# Waste Characterization and Soil Excavation Report

# 1512 Highway 97 Ellensburg, Washington

October 21, 2011 Project No. 81117058

### **Prepared for:**

Love's Travel Stops & Country Stores Oklahoma City, Oklahoma

### Prepared by:

Terracon Consultants, Inc. Mountlake Terrace, Washington





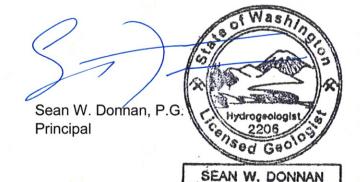
October 21, 2011

Love's Travel Stops & Country Stores P.O. Box 26210 Oklahoma City, OK 73126

Attn: Mr. Michael Key

Re: Waste Characterization and Soil Excavation Report 1512 Highway 97 Ellensburg, Washington Terracon Project No. 81117058

Dear Mr. Key:


Terracon Consultants, Inc. (Terracon) is pleased to submit this report documenting the waste characterization sampling and laboratory analysis and subsequent remedial excavation conducted at the above-referenced site. Our services were completed in accordance with our proposal dated July 8, 2011, and with the subsequent supplement to agreement for services dated August 18, 2011.

We appreciate the opportunity to perform these services for Love's Travel Stops & Country Stores. Please contact either of the undersigned at (425) 771-3304 if you have questions regarding the information provided in the report.

Sincerely,

Terracon

Chad Kean, CHMM, CPSWQ Project Manager



Terracon Consultants, Inc. 21905 64th Avenue West, Suite 100 Mountlake Terrace, Washington 98043 P [425] 771-3304 F [425] 771-3549 terracon.com

### TABLE OF CONTENTS

| 1.0 | INTRODUCTION                              | 2 |
|-----|-------------------------------------------|---|
| 1.1 | Site Description                          | 2 |
| 1.2 | Project Information                       | 2 |
| 1.3 | Scope of Work                             | 3 |
| 1.4 | Project Objectives                        | 3 |
| 1.5 | Standard of Care                          |   |
| 1.6 | Additional Scope Limitations              | 4 |
| 1.7 | Reliance                                  | 4 |
| 2.0 | WASTE CHARACTERIZATION                    | 5 |
| 2.1 | Methodology and Soil Sampling             | 5 |
| 2.2 | Analytical Laboratory Testing             | 5 |
| 2.3 | Analytical Laboratory Results             | 6 |
| 2.4 | Quality Assurance/Quality Control Results | 7 |
| 3.0 | SOIL EXCAVATION                           | 8 |
| 3.1 | Remedial Excavation                       | 8 |
|     |                                           | - |
| 4.0 | FINDINGS AND DISCUSSION                   |   |

### APPENDICES

| APPENDIX A | Figures |
|------------|---------|
|------------|---------|

- APPENDIX B Supporting Documentation
- APPENDIX C Laboratory Data Sheets

### WASTE CHARACTERIZATION AND SOIL EXCAVATION REPORT

### LOVE'S TRAVEL STOP 1512 HIGHWAY 97 ELLENSBURG, WASHINGTON

### TERRACON PROJECT NO. 81117058 OCTOBER 21, 2011

#### 1.0 INTRODUCTION

#### 1.1 Site Description

| Site Location/Address       | 1512 Highway 97<br>Ellensburg, Kittitas County, Washington 98922                                                                                                                           |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| General<br>Site Description | The site consists of Kittitas County tax parcel 376133 and comprises approximately 5.78 acres. The site is currently improved with an approximately 6,056 square-foot commercial building. |  |  |  |  |

A topographic map indicating the approximate location of the site is included as Figure 1 of Appendix A. A site plan showing the swale/excavation location is included as Figure 2 of Appendix A.

#### 1.2 **Project Information**

Terracon understands that the site has been developed with the existing commercial fueling station since 1996. It is our understanding that a stormwater swale located at the site became clogged with silt and needed to be cleaned out so that the stormwater treatment system could work properly. Based on emails that were forwarded to Terracon the swale needed to be cleaned out and the excavation sediment needed to be characterized.

Terracon was retained by Love's Travel Stops & Country Stores (Love's) to conduct waste characterization soil sampling of the swale sediment, remove and dispose of the swale sediment and to place quarry spalls in the swale following sediment removal. The swale sediment removal and disposal activities were performed by Ken Leingang Excavation, Inc. (Leingang) of Yakima, Washington, along with placement of quarry spalls under direct contract to Terracon.

Jon Morrow, the City of Ellensburg Stormwater Manager, defined the scope of the project



through both verbal and email correspondence between Love's and Terracon. In addition Mr. Morrow oversaw field operations at the site in person during the removal of the sediment and placement of the quarry spalls.

#### 1.3 Scope of Work

Terracon's services were completed in accordance with our proposal dated July 8, 2011, and with the subsequent supplement to agreement for services dated August 18, 2011. Our scope of services included completion of the following tasks:

- Task 1. Terracon coordinated with the excavation contractor, the client, and the selected permitted facility to complete waste profile generator application materials to facilitate final off-site disposition of excavation spoils.
- Task 2. Terracon coordinated meeting with Jon Morrow, City of Ellensburg Stormwater Manager, prior to start of work at the site to discuss best management practices, erosion control and the stream buffer area requirements. In addition Terracon scheduled the onsite work to allow Mr. Morrow to be onsite during the excavation.
- Task 3. Supervised and documented the excavation of impacted sediment. The excavating contractor, under subcontract to our firm, exhumed the impacted sediment.
- Task 4. Excavated sediment was exported from the site by the earthwork contractor. Sediment was transported to an appropriate disposal facility for final disposition.
- Task 5. Prepared this report summarizing the results of our findings, remedial excavation of petroleum impacted sediment, and conclusions and recommendations for additional work, if any.

#### 1.4 **Project Objectives**

The objectives of this project were to provide waste characterization of the stormwater swale sediment and oversee excavation and disposal activities associated with the removal of sediment from the stormwater swale. In addition Terracon oversaw the placement of quarry spalls to stabilize the stormwater swale following removal of the sediment. In the event analytical results indicated that a release has occurred, recommend additional steps to address petroleum contaminated sediment in the stormwater swale and surrounding areas.

#### 1.5 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either express or implied, regarding the findings,

#### Waste Characterization and Soil Excavation Report 1512 Highway 97 Ellensburg, WA October 21, 2011 Terracon Project No. 81117058



conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. Our services were performed in accordance with the scope of work agreed with you, our client, as reflected in our proposal and were not restricted by ASTM E1903-97.

### 1.6 Additional Scope Limitations

This report was intended to reduce, but not eliminate, uncertainty regarding the existence of recognized environmental conditions in connection with the subject site. Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, non-detectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this project. Subsurface conditions may vary from those encountered at the time of construction or at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services. The data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services. If, during future site development, different subsurface conditions from those encountered during our explorations are observed or appear to be present, we must be advised promptly so that we can review these conditions and reconsider or modify our conclusions and recommendations where necessary.

#### 1.7 Reliance

This Waste Characterization and Soil Excavation Report is certified to, can be relied upon by, and has been prepared for the exclusive use of the following entities: Love's and their respective successors, assigns, affiliates, and subsidiaries.

Use or reliance by any other party is prohibited without the written authorization of Love's and Terracon.

Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in accordance with our proposal dated July 8, 2011, and with the subsequent supplement to agreement for services dated August 18, 2011. The limitation of liability defined in the terms and conditions is the aggregate limit of Terracon's liability to the client and all relying parties unless otherwise agreed in writing.



#### 2.0 WASTE CHARACTERIZATION

### 2.1 Methodology and Soil Sampling

On July 21, 2011, Terracon advanced one hand auger boring to a maximum depth of approximately 2 feet below ground surface in the swale at the site. One soil sample was collected from the hand auger boring. The sample was collected from the interval of most likely environmental impact as determined in the field by the sampling professional. The sample was collected in an effort to characterize the swale sediment prior to disposal.

The soil sample was collected by hand from a hand auger using disposable gloves and placed directly into laboratory supplied glassware. The sample containers for soil were labeled with the Terracon job number, site name, date, time, exploration number, sample number, and sampling personnel. Sample containers were placed in a chilled cooler immediately after sampling, and subsequently transported to the analytical laboratory under strict chain-of-custody procedures.

The sample was delivered to Friedman & Bruya, Inc., a State of Washington State accredited analytical laboratory, in strict accordance with the industry standard chain-of-custody procedures. The sample was analyzed for gasoline-range total petroleum hydrocarbons (TPH) using Northwest Method NWTPH-Gx, diesel- and heavier than diesel-range TPH using NWTPH-Dx, volatile compounds by EPA Method 8260C and polycyclic aromatic hydrocarbons (PAH) by EPA Method 8270 SIM. In addition the sample was analyzed for RCRA-8 TCLP Metals by EPA Method 1311/200.8/1631E. The soil sample collected was submitted using standard (10-day) turnaround time. TCLP analysis was conducted to meet the requirements of landfill acceptance criteria.

Terracon's site activities included the following tasks:

- 1. Soil sampling;
- 2. Analytical laboratory testing;
- 3. Determine if additional remedial excavation is warranted in the event that a release is identified;

#### 2.2 Analytical Laboratory Testing

The soil sample was submitted for chemical analysis to Freidman & Bruya, Inc., a Washington State accredited laboratory. The sample was analyzed for gasoline-range total petroleum hydrocarbons (TPH) using Northwest Method NWTPH-Gx, diesel- and heavier than diesel-range TPH using NWTPH-Dx, volatile compounds by EPA Method 8260C and polycyclic aromatic hydrocarbons (PAH) by EPA Method 8270 SIM. In addition the sample was analyzed for RCRA-8 TCLP Metals by EPA Method 1311/200.8/1631E.

The executed chain-of-custody forms and laboratory analytical certificates are provided in



Appendix C. All analyses were completed using standard turnaround times.

Data packages were checked for completeness immediately upon receipt from the laboratory to ensure that data and QA/QC information requested were present. Data quality was assessed by considering holding times, surrogate recovery, method blanks, matrix spike and matrix spike duplicate recovery, and detection limits.

#### 2.3 Analytical Laboratory Results

One soil sample was collected at a depth of two feet from the environmental soil boring (B-1). Soil quality summary results are presented in Tables 1, 2 and 3 below. The complete laboratory report and chain-of-custody are included in Appendix C. Additional discussion and interpretation of analytical results relative to applicable cleanup levels is included in Section 4.

Table 1 below summarizes the TPH and VOCs with Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Cleanup Levels for unrestricted land use.

| Sample                 | Sample              | Total Petroleum<br>Hydrocarbons (mg/kg) |                  | Volatile Organic Compounds (mg/kg) |               |               |              |         |             |
|------------------------|---------------------|-----------------------------------------|------------------|------------------------------------|---------------|---------------|--------------|---------|-------------|
| Number                 | Depth<br>(ft)       | Gasoline-<br>Range                      | Diesel-<br>Range | Oil-<br>Range                      | Benzene       | Toluene       | Ethylbenzene | Xylenes | Naphthalene |
| 811170<br>58-DP-<br>01 | 2                   | 9.4                                     | 2,800            | 2,600                              | ND<br>(<0.03) | ND<br>(<0.05) | 0.079        | 1.14    | 0.33        |
| MTCA M<br>Cleanu       | lethod A<br>p Level | 100                                     | 2,000            | 2,000                              | 0.03          | 7             | 6            | 9       | 5           |

Table 1. Summarized Soil TPH and VOC Analytical Results

mg/kg: milligrams per kilogram (parts-per-million); ND: Not detected above indicated laboratory minimum reporting limit. Bold values exceed MTCA Method A cleanup levels. Please refer to Appendix C for the complete set of analytes and analytical results.

In addition, other VOCs were identified at low concentrations in sample 81117058-DP-01 as summarized in Table 2 below.

|                                | Depth         | Analyte (mg/kg) |                  |                  |              |                  |  |  |
|--------------------------------|---------------|-----------------|------------------|------------------|--------------|------------------|--|--|
| Sample                         | (ft)          | n-              | 1,3,5-           | 1,2,4-           | sec-         | p-               |  |  |
|                                | X -7          | Propylbenzene   | Trimethylbenzene | Trimethylbenzene | Butylbenzene | Isopropyltoluene |  |  |
| 81117058-<br>DP-01             | 2             | 0.057           | 0.33             | 0.72             | 0.050        | 0.055            |  |  |
| MTCA Me<br>Cleanup Lev         | thod A<br>/el | NE              | NE               | NE               | NE           | NE               |  |  |
| MTCA Method B<br>Cleanup Level |               | NE              | NE               | NE               | NE           | NE               |  |  |

mg/kg: milligrams per kilogram (parts-per-million); NE: Not established; Please refer to Appendix C for the complete



set of analytes and analytical results.

VOCs not listed in Tables 1 and 2 above were not identified at concentrations exceeding laboratory MRLs.

In addition the soil sample collected at a depth of two feet from the environmental soil borings (B-1) was analyzed for RCRA-8 TCLP Metals by EPA Method 1311/200.8/1631E. Results are summarized in Table 3 below.

| Sample                 | Sample                                | Analyte (mg/kg) |         |          |         |         |         |         |           |
|------------------------|---------------------------------------|-----------------|---------|----------|---------|---------|---------|---------|-----------|
| Number                 | Depth<br>(ft)                         | Chromium        | Arsenic | Selenium | Silver  | Cadmium | Barium  | Lead    | Mercury   |
| 811170<br>58-DP-<br>01 | 2                                     | ND (<1)         | ND (<1) | ND (<1)  | ND (<1) | ND (<1) | ND (<1) | ND (<1) | ND (<0.1) |
| TCLP M<br>Concer       | us Waste<br>aximum<br>ntration<br>vel | 5.0             | 5.0     | 1.0      | 5.0     | 1.0     | 100.0   | 5.0     | 0.2       |

 Table 3. Summarized Soil Metals Analytical Results

mg/L: milligrams per Liter (parts-per-million); ND: Not detected above indicated laboratory minimum reporting limit. Bold values exceed MTCA Method A cleanup levels. Please refer to Appendix C for the complete set of analytes and analytical results.

Based on our site observations and soil analytical results, a release of diesel- and heavier than diesel-range TPH was identified at concentrations exceeding the Model Toxics Control Act (MTCA) Method A cleanup level for diesel- and heavier than diesel-range TPH in soils established under Chapter 173-340 WAC. As a result, Terracon recommended excavation of the petroleum impacted sediment from the swale area followed by collection of post excavation confirmation soil samples to determine if all of the petroleum impacted sediment was removed from the swale.

### 2.4 Quality Assurance/Quality Control Results

The analytical results for the current investigation were checked for completeness immediately upon receipt from the laboratory to ensure that data and QA/QC information requested were present. Data quality was assessed by considering hold times, surrogate recovery, method blanks, matrix spike and matrix spike duplicate (MS/MSD) recovery, and detection limits. QA/QC review was completed using guidance described in *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (Draft Final, USEPA, 2005). Our evaluation assumes that the QA/QC is correct as reported by the laboratory, and merely provides an interpretation of the QA/QC results.

Hold Times. All analyses were completed within specified hold times.



<u>Surrogate Recoveries</u>. All surrogate recoveries were within laboratory limits with the exception of two volatile compounds by EPA Method 8260C. The two compounds (Bromomethane and Trichlorofluoromethane) were detected at levels far below their respective MTCA cleanup levels.

Method Blanks. Analytes were not detected in any of the laboratory method blanks.

<u>MS/MSD Results</u>. MS and MSD recoveries were all within laboratory limits, and Relative Percent Differences (RPDs) between MS and MSD recoveries were all within laboratory limits.

Laboratory Reporting Limits. Reporting limits were below relevant MTCA cleanup levels.

Based upon our interpretation of quality control information provided by the laboratories, it is our opinion that the overall dataset is useable as qualified for the purposes of this Waste Characterization and Soil Excavation Report.

#### 3.0 SOIL EXCAVATION

#### 3.1 Remedial Excavation

On August 22, 2011, Terracon, Jon Morrow (City of Ellensburg) and Leingang, under subcontract to Terracon, mobilized to the site to conduct excavation of petroleum impacted sediment from the swale, soil sampling, off-site disposition of PCS, and backfill of the swale with quarry spalls. The objective of the excavation was to remove sediment to the extent practical from the swale and place quarry spalls to stabilize the swale for use.

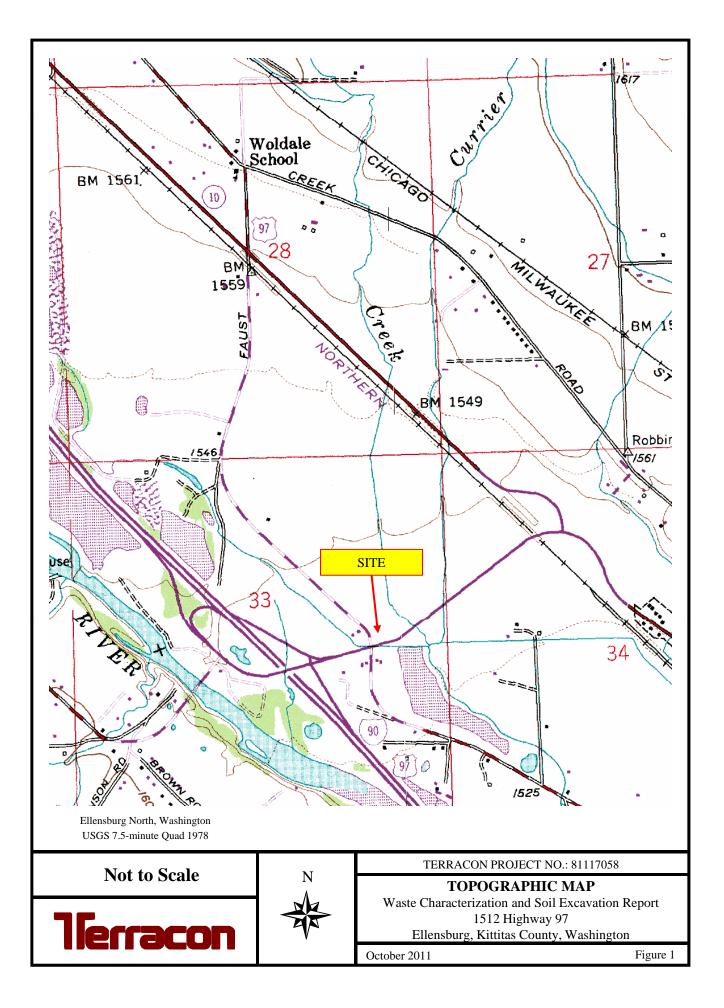
Terracon and Leingang, under the direction of Mr. Morrow, excavated sediment from the swale. The sediment was placed directly into a lined dump truck for off-site disposal at Rabanco Regional Disposal in Roosevelt, Washington. Towards the end of the excavation of sediment groundwater started infiltrating the swale from east wall at a fairly rapid rate. At the direction of Mr. Morrow, Terracon and Leingang terminated excavating sediment and immediately started placing quarry spalls to stabilize the swale prior to discharge due to the rising water levels. Following completion of the placement of quarry spalls the swale had a static water level approximately one foot higher than the original level of sediment prior to excavation. Due to the rising water levels and final static level it was not possible for Terracon to collect post excavation confirmation soil samples following removal of the sediment.

In total, 6.47 tons of sediment was hauled from the site for final off-site disposition at Rabanco Regional Disposal in Roosevelt, Washington. Truck scale tickets and the Certificate of Disposal are included in Appendix B. Following off-site disposal of sediment, the contractor backfilled the remedial excavation with quarry spalls at the direction of Mr. Morrow. The contractor placed an approximate one to two-foot lift of quarry spalls along the bottom and sides of the swale.



#### 4.0 FINDINGS AND DISCUSSION

Terracon completed a Waste Characterization and Soil Excavation Report for the abovereferenced site. The findings of this report are as follows:


- Diesel-range TPH was identified at 2,800 mg/kg and oil-range TPH was identified at 2,600 mg/kg, above the MTCA Method A cleanup level for diesel- and oil-range TPH in soil in the waste characterization sample collected from the swale sediment.
- Excavation of the sediment from the swale was completed in an effort to rehabilitate the swale for use. Due to the rising water levels and final static level it was not possible for Terracon to collect post excavation confirmation soil samples following removal of the sediment from the swale. The contractor placed an approximate one to two-foot lift of quarry spalls along the bottom and sides of the swale to stabilize the swale following removal of the sediment.
- In total, 6.47 tons of sediment was hauled from the site for final off-site disposition at Rabanco Regional Disposal in Roosevelt, Washington.


#### 5.0 **RECOMMENDATIONS**

Based on the analytical results for the waste characterization soil sample collected during sampling activities conducted on July 21, 2011, and field remedial excavation activities conducted on August 22, 2011, it appears that the sediment impacted with diesel- and oil-range TPH has been removed. Due to the rising water levels and final static level it was not possible for Terracon to collect post excavation confirmation soil samples following removal of sediment from the swale. Therefore, it is not possible for Terracon to determine if any of the remaining soil has been impacted with diesel- and oil-range TPH. Terracon recommends that Love's notify the Washington State Department of Ecology Toxics Cleanup Program of a release at the site and inform them of the current status.

APPENDIX A

Figures





# APPENDIX B

Supporting Documentation

| Certification No:_ | TB- | 10662 |
|--------------------|-----|-------|
| Billing Acct. No.  | 60  | 148   |
| Product Code       |     |       |

#### BILL OF LADING CONTAMINATED SOIL

#### REGIONAL DISPOSAL COMPANY 54 S. Dowson Street Seattle, WA 98134 Telephone: (206) 332-7700 / Fax: (206) 332-7600

This Bill of Lading augments the Master Service Agreement ("Agreement") entered into by Ken <u>Lein Gans</u> <u>EX</u> ("Generator/Agent") and Regional Disposal Company ("RDC") on <u>Slight(</u> (date). The terms herein aro made a part of the Agreement. In the event of conflict between this Bill of Lading and the Agreement, the terms of the Agreement prevail. TB-We6Z

RDC hereby authorizes the Wastes ("Waste") described in Certification No. \_\_\_\_\_, signed by Generator/Agent on  $\frac{8/19/11}{2}$  (date), for disposal at Roosevelt Regional Landfill. Generator/Agent shall present a copy of this Bill of Lading with each shipment delivered.

Vansburg Location of Waste: 151 Method of Shipment;

Additional Fees (e.g., laboratory fees, transportation fees, special handling fees, etc. If none, so state):

illerer

#### PERFORMANCE DATE

FOR RDC TRANSPORTATION: Generator/Agent shall make the Waste available for shipment no later than \_\_\_\_\_(date). RDC shall transport the Waste no later than \_\_\_\_\_(date), unless RDC notifies the Generator/Agent in writing that Waste transport shall be suspended or canceled due to RDC's exercise of its right to inspect or analyze the Waste (as provided in the Agreement).

GENERATOR/AGENT TRANSPORTATION: Generator/Agent shall begin delivery of the Waste at [check one]:

Dure K Roosevelt Regional Landfill.

Seattle Transfer Station located at Third and Lander.

Waste delivery shall begin no later than  $\frac{\mathscr{G}\left(\left(\begin{array}{c} 1 \right) \right)}{(\operatorname{date})}$ , and shall complete delivery of the Waste no later than (date), unless RDC notifies Generator/Agent in writing to suspend or cancel the waste delivery due to RDC's exercise of its right to inspect or analyze the Waste (As provided in the Agreement).

EMERADOR/AGENT Signature

Printed Name and Title

<u>REGIONAL DISPOSAL COMPANY</u>

Signature

Printed Name and

ALL TRUCKS MUST HAVE A COPY OF THIS BILL OF LADING WHEN DELIVERING WASTE TO THE TRANSFER STATION OR TO THE LANDFILL. Revised 10/15/06

| SERVICES. INC.                                                                         | R                   |                 |              | ervices             |                    |                               |
|----------------------------------------------------------------------------------------|---------------------|-----------------|--------------|---------------------|--------------------|-------------------------------|
| S                                                                                      | PECIAL W            | ASTE DE         | PARTME       |                     | N                  |                               |
|                                                                                        | Waste Profile #     |                 |              | ation Date          |                    |                               |
|                                                                                        | 41781113041         |                 | 7/21/2       |                     | ·                  |                               |
| I. Decision Request:                                                                   |                     | Recertif        | ication      | Change              |                    |                               |
| Disposal Facility: 4178 - Roosevelt Region<br>Generator Name: Love's Travel Stops & Co |                     |                 |              |                     |                    |                               |
| Generator Site Address: 1512 Hwy 87                                                    | unity stores        |                 |              | ······              |                    |                               |
|                                                                                        | County:             |                 | State:       |                     |                    | Zip:                          |
| Name of Waste: Stromwater Pond Sedimen                                                 |                     |                 |              |                     |                    |                               |
| Estimated Annual Volume: 5 Cubic Yards                                                 |                     |                 |              |                     |                    |                               |
|                                                                                        |                     |                 |              |                     |                    |                               |
| lanagement Method(s):<br>Toblematic Special Waste according to Re<br>yes, which one?   | epublic?            | Yes             | oremediation | 🔲 Transfer Fac      | sility             |                               |
| pproved by Special Waste Review Comm                                                   | ittee?              | Yes             | No           | V Not Applicable    |                    |                               |
|                                                                                        |                     |                 |              |                     |                    |                               |
| Pr                                                                                     | ecautions, Co       | onditions o     | r Limitatio  | ons on Approva      | l .                |                               |
| ecial Waste Analyst Signature: Second<br>te: 8/19/2011<br>Facility Decision:           | I                   |                 |              | Rejected            |                    | nted): <u>Leslie Hamilton</u> |
| Pre                                                                                    | ecautions, Co       | nditions o      | r Limitatio  | ns on Approval      |                    |                               |
|                                                                                        |                     |                 |              |                     | 0.000              |                               |
| signing below, the General Manager or Desi<br>Ictal waste file is complete.            | ignee agrees that a | a fully execute | d Special Wa | iste Service Agreem | ent is on file for | this profile and that the     |

2

\_ • \_

\_ \_

-. -

\_ .\_\_\_\_ . ....



Page 1 of 2

٦

| quested Disposal Facility: 47                                              | 178 Roosevelt Regional MSW LF |                        | ste Profile #                         |  |  |
|----------------------------------------------------------------------------|-------------------------------|------------------------|---------------------------------------|--|--|
| a reaction fills form Restricted printing until al f<br>Generator Informat | tion                          | Sales Rep #:           |                                       |  |  |
| Benerator Name: Love's Tra                                                 | avel Stops & Country Stores   |                        |                                       |  |  |
| Generator Site Address: 1                                                  | 512 Highway 97                |                        | The 09078                             |  |  |
| City: Ellensburg                                                           | County: Kittitas              | State: Weshington      | Zip: 98926                            |  |  |
| State ID/Reg No: 11/8                                                      | State Approval/Waste Code     | n/a (if applicab       | le) NAICS#:n/a                        |  |  |
| Generator Mailing Address (i                                               | f different): P.O. Box 26210  |                        |                                       |  |  |
| City: Oklahoma City                                                        | County: Oklahoma              | State: Oklahoma        | Zip: 73128                            |  |  |
| Generator Contact Name: Ki                                                 |                               |                        | dy.mills@loves.com                    |  |  |
| Phone Number: (405) 667-1                                                  |                               | Fax Number: (405) 463  | Fax Number: (405) 463-3689            |  |  |
| a. Transporter Informa                                                     |                               |                        |                                       |  |  |
| Transporter Name: Ken Lein                                                 | eano Excavaling, Inc.         | Contact Name: Darren t | eingang                               |  |  |
| Transporter Address: 11171                                                 | 1 27th Avenue                 |                        |                                       |  |  |
| City: Yakima                                                               | County: Yakima                | State: Weshington      | Zíp: 98902                            |  |  |
| Phone: (509) 575-5507                                                      |                               |                        | State Transportation Number: 1779826  |  |  |
|                                                                            | 1 4A. (000) 101               |                        |                                       |  |  |
| ib. Billing Information                                                    |                               | Contact Name: Darren   | Leingang                              |  |  |
| Bill To: Ken Leingang Excav                                                |                               | Email:                 | · · · · · · · · · · · · · · · · · · · |  |  |
| Billing Address: 1117 N. 27                                                |                               |                        | one: (509) 575-5507                   |  |  |
| City: Yakima                                                               | State: Washington             | Zip: 98902 Pho         | Me. 1044/010 4441                     |  |  |

#### Weste Stream Information

| Name of Waste: Stormwate   |                                                  |
|----------------------------|--------------------------------------------------|
|                            |                                                  |
| Process Generating Waste:  |                                                  |
| Stormwater pond sediment r | emoval                                           |
|                            |                                                  |
|                            |                                                  |
| Type of Waste:             | INDUSTRIAL PROCESS WASTE POLLUTION CONTROL WASTE |
| Physical State:            | SOLID SEMI-SOLID POWDER LIQUID                   |
| Method of Shipment:        |                                                  |
| Estimated Annual Volume:   | 5 Cubic Yards                                    |
| Frequency:                 |                                                  |
| Disposal Consideration:    |                                                  |

| IV. Representative Sample Certification                                                 |           |
|-----------------------------------------------------------------------------------------|-----------|
| Le the convectorities sample collected to prepare this profile and laboratory analysis, | YES or NO |
| collected in accordance with U.S. EPA 40 CFR 281.20(c) guidelines of equivalent rules?  |           |
| Sample Date: 7/21/11 Type of Sample: COMPOSITE SAMPLE GRAB SA                           |           |
| Sample ID Numbers: 81117058-DP-01                                                       |           |

@ Republic Services, Dec 2009



Page 2 of 2

|                                                                                                 |                                                                                         |                                                                                           | -                               | Wa                     | ste Pro     | file #     |        |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|------------------------|-------------|------------|--------|
| V. Physica                                                                                      | ai Characteristics of                                                                   | Wacta                                                                                     |                                 |                        |             |            |        |
| Characteristic                                                                                  |                                                                                         |                                                                                           | L                               | by Weight (            |             |            |        |
| 1. Soil                                                                                         |                                                                                         |                                                                                           |                                 | 9.995                  | ranye)      |            | -      |
| 2. Total Petrole                                                                                | um Hydrocarbons (Gx & Dx                                                                | )                                                                                         | -                               | .005                   |             |            |        |
| 3.                                                                                              |                                                                                         |                                                                                           |                                 |                        |             |            |        |
| 4.<br>5.                                                                                        |                                                                                         |                                                                                           |                                 |                        |             |            |        |
| Color                                                                                           | Odor (describe)                                                                         | Does Waste Contain Free Liguids?                                                          | % Solids                        | pH:                    |             | Flash Po   | 7-1    |
| Brown/Black                                                                                     | Light oil smell                                                                         |                                                                                           | 100                             | nla                    |             | n/a        |        |
| Attach L                                                                                        |                                                                                         |                                                                                           |                                 | 1                      |             |            | °F     |
|                                                                                                 | Re                                                                                      | port (and/or Material Safety Data<br>quired Parameters Provided for t                     | Sneet) inclu<br>his Profile     | laing Chain            | of CU       | stody and  |        |
| Herbicides: Chic                                                                                | or generating process cont<br>rdane, Endrin, Heptachlor (<br>as defined in 40 CFR 261.3 | ain regulated concentrations of the follo<br>and it epoxides), Lindane, Methoxychio<br>3? | wing Pesticide<br>r, Toxaphene, | es and/or<br>2,4-D, or | DY          | es or 🔽N   | 0      |
| Does this waste<br>ppm)[reference                                                               | contain reactive sulfides (g<br>t0 CFR 261.23(a)(5)]?                                   | reater than 500 ppm) or reactive cyanid                                                   | e (greater than                 | 250                    | Yes or VINo |            |        |
| Does this waste<br>Part 761?                                                                    | contain regulated concentra                                                             | ations of Polychlorinated Biphenyls (PC                                                   | Bs) as defined                  | in 40 CFR              |             | es or 🕅 N  | o      |
| Does this waste<br>including RCRA                                                               | contain concentrations of lis<br>F-Listed Solvents?                                     | ated hazardous wastes defined in 40 Ci                                                    | FR 261.31, 261                  | 1.32, 261.33,          |             | es or 🔽N   | 0      |
| Does this waste                                                                                 | exhibit a Hazardous Chara                                                               | cteristic as defined by Federal and/or St                                                 | ate regulation                  | <b>\$</b> 7            |             |            | 0      |
| Does this waste other dioxin as d                                                               | contain regulated concentra<br>efined in 40 CFR 261.31?                                 | ntions of 2,3,7,8-Tetrachlorodibenzodio                                                   | dn (2,3,7,8-TC                  | CD), or any            | □Y•         | es or 🗾 N  | 0      |
| is this a regulate                                                                              | d Radioactive Waste as del                                                              | ined by Federal and/or State regulation                                                   | s?                              |                        |             | es or VN   | ò.     |
| Is this a regulated Medical or Infectious Waste as defined by Federal and/or State regulations? |                                                                                         |                                                                                           |                                 |                        |             | es or 🔽 No | D      |
| Is this waste a reactive or heat generating waste?                                              |                                                                                         |                                                                                           |                                 |                        |             | es or 📝 No | D<br>D |
| Does the waste contain sulfur or sulfur by-products?                                            |                                                                                         |                                                                                           |                                 |                        | 1 Ye        | es or 🔽 N  | 0      |
| Is this waste generated at a Federal Suparfund Clean Up Site?                                   |                                                                                         |                                                                                           |                                 |                        |             | as or 🔽 No | 6      |
| Is this waste from a TSD facility, TSD like facility or consolidator?                           |                                                                                         |                                                                                           |                                 |                        | ∐Ye         | ea or 🔽 No | p      |

#### VI. Certification

I hereby certify that to the best of my knowledge and belief, the information contained herein is a true, complete and accurate description of the waste material being offered for disposal and all known or suspected hazards have been disclosed. All Analytical Results/Material Safety Data Sheets submitted are truthful and complete and are representative of the waste.

I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for disposal or attempt to deliver for disposal any waste which is classified as toxic waste, hazardous waste or infectious waste, or any other waste material this facility is prohibited from accepting by law. I shall immediately give written notice of any change or condition partaining to the waste not provided herein. Our company hereby agrees to fully indemnify this disposal facility against any damages resulting from this certification being inaccurate or untrue.

I further certify that the company has not altered the form or content of this profile sheet as provided by Republic Services Inc.

| Kimberley Mills Shris                                    | Welden Love's Travel Stops & Country Stores |
|----------------------------------------------------------|---------------------------------------------|
| Authorized Representative Name And Title (Type or Print) | Company Name                                |
| Chiow Idon                                               |                                             |
| Authorized Representative Signature                      | Date                                        |

Sepublic Services, Dec 2009

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | · · · · ·           |          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     | 15268    | 356        |
| RABANCO REGIONAL DISPOSAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | тіскет<br>5301,5353 | GRID     |            |
| F.O. 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | **               |                     |          |            |
| Roosevelt, WA 99356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ci-K             | XXXXX GAIL H        | 211      |            |
| (506) 384-5641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE IN          |                     | TIME IN  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ميروب.<br>دي.دي. | Mugaet 2011         | 11:02 30 | í t        |
| 0601.48 - 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE O           | UT                  | TIME OUT |            |
| 060148 ~ 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | August 2011         | 11:27 am |            |
| Kon Leingeng Exceveting, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VEHICLE          |                     | ROLL OFF |            |
| Ken Leingang Excavating, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35               |                     |          |            |
| Contract: TB-10662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REFERE           |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Elle                | rrsbarg  |            |
| 1 Gross Weight 39,100.00 LB<br>Tare Weight 26,160.00 LB<br>Net Weight 12,940.00 LB 6.47 TN<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | SATE EXTENSION      |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | SATE                | TAX      | TOTAL      |
| 6.47 TN 66 CASI Cont Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                     |          |            |
| The second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                     |          |            |
| Incound - RAIL TICKET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                     |          |            |
| Seattle 20 - 48 Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                     |          |            |
| Superior for the definition of the second state of the second stat |                  |                     |          |            |
| 000 YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                     |          | NET AMOUNT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     | -        | TENDERED   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |          | CHANGE     |
| Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                     |          |            |
| < <sup>K</sup> ₹REPUBLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٨                |                     | Γ        | CHECK NO.  |
| SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 .             | /                   |          |            |
| REV 11/09 SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                     |          | RS-F04-4pt |

٠

. .

•

# APPENDIX C

Laboratory Data Sheets

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

July 29, 2011

Chad Kean Terracon Pacific Cascade Building 21905 64<sup>th</sup> Ave. W., Suite 100 Mountlake Terrace, WA 98043

Dear Mr. Kean:

Included are the results from the testing of material submitted on July 21, 2011 from the Love's 81117058, F&BI 107293 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures TRC0729R.DOC

### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on July 21, 2011 by Friedman & Bruya, Inc. from the Terracon Love's 81117058, F&BI 107293 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Terracon       |
|----------------------|----------------|
| 107293-01            | 81117058-DP-01 |

The 8260C calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

All other quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293 Date Extracted: 07/22/11 Date Analyzed: 07/22/11

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

| <u>Sample ID</u><br>Laboratory ID | Gasoline Range | Surrogate<br>( <u>% Recovery</u> )<br>(Limit 50-150) |
|-----------------------------------|----------------|------------------------------------------------------|
| 81117058-DP-01<br>107293-01       | 9.4            | 105                                                  |
| Method Blank<br>01-1313 MB        | <2             | 102                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293 Date Extracted: 07/22/11 Date Analyzed: 07/22/11

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C <sub>10</sub> -C <sub>25</sub> ) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 50-150) |
|-----------------------------------|-----------------------------------------------------|------------------------------|----------------------------------------------------|
| 81117058-DP-01<br>107293-01       | 2,800                                               | 2,600                        | 116                                                |
| Method Blank<br>01-1310 MB        | <50                                                 | <250                         | 111                                                |

### ENVIRONMENTAL CHEMISTS

# Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 81117058-DJ<br>07/21/11<br>07/26/11<br>07/26/11<br>Soil<br>mg/L (ppm) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Terracon<br>Love's 81117058, F&BI 107293<br>107293-01<br>107293-01.010<br>ICPMS1<br>AP |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                        |                                                                       |               | Lower                                                                    | Upper                                                                                  |
| Internal Standard:                                                                     |                                                                       | % Recovery:   | Limit:                                                                   | Limit:                                                                                 |
| Germanium                                                                              |                                                                       | 100           | 60                                                                       | 125                                                                                    |
| Indium                                                                                 |                                                                       | 100           | 60                                                                       | 125                                                                                    |
| Holmium                                                                                |                                                                       | 98            | 60                                                                       | 125                                                                                    |
|                                                                                        |                                                                       | Concentration |                                                                          |                                                                                        |
| Analyte:                                                                               |                                                                       | mg/L (ppm)    | TCLP Lin                                                                 | nit                                                                                    |
| Chromium                                                                               |                                                                       | <1            | 5.0                                                                      |                                                                                        |
| Arsenic                                                                                |                                                                       | <1            | 5.0                                                                      |                                                                                        |
| Selenium                                                                               |                                                                       | <1            | 1.0                                                                      |                                                                                        |
| Silver                                                                                 |                                                                       | <1            | 5.0                                                                      |                                                                                        |
| Cadmium                                                                                |                                                                       | <1            | 1.0                                                                      |                                                                                        |
| Barium                                                                                 |                                                                       | <1            | 100                                                                      |                                                                                        |
| Lead                                                                                   |                                                                       | <1            | 5.0                                                                      |                                                                                        |

### ENVIRONMENTAL CHEMISTS

# Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Blar<br>NA<br>07/26/11<br>07/26/11<br>Soil<br>mg/L (ppm) | ık            | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Terracon<br>Love's 81117058, F&BI 107293<br>I1-516 mb<br>I1-516 mb.008<br>ICPMS1<br>AP |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                        |                                                                 |               | Lower                                                                    | Upper                                                                                  |
| Internal Standard:                                                                     |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                 |
| Germanium                                                                              |                                                                 | 98            | 60                                                                       | 125                                                                                    |
| Indium                                                                                 |                                                                 | 98            | 60                                                                       | 125                                                                                    |
| Holmium                                                                                |                                                                 | 96            | 60                                                                       | 125                                                                                    |
|                                                                                        |                                                                 | Concentration |                                                                          |                                                                                        |
| Analyte:                                                                               |                                                                 | mg/L (ppm)    | TCLP Lin                                                                 | nit                                                                                    |
| Chromium                                                                               |                                                                 | <1            | 5.0                                                                      |                                                                                        |
| Arsenic                                                                                |                                                                 | <1            | 5.0                                                                      |                                                                                        |
| Selenium                                                                               |                                                                 | <1            | 1.0                                                                      |                                                                                        |
| Silver                                                                                 |                                                                 | <1            | 5.0                                                                      |                                                                                        |
| Cadmium                                                                                |                                                                 | <1            | 1.0                                                                      |                                                                                        |
| Barium                                                                                 |                                                                 | <1            | 100                                                                      |                                                                                        |
| Lead                                                                                   |                                                                 | <1            | 5.0                                                                      |                                                                                        |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293 Date Extracted: 07/26/11 Date Analyzed: 07/27/11

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TCLP MERCURY IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Results Reported as mg/L (ppm)

| <u>Sample ID</u><br>Laboratory ID | TCLP Mercury |
|-----------------------------------|--------------|
| 81117058-DP-01<br>107293-01       | <0.1         |
| Method Blank                      | <0.1         |
| TCLP Limit                        | 0.2          |

# ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260C

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 81117058-D)<br>07/21/11<br>07/25/11<br>07/25/11<br>Soil<br>mg/kg (ppm |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Terracon<br>Love's 81117058, F&E<br>107293-01<br>072523.D<br>GCMS5<br>VM | BI 107293     |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|
|                                                                                               |                                                                       |               | Lower                                                                    | Upper                                                                    |               |
| Surrogates:                                                                                   |                                                                       | % Recovery:   | Limit:                                                                   | Limit:                                                                   |               |
| 1,2-Dichloroethane-                                                                           | d4                                                                    | 98            | 42                                                                       | 158                                                                      |               |
| Toluene-d8                                                                                    |                                                                       | 101           | 42                                                                       | 159                                                                      |               |
| 4-Bromofluorobenze                                                                            | ene                                                                   | 102           | 36                                                                       | 160                                                                      |               |
|                                                                                               |                                                                       | Concentration |                                                                          |                                                                          | Concentration |
| Compounds:                                                                                    |                                                                       | mg/kg (ppm)   | Compour                                                                  | nds:                                                                     | mg/kg (ppm)   |
| Dichlorodifluoromet                                                                           | thane                                                                 | < 0.5         | 1,3-Dich                                                                 | loropropane                                                              | < 0.05        |
| Chloromethane                                                                                 |                                                                       | < 0.5         | Tetrachl                                                                 | oroethene                                                                | < 0.025       |
| Vinyl chloride                                                                                |                                                                       | < 0.05        | Dibromo                                                                  | chloromethane                                                            | < 0.05        |
| Bromomethane                                                                                  |                                                                       | <0.5 ca       | 1,2-Dibro                                                                | omoethane (EDB)                                                          | < 0.05        |
| Chloroethane                                                                                  |                                                                       | < 0.5         | Chlorobe                                                                 | enzene                                                                   | < 0.05        |
| Trichlorofluoromethane                                                                        |                                                                       | <0.5 ca       | Ethylbenzene                                                             |                                                                          | 0.079         |
| Acetone                                                                                       |                                                                       | < 0.5         | 1,1,1,2-Tetrachloroethane                                                |                                                                          | < 0.05        |
| 1,1-Dichloroethene                                                                            |                                                                       | < 0.05        | m,p-Xylene                                                               |                                                                          | 0.66          |
| Methylene chloride                                                                            |                                                                       | <0.5          | o-Xylene                                                                 |                                                                          | 0.48          |
| Methyl t-butyl ether (MTBE)                                                                   |                                                                       | < 0.05        | Styrene                                                                  |                                                                          | < 0.05        |
| trans-1,2-Dichloroethene                                                                      |                                                                       | < 0.05        | Isopropy                                                                 |                                                                          | < 0.05        |
| 1,1-Dichloroethane                                                                            |                                                                       | < 0.05        | Bromoform                                                                |                                                                          | < 0.05        |
| 2,2-Dichloropropane                                                                           |                                                                       | < 0.05        | n-Propylbenzene                                                          |                                                                          | 0.057         |
| cis-1,2-Dichloroethe                                                                          | ene                                                                   | < 0.05        | Bromobenzene                                                             |                                                                          | < 0.05        |
| Chloroform                                                                                    |                                                                       | < 0.05        |                                                                          | methylbenzene                                                            | 0.33          |
| 2-Butanone (MEK)                                                                              |                                                                       | < 0.5         |                                                                          | etrachloroethane                                                         | < 0.05        |
| 1,2-Dichloroethane                                                                            |                                                                       | < 0.05        |                                                                          | chloropropane                                                            | < 0.05        |
| 1,1,1-Trichloroetha                                                                           |                                                                       | < 0.05        | 2-Chloro                                                                 |                                                                          | < 0.05        |
| 1,1-Dichloropropene                                                                           |                                                                       | < 0.05        | 4-Chloro                                                                 |                                                                          | < 0.05        |
| Carbon tetrachlorid                                                                           | e                                                                     | < 0.05        |                                                                          | ylbenzene                                                                | < 0.05        |
| Benzene                                                                                       |                                                                       | < 0.03        |                                                                          | methylbenzene                                                            | 0.72          |
| Trichloroethene                                                                               |                                                                       | < 0.03        |                                                                          | lbenzene                                                                 | 0.050         |
| 1,2-Dichloropropane                                                                           |                                                                       | < 0.05        |                                                                          | pyltoluene                                                               | 0.055         |
| Bromodichlorometh                                                                             | ane                                                                   | < 0.05        |                                                                          | lorobenzene                                                              | < 0.05        |
| Dibromomethane                                                                                |                                                                       | < 0.05        |                                                                          | lorobenzene                                                              | < 0.05        |
| 4-Methyl-2-pentano                                                                            |                                                                       | < 0.5         |                                                                          | lorobenzene                                                              | < 0.05        |
| cis-1,3-Dichloroprop                                                                          | ene                                                                   | < 0.05        |                                                                          | omo-3-chloropropane                                                      | < 0.5         |
| Toluene                                                                                       |                                                                       | < 0.05        |                                                                          | chlorobenzene                                                            | < 0.25        |
| trans-1,3-Dichlorop                                                                           |                                                                       | < 0.05        |                                                                          | orobutadiene                                                             | < 0.25        |
| 1,1,2-Trichloroetha                                                                           | ne                                                                    | < 0.05        | Naphtha                                                                  |                                                                          | 0.33          |
| 2-Hexanone                                                                                    |                                                                       | <0.5          | 1,2,3-1ri                                                                | chlorobenzene                                                            | <0.25         |

# ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260C

| Date Received:NADate Extracted:07/25Date Analyzed:07/25Matrix:Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                                                                                                                                                                                                                                                     | Terracon<br>Love's 81117058, F&E<br>01-1260 mb<br>072508.D<br>GCMS5<br>VM                                                                                                                                                                    | SI 107293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrogates:<br>1,2-Dichloroethane-d4<br>Toluene-d8<br>4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Recovery:<br>101<br>101<br>103                                                                                                                                                                          | Lower<br>Limit:<br>42<br>42<br>36                                                                                                                                                                                                                                                                                            | Upper<br>Limit:<br>158<br>159<br>160                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Compounds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concentration<br>mg/kg (ppm)                                                                                                                                                                              | Compour                                                                                                                                                                                                                                                                                                                      | nds:                                                                                                                                                                                                                                         | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Compounds:<br>Dichlorodifluoromethane<br>Chloromethane<br>Vinyl chloride<br>Bromomethane<br>Chloroethane<br>Trichlorofluoromethane<br>Acetone<br>1,1-Dichloroethene<br>Methylene chloride<br>Methyl t-butyl ether (MTE<br>trans-1,2-Dichloroethene<br>1,1-Dichloroethane<br>2,2-Dichloropropane<br>cis-1,2-Dichloroethene<br>Chloroform<br>2-Butanone (MEK)<br>1,2-Dichloroethane (EDC)<br>1,1,1-Trichloroethane<br>1,1-Dichloropropene<br>Carbon tetrachloride<br>Benzene<br>Trichloroethene<br>1,2-Dichloropropane<br>Bromodichloromethane<br>Dibromomethane<br>4-Methyl-2-pentanone<br>cis-1,3-Dichloropropene | $ \begin{array}{c}     < 0.5 \\     < 0.5 \\     < 0.05 \\     < 0.5 ca \\     < 0.5 ca \\     < 0.5 ca \\     < 0.5 \\     < 0.5 \\     < 0.5 \\     < 0.05 \\     < 0.5 \\     < 0.5 \\   \end{array} $ | 1,3-Dichl<br>Tetrachl<br>Dibromo<br>1,2-Dibro<br>Chlorobe<br>Ethylber<br>1,1,1,2-T<br>m,p-Xyle<br>o-Xylene<br>Styrene<br>Isopropy<br>Bromofo<br>n-Propyl<br>Bromobe<br>1,3,5-Tri<br>1,1,2,2-T<br>1,2,3-Tri<br>2-Chloro<br>4-Chloro<br>tert-Buty<br>1,2,4-Tri<br>sec-Buty<br>p-Isoprop<br>1,3-Dichl<br>1,4-Dichl<br>1,2-Dichl | loropropane<br>oroethene<br>chloromethane<br>pmoethane (EDB)<br>enzene<br>izene<br>'etrachloroethane<br>ene<br>lbenzene<br>enzene<br>methylbenzene<br>'etrachloroethane<br>chloropropane<br>toluene<br>toluene<br>ylbenzene<br>methylbenzene | mg/kg (ppm) < 0.05 < 0.025 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < |
| Toluene<br>trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane<br>2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.05<br><0.05<br><0.05<br><0.5                                                                                                                                                                           | 1,2,4-Tri<br>Hexachle<br>Naphtha                                                                                                                                                                                                                                                                                             | chlorobenzene<br>probutadiene                                                                                                                                                                                                                | <0.25<br><0.25<br><0.05<br><0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### ENVIRONMENTAL CHEMISTS

# Analysis For Semivolatile Compounds By EPA Method 8270D SIM

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 81117058-DI<br>07/21/11<br>07/26/11<br>07/27/11<br>Soil<br>mg/kg (ppm) |                              | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Terracon<br>Love's 81117058, F&BI 107293<br>107293-01 1/50<br>072615.D<br>GCMS6<br>YA |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Surrogates:<br>Anthracene-d10<br>Benzo(a)anthracene                                           | -d12                                                                   | % Recovery:<br>50<br>199 ds  | Lower<br>Limit:<br>50<br>35                                              | Upper<br>Limit:<br>150<br>159                                                         |
| Compounds:                                                                                    |                                                                        | Concentration<br>mg/kg (ppm) |                                                                          |                                                                                       |
| Naphthalene                                                                                   |                                                                        | 0.59                         |                                                                          |                                                                                       |
| Acenaphthylene                                                                                |                                                                        | < 0.1                        |                                                                          |                                                                                       |
| Acenaphthene                                                                                  |                                                                        | 0.12                         |                                                                          |                                                                                       |
| Fluorene                                                                                      |                                                                        | 0.76                         |                                                                          |                                                                                       |
| Phenanthrene                                                                                  |                                                                        | 1.2                          |                                                                          |                                                                                       |
| Anthracene                                                                                    |                                                                        | < 0.1                        |                                                                          |                                                                                       |
| Fluoranthene                                                                                  |                                                                        | 0.20                         |                                                                          |                                                                                       |
| Pyrene                                                                                        |                                                                        | 0.68                         |                                                                          |                                                                                       |
| Benz(a)anthracene                                                                             |                                                                        | < 0.1                        |                                                                          |                                                                                       |
| Chrysene                                                                                      |                                                                        | 0.18                         |                                                                          |                                                                                       |
| Benzo(a)pyrene                                                                                |                                                                        | <0.1                         |                                                                          |                                                                                       |
| Benzo(b)fluoranther                                                                           | ne                                                                     | <0.1                         |                                                                          |                                                                                       |
| Benzo(k)fluoranther                                                                           | ne                                                                     | <0.1                         |                                                                          |                                                                                       |
| Indeno(1,2,3-cd)pyre                                                                          | ene                                                                    | < 0.1                        |                                                                          |                                                                                       |
| Dibenz(a,h)anthrace                                                                           | ene                                                                    | < 0.1                        |                                                                          |                                                                                       |
| Benzo(g,h,i)perylene                                                                          | <u>è</u>                                                               | <0.1                         |                                                                          |                                                                                       |

### ENVIRONMENTAL CHEMISTS

# Analysis For Semivolatile Compounds By EPA Method 8270D SIM

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Blar<br>NA<br>07/26/11<br>07/26/11<br>Soil<br>mg/kg (ppm) |                              | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Terracon<br>Love's 81117058, F&BI 107293<br>01-1330 mb 1/5<br>072611.D<br>GCMS6<br>YA |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Surrogates:<br>Anthracene-d10<br>Benzo(a)anthracene                                           | -d12                                                             | % Recovery:<br>102<br>115    | Lower<br>Limit:<br>50<br>35                                              | Upper<br>Limit:<br>150<br>159                                                         |
| Compounds:                                                                                    |                                                                  | Concentration<br>mg/kg (ppm) |                                                                          |                                                                                       |
|                                                                                               |                                                                  |                              |                                                                          |                                                                                       |
| Naphthalene                                                                                   |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Acenaphthylene                                                                                |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Acenaphthene                                                                                  |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Fluorene                                                                                      |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Phenanthrene                                                                                  |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Anthracene                                                                                    |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Fluoranthene                                                                                  |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Pyrene                                                                                        |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Benz(a)anthracene                                                                             |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Chrysene                                                                                      |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Benzo(a)pyrene                                                                                |                                                                  | < 0.01                       |                                                                          |                                                                                       |
| Benzo(b)fluoranther                                                                           | e                                                                | < 0.01                       |                                                                          |                                                                                       |
| Benzo(k)fluoranther                                                                           | ne                                                               | < 0.01                       |                                                                          |                                                                                       |
| Indeno(1,2,3-cd)pyre                                                                          | ene                                                              | < 0.01                       |                                                                          |                                                                                       |
| Dibenz(a,h)anthrace                                                                           | ene                                                              | < 0.01                       |                                                                          |                                                                                       |
| Benzo(g,h,i)perylene                                                                          | <b>)</b>                                                         | < 0.01                       |                                                                          |                                                                                       |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: | 107260-06 (Duplicate | e)     |          |           |                  |
|------------------|----------------------|--------|----------|-----------|------------------|
|                  |                      | (Wet V | Vt) (W   | Vet Wt)   | Relative Percent |
|                  |                      | Samp   | le Dı    | ıplicate  | Difference       |
| Analyte          | Reporting Units      | Resu   | lt F     | Result    | (Limit 20)       |
| Gasoline         | mg/kg (ppm)          | <2     |          | <2        | nm               |
| Laboratory Code: | Laboratory Control S | Sample |          |           |                  |
|                  |                      |        | Percent  |           |                  |
|                  |                      | Spike  | Recovery | Acceptanc | e                |
| Analyte          | Reporting Units      | Level  | LCS      | Criteria  |                  |
| Gasoline         | mg/kg (ppm)          | 20     | 105      | 71-131    |                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 107276-09 (Matrix Spike)

|                     |                   |          | (Wet wt) | Percent  | Percent      |            |            |
|---------------------|-------------------|----------|----------|----------|--------------|------------|------------|
|                     | Reporting         | Spike    | Sample   | Recovery | Recovery MSD | Acceptance | RPD        |
| Analyte             | Units             | Level    | Result   | MS       | -            | Criteria   | (Limit 20) |
| Diesel Extended     | mg/kg (ppm)       | 5,000    | <50      | 92       | 92           | 63-146     | 0          |
| Laboratory Code: La | aboratory Control | l Sample | Percent  |          |              |            |            |
|                     | Reporting         | Spike    | Recovery | Accepta  | ance         |            |            |
| Analyte             | Units             | Level    | LCS      | Criter   |              |            |            |
| Diesel Extended     | mg/kg (ppm)       | 5,000    | 92       | 79-14    | 14           |            |            |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS USING EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 107293-01 (Matrix Spike)

|          |            |       |        | Percent  | Percent  |            |            |
|----------|------------|-------|--------|----------|----------|------------|------------|
|          | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte  | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Chromium | mg/L (ppm) | 2.0   | <1     | 94       | 96       | 50-150     | 2          |
| Arsenic  | mg/L (ppm) | 1.0   | <1     | 99       | 100      | 50-150     | 1          |
| Selenium | mg/L (ppm) | 0.5   | <1     | 99       | 96       | 50-150     | 3          |
| Silver   | mg/L (ppm) | 0.5   | <1     | 97       | 96       | 50-150     | 1          |
| Cadmium  | mg/L (ppm) | 0.5   | <1     | 99       | 100      | 50-150     | 1          |
| Barium   | mg/L (ppm) | 5.0   | <1     | 102      | 103      | 50-150     | 1          |
| Lead     | mg/L (ppm) | 1.0   | <1     | 96       | 97       | 50-150     | 1          |

Laboratory Code: Laboratory Control Sample

|          |            |       | Percent  |            |
|----------|------------|-------|----------|------------|
|          | Reporting  | Spike | Recovery | Acceptance |
| Analyte  | Units      | Level | LCS      | Criteria   |
| Chromium | mg/L (ppm) | 2.0   | 96       | 70-130     |
| Arsenic  | mg/L (ppm) | 1.0   | 97       | 70-130     |
| Selenium | mg/L (ppm) | 0.5   | 99       | 70-130     |
| Silver   | mg/L (ppm) | 0.5   | 95       | 70-130     |
| Cadmium  | mg/L (ppm) | 0.5   | 98       | 70-130     |
| Barium   | mg/L (ppm) | 5.0   | 99       | 70-130     |
| Lead     | mg/L (ppm) | 1.0   | 95       | 70-130     |
|          |            |       |          |            |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TCLP MERCURY IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

| Laboratory Code: 107293-01 (Matrix Spike)         Percent         Percent       Percent         Reporting       Spike       Sample       Recovery       Recovery       Control       RPD         Analyte       Units       Level       Result       MS       MSD       Limits       (Limit 20)         Management       mg/L (npm)       0.005       c0.1       102       106       48.160       2 |            |       |        |          |          |         |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------|----------|----------|---------|------------|--|
| -                                                                                                                                                                                                                                                                                                                                                                                                  |            | -     |        | Percent  | Percent  |         |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                    | Reporting  | Spike | Sample | Recovery | Recovery | Control | RPD        |  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                            | Units      | Level | Result | MS       | MSD      | Limits  | (Limit 20) |  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                            | mg/L (ppm) | 0.005 | <0.1   | 103      | 106      | 48-160  | 3          |  |

Laboratory Code: Laboratory Control Sample

|         |            |       | Percent  |            |
|---------|------------|-------|----------|------------|
|         | Reporting  | Spike | Recovery | Acceptance |
| Analyte | Units      | Level | LCS      | Criteria   |
| Mercury | mg/L (ppm) | 0.005 | 100      | 79-126     |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Deveent

Laboratory Code: 107294-01 (Matrix Spike)

| -                                                  |                            |             |                | Percent  | Percent          |  |  |
|----------------------------------------------------|----------------------------|-------------|----------------|----------|------------------|--|--|
|                                                    | Reporting                  | Spike       | Sample         | Recovery | Acceptance       |  |  |
| Analyte                                            | Units                      | Level       | Result         | MS       | Criteria         |  |  |
| Dichlorodifluoromethane                            | mg/kg (ppm)                | 2.5         | <0.5           | 12       | 10-171           |  |  |
| Chloromethane                                      | mg/kg (ppm)                | 2.5         | <0.5           | 35       | 10-162           |  |  |
| Vinyl chloride                                     | mg/kg (ppm)                | 2.5         | < 0.05         | 35       | 10-166           |  |  |
| Bromomethane                                       | mg/kg (ppm)                | 2.5         | < 0.5          | 47       | 10-165           |  |  |
| Chloroethane                                       | mg/kg (ppm)                | 2.5         | <0.5           | 55       | 10-161           |  |  |
| Trichlorofluoromethane                             | mg/kg (ppm)                | 2.5<br>12.5 | <0.5           | 40       | 10-168           |  |  |
| Acetone<br>1,1-Dichloroethene                      | mg/kg (ppm)                | 2.5         | <0.5<br><0.05  | 63<br>50 | 20-155<br>10-168 |  |  |
| Methylene chloride                                 | mg/kg (ppm)                | 2.5         | <0.05          | 60       | 21-149           |  |  |
| Methyl t-butyl ether (MTBE)                        | mg/kg (ppm)<br>mg/kg (ppm) | 2.5         | <0.05          | 64       | 39-139           |  |  |
| trans-1.2-Dichloroethene                           | mg/kg (ppm)                | 2.5         | < 0.05         | 56       | 20-150           |  |  |
| 1.1-Dichloroethane                                 | mg/kg (ppm)                | 2.5         | <0.05          | 60       | 30-114           |  |  |
| 2,2-Dichloropropane                                | mg/kg (ppm)                | 2.5         | <0.05          | 61       | 17-150           |  |  |
| cis-1,2-Dichloroethene                             | mg/kg (ppm)                | 2.5         | <0.05          | 64       | 36-111           |  |  |
| Chloroform                                         | mg/kg (ppm)                | 2.5         | < 0.05         | 64       | 39-114           |  |  |
| 2-Butanone (MEK)                                   | mg/kg (ppm)                | 12.5        | < 0.5          | 68       | 24-153           |  |  |
| 1,2-Dichloroethane (EDC)                           | mg/kg (ppm)                | 2.5         | < 0.05         | 67       | 38-116           |  |  |
| 1,1,1-Trichloroethane                              | mg/kg (ppm)                | 2.5         | < 0.05         | 64       | 27-119           |  |  |
| 1,1-Dichloropropene                                | mg/kg (ppm)                | 2.5         | < 0.05         | 62       | 26-118           |  |  |
| Carbon tetrachloride                               | mg/kg (ppm)                | 2.5         | < 0.05         | 64       | 22-123           |  |  |
| Benzene                                            | mg/kg (ppm)                | 2.5         | < 0.03         | 63       | 33-113           |  |  |
| Trichloroethene                                    | mg/kg (ppm)                | 2.5         | < 0.03         | 68       | 36-113           |  |  |
| 1,2-Dichloropropane                                | mg/kg (ppm)                | 2.5         | < 0.05         | 66       | 40-113           |  |  |
| Bromodichloromethane                               | mg/kg (ppm)                | 2.5         | < 0.05         | 69       | 43-118           |  |  |
| Dibromomethane                                     | mg/kg (ppm)                | 2.5         | < 0.05         | 69       | 43-113           |  |  |
| 4-Methyl-2-pentanone                               | mg/kg (ppm)                | 12.5        | <0.5           | 70       | 34-154           |  |  |
| cis-1,3-Dichloropropene                            | mg/kg (ppm)                | 2.5         | < 0.05         | 70       | 43-117           |  |  |
| Toluene                                            | mg/kg (ppm)                | 2.5         | < 0.05         | 64<br>72 | 38-139           |  |  |
| trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane | mg/kg (ppm)                | 2.5         | < 0.05         | 72<br>68 | 44-140           |  |  |
| 2-Hexanone                                         | mg/kg (ppm)                | 2.5<br>12.5 | <0.05<br><0.5  | 68<br>70 | 38-146<br>37-150 |  |  |
| 1,3-Dichloropropane                                | mg/kg (ppm)<br>mg/kg (ppm) | 2.5         | <0.05          | 67       | 47-133           |  |  |
| Tetrachloroethene                                  | mg/kg (ppm)                | 2.5         | <0.025         | 64       | 29-117           |  |  |
| Dibromochloromethane                               | mg/kg (ppm)                | 2.5         | <0.025         | 70       | 46-116           |  |  |
| 1,2-Dibromoethane (EDB)                            | mg/kg (ppm)                | 2.5         | <0.05          | 69       | 44-139           |  |  |
| Chlorobenzene                                      | mg/kg (ppm)                | 2.5         | <0.05          | 66       | 41-114           |  |  |
| Ethylbenzene                                       | mg/kg (ppm)                | 2.5         | < 0.05         | 66       | 38-120           |  |  |
| 1,1,1,2-Tetrachloroethane                          | mg/kg (ppm)                | 2.5         | < 0.05         | 72       | 43-120           |  |  |
| m,p-Xylene                                         | mg/kg (ppm)                | 5           | < 0.1          | 67       | 37-122           |  |  |
| o-Xylene                                           | mg/kg (ppm)                | 2.5         | < 0.05         | 67       | 39-121           |  |  |
| Styrene                                            | mg/kg (ppm)                | 2.5         | < 0.05         | 69       | 43-121           |  |  |
| Isopropylbenzene                                   | mg/kg (ppm)                | 2.5         | < 0.05         | 67       | 38-126           |  |  |
| Bromoform                                          | mg/kg (ppm)                | 2.5         | < 0.05         | 72       | 44-120           |  |  |
| n-Propylbenzene                                    | mg/kg (ppm)                | 2.5         | < 0.05         | 67       | 34-127           |  |  |
| Bromobenzene                                       | mg/kg (ppm)                | 2.5         | < 0.05         | 68       | 42-115           |  |  |
| 1,3,5-Trimethylbenzene                             | mg/kg (ppm)                | 2.5         | < 0.05         | 67       | 34-126           |  |  |
| 1,1,2,2-Tetrachloroethane                          | mg/kg (ppm)                | 2.5         | < 0.05         | 69       | 41-113           |  |  |
| 1,2,3-Trichloropropane                             | mg/kg (ppm)                | 2.5         | < 0.05         | 69       | 45-134           |  |  |
| 2-Chlorotoluene<br>4-Chlorotoluene                 | mg/kg (ppm)                | 2.5<br>2.5  | <0.05<br><0.05 | 68<br>69 | 40-120<br>41-119 |  |  |
| 4-Chlorotoluene<br>tert-Butylbenzene               | mg/kg (ppm)<br>mg/kg (ppm) | 2.5         | <0.05<br><0.05 | 67       | 37-125           |  |  |
| 1,2,4-Trimethylbenzene                             | mg/kg (ppm)                | 2.5         | < 0.05         | 68       | 34-129           |  |  |
| sec-Butylbenzene                                   | mg/kg (ppm)                | 2.5         | <0.05          | 67       | 35-127           |  |  |
| p-Isopropyltoluene                                 | mg/kg (ppm)                | 2.5         | <0.05          | 66       | 35-128           |  |  |
| 1,3-Dichlorobenzene                                | mg/kg (ppm)                | 2.5         | <0.05          | 67       | 39-115           |  |  |
| 1,4-Dichlorobenzene                                | mg/kg (ppm)                | 2.5         | <0.05          | 67       | 39-113           |  |  |
| 1.2-Dichlorobenzene                                | mg/kg (ppm)                | 2.5         | <0.05          | 67       | 43-115           |  |  |
| 1,2-Dibromo-3-chloropropane                        | mg/kg (ppm)                | 2.5         | <0.5           | 73       | 30-147           |  |  |
| 1,2,4-Trichlorobenzene                             | mg/kg (ppm)                | 2.5         | <0.25          | 68       | 37-121           |  |  |
| Hexachlorobutadiene                                | mg/kg (ppm)                | 2.5         | <0.25          | 64       | 29-121           |  |  |
| Naphthalene                                        | mg/kg (ppm)                | 2.5         | < 0.05         | 69       | 12-168           |  |  |
| 1,2,3-Trichlorobenzene                             | mg/kg (ppm)                | 2.5         | < 0.25         | 67       | 11-172           |  |  |
|                                                    | 0 0 41 /                   |             |                |          |                  |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### **QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES** FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

|                             | Reporting   | Spike      | Percent<br>Recovery | Percent<br>Recovery | Acceptance       | RPD        |
|-----------------------------|-------------|------------|---------------------|---------------------|------------------|------------|
| nalyte                      | Units       | Level      | LCS                 | LCSD                | Criteria         | (Limit 20) |
| ichlorodifluoromethane      | mg/kg (ppm) | 2.5        | 38                  | 38                  | 10-142           | 0          |
| hloromethane                | mg/kg (ppm) | 2.5        | 57                  | 56                  | 25-121           | 2          |
| inyl chloride               | mg/kg (ppm) | 2.5        | 61                  | 59                  | 29-135           | 3          |
| romomethane                 | mg/kg (ppm) | 2.5        | 63                  | 60                  | 33-123           | 5          |
| hloroethane                 | mg/kg (ppm) | 2.5        | 66                  | 63                  | 10-281           | 5          |
| richlorofluoromethane       | mg/kg (ppm) | 2.5        | 65                  | 56                  | 13-151           | 15         |
| cetone                      | mg/kg (ppm) | 12.5       | 74                  | 72                  | 10-151           | 3          |
| 1-Dichloroethene            | mg/kg (ppm) | 2.5        | 68                  | 66                  | 22-151           | 3          |
| lethylene chloride          | mg/kg (ppm) | 2.5        | 68                  | 71                  | 42-144           | 4          |
| fethyl t-butyl ether (MTBE) | mg/kg (ppm) | 2.5        | 85                  | 80                  | 62-124           | 6          |
| rans-1,2-Dichloroethene     | mg/kg (ppm) | 2.5        | 77                  | 75                  | 60-125           | 3          |
| 1-Dichloroethane            | mg/kg (ppm) | 2.5        | 86                  | 82                  | 66-123           | 5          |
| 2-Dichloropropane           | mg/kg (ppm) | 2.5        | 96                  | 90                  | 53-134           | 6          |
| is-1,2-Dichloroethene       | mg/kg (ppm) | 2.5        | 88                  | 83                  | 72-118           | 6          |
| hloroform                   | mg/kg (ppm) | 2.5        | 90                  | 85                  | 71-123           | 6          |
| -Butanone (MEK)             | mg/kg (ppm) | 12.5       | 91                  | 87                  | 10-150           | 4          |
| 2-Dichloroethane (EDC)      | mg/kg (ppm) | 2.5        | 88                  | 82                  | 60-124           | 7          |
| 1,1-Trichloroethane         | mg/kg (ppm) | 2.5        | 94                  | 88                  | 68-128           | 7          |
| 1-Dichloropropene           | mg/kg (ppm) | 2.5        | 90                  | 84                  | 71-123           | 7          |
| arbon tetrachloride         | mg/kg (ppm) | 2.5        | 96                  | 93                  | 64-136           | 3          |
| enzene                      | mg/kg (ppm) | 2.5        | 88                  | 83                  | 69-122           | 6          |
| richloroethene              | mg/kg (ppm) | 2.5        | 96                  | 83<br>91            | 71-122           | 5          |
| 2-Dichloropropane           |             | 2.5        | 91                  | 86                  | 71-122           | 6          |
|                             | mg/kg (ppm) |            |                     | 94                  |                  |            |
| romodichloromethane         | mg/kg (ppm) | 2.5        | 101                 |                     | 68-140           | 7<br>7     |
| ibromomethane               | mg/kg (ppm) | 2.5        | 94                  | 88                  | 72-121           |            |
| Methyl-2-pentanone          | mg/kg (ppm) | 12.5       | 93                  | 89                  | 10-150           | 4          |
| s-1,3-Dichloropropene       | mg/kg (ppm) | 2.5        | 101                 | 96                  | 74-126           | 5          |
| oluene                      | mg/kg (ppm) | 2.5        | 86                  | 84                  | 72-122           | 2          |
| ans-1,3-Dichloropropene     | mg/kg (ppm) | 2.5        | 101                 | 98                  | 70-131           | 3          |
| 1,2-Trichloroethane         | mg/kg (ppm) | 2.5        | 88                  | 86                  | 70-122           | 2          |
| Hexanone                    | mg/kg (ppm) | 12.5       | 89                  | 84                  | 10-152           | 6          |
| 3-Dichloropropane           | mg/kg (ppm) | 2.5        | 88                  | 85                  | 72-121           | 3          |
| etrachloroethene            | mg/kg (ppm) | 2.5        | 88                  | 86                  | 69-125           | 2          |
| bibromochloromethane        | mg/kg (ppm) | 2.5        | 98                  | 94                  | 68-130           | 4          |
| 2-Dibromoethane (EDB)       | mg/kg (ppm) | 2.5        | 91                  | 88                  | 72-121           | 3          |
| hlorobenzene                | mg/kg (ppm) | 2.5        | 85                  | 83                  | 69-125           | 2          |
| thylbenzene                 | mg/kg (ppm) | 2.5        | 88                  | 85                  | 72-130           | 3          |
| 1,1,2-Tetrachloroethane     | mg/kg (ppm) | 2.5        | 97                  | 94                  | 69-133           | 3          |
| ,p-Xylene                   | mg/kg (ppm) | 5          | 89                  | 86                  | 72-131           | 3          |
| Xylene                      | mg/kg (ppm) | 2.5        | 90                  | 85                  | 71-129           | 6          |
| tyrene                      | mg/kg (ppm) | 2.5        | 91                  | 89                  | 73-132           | 2          |
| sopropylbenzene             | mg/kg (ppm) | 2.5        | 89                  | 86                  | 73-132           | 3          |
| romoform                    | mg/kg (ppm) | 2.5        | 104                 | 98                  | 68-129           | 6          |
| -Propylbenzene              | mg/kg (ppm) | 2.5        | 89                  | 86                  | 72-136           | 3          |
| romobenzene                 | mg/kg (ppm) | 2.5        | 89<br>91            | 88                  | 73-125           | 3          |
| 3.5-Trimethylbenzene        | mg/kg (ppm) | 2.5<br>2.5 | 91<br>90            | 85                  | 73-125<br>72-132 | 6          |
|                             |             |            |                     |                     |                  |            |
| 1,2,2-Tetrachloroethane     | mg/kg (ppm) | 2.5        | 92                  | 88                  | 67-116           | 4          |
| 2,3-Trichloropropane        | mg/kg (ppm) | 2.5        | 90                  | 85                  | 67-123           | 6          |
| Chlorotoluene               | mg/kg (ppm) | 2.5        | 91                  | 87                  | 72-130           | 4          |
| Chlorotoluene               | mg/kg (ppm) | 2.5        | 90                  | 87                  | 73-129           | 3          |
| rt-Butylbenzene             | mg/kg (ppm) | 2.5        | 89                  | 86                  | 71-130           | 3          |
| 2,4-Trimethylbenzene        | mg/kg (ppm) | 2.5        | 89                  | 87                  | 70-132           | 2          |
| c-Butylbenzene              | mg/kg (ppm) | 2.5        | 89                  | 87                  | 71-134           | 2          |
| Isopropyltoluene            | mg/kg (ppm) | 2.5        | 90                  | 87                  | 71-135           | 3          |
| 3-Dichlorobenzene           | mg/kg (ppm) | 2.5        | 89                  | 85                  | 70-124           | 5          |
| 4-Dichlorobenzene           | mg/kg (ppm) | 2.5        | 88                  | 85                  | 68-126           | 3          |
| 2-Dichlorobenzene           | mg/kg (ppm) | 2.5        | 89                  | 86                  | 71-125           | 3          |
| 2-Dibromo-3-chloropropane   | mg/kg (ppm) | 2.5        | 99                  | 95                  | 63-122           | 4          |
| 2,4-Trichlorobenzene        | mg/kg (ppm) | 2.5        | 90                  | 89                  | 69-132           | 1          |
| exachlorobutadiene          | mg/kg (ppm) | 2.5        | 87                  | 88                  | 68-121           | 1          |
|                             |             |            | 07                  | 00                  | 00-161           |            |
| aphthalene                  | mg/kg (ppm) | 2.5        | 91                  | 90                  | 60-125           | 1          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/11 Date Received: 07/21/11 Project: Love's 81117058, F&BI 107293

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample

| Laboratory Couc. Laborati | ing control Sump |       | Percent  | Percent  |            |            |
|---------------------------|------------------|-------|----------|----------|------------|------------|
|                           | Reporting        | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte                   | Units            | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Naphthalene               | mg/kg (ppm)      | 0.17  | 89       | 89       | 61-115     | 0          |
| Acenaphthylene            | mg/kg (ppm)      | 0.17  | 86       | 86       | 63-110     | 0          |
| Acenaphthene              | mg/kg (ppm)      | 0.17  | 89       | 89       | 60-115     | 0          |
| Fluorene                  | mg/kg (ppm)      | 0.17  | 95       | 95       | 59-116     | 0          |
| Phenanthrene              | mg/kg (ppm)      | 0.17  | 88       | 89       | 60-113     | 1          |
| Anthracene                | mg/kg (ppm)      | 0.17  | 83       | 83       | 56-103     | 0          |
| Fluoranthene              | mg/kg (ppm)      | 0.17  | 90       | 91       | 60-116     | 1          |
| Pyrene                    | mg/kg (ppm)      | 0.17  | 83       | 83       | 60-116     | 0          |
| Benz(a)anthracene         | mg/kg (ppm)      | 0.17  | 85       | 85       | 53-109     | 0          |
| Chrysene                  | mg/kg (ppm)      | 0.17  | 90       | 91       | 61-116     | 1          |
| Benzo(b)fluoranthene      | mg/kg (ppm)      | 0.17  | 96       | 98       | 57-118     | 2          |
| Benzo(k)fluoranthene      | mg/kg (ppm)      | 0.17  | 89       | 90       | 61-118     | 1          |
| Benzo(a)pyrene            | mg/kg (ppm)      | 0.17  | 88       | 89       | 53-108     | 1          |
| Indeno(1,2,3-cd)pyrene    | mg/kg (ppm)      | 0.17  | 97       | 98       | 46-127     | 1          |
| Dibenz(a,h)anthracene     | mg/kg (ppm)      | 0.17  | 99       | 99       | 55-121     | 0          |
| Benzo(g,h,i)perylene      | mg/kg (ppm)      | 0.17  | 96       | 97       | 56-118     | 1          |

#### ENVIRONMENTAL CHEMISTS

# **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\mbox{ca}$  - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\text{pr}}$  – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| Forms/coc/coc.boc | Ph. (206) 285-8282 | Seattle, WA 98119-2029 | Friedman & Bruya, Inc.<br>3012 16th Avenue West |         |  |  | 811708-DP-2             | Sample ID                                                                               |                   | City, State, ZIP $M$<br>Phone # $\frac{125-77l-12}{2}$                                       | Address 21905 (                   | ort To               | 10+295 |
|-------------------|--------------------|------------------------|-------------------------------------------------|---------|--|--|-------------------------|-----------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|-----------------------------------|----------------------|--------|
| Kecelved by:      | Relinquished by    | Received by:           | SIGNATURE<br>Relinquished by:                   | , İ     |  |  | <br>) A.F. 7/21/11 8:50 | Lab Date Time<br>ID Sampled Sampled                                                     |                   | City, State, ZIP Mountaly Tenere LAT 9604 REMARKS<br>Phone # 425-771-3204 Fax # 425-771-3549 | Address 21905 64th Ave. W St. 100 | Chad Kean            |        |
|                   | Jon Shimina        | UVV<br>VV              | PRINT NAME                                      |         |  |  | 5-:1 6 11 1             | Sample Type<br>Containers<br>TPH-Diesel<br>TPH-Gasoline<br>BTEX by 8021B<br>VOCs by8260 |                   | 1504 REMARKS                                                                                 | 85021112/ 5, anor                 | SAMPLERS (signature) |        |
| •                 | 1.01               | TP+                    | COMPANY                                         | ived    |  |  |                         | SVOCs by 8270<br>HFS<br>РАН'з -827<br>RCRA-8 TCL                                        | ANALYSECREQUESTED | metels                                                                                       | 8/117058 Rush cha                 | Po# Po# Po           |        |
|                   | -                  | $\sim$                 | DATE TIME                                       | at 6 °C |  |  |                         | Notes                                                                                   |                   | SAMPLE DISPOSAL<br>SAMPLE DISPOSAL<br>Beturn samples<br>Will call with instructions          | Rush charges authorized by        | Page # of            |        |