 16 17		MW7-15	9:10		2.7		
20	Total Depth = 20 feet		19		MW7-20	9:10		7.5		
25					Concrete w	as encount	ered at 5 fee	t bgs, bo	oring mo	oved to the east
	<u>Explanation</u>	Monito	ring W	ell Con	struction				Ecology	Tag#
	Sample Advance / Recovery No Recovery Contact located approximately		Grout/0 3/4-incl Silica s 2-inch 0	Concrete h bentor sand diamete					BJX 332	2
	Groundwater level at time of drilling AT or date of measurement									

PROJ	ECT: Naches Pit Stop			JOB#	16-102	Monitor	ing Well #	MW-8		PAGE 1 OF 1
Locat	ion: 10121 Highway 12, Naches, WA			Approx	ximate Elev	ation: 146	1 feet above	mean s	ea level	
Subc	ontractor / Driller: Holt / Pete			Equipr	ment / Drilli	ng Method	l: Sonic Drillii	ng Rig		
Date	: May 24, 2016			Logge	d By:	Nicolas Pu	shckor			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	3 inch asphalt surface underlain by; Brown, moist, medium dense, <u>SILTY SAND</u> ; fine grained sand	SW	3				N/A		None	
5	At 5 feet; Gray, dry, very dense, <u>GRAVEL</u> ; coarse grained gravel	GP	5 6 7		MW8-5	13:07		3.2		
10	At 10.5 feet; Wet	 	10		MW8-10	13:15		20.2		
15			12 13 14 15 16 17 18		MW8-15	13:30		30.4		
20					MW8-20	13:30		4.9		
25	Total Depth = 20 feet								Eoole T	, Tog #
	<u>Explanation</u>	Monito	oring W	'ell Con	<u>struction</u>				Ecology BJX 334	1 ag # 1
	Sample Advance / Recovery No Recovery Contact located approximately		3/4-incl Silica s 2-inch	sand diamete	nite chips r blank PVC	_				
	Groundwater level at time of drilling AT or date of measurement		∠-incn (uiamete	r PVC 0.01	SIOTIEG SC	een			

4139 Libby Road NE • Olympia, WA 98506-2518

June 6, 2016

Michael Chun Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Mr. Chun:

Please find enclosed the analytical data report for the Naches Pit Stop Project located in Naches, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	6/2/16	nd	nd	nd	nd	nd	98
LCS	6/2/16	115%	114%				90
MW5-5	6/2/16	nd	nd	nd	nd	nd	67
MW5-10	6/2/16	nd	nd	nd	nd	nd	76
MW6-5	6/2/16	nd	nd	nd	nd	nd	74
MW6-10	6/2/16	nd	nd	nd	nd	nd	74
MW6-10 Dup	6/2/16	nd	nd	nd	nd	nd	79
MW8-5	6/2/16	nd	nd	nd	nd	nd	75
MW8-10	6/2/16	nd	nd	nd	nd	nd	75
MW8-10 Dup	6/2/16	nd	nd	nd	nd	nd	99
MW8-15	6/2/16	nd	nd	nd	nd	nd	75
MW8-20	6/2/16	nd	nd	nd	nd	nd	73
MW7-6 MS	6/2/16	96%	82%				77
MW7-6 MSD	6/2/16	93%	83%				73
Practical Quantitation Li	imit	0.02	0.10	0.05	0.15	10	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Specific Halogenated and Aromatic Hydrocarbons by EPA 8260C in Soil

Sample Description		Method	MW7-5a	MW7-6	MW7-10	MW4-5	MW4-10
Sample Description		Blank	W V 7-3a	IVI VV 7-0	WI WV 7-10	IVI VV 4-J	WI W 4-10
Date Sampled		N/A	5/23/16	5/23/16	5/23/16	5/23/16	5/23/16
Date Analyzed	PQL	6/2/16	6/2/16	6/2/16	6/2/16	6/2/16	6/2/16
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Total Naphthalenes	0.10	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		126	96	101	97	96	104
1,2-Dichloroethane-d4		120	102	110	103	105	119
Toluene-d8		98	72	72	95	98	66
4-Bromofluorobenzene		67	107	114	104	96	88

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@aol.com

QA/QC Data - EPA 8260C Analyses

		Sample Idea	ntification:	MW7-6			
		Matrix Spik	e	Matri	x Spike Duj	plicate	RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	
Benzene Toluene	0.5 0.5	0.48 0.41	96 82	0.5 0.5	0.46 0.42	92 84	4.3 2.4
Surrogate Recovery							
Dibromofluoromethane			102			96	
1,2-Dichloroethane-d4			106			101	
Toluene-d8			77			73	
4-Bromofluorobenzene				93			

	Laboratory Control Sample		
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
Benzene Toluene	0.5 0.5	0.57 0.57	114 114
Surrogate Recovery			
Dibromofluoromethane			115
1,2-Dichloroethane-d4			107
Toluene-d8			90
4-Bromofluorobenzene			74

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110

FAX: (360) 352-4154

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102

Analyses of Gasoline (NWTPH-Gx) in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	6/2/16	98	nd
MW7-5a	6/2/16	72	nd
MW7-6	6/2/16	72	nd
MW7-10	6/2/16	95	nd
MW4-5	6/2/16	98	nd
MW4-10	6/2/16	66	nd
Practical Quantitation Limit			10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

Olympia, WA 98506

Phone: (360) 352-2110

FAX: (360) 352-4154

Email: libbyenv@aol.com

4139 Libby Road NE

AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102

NACHES PIT STOP PROJECT

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	5/31/16	100	nd	nd
Method Blank	6/1/16	108	nd	nd
MW5-5	5/31/16	113	nd	nd
MW5-10	5/31/16	120	nd	nd
MW6-5	5/31/16	106	nd	nd
MW6-10	5/31/16	122	nd	nd
MW7-5a	5/31/16	99	nd	nd
MW7-6	5/31/16	114	nd	nd
MW7-10	5/31/16	104	nd	nd
MW4-5	5/31/16	118	nd	nd
MW4-10	5/31/16	104	nd	nd
MW8-5	5/31/16	118	nd	nd
MW8-5 Dup	5/31/16	115	nd	nd
MW8-10	5/31/16	96	nd	nd
MW8-15	6/1/16	111	nd	nd
MW8-20	6/1/16	103	nd	nd
MW8-20 Dup	6/1/16	102	nd	nd
Practical Quantitation Limit			50	250

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Maria Friedrich

[&]quot;int" Indicates that interference prevents determination.

Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

4139 Libby Road NE

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102

Analyses of Total Lead in Soil by EPA Method 7010 Series

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	6/5/16	nd
MW7-5a	6/5/16	nd
MW7-6	6/5/16	nd
MW7-10	6/5/16	nd
MW4-5	6/5/16	nd
MW4-10	6/5/16	nd
MW4-10 Dup	6/5/16	nd
Practical Quantitation Limit		5.0

[&]quot;nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110

FAX: (360) 352-4154 Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-2 Client Project # 16-102

QA/QC for Lead in Soil by EPA Method 7010 Series

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	6/5/16	103%
MW4-10 MS	6/5/16	89%
MW4-10 MSD	6/5/16	84%
RPD	6/5/16	7%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

Libby Environm	ental,	Inc.		CI	nain (of C	usto	dy R	ecor	ď						www.LibbyE	nvironr	nental.com
4139 Libby Road NE		360-352-2				Det		5	- 2-	7-10	ρ				-	-4	_	7
Olympia, WA 98506	rax:	360-352-4	154			Date			-	Re	-	2.10	Pag	e:	- 1	of		
Address: 605 11+1	1 1.	2 SE	5 4	201			ect Man ect Nan					mr	5901					7
City: Olympia	29 VE	State:	1/A 7in	: 9850	2/				Hu				City	Stat	/	Vaches,	111	1
Phone: 360 352	9 42=	State.	2405	357 OK	1.1		ector:	Mila	- Pu	YP	1/2-	6	O Det	, Stat	e.	tion: 5/25	> =	1711
Client Project # 16-1	02	Tax.		32010	7	Ema		MANIE	shck	nu m	2) 1	CO	Date	9 01 0	Ollec M	1 1	77	27
				1		ЕШ	7 /	mpu.	JVK.K	7	1		va	100	7		_	-
Sample Number	Depth	Time	Sample Type	Container Type	1007	SO RH	5 / 5° / 1° / 1° / 1° / 1° / 1° / 1° / 1		TRIPAN REPLACE	\$ 10 10 \$ 10 10	10 00 00 00 00 00 00 00 00 00 00 00 00 0	10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /		DD Notal		Field N		
1 MW5-5	5	1113	soil	VOA/JAR		$\langle \times \rangle$		\ X									5/2	13
2 MW5-10	10	1122			119	1		\perp		\perp		_				1		
3 MW5-16	10	1128			11	112		$\perp \perp$				\perp				hold		١
4 MW6-5	5	1353				+	\vdash	\dashv			_	_					\dashv	
5 MW6-10	10	1357	<u> </u>	<u> </u>	<u> </u>	H		+		+		-	_	_	h _w	a 11	\rightarrow	
6 MW6-15	15	1403		1	\vdash	H		+	_	+	_	+	_	_		hold	\rightarrow	
7 MWB-19	19	1403				HH		+		\perp	-	+	-			hold		-
8 MW7-5a	5	324				H		+		+	-	+	×	X	X	5/24	/	
9 MW7-6	6	250			\vdash	H		+			_	_	1	\perp				
10 MW7-10	10	902				\mathbb{H}		+ H				\perp	$\perp \downarrow$	\perp		1		
11 MW7-15	15	910				HT		$\perp \downarrow \downarrow$			_		\perp	\Box		hold		
12 MW7-20	20	910				+		\perp								hold	<u> </u>	
13 MW4-5	5	1116				11		\perp				1						
14 MWH-10	10	1/36				$I \cup I$		$\perp \perp$										
15 MW4-15	15	1144				\coprod										hold		
16 MW4-20	20	1144														hold -	/	1
17		. ,	1															
Relinquished by:		/ Time		Received by:	10		da - 11		Time		Sam	ole R	eceipt	:	Rem	arks:		
M PM 5/27	()	104	li	nery	May	- 51	127/1		HOH	Good	Condit	on?	0	N				
Relinquished by:	Date	/ Time		Received by:				Date	/ Time	Temp			-3	°C				
Relinquished by:	Date	/ Time		Received by:				Date	/ Time		Intact?	-		N/A	-			
Tromiquionou by.	Date	, , , , , , , , , , , , , , , , , , , ,		1.000ivod by.				Date	111116		Numbe ntainer		60		TA	Γ: 24HR	48HR	5-DAY)
LEGAL ACTION CLAUSE: In the event of default of pa	ayment and/or failu	ure to pay, Client ag	rees to pay the costs	s of collection including cour	t costs and reas	onable attorn	ey fees to be de	termined by a	cout of law.					Di		n: White - Lab. Ye		

Libby Environi	mental,	Inc.		Ch	nain	of (Cus	tod	y R	eco	rd								www.Li	bbyEnv	ironmer	ntal.com
4139 Libby Road NE		360-352-2				De	ate:		5	- 2	7.	-10	2			Dog		1	7	of	5	
Olympia, WA 98506.	Fax:	360-352-4	1154												1	Page				OI	-	
Client: Ath	1 / - <	1- 2	21	-20/			oject l				I	e 1	-M	<u>U.I.</u>		, ,						
- 1	Ave :		uite.	00 -	a T	Pr	oject l	Name	1-1	Vac	ne	25	Pe	9								
City: Olympia	00	State: 1	ZA Zip	: 9852		Lo	cation	1:10	121	P	wy	1/2		,		City,	Stat	e://	ach	95,1	VA	
Phone: 360 352	4835	Fax:	360	352 2	164	Co	llecto	r: 1	11:00	das	<u> </u>	tu	s/K	KO		Date	of C	ollec	tion:	124		
Client Project # 16.	-10Z					En	nail:	_11	pu	shek	ec	3/6	Da	egi	ia	CO	on	1				
Sample Number	Depth	Time	Sample Type	Container Type	10,	8260/20	X (1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0/10/10/10/10/10/10/10/10/10/10/10/10/10	100	10/2000 NOTES	A Sue	18 18 N	ie idis		Fi	eld Not	es	
1 MW8-5	5	1307	501)	VOA/JAR	l '	$\times >$	5		X													
2 MW8-10	10	1315							/													
3 MW8-15	15	1330				\Box																
4 MW3-20	20	1330				1				1												
5																						
6																						
7																						
8																						
9																						
10																						
11																						
12																						
13						\top																
14						\top																
15																						
16					\top		1							\neg								
17					\vdash																	
Relinquished by:	Date	/ Time		Received by:	1				Date	/ Time			Sam	ple	Rec	eipt		Rem	arks:			
un im 5	127 1	104	24	wder r	lez	5	727	116	U	404	(Good	Condi	tion?	1	0	N					
Relinquished by:	Date	e / Time		Received by:					Date	/ Time		Temp			THE RESERVE OF THE PERSON NAMED IN	-3	°C					
		,		D					D	/ T:		Seals			0	N	N/A					
Relinquished by:	Date	e / Time		Received by:					Date	/ Time		Total Co	Numb ntaine			60) ⁽²)	TA	Γ· 24	HR 4	8HR	5-DAY
LEGAL ACTION CLAUSE: In the event of default	of payment and/or failu	ure to pay, Client ag	grees to pay the costs	s of collection including court	costs and rea	asonable att	orney fees t	o be deterr	nined by a	cout of law.							-			Lab, Yellov		- Originato

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3B

Client Project # 16-102

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample	Date	Cadmium	Chromium	Arsenic
Number	Analyzed	μg/L	μg/L	μg/L
Method Blank	6/21/16	nd	nd	nd
MW-4	6/21/16	nd	nd	nd
MW-8	6/21/16	nd	nd	nd
MW-8 Dup	6/21/16	nd	nd	nd
Practical Quantitation	n Limit	0.5	5.0	3.0

[&]quot;nd" Indicates not detected at the listed detection limits.

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110

FAX: (360) 352-2110

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3B Client Project # 16-102

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)
LCS	6/21/16	110%	115%	112%
MW-8 MS	6/21/16	105%	107%	91%
MW-8 MSD	6/21/16	100%	97%	88%
RPD	6/21/16	5%	10%	3%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

4139 Libby Road NE

Olympia, WA 98506

Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington

Libby Project # L160527-3B Client Project # 16-102

Analyses of Total Mercury in Water by EPA Method 7470.

Date	Mercury
Analyzed	μg/L
6/21/16	nd
	0.5
	Analyzed 6/21/16 6/21/16 6/21/16

"nd" Indicates not detected at the listed detection limits.

NACHES PIT STOP PROJECT

AEG, LLC

Naches, Washington

Libby Project # L160527-3B

Client Project # 16-102

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@aol.com

QA/QC for Mercury by EPA Method 7470

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	6/21/16	102%
MW-8 MS	6/21/16	93%
MW-8 MSD	6/21/16	107%
RPD	6/21/16	14%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% · ACCEPTABLE RPD IS 20%

Libby Environme	ental, Inc.		Cha	ain o	of Custody Record							www.LibbyEnvironmental.com				
4139 Libby Road NE	Ph: 360-35				Doto	51	27/	11			D-			1		1
Olympia, WA 98506	Fax: 360-35	2-4154			Date: _	3/	2//	10			Pa	ge:		_ l	of	ŧ
Client: AEG	<u> </u>	1)	2.41		Project	Manage	er: Mil	<u>ke</u>	CHU	n –						
	ve SE, Si	rite 2	01				Nach						· ·	7/	,	/
City: Olympia, Mo	State:	WAZI	p: 93501	7	Location		21 Hig								nes,	
Phone: 360352 (4835 Fax	360	352 8K	<u>54</u>	Collecto	or: N	icolas	, H	ushc	20	√ Da	ite of	Colle	ction:	5/2	7/K
Client Project # 16-k	07				Email:	np	ushck.	OY	@ac	2gu	10.6	201	<u> </u>	- X1	\	
Sample Number	Depth Time	Sample Type	Container Type	10 x		ST LY	2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	10 t / 10	20 10 10 10 10 10 10 10 10 10 10 10 10 10	20 80 M	A REST			TO F	ield Note	s
1 MW-1	- 601			X	X		Z (Ť	ĺ			
2 MW-5	— 652		1	×	×		\times									
3 MW-2	- 715			×	×		\times									
4 NW-6	- 80			X	X		X									
5 MW-7			Ver4/Amber/13/	/ ×	×	1	Z			\otimes	×	(5<	X	*	Total	
6 MW-4	- 842 - 931		7 7 7	X	×	,	\times			X	×		X	A	s.cd.	Cr, Hy
7 MW-8	- 1017	2 1	VOA/Amber	X	X	1	\times								, ,	7,113
8		·												(0-)	4-16	
9														Adde	d As	Cd, Cr. Ha
10														Der/	Vicolas	via email.
11														1	TD	,
12																
13	i															
14																
15																
16																
17																
17 Relinquished by: MM PM 5/:	Date / Time	٠	Received by:		- 1		ate / Time		San	nple	Recei	ot	Ren	narks:		
MM PM 3/	/ 1-	M	vay way		5/27		1404	(Good Cond	lition?		N				
Relinquished by:	Date / Time		Received by:				ate / Time		Temp.			3 °C	-			
Relinquished by:	Date / Time		Received by:			Г	ate / Time		Seals Intac		(Y) N	N/A	-			and the same of th
rtemiquianed by.	Date / Time		. toodirod by.						Total Numl Contain		30)	TA	T: 24	HR 481	HR 5-DAY
LEGAL ACTION CLAUSE. In the event of default of pa	yment and/or failure to pay, Che	nt agrees to pay the cos	ts of collection including court co	sts and reasonal	de attorney fees	to be determine	ed by a court of law					٢			Lab. Yellow -	

4139 Libby Road NE • Olympia, WA 98506-2518

June 7, 2016

Michael Chun Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Mr. Chun:

Please find enclosed the analytical data report for the Naches Pit Stop Project located in Naches, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Water

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	Recovery (%)
Method Blank	5/31/16	nd	nd	nd	nd	nd	107
LCS	5/31/16	102%	116%				107
MW-1	5/31/16	nd	nd	nd	nd	nd	102
MW-5	5/31/16	nd	nd	nd	nd	nd	99
MW-2	5/31/16	nd	nd	nd	nd	nd	100
MW-6	5/31/16	nd	nd	nd	nd	nd	100
MW-8	5/31/16	nd	nd	nd	nd	nd	100
L160527-4 MS	5/31/16	92%	103%				119
L160527-4 MSD	5/31/16	93%	105%				132
Practical Quantitation Li	mit	1.0	2.0	1.0	2.0	100	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110

FAX: (360) 352-4154

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/l)$
Method Blank	5/31/16	107	nd
MW-7	5/31/16	100	nd
MW-4	5/31/16	101	nd
Practical Quantitation Limit			100

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Specific Halogenated and Aromatic Hydrocarbons by EPA 8260C in Water

Sample Description		Method	MW-7	MW-4	
		Blank			
Date Sampled		N/A	5/27/16	5/27/16	
Date Analyzed	PQL	5/31/16	5/31/16	5/31/16	
	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	
Benzene	1.0	nd	nd	nd	
Toluene	1.0	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	
Total Xylenes	2.0	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	
Total Naphthalenes	5.0	nd	nd	nd	
Methyl tert- Butyl Ether (MTBE)	5.0	nd	nd	nd	
Surrogate Recovery					
Dibromofluoromethane		109	91	92	
1,2-Dichloroethane-d4		97	95	99	
Toluene-d8		107	100	101	
4-Bromofluorobenzene		104	101	101	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@aol.com

QA/QC Data - EPA 8260C Analyses

		Sample Idea	ntification:	L160527-:	3				
		Matrix Spik	e	M	atrix Spike I	pike Dup			
	Spiked Conc. (µg/l)	Measured Conc. (μg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (μg/l)	Spike Recovery (%)			
Benzene Toluene	10 10	9.2 10.3	92 103	10 10	9.3 10.5	93 105	0.3 1.4		
Surrogate Recovery									
Dibromofluoromethane			125			127			
1,2-Dichloroethane-d4			129			134			
Toluene-d8			119			132			
4-Bromofluorobenzene			101			104			

	Laboratory Control Sample								
	Spiked Conc. (µg/l)	Measured Conc. (μg/l)	d Spike Recovery (%)						
Benzene Toluene	10 10	10.2 11.6	102 116						
Surrogate Recovery									
Dibromofluoromethane			109						
1,2-Dichloroethane-d4			127						
Toluene-d8			107						
4-Bromofluorobenzene			102						

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/l)$	$(\mu g/l)$
Method Blank	6/1/16	100	nd	nd
MW-1	6/1/16	97	nd	nd
MW-5	6/1/16	93	nd	nd
MW-2	6/1/16	83	nd	nd
MW-6	6/1/16	95	nd	nd
MW-7	6/1/16	103	nd	nd
MW-4	6/1/16	97	nd	nd
MW-8	6/1/16	100	nd	nd
MW-8 Dup	6/1/16	95	nd	nd
Practical Quantitation Limit			200	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110

FAX: (360) 352-4154 Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102

Analyses of Total Lead in Water by EPA 7010 Series

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	5/28/16	nd
MW-7	5/28/16	102
MW-4	5/28/16	84
Practical Quantitation Limit		5.0

[&]quot;nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson

4139 Libby Road NE Olympia, WA 98506

Phone: (360) 352-2110

FAX: (360) 352-4154

Email: libbyenv@aol.com

NACHES PIT STOP PROJECT AEG, LLC Naches, Washington Libby Project # L160527-3 Client Project # 16-102

QA/QC for Lead in Water by EPA 7010 Series

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	5/28/16	115%
L160524-1 MS	5/28/16	83%
L160524-1 MSD	5/28/16	88%
RPD	5/28/16	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

Libby Environm	nain o	of Custody Record							www.LibbyEnvironmental.com								
4139 Libby Road NE Olympia, WA 98506)-352-2110)-352-4154			Date:	5/	27/	1/			-	Page:		1	O ¹	F	1
Client: AEG	1 dx. 500	7-552-4154			Date.	Manage		1/1	2 Ch.	. 10		ago.					
Client. / Culth	1 5	(120	701		Project	Manage	1/2	1.	D	2/- <	d		,				
Address: 605 11th	THE DE	Suite	20/01		Project	Name:	Nac	ne	5 P	40	101				, , -		, ,
City: Olympia, M	Sta	ate: WA	Zip: 98501	1/11		n: 1012									ches		
Phone: 360352		ax: 36	9 352 8	64	Collecte	or: N	colas	5 1	rusho	cko	1	Date of	f Colle	ection	1: 5/	27	K
Client Project # 16-1	0Z				Email:	npo	ishck	10	na a	egu	va.	60	m		0X		
Sample Number	Depth T	Samp		10/4				WH 82	10/10/10/11/10/11/10/11/10/11/10/11/10/11/10/11/10/11/10/11/10/11/11	25 N. 10 10 10 10 10 10 10 10 10 10 10 10 10	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		BIE	A CO	Field N	Notes	
1 MW-1		Ol wate		· ×	X		7										
2 MW-5		52 /		X	×		Z						\top			4	
3 MW-2		15		×	X		X						\top				
4 MW-6		2	 	T/X	X							\top	\top	\top		- 6	
5 MW-7	- 94	12	VoA/Amber/Pa	// ×	×		2				3	X >	< ×		* 4		
6 MW-4	- 9:	12)	3	X	X						5	× >	2/>			3 10	
7 MW-8	- 10	12/	VOA/Amber	Ý	X						T		1				
8						+++				+			\top	+			
9		1	· ·			+						\top	\top	\top			
10						+				+			+	+			
11						+	\dashv						-	+			
12						+						· .	+	+			
13		1 2					\vdash							<u> </u>			
14												\top	+	+			
15						1	+			_			+	,			
16							$\dashv \dashv$			+ -	\vdash	\top	+	+		• !	
17						1.				+		+	+	+			
Relinquished by:	Date / Tim	ne	Received by:			Di	ate / Time		Sa	ample	Rece	int	Re	mark	s:		
MM PM 5/	27 140	94 7	roder ale		5/2	7/16	1404	1	Good Co		6	7) N	\dashv				**
Relinquished by:	Date / Tim	ne	Received by:				ate / Time		Temp.			-3 °C					
									Seals Int	act?	(Y)		_				
Relinquished by:	Date / Tin	ne	Received by:			D	ate / Time		Total Nu	mber of	36	2	_	A.T.	04110	40115	E DAY
LEGAL ACTION CLAUSE: In the event of default of pa	ayment and/or failure to pa	y, Client agrees to pay the	costs of collection including cour	t costs and reasona	ble attorney fees	to be determined	l by a cout of lav	W.	Conta	iir1ers	> (AT:	hite - Lab, Ye	48HF	Pink - Originator